有趣的勾股定理历史PPT课件
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
勾股定理有关历史PPT课件
2
2
2
得1
2
1
(a+b)(a+b)= 2
1
ab+ 2
1
ab+ 2
c2
即 a2+2ab+ b2= ab+ab+ c2
2021/3/12
因此 a2+b2=c2
6
感谢您的阅读收藏,谢谢!
2021/3/12
7
2021/3/12
1
勾股定理在欧洲中世纪被戏称为 “驴桥”,因为那时数学水平较低 ,很多学习欧几里得《原本》的人 到这里被卡住,难于理解和接受。 所以勾股定理被谑称为「驴桥」, 意谓笨蛋的难关 。
2021/3/12
2
很早以前,人们就知道了边长为3、4、5和5 、12、13的三角形为直角三角形。毕达哥拉斯 发现了这两套数字的共同之处:最大数的平方 等于另外两个数的平方和,即3²+4²=5²;5²+ 12²=13²。这就是说,以直角三角形最长边为边 长的正方形面积,等于两个短边为边长的两个 正方形面积的和。
如图:以c为斜边,做四个全等的直角三角形,直角边分别用字母 a和b表示且a<b, 把这个三角形拼成右图。
易得:四边形ABDE是正方形 ∴S正方形ABDE=c²
而四边形CFIH是一个边长为(b-a)的正方形, S正CFIH= (b-a)²
因为S正方形ABDE= S正方形CFIH+S△BHD+S△DIE+S△ACB+S△EFA
∴c²=4×12 ab+(b-a)²
化简202得1/3/1:2 c²=a²+b²
5
“总统”证法
加菲尔德经过反复思考与演算,终于弄清了其 中的道理,并给出了简洁的证明方法。
《勾股定理》课件
《勾股定理》PPT课件
欢迎来到《勾股定理》PPT课件!跟随我一起探索这一古老而神奇的数学定理, 了解它的定义、历史、应用和证明方法。
什么是勾股定理
勾股定理是解决直角三角形边长关系的数学定理。它关联了三角形的三边, 为许多现实生活和科学领域提供了重要的应用基础。
勾股定理的历史发展
1
中国古代
古代中国数学家首次发现了勾股定理的特殊情形,应用于土地测量和农业。
于理解。
归纳法证明
利用归纳法和数学归纳原理,证明勾股定理 对于任意正整数的直角三角形都成立。
代数法证明
运用代数运算和平方差公式,将直角三角形 的边长代入公式,推导出勾股定理的等式。
勾股定理与形的关系
勾股定理与圆形密切相关,可推导出圆的周长、半径、直径等与直角三角形 边长之间的关系。
勾股定理的推广
勾股定理在直角三角形的应用
勾股定理可用于求解直角三角形的任一边长,或计算三角形的周长、面积和 角度,帮助解决实际问题,如建筑、航海和测绘。
勾股定理的证明方法
1
几何法证明
2
通过构图和几何推理,演示直角三角形中各 条边与角度之间的关系,从而证明勾股定理。
3
巧妙证明
4
介绍一些有趣的巧妙证明方法,如使用数学 图形和变换,让勾股定理变得更加直观和易
2
古希腊
古希腊数学家毕达哥拉斯将已知的勾股定理完善为通用公式,为后世的发展奠定 了基础。
3
现代
勾股定理在现代数学和科学领域扮演着重要角色,为三角学、几何学和物理学等 提供了关键工具。
勾股定理的定义
勾股定理表明在一个直角三角形中,三条边的长度满足a²+ b²= c²,其中c是斜边,a和b是两个直角边。
欢迎来到《勾股定理》PPT课件!跟随我一起探索这一古老而神奇的数学定理, 了解它的定义、历史、应用和证明方法。
什么是勾股定理
勾股定理是解决直角三角形边长关系的数学定理。它关联了三角形的三边, 为许多现实生活和科学领域提供了重要的应用基础。
勾股定理的历史发展
1
中国古代
古代中国数学家首次发现了勾股定理的特殊情形,应用于土地测量和农业。
于理解。
归纳法证明
利用归纳法和数学归纳原理,证明勾股定理 对于任意正整数的直角三角形都成立。
代数法证明
运用代数运算和平方差公式,将直角三角形 的边长代入公式,推导出勾股定理的等式。
勾股定理与形的关系
