八年级上册数学课件北师大版:《勾股定理》

合集下载

北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

2. 如图,正方形ABCD的面积为25 cm2,△ABP为直角三角形, ∠APB=90°,且PB=3 cm,那么AP的长为( C )
A. 5 cm
B. 3 cm
C. 4 cm
D. 不能确定
3. 在Rt△ABC中,斜边BC=4,则BC2+AB2+AC2= 32 . 4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和 为 49 cm2.
第一章 勾股定理
1 探索勾股定理 第1课时
1. 直角三角形三边存在的关系:在直角三角形中,任意两条边确定了,另 外一条边也就随之 确定 ,三边之间存在着一种特定的 数量 关系.
2. 我国古代把直角三角形中较短的直角边称为 勾 ,较长的直角边称为 股 , 斜边称为 弦 .
3. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a, b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
4. 如图,在△ABC中,∠C=90°. (1)若已知a,b,则c2= a2+b2 ; (2)若已知a,c,则b2= c2-a2 ; (3)若已知b,c,则a2=长分别为3和4,下列说法中正确的是( C )
A. 斜边长为25
B. 三角形的周长为25
C. 斜边长为5
D. 三角形的面积为20
2. 三个正方形的面积如图所示,则S的值为( C )
A. 3
B. 4
C. 9
D. 12
3. 在Rt△ABC中,∠C=90°,AB=25,AC=7,则△ABC的面积为84 . 4. 如图,为了测得湖两岸点A和点B之间的距离,一个观测者在点C设桩, 使∠ABC=90°,并测得AC=20m,BC=16m,则点A和点B之间的距离是 12 m.

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

北师大版八年级数学上册《勾股定理》课件(共18张PPT)

北师大版八年级数学上册《勾股定理》课件(共18张PPT)

知识要点
1.勾股定理:如果直角三角形两直角边分别为 a,b,斜边为c,那么__________ . 2.勾股定理各种表达式: 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边也分别为a,b,c,则c=_________, b=_________,a=_________.
知识要点
3.勾股定理的逆定理: 在△ABC中,若a、b、c三边满足___________, 则△ABC为___________. 4.勾股数: 满足________的三个________,称为勾股数. 5.几何体上的最短路程是将立体图形的 ________展开,转化为_________上的路程问 题,再利用___________两点之间, ___________,解决最短线路问题.
2.已知△ABC的三边为a,b,c,有下列各
组条件,判定△ABC的形状.
(1)a 4 1 , b 4 0 , c 9 (2)a m 2 n 2 , b m 2 n 2 , c 2 m ( n m n 0 )
合作探究
探究四:勾股定理及逆定理的综合应用
B港有甲、乙两艘渔船,若甲船沿北 偏东60o方向以每小时8 n mile的速度前进, 乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到M岛,乙 船到P岛,两岛相距34 n mile,你知道乙 船是沿哪个方向航行的吗?
第一章 勾股定理
回顾与思考
情境引入
勾股定理,我们把它称为世界第一定理. 首先,勾股定理是数形结合的最典型的代 表; 其次,正是由于勾股定理得发现,导致无 理数的发现,引发了数学的第一次危机,这一 点,我们将在《实数》一章里讲到; 第三,勾股定理中的公式是第一个不定方 程,有许许多多的数满足这个方程,也是有完 整的解答的最早的不定方程,最为著名的就是 费马大定理,直到1995年,数学家怀尔斯才将 它证明.

