数学人教版八年级下册勾股定理以及证明
人教版八年级数学下册_第一节《勾股定理》勾股定理
下列说法中,正确的是
(
)
下列说法中,正确的是
(
)
2.你还有什么疑问,问问老师。 通过前面的探究活动,你发现了直角三角形三边之间的关系规律了吗?
(1)若a=6,b=8,则c=
.
通过前面的探究活动,你发现了直角三角形三边之间的关系规律了吗?
在Rt△ABC中,∠C=90°.
思考:在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):
1.本节课你有什么收获?你学到了什么? 在Rt△ABC中,∠C=90°,a=6,c=10,则b=
.
通过前面的探究活动,你发现了直角三角形三边之间的关系规律了吗?
思考 正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?
说给大家听听。 如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
(2)若c=13,b=12,则a=
.
在Rt△ABC中,两直角边长分别为3和 ,则斜边长为
.
第1课时 勾股定理
思考:在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):
9
13
右图 16
9
25
Hale Waihona Puke 思考 正方形A、B、C 所围成的直角三角形三条边之 间有怎样的特殊关系?
通过前面的探究活动,你发现了直角三角形
在Rt△ABC中,∠C=90°.
三边之间的关系规律了吗? 在Rt△ABC中,两直角边长分别为3和 ,则斜边长为
.
已知a,b,c是三角形的三边,则a2+b2=c2
人教版初中数学八年级下册《勾股定理》教案
人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
八年级数学勾股定理课件-证明、简单计算
B.13
C.9
D.不能确定
第2题图
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
3.(人教八下P26改编)在平面直角坐标系中有两点A(0,3), B(3,0),则这两点之间的距离为 3 2 .
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
知识点1 勾股定理的证明 【例题1】将两个全等的直角三角形按如图所示的方式摆放, 使点A,E,D在同一条直线上.试用图形的面积表达式证明 勾股定理.
CQ=1.5×(t-62)=(1.5t-4.5)cm, ∴AQ=10-(1.5t-4.5)=(-1.5t+14.5)cm, ∴BP+BC+CQ=8-t+6+1.5t-4.5=(0.5t+9.5)cm,AP+AQ =t+(-1.5t+14.5)=(-0.5t+14.5)cm,
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
(2)如果a=12,c=13,求b;
(3)如果b=40,c=41,求a. 解:(1)a=6,b=8,则c= a2+b2=10.
(2)a=12,c=13,则b= c2-a2=5.
(3)b=40,c=41,则a= c2-b2=9.
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
【变式2】求出如图所示的直角三角形中,未知边AB的长度.
数学
八年级 下册
证明:由图形易得S△ACD=12AC·DE=12b2, S△ABC=12BC·AC=12ab, S△BCD=12BC·(AC-AE)=12a(b-a). 由△ABC≌△DAE,得
∠DAB=∠DAE+∠BAC=90°.
人教版八年级下册数学17.1勾股定理(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示勾股定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
在教学过程中,教师要针对教学难点和重点进行有针对性的讲解和指导,确保学生能够透彻理解本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如楼梯的倾斜角度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的发现与证明、勾股定理的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
在今后的教学中,我会注意以下几点:
1.加强对勾股定理证明过程的讲解,让学生们从多个角度理解定理的本质。
2.注重实践与理论相结合,通过丰富多样的案例和练习,提高学生们运用勾股定理解决问题的能力。
最新人教版数学八年级下册第十七章 -勾股定理
第十七章—勾股定理一、勾股定理1. 概念:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a2+b 2=c 2.2. 公式变形: ①:a2=c 2-b 2,b 2=c 2-a 2②:c=22b a + ,a=22b c - ,b=22a c -勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题.b acbac cabcab a bccbaED CBA5.勾股定理的常见类型:(1)勾股定理在实际问题中的应用一般情况下,遇到高度、长度、距离、面积等实际问题时,可以构造直角三角形、运用勾股定理求解。