勾股定理与圆形密切相关,可推导出圆的周长、半径、直径等与直角三角形 边长之间的关系。
勾股定理的推广
勾股定理在直角三角形的应用
勾股定理可用于求解直角三角形的任一边长,或计算三角形的周长、面积和 角度,帮助解决实际问题,如建筑、航海和测绘。
勾股定理的证明方法
1
几何法证明
2
通过构图和几何推理,演示直角三角形中各 条边与角度之间的关系,从而证明勾股定理。
3
巧妙证明
4
介绍一些有趣的巧妙证明方法,如使用数学 图形和变换,让勾股定理变得更加直观和易
2
古希腊
古希腊数学家毕达哥拉斯将已知的勾股定理完善为通用公式,为后世的发展奠定 了基础。
3
现代
勾股定理在现代数学和科学领域扮演着重要角色,为三角学、几何学和物理学等 提供了关键工具。
勾股定理的定义
勾股定理表明在一个直角三角形中,三条边的长度满足a²+ b²= c²,其中c是斜边,a和b是两个直角边。
勾股定理课件PPT
04 勾股定理的应用
在几何学中的应用
确定直角三角形
勾股定理是确定直角三角形的重要工 具,通过已知的两边长度,可以计算 出第三边的长度,从而判断三角形是 否为直角三角形。
求解三角形问题
证明定理
勾股定理在几何学中经常被用于证明 其他定理或性质,例如角平分线定理、 余弦定理等。
勾股定理在求解三角形问题中也有广 泛应用,例如求解三角形的面积、周 长等。
03
02
解决实际问题
勾股定理在实际生活中有着广泛的应用。例如,在建筑 、航空、航海等领域,都需要用到勾股定理来计算角度 、长度等参数。
数学史上的里程碑
勾股定理在数学史上具有重要地位,它是数学发展的一 个里程碑。它的证明和发展推动了数学的发展,为后来 的数学家提供了许多启示和灵感。
02 勾股定理的起源与历史
02
毕达哥拉斯证明法是基于三角形 的边长和角度之间的关系,通过 观察和归纳,证明了勾股定理。
欧拉证明法
欧拉是18世纪的瑞士数学家,他通过代数方法和函数论,给出了勾股定理的一个 新证明。
欧拉证明法不仅证明了勾股定理,还进一步揭示了勾股定理与其他数学概念之间 的联系,使得勾股定理在数学领域中更加重要。
勾股定理在复数域的推广
勾股定理在复数域的推广形式
在复数域中,勾股定理的形式有所变化,但基的勾股定理关系仍然成立。
证明方法
利用复数域的性质和几何意义,通过几何图形和代数运算相结合的方法进行证 明。
06 勾股定理的趣味问题与挑战
勾股定理的趣味题目
勾股定理的证明
通过几何图形和数学推理,证明勾股 定理的正确性,让学生深入理解定理 的本质。
美观性。
航海学
在航海学中,勾股定理被用于确 定船只的航向、航速等参数,以
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
《趣味勾股定理》课件
应用:可以用于证明勾股定理,即直角三角形的斜边平方等于两个直角边平方之和
勾股定理的其他证明方法
海伦证明:通过圆周角来证 明
欧几里得证明:通过相似三 角形来证明
毕达哥拉斯证明:通过面积 相等来证明
卡尔达诺证明:通过代数方 法来证明
牛顿证明:通过无穷级数来 证明
费马证明:通过几何方法来 证明
勾股定理的应用
添加标题
添加标题
添加标题
添加标题
勾股定理在数学史上具有重要地位, 是数学家们研究几何学的重要工具
勾股定理在数学应用中具有广泛应 用,如建筑、工程、测量等领域
勾股定理的证明方法
欧几里得证明法
勾股定理:直角三角形中,两直角边的平方和等于斜边的平方 证明方法:通过几何图形的切割和拼接,证明勾股定理成立 证明步骤:首先,将直角三角形分为两个直角三角形和一个矩形 证明结果:通过几何图形的切割和拼接,得出勾股定理成立的结论
毕达哥拉斯证明法
毕达哥拉斯是古 希腊数学家,被 誉为“数学之父”
毕达哥拉斯证明法 是勾股定理的最早 证明方法之一
证明过程:通过构 造直角三角形,利 用面积相等来证明 勾股定理
证明意义:证明了勾 股定理的普遍性和有 效性,为后世数学发 展奠定了基础
弦图证明法
弦图:由三个直角三角形组成的图形 证明过程:通过连接直角三角形的斜边和直角边,形成弦图 结论:弦图面积等于直角三角形面积的两倍