北师大版数学八年级上册勾股定理的应用课件

北师大版数学八年级上册勾股定理的应用课件
解:因为AB=DC=8m,AD=BC=6m, 所以AB2+BC2=82+62=64+36=100. 又因为AC2=92=81, 所以AB2+BC2≠AC2,∠ABC≠90°, 所以该农民挖的不合格.
典例精析 利用勾股定理的逆定理解答测量问题
有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边壁的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒最长是多少米?
12.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,当秋千荡到AB1的位置时,下端B1距静止位置的水平距离EB1等于2.4米,距地面1.4米,求秋千AB的长.
D
7.印度数学家什迦逻(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.
解:如图,由题意知,AC=2,AD=0.5,在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=22-0.52=3.75.设湖水深BD为x尺,则BC为(x+0.5)尺.在Rt△BCD中,由勾股定理,得BD2+CD2=BC2,即x2+3.75=(x+0.5)2,解得x=3.5.答:湖水深3.5尺
解:连接对角线AC,只要分别量出AB、BC、AC的长度即可.
AB2+BC2=AC2
△ABC为直角三角形
新知二 利用勾股定理的逆定理解答实际问题
合作探究
(2)量得AD长是30 cm,AB长是40 cm,BD长是50 cm. AD边垂直于AB边吗?
解:AD2+AB2=302+402=502=BD2,
解:因为出发2小时,A组行了12×2=24(km), B组行了9×2=18(km), 又因为A,B两组相距30km, 且有242+182=302, 所以A,B两组行进的方向成直角.

北师大版八年级上册数学《一定是直角三角形吗》勾股定理PPT教学课件

北师大版八年级上册数学《一定是直角三角形吗》勾股定理PPT教学课件
3.一艘帆船在海上航行,由于风向的原因,帆船
先向正东方向航行9千米,然后向正北方向航行40
千米,这时它离开出发点_________千米。
4.下列几组数能否作为直角三角形的三边长?
说说你的理由。
(1)9,12,15; (2)15,36,39;


(3)12,35,36; (4)12,18,22。
5.判断下列哪组数是勾股数:
C. 可能是钝角三角形 D. 不可能是直角三角形
3. 三角形的三边分别是a,b,c, 且满足等式(a+b)2c2=2ab, 则此三角形是:
(A )
A. 直角三角形
B. 是锐角三角形
C. 是钝角三角形 D. 是等腰直角三角形
4. 已知∆ABC中BC=41, AC=40, AB=9, 则此三角形为
直角
1
2
1
2
所以 S 四边形 ABCD=S△ABC-S△ACD= ×5×12- ×3×4=30-6=24.
-8-
第一章
1.2 一定是直角三角形吗
知识要点基础练
综合能力提升练
拓展探究突破练
-9-
14.如图,在△ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC,BC于点D,E,求CD的长.
解:连接 DB.在△ACB 中,因为 AB2+AC2=62+82=100,
BC2=102=100,所以 AB2+AC2=BC2,
所以△ACB 是直角三角形,即∠A=90°.
因为 DE 垂直平分 BC,所以 DC=DB.
设 DC=DB=x,则 AD=8-x.
在 Rt△ABD 中,∠A=90°,AB2+AD2=BD2,

北师大版八年级上册数学课件.3.1 勾股定理的应用(共19张PPT)

北师大版八年级上册数学课件.3.1 勾股定理的应用(共19张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

怎样计算AB的长?
A’ r
O
B
A’
B
h
侧面展开图
A
A
在Rt△AA’B中,利用勾股定理可得,
AA’2 +A’B2 =AB2
其中AA’是圆柱体的高,A’B是底面圆周长的一半(πr)
把空间几何图形转化为平面几何问题的步骤: 1.展开图形 2.找出对应点 3.应用勾股定理
二、利用勾股定理的逆定理判断线段垂直: 用刻度尺量出所构造的三角形的三边的长,看是
否满足两边的平方和等于第三边的平方,满足就有直 角(即线段垂直)。
当堂训练(10分钟)
1.课本第14页随堂练习1; 2 .课本第14页习题1.4的第1、2、4题。 3.课本第15页问题解决的第5题。
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5

八年级数学上册第一章勾股定理北师大版ppt课件

八年级数学上册第一章勾股定理北师大版ppt课件

45 3
32 + 42 = 5 2
? 5
12
5 2+ 12 2= 13 2
精品课件
勾股定理
如果直角三角形两直角边分别为a、b,斜
边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等
于斜边的平方。
在西方又称毕达 哥拉斯定理耶!
精品课件



