(中考复习)第2节 代数式与整式(含答案)
2022最新中考复习真题精选: 代数式与整式(含解析)
1. (胡文淮安7题3分)已知a -b =2,则代数式2a -2b -3的值是()A. 1B. 2C. 3D. 72. (2013苏州9题3分)已知x -1x =3,则4-12x2+32x 的值为() A. 1 B. 32 C. 52 D. 723. (2022模拟盐城9题3分)“x 的2倍与5的和”用代数式表示为________.4. (2013苏州15题3分)按照下图所示的操作步骤,若输入x 的值为2,则输出的值为________.第4题图5. (2022模拟连云港11题3分)已知m +n =mn ,则(m -1)(n -1)=________.6. (2022模拟连云港12题3分)若ab =3,a -2b =5,则a2b -2ab2的值是________.7. (2022模拟盐城16题3分)已知x(x +3)=1,则代数式2x2+6x -5的值为________.8. (2022模拟泰州14题3分)已知a2+3ab +b2=0(a ≠0,b ≠0),则代数式b a +a b的值等于________.9. (2013淮安18题3分)观察一列单项式:x,3x2,5x3,7x,9x2,11x3,…,则第2013个单项式是________.10. (2022模拟南通18题3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于________.命题点2整式的运算(胡文年14次,2022模拟年13次,2022模拟年15次,2013年15次)11. (胡文盐城2题3分)计算(-x2y)2的结果是()A. x4y2B. -x4y2C. x2y2D. -x2y212. (胡文南京3题2分)下列计算中,结果是a6的是()A. a2+a4B. a2·a3C. a12÷a2D. (a2)313. (2022模拟镇江15题3分)计算-3(x-2y)+4(x-2y)的结果是()A. x-2yB. x+2yC. -x-2yD. -x+2y14. (2022模拟扬州2题3分)若×3xy=3x2y,则内应填的单项式是()A. xyB. 3xyC. xD. 3x15. (胡文徐州2题3分)下列运算中,正确的是()A. x3+x3=x6B. x3·x9=x27C. (x2)3=x5D. x÷x2=x-116. (2022模拟连云港10题3分)计算:(2x+1)(x-3)=________.17. (胡文无锡19(2)题4分)计算:(a-b)2-a(a-2b).18. (2022模拟南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.19. (2022模拟盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b -a),其中a=-1,b=2命题点3因式分解(胡文年9次,2022模拟年8次,2022模拟年5次,2013年5次)20. (2022模拟盐城10题3分)分解因式:a2-2a =________________.21. (胡文盐城9题3分)分解因式:a2-ab =_______________.22. (胡文淮安10题3分)分解因式:m2-4=______________.23. (2013苏州12题3分)因式分解:a2+2a +1=_________________.24. (2022模拟宿迁11题3分)因式分解:x3-4x =_______________.25. (2022模拟南通12题3分)因式分解:a3b -ab =_______________.26. (胡文常州11题2分)分解因式:x3-2x2+x =________.27. (2013扬州10题3分)因式分解a3-4ab2=________.28. (胡文南京9题2分)分解因式2a(b +c)-3(b +c)的结果是__________.29. (2022模拟南京10题3分)分解因式(a -b)(a -4b)+ab 的结果是____________.答案1. A 【解析】∵a -b =2,∴2a -2b -3=2(a -b)-3=2×2-3=1.2. D 【解析】∵x -1x=3,∴x2-1=3x ,∴x2-3x =1,∴原式=4-12(x2-3x)=4-12=72. 3. 2x +5 【解析】根据题中表述可得该式为2x +5.4. 20 【解析】由题图可知,运算程序为(x +3)2-5;当x =2时,(x +3)2-5=(2+3)2-5=25-5=20.5. 1 【解析】∵(m -1)(n -1)=mn -m -n +1=mn -(m +n)+1,∵mn =m +n ,∴原式=1.6. 