人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结
八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
人教版八年级数学下册勾股定理证明方法
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴ 8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a ba 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.D∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴ 6217322S S S S S b a ++++=+=()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.。
第十七章勾股定理——勾股定理的证明(教学设计)-2022-2023学年人教版数学八年级下册
拉斯定理,我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为鼓,斜边称为弦。
早在3000多年前,周朝数学家商高就提出了勾三股四弦五形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为两直角边的平方和等于斜边的平方。
如图:在Rt△ABC中,∠C=90°,则a²+b²=c²。
二、猜想证明、拼图实践看到a²、b²、c²,我们联想到正方形的面积,因此我们可以先用这个动画来进行验证:猜想,任意直角三角形,两直角边的平方和(两直角边围成的正方形面积之和)等于斜边的平方(斜边围成的大正方形面积)。
那么,我们在验证勾股定理正确的基础上,如何进行证明呢?勾股定理现约有五百种证明方法,是数学定理中证明方法最多的定理之一。
用几何图形的截、割、拼、补,来证明代数式之间的等量关系。
体现了以形证数、形数统一、代数和几何的紧密结合。
如何证明勾股定理呢?活动:用硬纸板各剪4个完全相同的直角三角形(不妨设两直角边分别为a、b,且a≤b,斜边为c)。
(1)你能选用以上材料中的部分图形,用尽可能多的方法拼成一个大正方形吗?(2)你能用拼成的图形验证勾股定理吗?勾股定理是代数思想解决几何问题的最重要的工具之一,也是数形结合的典范。
教授同学们利用拼图的方法验证勾股定理,用三种不同的拼图方法,强化用拼图的方法验证勾股定理的思路。
让学生经历由表面到本质、由合情推理到演绎推理的发掘过程,体会数学的严谨性、培养学生符号意识。
学生展示:方法一、同学1说:将这四个全等的直角三角形拼成如图1的大正方形;重新排列这四个直角三角形成为两个长方形,让各边形成一个小的正方形,这些正方形的面积分别为a 2和b 2(如图2).图形的总面积没有改变,三角形的面积也没有改变,所以第一幅图中空白部分图形面积c 2,一定等于第二幅图形两个小正方形面积之和a 2+b 2,方法二、同学2说:我发现刚才小明同学拼的第一幅图呀,有奥秘哦~我问你们:你们能不能用两种不同的方法表示这个大正方形的面积呢?大正方形面积可以表示为:()2a b + 还可以表示为:2142a b c ⎛⎫⨯⨯⨯+⎪⎝⎭将两种表示方法进行化简,可得到222c a b =+ 当然了,我知道这个图叫做外弦图!方法三、同学3说:我还想到一种拼法,我将4个直角三角形拼成了这样一个大正方形,你们可以用两种不同的方法来表示这个大正方形的面积吗?大正方形面积可以表示为:2c还可以表示为:()222142a b b a a b ⎛⎫⨯⨯⨯+-=+ ⎪⎝⎭将两种表示方法进行化简,可得到222c a b =+ 我还知道这个图叫做内弦图!这个就是赵爽弦图,这是我国对勾股定理最早的证明。
八年级数学下册勾股定理知识点(含答案)
勾股定理知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段。
人教版八年级数学下册《勾股定理》
人教版八年级数学下册《勾股定理》勾股定理是数学中的一个重要定理,它描述了直角三角形中三边之间的关系。
在直角三角形中,斜边(即直角对边)的平方等于其他两边(即直角边)的平方和。
这个定理不仅在我国古代就已经被发现,而且在全球范围内也被广泛接受和应用。
勾股定理的表达式为:a² + b² = c²,其中a和b是直角三角形的两个直角边,c是斜边。
这个定理的发现和应用对于几何学的发展具有重要意义。
它不仅解决了许多实际问题,如测量、建筑、工程等,而且在数学研究中也起到了关键作用。
通过勾股定理,我们可以轻松地计算出直角三角形中任意一边的长度,只要我们知道其他两边的长度。
在学习勾股定理的过程中,我们不仅要掌握定理的表达式和推导过程,还要学会如何应用它解决实际问题。