方法一

•••

• •
• •
••C••
• •
分割成若干个直角边 为整数的三角形
精品课件
返回
C A
方法三
S正方形c
B C
图1-1
A
B 图1-2
(图中每个小方格代表一个单位面积)
把C看成边长为6的 正方形面积的一半
精品课件
1 62 2
1 8(单位面积)
返回
方法四
b
a
a c cb
bc c
a
abΒιβλιοθήκη cab ac b (b-a) b c
a ba
c
精品课件
勾股逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形
勾股数
能够成为直角三角形三条边长度的三个正整数,称为勾股数.
即 满足a2 +b2=c2的三个正整数,称为勾股数
精品课件
• 下面来看定理的应用.
• 例1 根据下列三角形的三边a、b、c的值,判断三角形是不
2.一颗9米高的树被风折断,树顶落在离树根3 米之处, 若要查看断痕,要从树底开始爬多 高?
精品课件
问题: 城市A要到达城市B必须经过C地的一条互相 垂直的公路才能到达,为了城市发展的需要,政府 决定在城市A、B之间建造一条最短的公路。如果你 是工程师,如何建造?建成之后两个城市之间缩短 了多少距离?

北师大版八年级数学上册《1.1.1勾股定理》教学课件(共19张PPT)

北师大版八年级数学上册《1.1.1勾股定理》教学课件(共19张PPT)

例1 高为2.5 m的木梯,架在高为2.4 m的墙上(如图),
这时梯脚与墙的距离是多少?
A
解:在Rt△ABC中,根据勾股定理,得:
BC2=AB2-AC2=2.52-2.42=0.49,
所以BC=0.7.
即梯脚与墙的距离是0.7 m.
C
B
例2 求斜边长为17 cm、一条直角边长为15 cm的直角三 角形的另一边长.
正方形C的面积应该怎么计算呢?
C A
B
图①
➢ 分“割”成若干个直角边为整数的三角形 SC=12×2×3×4+1×1=13;
➢ 把C“补”成边长为5的正方形 SC=5×5-12×2×3×4=13.
观察:
C A
B
图①
正方形A中含有__4__个小正方形,即A的 面积是___4__. 正方形B中含有__9__个小正方形,即B的 面积是___9__. 正方形C中含有_1_3__个小正方形,即C的 面积是__1_3__.
第一章 勾股定理
1.1 探索勾股定理
第1课时 勾股定理
学习目标
1.经历探索勾股定理的过程,了解勾股定理的探 究方法;
2.掌握勾股定理,并能运用勾股定理解决一些简 单问题.
新知引入
一个直角三角形的两条直角边长分别是3和4,你 知道它的第三边长吗?
实际上,利用勾股定理我们可以很容易地解决这个问题. 勾股定理是一个古老的定理,人类很早就发现了这个定理.
观察:
A'
C'
B'
图②
正方形A'中含有__1_6_个小正方形,即 A'的面积是__1_6__.
正方形B'中含有__9__个小正方形,即 B'的面积是__9___.
正方形C'中含有__2_5_个小正方形,即 C'的面积是__2_5__.

北师大版八年级数学上册第一章全部课件

北师大版八年级数学上册第一章全部课件
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

( 55 ) 25
30
( 34)
95 61
( 42 ) 18
60
200 ( 350)
150
总结归纳
C A
B
SA+SB=SC
ac b
ac b
a2+b2=c2
a2+b2=c2
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.如果a,b和c分别表示直角三角形的 两直角边和斜边,那么a2+b2=c2.
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课
情境引入
如图,这是一幅美丽的图案,仔细观察,你能发 现这幅图中的奥秘吗?带着疑问我们来一起探索吧.
数学家毕达哥拉斯的故事
相传2005年前,毕达哥拉斯有一次在朋友家做客时,发现 朋友家的用砖铺成的地面…
毕达哥拉斯就从地面上这十分常见的图形中,发现了令世人震惊的定理:
方法一:割
方法二:补
方法三:拼
分割为四个直角三 角形和一个小正方 形.
补成大正方形,用大正 方形的面积减去四个直 角三角形的面积.
将几个小块拼成若干个小 正方形,图中两块红色 (或绿色)可拼成一个小 正方形.
填一填:观察右边两 幅图:完成下表(每 个小
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
怎样计 算正方 形C的面 积呢?
分析表中数据,你发现了什么?
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
C A
B
SA+SB=SC
结论:以直角三角形两 直角边为边长的小正方 形的面积的和,等于以 斜边为边长的正方形的 面积.