15 【解析】∵ab =3,a -2b =5,∴a2b -2ab2=ab(a -2b)=3×5=15.7. -3 【解析】∵x(x +3)=1,∴2x2+6x -5=2x(x +3)-5=2×1-5=2-5=-3.8. -3 【解析】∵a2+3ab +b2=0,∴a2+b2=-3ab ,∴原式=22a b ab =-3ab ab=-3. 9. 4025x3 【解析】系数依次为1,3,5,7,9,11,…,2n -1;x 的指数依次是1,2,3,1,2,3,…,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为3,故可得第2013个单项式是4025x3.10. 4 【解析】∵m -n2=1,即n2=m -1≥0,得m ≥1,∴原式=m2+2m -2+4m -1=m2+6m +9-12=(m +3)2-12,则代数式m2+2n2+4m -1的最小值等于(1+3)2-12=4.11. A 【解析】(-x2y)2=(-x2)2·y2=x4y2.12. D 【解析】13. A 【解析】-3(x-2y)+4(x-2y)=x-2y.14. C 【解析】根据题意得:3x2y÷3xy=x.15. D 【解析】16. 2x2-5x-3 【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.17. 解:原式=a2-2ab+b2-a2+2ab=b2.18. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=x2y(2xy-2)÷x2y=2xy-2.19. 解:原式=a2+4ab+4b2+b2-a2=4ab+5b2,当a=-1,b=2时,原式=4×(-1)×2+5×22=12.20.a(a-2) 【解析】提取公因式a,即a2-2a=a(a-2).21. a(a-b) 【解析】提取公因式a,即a2-ab=a(a-b).22. (m-2)(m+2) 【解析】原式=(m-2)(m+2).23. (a+1)2 【解析】a2+2a+1=(a+1)2.24. x(x+2)(x-2) 【解析】本题考查了多项式的因式分解,x3-4x=x(x2-4)=x(x+2)(x-2),故填x(x+2)(x-2).25. ab(a+1)(a-1) 【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).26. x(x-1)2 【解析】主要考查了提取公因式法以及公式法分解因式.原式=x(x2-2x+1)=x(x-1)2.27. a(a+2b)(a-2b) 【解析】a3-4ab2=a(a2-4b2)=a(a +2b)·(a-2b).28. (b+c)(2a-3) 【解析】提取公因式(b+c)得,原式=(b+c)·(2a-3).29. (a-2b)2 【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式得a2-4ab+4b2=(a-2b)2.。
2019《3年中考2年模拟》河南中考数学二轮重点难点:2_第二节 代数式与整式
第二节 代数式与整式
总纲目录
栏目索引
总纲目录
考情分析 考点研读 命题探究 随堂检测
考情分析
栏目索引
考情分析
考点研读
栏目索引
考点研读
考点一 考点二 考点三 考点四
代数式及其求值 整式及其相关概念 整式的运算 因式分解
考点研读
栏目索引
考点一
代数式及其求值
1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方 和开方)把数和表示数的字母连接起来的式子叫做代数式,代数 式不含等号和不等号,单独的一个数或一个字母① “是”或“不是”)代数式. 是 (填
命题探究
栏目索引
答案
B a6÷a3=a6-3=a3,
3a2· 2a=(3×2)(a2· a)=6a3, (3a)2=32· a2=9a2, 2x2-x2=x2. 故选B.
命题探究
栏目索引
2-1 (2016内蒙古呼和浩特)下列运算正确的是 ( D ) A.a2+a3=a5
2 3 a B.(-2a ) ÷ =-16a4 2 1 C.3a-1= 3a
.(当多项式为两项时,考虑用平方
差公式;当多项式为三项时,考虑用完全平方公式.)分解因式要分 解到每个因式 三检查”. 温馨提示 因式分解与整式的乘法是两个互逆的过程,是互为 不能再分解 .以上步骤可总结为“一提二套
相反方向的变形.如: (a+b)(a-b) a2-b2.
一般地,用整式的乘法可以检验分解因式是不是正确.
考点研读
栏目索引
易错警示 因式分解时的易忽略点 1.用提公因式法分解因式时,易漏掉为“1”的项: 分解因式:12a2b-24ab2+6ab= 6ab(2a-4b+1 .