通过勾股定理的学习,我们可以培养逻辑思维能力、空间想象能力和解决问题的能力。
勾股定理是数学中一个非常重要的定理,它不仅在我国古代就已经被发现,而且在全球范围内也被广泛接受和应用。
学习勾股定理不仅可以帮助我们解决实际问题,还可以培养我们的数学思维能力。
因此,我们应该认真学习和掌握勾股定理,为将来的学习和生活打下坚实的基础。
人教版八年级数学下册《勾股定理》勾股定理的发现和应用对于几何学的发展具有重要意义。
它不仅解决了许多实际问题,如测量、建筑、工程等,而且在数学研究中也中任意一边的长度,只要我们知道其他两边的长度。
在学习勾股定理的过程中,我们不仅要掌握定理的表达式和推导过程,还要学会如何应用它解决实际问题。
通过勾股定理的学习,我们可以培养逻辑思维能力、空间想象能力和解决问题的能力。
1. 我们假设有一个直角三角形,其中直角边的长度分别为a和b,斜边的长度为c。
3. 然后,我们将直角三角形的两个直角边分别放在正方形的两个相邻边上,使得直角三角形的斜边与正方形的对角线重合。
4. 通过观察,我们可以发现,正方形的面积等于两个直角三角形的面积之和,即a² + b² = c²。
初中数学:17.1.1勾股定理(人教版八年级数学下册第十七章勾股定理)
第17章勾股定理17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:由全等三角形的知识,可知△ABC的形状无法确定,但△ABD的形状可以确定.如图所示,△ABC存在两种不同的情况,因此需要分两种情况进行讨论:△ABC为锐角三角形和钝角三角形.△ABC的周长=28+BC,其中BC=BD+CD或BC=BD-CD.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42.(2)当△ABC 为钝角三角形时,如图②所示.同理,BD =9,CD =5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图,对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图,该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即1 2b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米.6秒后,B′C=13-0.5×6=10米,则AB′=B′C2-AC2=53(米),所以船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM=102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设AD=x m.∵两猴子所经过的路程都是15m,则10+BC=x+AC=15.∴BC=5,AC=15-x,AB=x+10.又∵在Rt△ABC中,由勾股定理得(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1 C.5-1 D.5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.。
第十七章 勾股定理(单元解读)八年级数学下册(人教版)
教材内容 ---教学目标定位
1.经历股定理及其逆定理的探索过程;知道这两个定理的联系与区别能运用 这两个定理解决一些简单的实际问题. 2.初步认识勾股定理及其逆定理的重要意义,会运用这两个定理解决一些几 何问题. 3.通过具体的例子,了解逆命题、逆定理的概念,会识别两个互逆的命题, 知道原命题成立时其逆命题不一定成立. 4.通过对我国古代研究勾股定理成就的介绍,培养民族自豪感:通过对勾股 定理的探索和交流,培养数学学习的信心.
知识结构
◆本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的 逆定理及其应用.在第二节中结合勾股定理逆定理的内容展开,穿插介绍了 逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立.
知识结构
勾股定理是直角三角形的一个性质定理,而其逆定理是直角三角形的一个 判定定理.教科书按照先性质后判定的顺序,第一节安排了对于勾股定理的 观察、计算、猜想、证明及简单应用的探究过程,第二节勾股定理逆定理 的安排也是设计了一个从特殊到一般的探索、发现和证明的完整过程.展现 了“从特殊到一般”的研究几何图形的基本思路和定理课观察→计算→猜 想→证明的基本流程.
教材内容 ---地位和作用
◆勾股定理既是对直角三角形性质的丰富与深化,又是学习锐角三角函数 的基础;是“以形求数、以数溯形”的重要工具;在解决面积问题、三角形 问题、四边形问题圆的问题中都有勾股定理的“倩影”. ◆勾股定理的证明和应用历来都是中考命题的重点.近年来各地中考中有关 勾股定理方面的命题主要有以下几个方面:利用股定理解决门框是否能通过 的问题、利用勾股定理解决梯子移动的问题、利用勾股定理解决芦苇倾斜 的问题、利用勾股定理在数轴上表示无理数、利用勾股定理建立方程、折 叠问题、最短路径问题等。尤其是“利用勾股定理建立方程解决问题”几 乎在每个省份的考查中都有体现.