北师大版八年级数学上册 (一定是直角三角形吗)勾股定理教育教学课件

北师大版八年级数学上册 (一定是直角三角形吗)勾股定理教育教学课件

第一章 勾股定理
一定是直角三角形吗
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.了解直角三角形的判定条件.(重点) 2.能够运用勾股数解决简单实际问题. (难点)
导入新课
问题:同学们你们知道古埃及人用什么方法得到直角的吗?
用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳 子的第1个结和第13个结,两个助手分别握住第4个结和第9个结,拉紧绳子 就得到一个直角三角形, 其直角在第1个结处.
25+144=169
③ 8,15,17
64+225=289
分别以每组数为三边作出三角形,用量角器 量一量,你有什么发现?
已知:在△ABC中,三边长分别为a,b,c,且a2+b2=c2, 你能否判断△ABC是直角三角形?并说明理由。
N
B
B`
c a
a
C
b
A
a2+b2=c2=AB2
C`
b A`
M
A`B`2= a2+b2
“勾股定理”逆定理:
(1)文字语言:如果三角形的三边长a,b,c满足 a2+b2=c2,那么这个三角形是直角三角形。
(2)符号语言: ∵a2+b2=c2(已知) ∴∠C=90°(勾股定理逆定理) B
a
c
C
b
A
“勾股数”的定义: 满足a2+b2=c2的三个正整数,称为勾股数。
“勾股定理”逆定理的应用: 已知三边特殊关系,判定直角三角形。
一根绳平均分成12节, 构成下面的三角形:
5 3
4
这是直角三角形吗?
用a,b,c分别表示三角形的三边 如果a2+b2=c2,那么这个三角形是直角三角形吗?

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

北师大八年级数学上册《勾股定理的应用》课件(24张PPT)

B
① A′

B′
A
B A′
③Aຫໍສະໝຸດ (2)路线①,②,③中最短路线是哪条?

3
B
① A′
B
A′
12

B′ ②
AA
(3)若圆柱的高为12,底面半径为3时,3条路线分别多 长?(π取3)
做一做
Br
① A′
B
A′
h

B′②
h=12,r=3 h=3.75,r=3 h=2.625,r=3
A A
路线① 路线② 路线③ 最短
最短时: x 1.5,
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
3.如图,在棱长为10 cm的正方体的一个顶点A处有一 只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是 1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬 到B?
B
A
B B
A
【解析】因为从A到B最短路径AB满足 AB2=202+102=500>400,所以不能在20 s内从A爬 到B.
【规律方法】将立体图形展开成平面图形,找出两点间的最 短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1.没有图的要按题意画好图并标上字母. 2.有时需要设未知数,并根据勾股定理列出相应的方程 来解.
数学是无穷的科学.
——赫尔曼外尔
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022

北师大版八上数学第1章勾股定理:全章热门考点整合应用课件

北师大版八上数学第1章勾股定理:全章热门考点整合应用课件

13.求下列图形中阴影部分的面积. (1)如图①,BA⊥CA,AB=8,AC=6;
解:因为AB=8,AC=6,BA⊥AC, 所以BC2=AB2+AC2=100.所以BC=10.所以BO=5. 因为 S△ABC=12AB×AC=12×8×6=24,S 半圆=12π×52=252π, 所以 S 阴影=252π-24.
n2
3
4
5…
a 22-1 32-1 42-1 52-1 …
b4
6
8
10 …
c 22+1 32+1 42+1 52+1 …
(2)猜想以a,b,c为边长的三角形是否为直角三角形,并说
明你的理由.
解:是直角三角形.理由如下:因为a2+b2=(n2-1)2+(2n)2
=n4+2n2+1,c2=(n2+1)2=n4+2n2+1,所以a2+b2=c2.
解:如图,△PQC是直角三角形.理由如下: 由PA∶PB∶PC=3∶4∶5, 可设PA=3a,PB=4a,PC=5a, 因为△PBQ为等边三角形,所以PQ=PB=4a. 在△PQC中,因为CQ=AP=3a, 所以PQ2+CQ2=16a2+9a2=25a2=PC2,所以△PQC是直角 三角形.
8.如图,在△ABC中,AB=13,BC=10,BC边上的中线 AD=12.求:
7.如图,P是等边三角形ABC内的一点,连接PA,PB,PC, 以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(2)若PA∶PB∶PC=3∶4∶5,连接PQ,且△PBQ是等边三 角形,试判断△PQC的形状,并说明理由.
【点拨】说明一个三角形是直角三角形的方法较 多,但在已知三角形各边长度或各边长度之间的关 系时,利用直角三角形的判定方法判断这个三角形 是否为直角三角形,是比较常用且比较方便的方 法.