中世纪:欧 洲数学家在 中世纪重新 发现了勾股 定理,并将 其广泛应用 于建筑和测 量领域
现代:随着 数学的发展, 勾股定理在 几何、代数、 分析等领域 得到了广泛 的应用和发 展
勾股定理在数学中的地位
勾股定理是数学中最基本的定理之 一,是几何学和代数学的基础
勾股定理的其他证明方法
海伦证明:通过圆周角来证 明
欧几里得证明:通过相似三 角形来证明
毕达哥拉斯证明:通过面积 相等来证明
卡尔达诺证明:通过代数方 法来证明
牛顿证明:通过无穷级数来 证明
费马证明:通过几何方法来 证明
勾股定理的应用
添加标题
添加标题
添加标题
添加标题
勾股定理在数学史上具有重要地位, 是数学家们研究几何学的重要工具
勾股定理在数学应用中具有广泛应 用,如建筑、工程、测量等领域
勾股定理的证明方法
欧几里得证明法
勾股定理:直角三角形中,两直角边的平方和等于斜边的平方 证明方法:通过几何图形的切割和拼接,证明勾股定理成立 证明步骤:首先,将直角三角形分为两个直角三角形和一个矩形 证明结果:通过几何图形的切割和拼接,得出勾股定理成立的结论
毕达哥拉斯证明法
毕达哥拉斯是古 希腊数学家,被 誉为“数学之父”
毕达哥拉斯证明法 是勾股定理的最早 证明方法之一
证明过程:通过构 造直角三角形,利 用面积相等来证明 勾股定理
证明意义:证明了勾 股定理的普遍性和有 效性,为后世数学发 展奠定了基础
弦图证明法
弦图:由三个直角三角形组成的图形 证明过程:通过连接直角三角形的斜边和直角边,形成弦图 结论:弦图面积等于直角三角形面积的两倍
中世纪:欧 洲数学家在 中世纪重新 发现了勾股 定理,并将 其广泛应用 于建筑和测 量领域
现代:随着 数学的发展, 勾股定理在 几何、代数、 分析等领域 得到了广泛 的应用和发 展
勾股定理在数学中的地位
勾股定理是数学中最基本的定理之 一,是几何学和代数学的基础
勾股定理的应用课件
利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
勾股定理ppt课件
如果直角三角形两直角边分别为a,b,斜边为c, 那么 a2 + b2 = c2 即直角三角形两直角边的平方和 等于斜边的平方(勾股定理)
2、你是通过什么方法得出这一结论的?
通过探索、发现、归纳、证明得出
3、这节课体现了哪些数学思想方法?
数形相结合,从特殊到一般.
作业布置
必做题:课本28页复习巩固1,2两题. 选做题:作业本第七页. 欧几里得证明勾股定理.
a2 + b2= c2
正方形A、B、C 所围成的等腰直角三角形的三边 之间有什么关系?
观察发现
AB
acb
C
SA + SB = SC
a2 +b2 = c2
等腰直角三角形的三边之间的关系:
两条直角边的平方和等于斜边的平方.
等腰直角三角形有上述性质,一般的直角三角形也 有这个性质吗?
P
Q CR
PQ Biblioteka R用了“补”的方法用了“割”的方法
如图,每个小方格的面积均为1.你能求出 正方形R的面积吗? (1)
观察所得到的这组数据,你有什么发现?
P9
a
SP + SQ = SR
16Q b
c
2R5
a2 + b2 = c2
所围正成方的形直P角、三Q角、形R 的所三围边成之的间的直关角系三:角形的三 边之间两有条什直么角关边系的?平方和等于斜边的平方.
勾股定理 如果直角三角形的两条直角边长分
别为a、b,斜边长为c,那么a2 + b2 = c2.
B
a
c
C
b
A
a2 = c2-b2
c a2 b2 a c2 b2
b2 = c2-a2 b c2 a2
2、你是通过什么方法得出这一结论的?
通过探索、发现、归纳、证明得出
3、这节课体现了哪些数学思想方法?
数形相结合,从特殊到一般.
作业布置
必做题:课本28页复习巩固1,2两题. 选做题:作业本第七页. 欧几里得证明勾股定理.
a2 + b2= c2
正方形A、B、C 所围成的等腰直角三角形的三边 之间有什么关系?