人教版八年级数学下第十七章 勾股定理
第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC =A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC =AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC ≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC =4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC 为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1【例2】教材第33页例2【例3】一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.因此这个零件符合要求.三、巩固练习1.小强在操场上向东走80 m后,又走了60 m,再走100 m回到原地.小强在操场上向东走了80 m后,又走60 m的方向是________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向.【答案】解:由题意可知:AC=120×6×160=12,BC=50×6×160=5,122+52=132.又AB=13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴∠CAB=40°,航向为北偏东50°.四、课堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养.。
人教版数学八年级下册第十七章勾股定理说课稿
(3)在解决直角三角形问题时,如何引导学生发现并运用勾股定理,是教学中的难点。
二、学情分析
(一)学生特点
本节课所面向的学生为八年级学生,他们正处于青春期,具有以下特点:首先,年龄特征上,他们好奇心强,思维活跃,具有一定的抽象思维能力,但仍然需要具体形象的支撑。其次,在认知水平上,学生已经掌握了平面几何的基本知识,具备了一定的逻辑推理和空间想象能力。在学习兴趣上,学生对新知识充满好奇,但可能对理论性较强的内容感到枯燥。在学习习惯上,学生可能习惯于机械记忆,缺乏深度思考和探究的习惯。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点:
1.首先介绍勾股定理的定义,通过直观的图形展示,让学生理解直角三角形两条直角边与斜边之间的关系。
2.接着,通过几何画板的动态演示,让学生观察直角三角形的变化,并引导学生发现无论三角形大小如何变化,勾股定理始终成立。
3.然后,我会提供几种不同的证明方法,包括几何拼贴法、代数法等,让学生在理解定理的同时,也了解不同的证明思路。
主要知识点包括:
1.勾股定理的定义及表述。
2.勾股定理的证明方法。
3.勾股定理的应用,包括解决直角三角形中的问题以及实际生活中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握勾股定理的定义、表述及证明方法。
(2)培养学生运用勾股定理解决直角三角形中的问题,能够熟练运用勾股定理进行计算和证明。
板书的主要内容包括勾股定理的表述、证明步骤、应用案例以及相关的数学公式。风格上,我会使用简洁明了的文字和图表,以及不同颜色的粉笔来区分不同类别的内容,增强视觉效果。
板书在教学过程中的作用是提供结构化的信息,帮助学生理解和记忆。为确保板书清晰简洁,我会提前规划板书内容,避免过度拥挤,并在教学过程中适时擦拭不必要的部分,保持板书的整洁。同时,我会用箭头和编号来指示逻辑关系,帮助学生把握知识结构。
人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计
人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计一. 教材分析人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》主要包括勾股定理的发现、证明及应用。
本章通过探究勾股定理的证明方法,让学生加深对勾股定理的理解,提高运用勾股定理解决实际问题的能力。
教材内容丰富,既有理论探究,又有实践操作,旨在培养学生的动手操作能力、观察能力及创新能力。
二. 学情分析学生在之前的学习中已经掌握了勾股定理的基本知识,但对勾股定理的证明方法了解不多。
本章内容有利于拓展学生对数学知识的理解,提高学生解决实际问题的能力。
在学习过程中,学生需要动手操作,观察分析,合作交流,从而更好地理解勾股定理的证明方法及其应用。
三. 教学目标1.理解勾股定理的证明方法,提高运用勾股定理解决实际问题的能力。
2.培养学生的动手操作能力、观察能力及创新能力。
3.增强学生对数学知识的兴趣,提高学生的数学素养。
四. 教学重难点1.教学重点:勾股定理的证明方法及其应用。
2.教学难点:不同证明方法的推导过程及运用。
五. 教学方法1.情境教学法:通过设置具体情境,激发学生的学习兴趣,提高学生运用勾股定理解决实际问题的能力。
2.探究式教学法:引导学生动手操作,观察分析,合作交流,从而掌握勾股定理的证明方法。
3.案例教学法:分析实际问题,让学生学会将理论知识应用于实际情境中。
六. 教学准备1.准备相关教学素材,如图片、视频、PPT等。
2.准备实验器材,如直尺、三角板、绳子等。
3.提前布置学生预习本章内容,了解勾股定理的证明方法。
七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的实例,如古代建筑、现代科技等,引导学生思考勾股定理在实际生活中的应用。
2.呈现(10分钟)介绍勾股定理的证明方法,如几何画板、三角板等,让学生直观地了解证明过程。
3.操练(10分钟)分组进行实验,让学生动手操作,验证勾股定理。
人教版八年级数学下册勾股定理勾股定理的应用
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
学习目标
(2)以原点O为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理
数.
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这
求证:△ABC≌△A ′B ′C′ .
证明:在Rt△ABC 和
Rt△A ′B ′C ′中,∠C=∠C′
A
A′
=90°,根据勾股定理,得
BC= AB2-AC2 ,
BC AB2AC2.