北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT课件

北师大版八年级数学上册《一定是直角三角形吗》勾股定理PPT课件

1 2
AC·BC,

1 2
×1
000·CD=
1 2
×600×800,
∴CD=480 m,
即新建的路的长为480 m.
随堂练习
6. 在正方形ABCD中,F是CD的中点,E为BC上一点,且CE= 1CB,试判断AF
4
与EF的位置关系,并说明理由.
课堂小结
内容
勾股定理 的逆定理
作用 注意
如果三角形的三边长a 、b 、c满足a2+b2=c2,
90
120
60
150
12 13
30
180
0
5
25 24
7
15 17 8
合作探究
在△ABC中,三边长分别为a,b,c, Nhomakorabeaa2+b2=c2.你能否判断 △ABC
是直角三角形?并说明理由.
作一个直角∠MC1N, 在C1M上截取C1B1=a=CB, 在C1N上截取C1A1=b=CA, 连接A1B1.
N
A
A1
条路,使工厂C到公路的路最短,请你帮工厂C的负责人设计一种方案,并
求出新建的路的长.
解:过点C作公路AB的垂线,垂足为D,则线段CD即为新建的路.
∵AC2+BC2=6002+8002=1 0002,AB2=1 0002, ∴AC2+BC2=AB2,
∴△ABC为直角三角形.
由三角形的面积公式知1
2
AB·CD=
B.2组
C.3组
D.4组
4.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直 角三角形,其中正确的是 ( C )
随堂练习
5.如图,某工厂C前面有一条笔直的公路,原来有两条路AC,BC可以从工

北师大版八年级上册1.3勾股定理的应用 课件(共15张ppt)

北师大版八年级上册1.3勾股定理的应用 课件(共15张ppt)
勾股定理的逆定理应用于根据三边的长度判断 三角形的形状。
试一试
中国人民的聪明智 慧真的让人叹服!
例3 在我国古代数学著作《九章算术》中记载 了一道有趣的问题,“今有池方一丈,葭生其中央, 出水一尺。引葭赴岸,适与岸齐。问水深、葭长各 几何?”这个问题的意思是:有一个水池,水面是 一个边长为10尺的正方形.在水池正中央有一根新生 的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向 岸边,它的顶端恰好到达岸边的水面.请问这个水池 的深度和这根芦苇的长度各为多少?
解:设水池的深度为x尺,则芦苇的长度为
x+1尺。由勾股定理得
5
x2 +52=(x+1)2 x2 +25= x2+2x+1
x x+1
24= 2x
x=12
x+1=13(尺)
答:水池的深度为12尺,芦苇的长度为13尺
小试牛刀
练习2
如图是一个滑梯示意图,若将滑道AC水 平放置,则刚好与AB一样长。已知滑梯 的高度CE=3m,CD=1m,试求滑 道AC的长
(2)量得AD长是30厘米,AB 长是40厘米,BD长是50厘米。 AD边垂直于AB边吗?
(3)如果李叔叔随身只有一个长 度为20厘米的刻度尺,能有办法 检验AD边是否垂直于AB边吗? 边BC与边AB呢?
议一议
勾股定理与它的逆定理在应用上有什么区别?
勾股定理主要应用于在直角三角形中求线段 的长度,甚至周长或面积。
如果将圆柱侧面剪开展开成 一个长方形,从A点到B 点的最短路 线是什么?你画对了吗?
例题解析
h 12
C
B
A
解:由题意得展开图,知AB即为最短路径,其中 AC 12, BC 1 18 9 2 在RtABC 中,有 AC2+BC2=122+92=225=AB2 AB=15 故最短路径是15cm。