观察发现
AB
acb
C
SA + SB = SC
a2 +b2 = c2
等腰直角三角形的三边之间的关系:
两条直角边的平方和等于斜边的平方.
等腰直角三角形有上述性质,一般的直角三角形也 有这个性质吗?
P
Q CR
PQ Biblioteka R用了“补”的方法用了“割”的方法
如图,每个小方格的面积均为1.你能求出 正方形R的面积吗? (1)
观察所得到的这组数据,你有什么发现?
P9
a
SP + SQ = SR
16Q b
c
2R5
a2 + b2 = c2
所围正成方的形直P角、三Q角、形R 的所三围边成之的间的直关角系三:角形的三 边之间两有条什直么角关边系的?平方和等于斜边的平方.
勾股定理 如果直角三角形的两条直角边长分
别为a、b,斜边长为c,那么a2 + b2 = c2.
B
a
c
C
b
A
a2 = c2-b2
c a2 b2 a c2 b2
b2 = c2-a2 b c2 a2
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
《勾股定理发展史》课件
莱布尼茨分别在微积分学和解析几何方面做出了卓越 的贡献,他们的研究为勾股定理的应用和发展提供了新的思 路和方法。
牛顿利用微积分的方法研究了曲线的面积和体积,而莱布尼 茨则利用解析几何的方法研究了平面图形的面积和体积,这 些研究都与勾股定理有着密切的联系。
CHAPTER 03
相等的特殊情况。
非欧几何的应用主要在宇宙学 、相对论等领域,勾股定理在 这些领域中仍然具有重要意义
。
勾股定理在复数域的应用
勾股定理在复数域中可以表述为 三角恒等式,即对于任意复数z
,有z^2 = x^2 + y^2。
在复数域中,勾股定理的应用主 要涉及信号处理、控制系统等领
域。
通过利用勾股定理,可以方便地 计算复数的模长,进而进行信号
建筑中的勾股定理
建筑师在设计和建造建筑物时,经常运用勾股定理的原理。例如,在建造高塔或大型建筑时,建筑师可以利用勾 股定理来计算建筑物的角度和线条,以确保建筑物的稳定性和美观性。
勾股定理在文学作品中的描述
小说中的勾股定理
一些小说家在创作中运用勾股定理的原理,以丰富作品的主题和情节。例如,在描写爱情故事时,小 说家可以利用勾股定理来描述男女主角之间的情感关系,使情节更加生动和有趣。
欧几里得的证明方法虽然简洁,但在当时并未得到广泛的认可和应用,直到文艺 复兴时期才被重新发掘和推广。
笛卡尔与费马的新证明方法
笛卡尔和费马分别独立地提出了新的 证明方法,他们的证明方法更加直观 和易于理解,为勾股定理的普及和应 用做出了重要贡献。
笛卡尔的证明方法利用了代数和坐标 系的思想,而费马的证明方法则利用 了无穷小量的概念,这两种方法都对 后来的数学发展产生了深远的影响。
毕达哥拉斯定理
牛顿利用微积分的方法研究了曲线的面积和体积,而莱布尼 茨则利用解析几何的方法研究了平面图形的面积和体积,这 些研究都与勾股定理有着密切的联系。
CHAPTER 03
相等的特殊情况。
非欧几何的应用主要在宇宙学 、相对论等领域,勾股定理在 这些领域中仍然具有重要意义
。
勾股定理在复数域的应用
勾股定理在复数域中可以表述为 三角恒等式,即对于任意复数z
,有z^2 = x^2 + y^2。
在复数域中,勾股定理的应用主 要涉及信号处理、控制系统等领
域。
通过利用勾股定理,可以方便地 计算复数的模长,进而进行信号
建筑中的勾股定理
建筑师在设计和建造建筑物时,经常运用勾股定理的原理。例如,在建造高塔或大型建筑时,建筑师可以利用勾 股定理来计算建筑物的角度和线条,以确保建筑物的稳定性和美观性。
勾股定理在文学作品中的描述
小说中的勾股定理
一些小说家在创作中运用勾股定理的原理,以丰富作品的主题和情节。例如,在描写爱情故事时,小 说家可以利用勾股定理来描述男女主角之间的情感关系,使情节更加生动和有趣。
欧几里得的证明方法虽然简洁,但在当时并未得到广泛的认可和应用,直到文艺 复兴时期才被重新发掘和推广。
笛卡尔与费马的新证明方法
笛卡尔和费马分别独立地提出了新的 证明方法,他们的证明方法更加直观 和易于理解,为勾股定理的普及和应 用做出了重要贡献。
笛卡尔的证明方法利用了代数和坐标 系的思想,而费马的证明方法则利用 了无穷小量的概念,这两种方法都对 后来的数学发展产生了深远的影响。
毕达哥拉斯定理
勾股定理课件ppt
THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
第1课时勾股定理微课ppt课件
如图我国古代证明该命题 的“赵爽弦图”.