中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)
全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。
专题:计算题。
分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。
专题:计算题。
分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。
中考第一轮复习讲义 第二讲 代数式与整式
第二讲 代数式与整式一.考点分析考点一.列代数式(含规律探索)例题1.一次知识竞赛共有20道选择题,规定答对一题得5分,不答或答错扣1分,如果某学生答对题数为x ,用代数式表示该学生的得分为( )A.5x-(20-x)B.100-(20-x)C.5xD.5x-5(20-x)-(20-x)例题2.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.例题3.观察下列数据:3579,,,,, (357911)x x x x x 它们是按一定规律排列的,依照此规律,第n 个数据是 (用含n 的式子表示).例题4.如图,观察各图中小圆点的摆放规律,并按这样的规律摆放下去,则第10个图形中小圆点的个数为 .考点二.代数式求值例题1.已知4a+3b=1,则整式8a+6b-3的值为 . 例题2.已知3,6x y xy +==,则22x y xy +的值为 .例题3.如果x=1时,代数式3234ax bx ++的值是5,那么x=-1时,代数式3234ax bx ++的值是 .例题4.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .考点三.非负数的性质例题1.120x y ++-=,那么xy= .例题2.若25(3)0a b -++=,则a-2b= .例题3.若21(2)3322102x y z -++-=,则式子2x yz 的值为 .考点四.整式的相关概念例题1.若单项式22m x y 与41-3n x y 可以合并成一项,则m n = . 例题2.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有( ) A.5个整式 B.4个单项,3个多项式 C.6个整式,4个单项式 D.6个整式,单项式与多项式个数相同例题3.(1)单项式-22xy π的系数是 ,次数是 ; (2)多项式125323+--xy y x 的次数 . 考点五.整式的运算例题1.下列计算正确的是( )A.325(3)6a a a -=B.331a a a a÷= C.22(-21)441a a a -=++ D.235235a a a += 例题2.4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a+b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2,若S 1=2S 2,则a ,b 满足( )A.2a=5bB.2a=3bC.a=3bD.a=2b例题3.先化简,再求值:2(2)(43)a b a a b +-+,其中1,2a b ==.例题4.先化简,再求值:23(21)(21)(1)(2)(8)m m m m m +---+÷-,其中m 是方程220x x +-=的根.考点六.因式分解例题1.分解因式:44ax ay -= .例题2.下列等式从左到右的变形,属于因式分解的是( )A.2221(1)x x x +-=-B.22()()a b a b a b +-=-C.2244(2)x x x ++=+D.22(1)ax a a x -=-例题3.分解因式:22(2)(2)y x x y +-+= .例题4.若21x x +=,则433331x x x +++的值为 .例题5.把下列各式分解因式(1))()()(y x c x y b y x a -+---; (2)2296y xy x +-;(3)y x y x 2222-+-; (4)22216)4(x x -+.二.同步练习 1.4y x 33-它的系数为 ,次数为 . 2.多项式4423x xy 2y y 5x +--是 次 项式,它的最高次项是 ,二次项系数为 ,把这个多项式按y 降幂排列得 .3.若m 10y x 41与4n 13y x 31+是同类项,则m n = . 4.若05a a 2=-+,则20082a 2a 2++的值为 .5.计算:_______43=⋅-a a , 2a a a +⋅= , (a+2)(a-1)= .3条2条1条图66.若3,5==nm aa,则___________32=+nma.7.在多项式142+x中,添加一个单项式使其成为一个完全平方式,则添加的单项式是(只写出一个即可).8.把下列各式分解因式:(1)x2-xy=;(2)4x2-16=;(3)2x2+4x+2=;(4)x2-6x-7=;(5)a3-a2+a-1=.9.已知1)1(+-=nna,当1=n时,01=a;当2=n时,22=a;当3=n时,03=a…则654321aaaaaa+++++= .10.如图是小亮用8根,14根,20根火柴搭的1条,2条,3条“金鱼”,按此方法搭n条“金鱼”需要火柴根.(用含n的代数式表示)11.已知5,3a b ab-==,则代数式32232a b a b ab-+的值为 .12.观察下列各等式的数字特征:85358535⨯=-,1192911929⨯=-,17107101710710⨯=-……,将你所发现的规律用含字母a,b的等式表示出来: .13.下列运算正确的是()A.12-=÷xxx B. 33332244)2(yxxyx-=⋅-C.653)()(xxx-=-⋅-- D.22941)321)(321(yxyxyx-=+--14.下列从左到右的变形,属于因式分解的是()A.