A B A B ,A C A C ,
BCBC.
C
B C′
B′
A B C A B C (S S S ).
三用勾股定理在数轴上表示无理数
一结论吗?
如图,在5ⅹ5正方形网格中,每个小正方形的边长均为1,画出两个三角形,一个三角形的长分别
,另一个三角形的三边长分别
为
.
5m,那么梯子底端B也外移0.
问题 在Rt△ABC中,已知BC=6, AC=8,
问题2 你认为选择哪种方法比较好?你能说出你这种方法通过的最大长度是什么?
1.学会运用勾股定理及直角三角形的判 (2)构造直角三角形;
ac
a2+b2=c2
b
勾股定理在现实生活中有哪些应用呢?
导入新课
问题 在Rt△ABC中,已知BC=6, AC=8,
(1) 则AB= 10 ; B
(2) 则AB边上的高是 4.8 ;
(3) 它的面积是 24 ; C
A
(4) 它的周长是 24 .
讲授新课
人教版(五四制)数学八年级下册24.1勾股定理证明教学设计
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们针对以下问题进行讨论:
1.几何拼贴法、代数法和归纳法在证明勾股定理时的异同点。
2.勾股定理在实际问题中的应用,如建筑、测量等。
3.探究拓展题:鼓励学生通过查找资料或与小组成员合作,探究勾股定理在其他领域的应用,如艺术、科技等。此类题目旨在培养学生的探究意识和团队合作能力。
例题:请查阅资料或与小组成员讨论,了解勾股定理在建筑领域的应用,并撰写一篇简要的报告。
4.思考题:布置一些具有挑战性的思考题,要求学生在理解勾股定理的基础上,进行深度思考,培养学生的逻辑思维能力和创新意识。
3.作业反馈:教师应及时批改作业,给予学生个性化的反馈,指出学生的优点和不足,指导学生改进学习方法。
4.家长参与:鼓励家长关注孩子的学习情况,共同参与作业完成过程,促进家校共育。
(2)终结性评价:通过课后作业、阶段测试等形式,评价学生对勾股定理的理解和应用能力。
(3)个性化评价:针对学生的个体差异,给予针对性的指导和鼓励,激发学生的学习潜能。
4.教学拓展:
(1)引导学生探索勾股定理在生活中的其他应用,如艺术、科技等领域。
(2)介绍勾股定理的历史背景,让学生了解数学发展的历程,增强学生的学习兴趣。
(4)课堂练习:设计分层、分梯度的练习题,让学生在练习中巩固知识,提高解决问题的能力。
(5)总结反馈:对本节课的内容进行总结,强调勾股定理的证明方法和应用,了解学生的学习情况,及时进行教学调整。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与度、讨论交流、思考问题等表现,鼓励学生积极参与课堂活动。
勾股定理的证明
第十八章 第十八章 勾股定理
勾股定理
444
人教版八年级(下)第十八章
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444 周公问:“我听说您对数学非常 精通,我想请教一下:天没有梯 子可以上去,地也没法用尺子去 一段一段丈量,那么怎样才能得 到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和 圆这些形体的认识。其中有一条原理: 当直角三角形‘矩’得到的一条直角边 ‘勾’等于3,另一条直角边‘股’等 于4的时候,那么它的斜边‘弦’就必 定是5。”
勾股定理
444
1
1
美丽的勾股树
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
444
作业
教材第77页习题18.1第1、2、3题
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444
中国最早的一 部数学著作— —《周髀算经》 的开头,记载 着一段周公向 商高请教数学 知识的对话:
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
看 一 看
444
发们 映 友 现, 直 家 什我 角 作 相 么们 三 客 传 ? 也 角 , 25 来 形 发 00 观三现年 察边朋前 下的友, 面某家一 的种用次 图数砖毕 案量铺达 ,关成哥 看系的拉 看,地斯 你同面去 能学反朋
八年级 数学 八年级 数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)引导学生把面积的关系转化为边的关系.
结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和.
3、等腰直角三角形有上述性质,其它直角三角形也有这个性质吗?(书P65探究)
4、计算机演示
(1)如图:在Rt△ABC中,∠ACB=90°,改变a、b、c的长度,但始终保持∠ACB=90°,在运动过程中,测算 , , , 的值.取其中几组测算值,让学生观察这几个数值之间的关系?