赵爽指出:按弦图,又可以
勾股相乘为朱实二,倍之为
朱实四.以勾股之差自相乘为 中黄实.加差实,亦成弦实.
赵爽弦图
思考 你是如何理解的?你会证明吗?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的
如何称呼直角三角形的三 边吗?
弦 股
勾
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
C'
A面、积B/格、C的9面积有25什么关3系4 ? SA+SB=SC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
小结
等腰直角三角形斜边的平 方等于两直角边的平方和.
证明
赵爽弦图
小正方形的面积= (a-b)2
=c2-4×
1 2
ab
即c2=a2+b2.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
赵爽指出:按弦图,又可以
勾股相乘为朱实二,倍之为
朱实四.以勾股之差自相乘为 中黄实.加差实,亦成弦实.
赵爽弦图
思考 你是如何理解的?你会证明吗?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的
如何称呼直角三角形的三 边吗?
弦 股
勾
那么勾、股、弦之间有什么关系呢?这 就是我们今天要探究的问题。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
C'
A面、积B/格、C的9面积有25什么关3系4 ? SA+SB=SC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
思考
等腰直角三角形三条边长度 之间有怎样的特殊关系?
小结
等腰直角三角形斜边的平 方等于两直角边的平方和.
证明
赵爽弦图
小正方形的面积= (a-b)2
=c2-4×
1 2
ab
即c2=a2+b2.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
《勾股定理》PPT优秀课件
探究活动
分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.
图1
图3
图2
方法一:
而
所以
即
,
,..ຫໍສະໝຸດ 因为,方法二:
,
化简得:
方法三:
,
化简得:
1.求下列图中表示边的未知数x、y、z的值.
议一议:
(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方。
表示为:Rt△ABC中,∠C=90°
16 9
?
?
(3)你是怎样得到正方形C的面积的?与同伴交流.
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图” :
证法四:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;
证法五:(欧几里得证法公元前3世纪)
“新娘的轿椅”或“修士的头巾”
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。
分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.
图1
图3
图2
方法一:
而
所以
即
,
,..ຫໍສະໝຸດ 因为,方法二:
,
化简得:
方法三:
,
化简得:
1.求下列图中表示边的未知数x、y、z的值.
议一议:
(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方。
表示为:Rt△ABC中,∠C=90°
16 9
?
?
(3)你是怎样得到正方形C的面积的?与同伴交流.
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图” :
证法四:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;
证法五:(欧几里得证法公元前3世纪)
“新娘的轿椅”或“修士的头巾”
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。
勾股定理ppt
勾股定理与两直线垂直的关系
如果一个直角三角形的斜边为c,其中一条直角边为a,另一条直角边为b,那么 以a和b为直径的圆与斜边c相切。
勾股定理与三角函数的联系
勾股定理与正弦函数的关系
正弦函数是三角函数的一种,它表示直角三角形中锐角度数 的对边与斜边的比值,即sinA=a/c。
勾股定理与余弦函数的关系
勾股定理的逆定理
逆定理的表述