(x+2)(x+3)=x2+x+6B.ax-ay+1=a(x-y)+1C.8a2b3=2a2·4b3D.x2-4=(x+2)(x-2)15.计算:(1)22462(32)2m m m m⎡⎤--+-⎣⎦; (2)223()(3)(7)4a bc ab ac-÷-•-.16.先化简,再求值:(1),3)12(2)12(2++-+a a 其中2=a ; (2)2()()()x y x y x y x ⎡⎤-++-÷⎣⎦,其中11,2x y =-=.17.把下列各式因式分解:(1)x 3-4x ; (2)x 2-3xy -10y 2; (3) x 2-y 2-4x +4; (4)x 4-5x 2+4.18.对于实数a ,b ,c ,d 规定一种运算bc ad d c b a -=,如220)2(12201-=⨯--⨯=-, 那么当255)3(42=--x 时,求x 的值.三.拓展练习1.某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%,经过两次降价后的价格为 元(结果用含m 的代数式表示).2.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A. 52a b =B.a=3bC.72a b = D.a=4b3.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( )A. 20192B.201812C.201912D.2020124.代数式2221126,4,,,2,5x y xy z y xy x x a b +-+-+-+ 中,不是整式的有 个.5.化简222222123323a b ab a b ab a b +-+--并按字母a 的降幂排列为 .6.若823x y a b +-与234y x y a b -的和是单项式,则x y += . 7.12x n a b -与223m a b -是同类项,则()2xm n -= .8.单项式0.25b c x y 与单项式1210.125m n x y ---的和是0.625n m ax y ,则abc = .9.若249x mx ++是一个完全平方式,则m 的值为 .10.已知22412x x m -+是一个完全平方式,则m 的值为 .11.计算2200120002002-⨯的结果是 .12.计算:(1)2200920072008⨯-; (2)22007200720082006-⨯;(3)22003451()(2)542x π--⎛⎫⎛⎫⎛⎫÷-+---÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (4)24643(21)(21)(21)1++++;(5)22222111111)(1)(1)(1)(1)234910-----(;(6)12345678921234567890123456789112345678902⨯-.13.求24832(21)(21)(21)(21)(21)(21)1-++++++的个位数字.14. 已知5m a =,3n a =,求23m n a +的值.15. 已知5m a =,275m n a +=,求n a 的值.16. 已知33m a =,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值.17. △ABC 中,a b c 、、为其三边长,且222a b c ab bc ac ++=++,试判断△ABC 的形状.18. 若20002001a x =+,20002002b x =+,20002003c x =+,求222a b c ab bc ac ++---的值.19.已知15a a +=,则221a a += ;21()a a-= . 20.若244210x x x-+=,则的值为 . 21.化简:(1)221111())2525a b a b ---(; (2)231)(231)a b a b -++-(;(3)222(9)(3)(3)(9)a a a a +-+-+.22. 已知()()31222a b ab a b +==--,,化简的结果是 . 23. 已知2012x xy xy y x y -=-=-,,则的值为 .24.若22ab =,则代数式()253ab a b ab b ---的值为 .25.若22011x y xy x xy y +==--+,,则的值为 .26.已知2()4x y -=,2()64x y +=,求①22x y +;②xy 的值.27. 已知:212x xy +=,215xy y +=,求()2x y +-()()x y x y +-的值.28. 已知:2(1)()5a a a b ---=-求代数式222a b ab +-的值.29. 已知2226100a b a b +-++=,求20061a b-的值.30. 先化简,再求值:2(23)(23)(3)a b a b a b +-+-,其中15,3a b =-=.31. 已知2215,31,3A x x B x x =-+=-+ 当23x =时,求2A B -的值.32.若()()2210231a b b ab ab ab +++=---⎡⎤⎣⎦,则的值是 .33.已知()()()()312m x y x y x y x y -⋅-⋅-=-,求()()22421225m m m m ++---的值.34.若0a b c ++=,则()()()a b b c c a abc ++++= .35.若2,3,5a b b c c d -=-=--=,则 ()()()a c b d a d --÷-= .36.已知3a b a b-=+,则()()()243a b a b a b a b +--=-+ . 37.若210m m +-=,则3222010m m +-= .38.若3220x x x ---= ,则4322451x x x x +---= .39.