北师大版八年级数学上册课件1.1 探索勾股定理(第2课时) 勾股定理的验证及应用课件(26张PPT)

北师大版八年级数学上册课件1.1 探索勾股定理(第2课时) 勾股定理的验证及应用课件(26张PPT)
= 25 km .现要在铁路旁建一个农副产品收购站 ,使 站到 ,
两村的距离相等.你知道应该把 站建在距点 多远的地方吗?
【点拨】设 = km ,由垂直关系可以想到用勾股定理,根据 = 建立方程,
即可使问题得解.
【解】因为 = ,
所以 2 + 2 = 2 + 2 .
当它听到巢中幼鸟的叫声时,立即赶过去.如果它飞行的速度
为 5 m/s ,那么它至少需要多少时间才能赶回巢中?
解:如图,
由题意知 = 3 , = 14 − 1 = 13 , = 24 .
过点 作 ⊥ 于点 ,则 = 13 − 3 = 10 , = 24 .
答:教学楼走廊的宽度是 2.2 m .
作业布置
完成学生书对应课时练习
算,从理论上验证了勾股定理.
做一做
在纸上画一个直角三角形,分别以这个直角三角形的三边为边长向
外作正方形。
c
b
a
图1-4
为了方便计算图中大正方形的面积,
C
D
对其进行适当割补:
b
S正方形ABCD= c2+2ab=(a+b)2
c
A
B
a
c2=a2+b2
图1-5
D
b
c
a
图1-6
A
C
B
S正方形ABCD= c2-2ab=(b-a)2
第一章 勾股定理
1.1 探索勾股定理
第2课时 勾股定理的验证及应用
1.探索勾股定理
2.掌握勾股定理的内容,会用面积法验证勾股定理.
3.能运用勾股定理解决一些简单的实际问题.
探究新知

北师大版八年级数学上册课件

北师大版八年级数学上册课件

北师大版八年级数学上册课件一、勾股定理。

1. 勾股定理内容。

- 直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么a^2+b^2=c^2。

- 例如,一个直角三角形的两条直角边分别为3和4,那么斜边c=√(3^2) +4^{2}=√(9 + 16)=√(25) = 5。

2. 勾股定理的证明。

- 常见的证明方法有赵爽弦图法。

赵爽通过构造以直角三角形的斜边为边长的正方形,然后将其分割成四个全等的直角三角形和一个小正方形,通过面积关系来证明勾股定理。

- 设直角三角形的两条直角边为a、b,斜边为c。

大正方形的面积可以表示为c^2,也可以表示为(a + b)^2- 2ab=a^2+b^2,从而证明a^2+b^2=c^2。

3. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

- 例如,三角形三边分别为5、12、13,因为5^2+12^2=25 + 144 =169=13^2,所以这个三角形是直角三角形。

4. 勾股数。

- 满足a^2+b^2=c^2的三个正整数a、b、c称为勾股数。

常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。

二、实数。

1. 无理数的概念。

- 无限不循环小数叫做无理数。

例如√(2),π等。

- √(2)的计算:设√(2)=(p)/(q)(p,q为互质的正整数),则2=frac{p^2}{q^2},即p^2=2q^2。

由此可推出p是偶数,设p = 2m,则(2m)^2=2q^2,即q^2=2m^2,所以q也是偶数,这与p,q互质矛盾,所以√(2)是无理数。

2. 实数的分类。

- 实数包括有理数和无理数。

有理数又包括整数和分数。

- 整数:正整数、0、负整数;分数:有限小数和无限循环小数。

3. 实数的运算。

- 实数的运算顺序:先算乘方、开方,再算乘除,最后算加减。

有括号的先算括号里面的。

北师大版八年级数学上册课件1.1探索勾股定理(第2课时)(19张PPT)