∵在Rt△ABD中,∠1=90°
∴
∵在Rt△ADC中,∠2=90°
∴
∴ (双勾股)
∴
∴BD= ,CD=8-x=
小结:当两个直角三角形有公共边时,可以利用公共边作桥梁,建立方程,这种方法称为双勾股.
三、课堂练习
已知矩形ABCD沿直线BD折叠,使点C落在同一平面内C’处,BC’与AD交于点E,
AD=6,AB=4,求DE的长.
使AB=2,以原点O为圆心,以OB为半径作弧,弧与
数轴的交点C即为表示 的点.
思考:怎样在数轴上画出表示 (n为正整数)的点?
利用勾股定理,可以做出长为 (n为正整数)的线段,进而可以在数轴上画出表示 (n为正整数)的点.(P69)
结论:利用勾股定理,可以做出长为 (n为正整数)的线段,进而在数轴上可画出表示
(n是正整数)的点.
练习:书P69练习1,(再练 , 等)
例2、已知:如图,四边形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°.求四边形ABCD的面积.
解:延长BC与AD交于点E
∵∠A=60°,∠B=90°
∴∠E=30°
∵在Rt△ABE中,∠E=30°
∴AE=2AB=4
∵在Rt△ABE中,∠B=90°
分析:方程思想
解:设AB=xm,则AC= (8-x) m
∵在Rt△ABC中,∠ABC=90°
∴AB2+BC2=AC2
∴
x=3.75
∴折断处离地面的高度是3.75 m.
小结:1、方程思想.
2、勾股:△ABC为等边三角形,AD⊥BC于D,AD=6.求AC的长.
解:∵△ABC为等边三角形
分析:(1)若能画出长为 的线段,就能在数轴上画出表示 的点.
(2)由勾股定理知,直角边为1的等腰Rt△,斜边为 .因此在数轴上能表示 的点.那么长为 的线段能否是直角边为正整数的直角三角形的斜边呢?
解:∵在Rt△ABC中,∠OAB=90°,OA=3,AB=2
∴OB= =
∴在数轴上取点A,使OA=3,过点A作AB⊥OA于A,
a,b,c分别为∠A、∠B、∠C的对边.
求证:
到目前为止,对这个命题的证明方法已有几百种.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的
提问:拼接后的图形是否是由原4个直角三角形和小正方形没有重叠、没有空隙地拼成的?拼接后的图形是什么图形?
由此得到:
小结:这种证法是面积证法.图形割补拼接后,只要没有重叠、没有空隙,面积不会改变.
2、勾股定理把直角三角形“形”的特征,即一角为90°,转化为数量关系,体现了数形结合的思想.
五、课堂练习
如图,所有的四边形都是正方形,所有三角形都是直角
三角形,其中最大的正方形的边长是a,则图中四个小
正方形A、B、C、D的面积之和是.( )
六、作业
见素材
课后反思
课题
§17.1勾股定理(二)
时间
教学目的
解:(3) ∵在Rt△ABC中,∠B=90°
∴AC2=AB2+BC2(勾股定理)
∴AC= = ≈2.236
∵AC≈2.236>2.2
∴木板能从门框内通过(书上P67填空)
小结:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边AC的长.
例2、如图,一个3米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5米.
∴
∴
∴
四、课堂小结
1、在数轴上画出表示 (n为正整数)的点的方法.
2、利用辅助线构造Rt△.
3、利用直角三角形的公共边构造方程,简称“双勾股”.
五、作业
见素材
课后反思
课题
§17.1勾股定理(四)
时间
教学目的
知识与技能
利用勾股定理解决数学问题,进一步渗透方程思想和数形结合思想.
过程与方法
运用勾股定理解决与直角三角形相关的问题.
知识与技能
1、利用勾股定理解决实际问题.
2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想和方程思想.
过程与方法
运用勾股定理解决与直角三角形相关的问题.
情感态度与价值观
1、通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.
2、通过对勾股定理的运用体会数学的应用价值.
解:∵在Rt△ABC中,∠C=90°
∴AB2=m2+n2(勾股定理)
∴AB= = =
∴S=AB•d
= ×15≈4.472×15=67.08≈68(平方米)
注意:这里要取过剩近似值.
四、课堂小结
1、勾股定理的作用——它把直角三角形的图形特征转化为边的数量关系.
