变压器励磁涌流的原因
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器励磁涌流的原因、特点和消除措施来源
1 励滋涌流
对变压器切除外部故障后进行空载合闸,电压突然恢复的过程中,变压器可能产生很大的冲击电流,其数值可达额定电流的6~8倍,将这个电流称之为励磁涌流。
产生励磁涌流的原因是变压器铁芯的严重饱和和励磁阻抗的大幅度降低。
2 励磁涌流的特点
励磁涌流数值很大,可达额定电流的6~8倍。
励磁涌流中含有大量的直流分量及高次谐波分量,其波形偏向时间轴一侧。
励磁涌流具有衰减特性,开始部分衰减得很快,一般经过0.5~1s后,其值通常不超过0.25~0.5倍的额定电流,对于大容量变压器,其全部衰减时间可能达到几十秒。
3 消除励磁涌流影响所采取的补偿措施
励磁涌流的产生会对变压器的差动保护造成误动作,从而使变压器空载合闸无法进行,为了消除励磁涌流对保护的影响,一般可以采用接入速饱和变流器的补偿措施。
3.1 接入速饱和变流器
接入速饱和变流器阻止励磁涌流传递到差动继电器中,如图1。当励磁涌流进入差动回路时,由于速饱和变流器的铁芯具有极易饱和的特性,其中很大的非周期分量使速饱和变流器的铁芯迅速严重饱和,励磁阻抗锐减,使得励磁涌流中几乎全部非周期分量及部分周期分量电流从速饱和变流器的一次侧绕组通过,变换到二次侧绕组的电流就很小,差动保护就不会动作。只要合理调节速饱和变流器一二次侧绕组匝数,就可以更好的消除励磁涌流对差动保护的影响。
图1 接入速饱和变流器
3.2 差动保护速饱和变流器
贵州省印江县供电局甘金桥水电站,差动保护速饱和变流器一次侧由差动线圈(工作线圈)、平衡线圈组成。由差动保护速饱和变流器的原理得出,只要合理调节差动线圈和平衡线圈,就可以消除励磁涌流对差动保护的影响。差动线圈的具体整定是:差动线圈在5、6、8、10、13、20匝处有抽头,差动继电器相应动作电流值可整定为12、10、7.5、6、4.6、3A。
通过以上对变压器励磁涌流产生的特点及其对差动保护的影响,以及如何消除励磁涌流对差动保护的影响进行了分析,在检查中发现速饱和变流器中的差动线圈在20匝处,这样继电器的动作电流就为3A,保护时限为0s,而变压器实际中要产生4.56A励磁涌流,要在0.5~1s后才开始衰减,显然差动保护整定电流不能躲过励磁涌流的影响而造成断路器跳闸。将差动线圈调整为10匝,动作电流为6A后,即解决了变压器空载合闸合不上的问题。
抑制变压器励磁涌流的新方法变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。
抑制变压器励磁涌流的新方法
变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污
染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。
0、引言
变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。励磁涌流不仅峰值大,且含有极多的谐波及直流分量。由此对电网及电器设备造成极为不利的影响。
1、励磁涌流的危害性
1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败;
1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电;
1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电;
1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损;
1.5 诱发操作过电压,损坏电气设备;
1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率;
1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。
1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。
数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。
2、励磁涌流的成因
抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。由于偏磁的极性及数值是可以通过选择外施电压合
闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电压相位角,实现让偏磁与剩磁极性相反,从而消除产生励磁涌流的土壤——磁路饱和,实现对励磁涌流的抑制。
长期以来,人们认为无法测量变压器的剩磁极性及数值,因而不得不放弃利用偏磁抵消剩磁的想法。从而在应对励磁涌流的策略上出现了两条并不畅通的道路,一条路是通过控制变压器空投电源时的电压合闸相位角,使其不产生偏磁,从而避免空投电源时磁路出现饱和。另一条路是利用物理的或数学的方法针对励磁涌流的特征进行识别,以期在变压器空投电源时闭锁继电保护装置,即前述“躲避”的策略。这两条路都有其致命的问题,捕捉不产生偏磁的电源电压合闸角只有两个,即正弦电压的两个峰值点(90°或270°),如果偏离了这两点,偏磁就会出现,这就要求控制合闸环节的所有机构(包括断路器)要有精确、稳定的动作时间,因为如动作时间漂移1毫秒,合闸相位角就将产生18°的误差。此外,由于三相电压的峰值并不是同时到来,而是相互相差120°,为了完全消除三相励磁涌流,必须断路器三相分时分相合闸才能实现,而当前的电力操作规程禁止这种会导致非全相运行的分时分相操作,何况有些断路器在结构上根本无法分相操作。
用物理和数学方法识别励磁涌流的难度相当大,因为励磁涌流的特征和很多因素有关,例如合闸相位角、变压器的电磁参数等。大量学者和工程技术人员通过几十年的不懈努力仍不能找到有效的方法,因其具有很高的难度,也就是说“躲避”的策略困难重重,这一策略的另一致命弱点是容忍励磁涌流出现,它对电网的污染及电器设备的破坏性依旧存在。
图2-1为一单相变压器结构图,可写出空载时初级绕组的电压方程