北师大版八年级数学上册课件1.1探索勾股定理(第2课时)(19张PPT)
于是推得 AB2 AC 2 BC 2
课堂小结
勾股定理的验证
探索勾股 定理
勾股定理的简单运用
1. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a,b 和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
2. 我国历史上将弦上的正方形称为弦图(如图).
1. 已知一个等边三角形的边长为6 cm,则以它的高为边长的正方形的面 积为( B )
2
22
a 化简,得
b
B
a2 b2 c2.
欧几里得证明勾股定理
如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M.通过证 明△BCF≌△BDA,利用三 角形面积与长方形面积的关 系,得到正方形ABFG与矩形 BDLM等积,同理正方形 ACKH与 矩形MLEC也等积,
A. 36 cm2 B. 27 cm2 C. 18 cm2 D. 12 cm2
2. 一个直角三角形的两条边的长分别是9和40,则第三条边的长的平方是
(C)
A. 1 681
B. 1 781 C. 1 519或1 681 D. 1 519
3. 一个直角三角形三条边的长为三个连续的自然数,则这三条边的长分
【基础训练】
1. 如图,在△ABC中,CE平分∠ACB,
CF平分△ABC的外角∠ACD,且EF∥BC交AC于M,
若CM=4,则CE2+CF2的值为( D )
A.8 B.16 C.32 D.64
2. 已知Rt△ABC的两直角边分别是6 cm,8 cm,则Rt△ABC斜边上
的高是( A )
A. 4.8cm
B.2.4cm
C.48cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学课件北师大版:《勾股定理》
学习是茫茫的汪洋大海,只有辛苦的努力才能泛舟其上。

下面本文库为您推荐八年级上册数学课件北师大版:《勾股定理》。

一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过"勾三股四弦五",但并没有真正认识什么是"勾股定理".此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时. 勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.
为此本节课的教学目标是:
1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2.让学生经历"观察-猜想-归纳-验证"的数学思想,并体会数形结合和特殊到一般的思想方法.
3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第
五环节:布置作业.
第一环节:创设情境,引入新课
内容:20xx年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与"勾股定理"有关的图形,数学家曾建议用"勾股定理"的图来作为与"外星人"联系的信号.今天我们就来一同探索勾股定理.(板书课题)
意图:紧扣课题,自然引入,同时渗透爱国主义教育.
效果:激发起学生的求知欲和爱国热情.
第二环节:探索发现勾股定理
1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗
学生通过观察,归纳发现:
结论 1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;
2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢(1)观察下面两幅图:
(2)填表:
A的面积
(单位面积) B的面积
(单位面积) C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
学生的方法可能有:
方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形, .
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, .
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, .
(4)分析填表的数据,你发现了什么
学生通过分析数据,归纳出:
结论 2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.
效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.
3.议一议
内容:
(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗
(2)你能发现直角三角形三边长度之间存在什么关系吗
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗
勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分
别表示直角三角形的两直角边和斜边,那么 .
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,"勾股定理"因此而得名.(在西方文献中又称为毕达哥拉斯定理)
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;
2.通过作图培养学生的动手实践能力.
第三环节:勾股定理的简单应用
内容:
例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少
(教师板演解题过程)
练习:
1.基础巩固练习:
求下列图形中未知正方形的面积或未知边的长度(口答):
2.生活中的应用:
小明妈妈买了一部29 in(74 cm)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他觉得一定是售货员搞错了.你同意他的想法吗你能解释这是为什么吗
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生"用数学"的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容:
教师提问:
1.这一节课我们一起学习了哪些知识和思想方法
2.对这些内容你有什么体会与同伴进行交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么 .
2.方法:
(1)观察-探索-猜想-验证-归纳-应用;
(2)"割、补、拼、接"法.
3.思想:
(1)特殊-一般-特殊;
(2)数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.
第五环节:布置作业
内容:布置作业:
1.教科书习题1.1.
2.观察下图,探究图中三角形的三边长是否满足。

相关文档
最新文档