2、会用勾股定理进行有关计算和证明,要注意利用方程的思想求有关三角形的边长.
2、通过对勾股定理的运用体会数学的应用价值.
教学重点
勾股定理的应用.
教学难点
利用勾股定理建立方程.
教学手段
讲练结合
教学内容和过程
一、复习提问
1、勾股定理?
2、解决有关直角三角形问题常用方程思想.
二、新课
例1、(书P68)我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示 的点吗?
教学重点
勾股定理的应用.
教学难点
勾股定理在实际生活中的应用.
教学手段
讲练结合
教学内容和过程
一、复习提问
1、勾股定理?应用条件?
2、证明方法?(面积法)
3、在长方形ABCD中,宽AB为1m,长BC为2m,求AC的长.
答:AC的长为 .
二、新课
例1、一个门框的尺寸如图所示:
(1)若有一块长3米,宽0.8米的薄木板,能否从门框内通过?
3、会从实际问题中抽象出数学模型,从而解决实际问题.
五、作业
见素材
课后反思
课题
§17.1勾股定理(三)
时间
教学目的
知识与技能
1、会在数轴上表示 (n为正整数).
2、利用勾股定理解决数学问题,进一步渗透方程思想和数形结合思想.
过程与方法
运用勾股定理解决与直角三角形相关的问题.
情感态度与价值观
1、通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.
例、(1)已知Rt△ABC中,∠C=90°,BC=6,AC=8,求AB.
(2)已知Rt△ABC中,∠A=90°,AB=5,BC=6,求AC.
(3)已知Rt△ABC中,∠B=90°,a,b,c分别是∠A,∠B,∠C的对边,c∶a=3∶4,b=15,求a,c及斜边高线h.
解:先画图
(1)∵Rt△ABC中,∠C=90°
如果梯子的顶端A沿墙下滑0.5米,那么梯子底端B也外移0.5米吗?
(计算结果保留两位小数)
分析:要求出梯子的底端B是否也外移0.5米,实际就是求BD的长,而BD=OD-OB
解:∵在Rt△ABO中,∠AOB=90°
∴OB2=AB2-AO2(勾股定理)
∴OB= = = ≈1.658
∵OC=AO-AC
∴OC= 2.5-0.5=2
∴AB=AC=BC
∵AD⊥BC
∴DC= BC
∴DC= AC
设DC=x,则AC=2x
∵在Rt△ADC中,∠ADC=90°
∴AD2+DC2=AC2(勾股定理)
∴
(舍负)
∴
2、如图,要修建一个蔬菜大棚,大棚的截面是直角三角形,棚宽m=4米,高n=2米,长d=15米,求覆盖在顶上的塑料薄膜需多少平方米?(结果保留小数点后1位)
情感态度与价值观
1、通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.
∴ (勾股定理)
∴ = = =10
(2)
(3) ∵c∶a=3∶4
∴设a=4k,c=3k
∵Rt△ABC中,∠B=90°
∴ (勾股定理)
∴
(舍负)
∴a=4k=12,c=3k=9
∵∠ABC=90°,h是斜边高线
∴ac=bh
∴h= = =
∴a=12,c=9,h=
四、课堂小结
1、勾股定理从边的角度刻画了直角三角形的又一特征;
下面介绍另一种拼图的证法:(选讲)
做八个全等的直角三角形和分别以a、b、c为边长的三个正方形.拼成如下两个图形:
提问:①这两个图形分别是什么图形?(正方形,四条边都相等,四个角都为直角)
②这两个图形的面积相等吗?(相等,都等于 )
③如何利用这两个图形证明: ?
勾股定理:(P65)
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 .
④无论求斜边,还是求直角边,最后都要开平方.开平方时,由于边长为正,所以取算术平方根;
⑤勾股定理是直角三角形的一条重要性质,它由一个角是直角作“因”,三边的数量关系作“果”,体现了由“形”到“数”的转化,是数形结合思想的一个典范.
⑥勾股定理不仅是最古老的数学定理之一,也是数学中证法最多的一个定理.目前世界上已有几百种证法,就连美国第20届总统加菲尔德也提供了一种面积证法.请同学们课下阅读书上P71~72.
∵在Rt△COD中,∠COD=90°
∴OD2=CD2-CO2(勾股定理)