勾股定理的逆定理是指如果三角形的三边长a、b、c满足a²+b²=c²,那么这 个三角形是直角三角形。
逆定理的证明方法
勾股定理逆定理的证明方法比较简单,可以通过三角形全等的判定方法“边 边边”进行证明。也可以通过反证法进行证明,假设三角形不是直角三角形 ,则可以推导出矛盾的结果,从而证明了逆定理的正确性。
间的距离、求圆的直径等。
勾股定理在日常生活中的应用
建筑学
勾股定理在建筑学中有着广泛的应用,例如确定建筑物的结构、设计建筑物的外 观等。
制作直角工具
勾股定理可以用来制作直角工具,例如勾股尺、勾股定理板等。
勾股定理在金融和投资领域的应用
确定投资组合
在金融和投资领域中,勾股定理可以用来确定投资组合,以 实现最大收益和最小风险。
勾股定理的一般形式
勾股定理不仅仅适用于直角三角形,对于一般的三角形同样适用,其一般形 式为:c² = a² + b² - 2abcosθ,其中θ为两直角边的夹角。
勾股定理与平面几何的联系
勾股定理与三角形面积的关系
勾股定理可以用来求三角形的面积,其中一条直角边为底边,另外两条为高,三 角形的面积为1/2底边乘以高。
学习技巧
学习技巧包括制定学习计划、合理安排时间、掌握学习重点 和难点、积极参与课堂讨论等。同时,需要注重实践和应用 ,将理论知识应用到实际问题的解决中。
如果一个直角三角形的斜边为c,其中一条直角边为a,另一条直角边为b,那么 以a和b为直径的圆与斜边c相切。
勾股定理与三角函数的联系
勾股定理与正弦函数的关系
正弦函数是三角函数的一种,它表示直角三角形中锐角度数 的对边与斜边的比值,即sinA=a/c。
勾股定理与余弦函数的关系
勾股定理的逆定理
逆定理的表述
勾股定理的逆定理是指如果三角形的三边长a、b、c满足a²+b²=c²,那么这 个三角形是直角三角形。
逆定理的证明方法
勾股定理逆定理的证明方法比较简单,可以通过三角形全等的判定方法“边 边边”进行证明。也可以通过反证法进行证明,假设三角形不是直角三角形 ,则可以推导出矛盾的结果,从而证明了逆定理的正确性。
间的距离、求圆的直径等。
勾股定理在日常生活中的应用
建筑学
勾股定理在建筑学中有着广泛的应用,例如确定建筑物的结构、设计建筑物的外 观等。
制作直角工具
勾股定理可以用来制作直角工具,例如勾股尺、勾股定理板等。
勾股定理在金融和投资领域的应用
确定投资组合
在金融和投资领域中,勾股定理可以用来确定投资组合,以 实现最大收益和最小风险。
勾股定理的一般形式
勾股定理不仅仅适用于直角三角形,对于一般的三角形同样适用,其一般形 式为:c² = a² + b² - 2abcosθ,其中θ为两直角边的夹角。
勾股定理与平面几何的联系
勾股定理与三角形面积的关系
勾股定理可以用来求三角形的面积,其中一条直角边为底边,另外两条为高,三 角形的面积为1/2底边乘以高。
学习技巧
学习技巧包括制定学习计划、合理安排时间、掌握学习重点 和难点、积极参与课堂讨论等。同时,需要注重实践和应用 ,将理论知识应用到实际问题的解决中。
勾股定理课件ppt
过程需要运用数学归纳法和反证法等数学方法。
05
勾股定理的挑战和未 解之谜
寻找最大的整数勾股数
总结词
寻找最大的整数勾股数是一个挑战,因为随着数字的增大,计算量也急剧增加 。
详细描述
目前已知的最大勾股数是(377, 384, 405),这是一个非常大的数,计算过程中 需要大量的计算资源和时间。寻找更大的勾股数是一个未解之谜,需要借助计 算机和数学算法来解决。
勾股定理在日常生活中也有广泛的应 用,如建筑、工程、航海、航空等领 域。
在航海和航空领域,勾股定理可以用 于确定航向、航程、高度等导航参数 ,以及解决与直角三角形相关的导航 问题。
在建筑和工程领域,勾股定理可以用 于确定建筑物的稳定性,计算建筑结 构的承载能力,以及解决与直角三角 形相关的工程问题。
古巴比伦人
在约公元前1800年至公元前500年之 间,巴比伦数学文献《默森尼默斯》 中记载了直角三角形的边长关系。
欧几里得与《几何原本》
• 欧几里得(约公元前330年-公元前275年):古希腊数学家, 他在《几何原本》中首次完整地证明了勾股定理,并给出了基 于该定理的多种证明方法。
中国的勾股之学
勾股定理课件
目录
• 勾股定理的起源和历史 • 勾股定理的证明方法 • 勾股定理的应用 • 勾股定理的推广和变种 • 勾股定理的挑战和未解之谜
01
勾股定理的起源和历 史
古代文明中的勾股定理
古埃及人
古希腊人
在建筑金字塔和尼罗河泛滥后测量土 地时,使用了直角三角形的边长关系 。
毕达哥拉斯学派在公元前6世纪发现 了直角三角形三边的关系,但未形成 完整的定理。
《周髀算经》
约成书于公元前1世纪,书中记载 了周朝初期的数学家商高提出了 “勾三股四弦五”的勾股定理的 特例。
《勾股定理》PPT
综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
13
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
❖ 在稍后一点的《九章算术》一书中(约在公 元50至100年间),勾股定理得到了更加规 范的一般性表达。书中的《勾股章》说;“把勾股分别自乘,然后把它们的积加起
来,再进行开方,便可以得到弦。”。《九
章算术》系统地总结了战国、秦、汉以来的 数学成就,共收集了246个数学的应用问题和 各个问题的解法,列为九章,可能是所有中 国数学著作中影响最大的一部。
❖ 在这幅“勾股圆方图”中,以弦为边长得到 正方形ABDE是由4个相等的直角三角形再加 上中间的那个小正方形组成的。
每个直角三角形的面积为ab/2; 中间的小 正方形边长为b-a,则面积为(b-a)2。 于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2
❖ 赵爽的这个证明可谓别具匠心,极富创新意 识。他用几何图形的截、割、拼、补来证明 代数式之间的恒等关系,既具严密性,又具 直观性,为中国古代以形证数、形数统一、 代数和几何紧密结合、互不可分的独特风格 树立了一个典范。
“总统”证法 --伽菲尔德
❖ 伽菲尔德(James A. Garfield; 1831 1881) •1881 年成為美國第 20 任總統 •1876 年提出有關證明
1876年4月1日,伽菲尔德在《新英格兰教育日志》 上发表了他对勾股定理的这一证法。 1881年,伽菲尔德就任美国第二十任总统后来, 人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法
勾股定理的历史
❖ 勾股定理是几何学中的明珠,所以它充满魅力,千 百年来,人们对它的证明趋之若骛,其中有著名的
数学家,也有业余数学爱好者,有普通的老百姓,
也有尊贵的政要权贵,甚至有国家总统。也许是因
为勾股定理既重要又简单,更容易吸引人,才使它 成百次地反复被人炒作,反复被人论证。1940年出 版过一本名为《毕达哥拉斯命题》的勾股定理的证 明专辑,其中收集了367种不同的证明方法。实际 上还不止于此,有资料表明,关于勾股定理的证明 方法已有500余种,仅我国清末数学家华蘅芳就提 供了二十多种精彩的证法。这是任何定理无法比拟 的。 在这数百种证明方法中,有的十分精彩,有的
❖ 稍后一点的刘徽在证明勾股定理时也是用以 形证数的方法,刘徽用了“出入相补法”即 剪贴证明法,他把勾股为边的正方形上的某 些区域剪下来(出),移到以弦为边的正方形的 空白区域内(入),结果刚好填满,完全用图解 法就解决了问题
毕达哥拉斯定理 Pythagoras’ theorem
(公元前572?~公元前497?)
十分简洁,有的因为证明者身份的特殊而非常著名。
1.商高定理
❖ 中国最早的一部数学著作——《周髀算经》的开头,记载着 一段周公向商高请教数学知识的对话:周公问:"我听说您 对数学非常精通,我想请教一下:天没有梯子可以上去,地 也没法用尺子去一段一段丈量,那么怎样才能得到关于天地 得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些 形体的认识。其中有一条原理:当直角三角形‘矩'得到的一 条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那 么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就 总结出来的呵。" 如果说大禹治水因年代久远而无法确切考 证的话,那么周公与商高的对话则可以确定在公元前1100年 左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说 的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数 学界把它称为勾股定理是非常恰当的。
❖ 在国外,相传勾股定理是公元前500多年时古 希腊数学家毕达哥拉斯首先发现的。因此又 称此定理为“毕达哥拉斯定理”。法国和比 利时称它为“驴桥定理”,埃及称它为“埃 及三角形”等。但他们发现的时间都比我国 要迟得多
❖ 著名的希腊数学家欧几里得(Euclid,公元 前330~公元前275)在巨著《几何原本》 (第Ⅰ卷,命题47)中给出一个很好的证明。
❖ 中国古代的数学家们不仅很早就发现并应用 勾股定理,而且很早就尝试对勾股定理作理 论的证明。最早对勾股定理进行证明的,是 三国时期吴国的数学家赵爽。
❖ 赵爽创制了一幅“勾股圆方图”,
用形数结合得到方法,给出了
勾股定理的详细证明
赵爽 东汉末至三国时代吴国人
•为《周髀算经》作注,著有《勾股圆方图说》