若2310x x x +++= ,则2320111x x x x +++++= .40.已知多项式731ax bx cx +++,当2x =-时,多项式的值为2010,则当2x =时,这个多项式的值为 .41.已知等式()()()221111x x ax x b x c x ++=+++++是关于x 的恒等式,则a= ,b= ,c= .42.如果2231x x +-与()()211a x b x c -+-+是同一个多项式,则a b c += . 43.已知()6212111021211102101x x a x a x a x a x a x a -+=++++++则01212a a a a ++++= ,12312a a a a ++++= ,02412a a a a ++++= ,121110921a a a a a a -+-++-= . 44.若a ,b ,c ,d 是整数,b 是正整数,且满,,a b c b c d c d a +=+=+=,则a b c d +++的最大值是 .45.已知0a b c d +++=,则()()()()()()333333a b a c b c b d a d c d +++++++++++= .46.已知等式()()222121k x k y k k z +-+--=与k 值无关,则x = ;y = ;z = .47.若()()2283a pa a a q ++-+中不含有32a a 和项,则p = ,q = .48.当x = ,y = 时,多项式22494121x y x y +-+-有最小值,此时这个最小值是 .49.若()()023236x x ----有意义,则x 的取值范围是 .50.若代数式2214250x y x y +-++的值为0,则x = ,y = .51.已知23a =,26b =,272c =,试问a b c 、、之间有什么关系?请说明理由.52.已知552a =,443b =,334c =,比较a b c 、、的大小.。
2023中考数学复习:代数式与整式
乘法公式
(1)平方差公式:(a+b)(a-b)=a2-b2;
(2)完全平方公式:(a±b)2=a2±2ab+b2;
(3)乘法公式的常用恒等变形:a2+b2=(a+b)22ab=(a-b)2+2ab
第4讲
代数式与整式— 考点梳理
返回思维导图
返回栏目导航
续表
类别
运算法则
将系数、同底数幂分别相除作为商的一个因式,
C.a3与a·a·a
D.3(a+b)与3a+b
7
8
9
10
11
12
13
14
15
16
17
18
19
第4讲
返回命题点导航
代数式与整式— 真题试做
返回栏目导航
8.( 2020·河北2题3分)墨迹覆盖了等式“x3■x=x2(x≠0)”中的运算符
号,则覆盖的是(
A.+
D )
B.-Βιβλιοθήκη C.×D.÷9.( 2020·河北11题2分)若k为正整数,则( + + … + )k=( A )
3.( 2022·河北9题3分)若x和y互为倒数,则 +
A.1
返回栏目导航
返回命题点导航
代数式与整式— 真题试做
B.2
C.3
−
的值是( B )
D.4
4.( 2013·河北5题2分)若x=1,则|x-4|=( A )
A.3
B.-3
C.5
D.-5
1
5.( 2016·河北18题3分)若mn=m+3,则2mn+3m-5mn+10=
中考数学一轮复习:代数式与整式(含因式分解)过关练测(word版、含答案)
3.代数式与整式(含因式分解)一、选择题1.下列各式中正确的是()A.a3·a2=a6B.3ab-2ab=1C.6a2+13a=2a+1 D.a(a-3)=a2-3a2.下列运算正确的是()A.(-a)³=a³B.(a²)³=a⁵C.a²÷a-²=1D.(-2a³)²=4a⁶3.下列各式计算正确的是()A.4a-a=3B.a⁶÷a²=a³C.(-a³)²=a⁶D.a³·a²=a⁶4.下列运算正确的是()A.a²·a³=a⁶B.a⁸÷a⁴=a²C.a³+a³=2a⁶D.(a³)²=a⁶5.计算(a²)³的结果是()A.a⁵B.a⁶C.a⁸D.a⁹6.下列运算正确的是()A.3a²-a²=3B.(a²)³=a⁵C.a³·a⁶=a⁹D.(2a²)²=4a²7.小明总结了以下结论:①a(b+c)=ab+ac;②a(b-c)=ab-ac;③(b-c)÷a =b÷a-c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0).其中一定成立的个数是()A.1B.2C.3D.48.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a -b)²=a ²-2ab +b ²B.a(a -b)=a ²-abC.(a -b)²=a ²-b ²D.a ²-b ²=(a +b)(a -b)9.下列等式从左到右变形,属于因式分解的是( )A.(a +b)(a -b)=a2-b2B.x2-2x +1=(x -1)2C.2a -1=a ⎝ ⎛⎭⎪⎫2-1a D.x2+6x +8=x(x +6)+810.若(92-1)(112-1)k=8×10×12,则k =( ) A.12 B.10 C.8 D.611.对于任意的有理数a ,b ,如果满足a 2+b 3=a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.312.从前,古希腊一位庄园主把一块边长为a 米(a >6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定二、填空题13.分解因式:m ²n -n ³= .14.分解因式:3a ²-6a +3= .15.分解因式:2a ³-8a = .16.已知m+n=12,m-n=2,则m²-n²=.17.分解因式:2a²-8=.18.分解因式:mn²-m=.19.分解因式:x³-xy²=.20.分解因式:x²y-y=.21.分解因式:2a²-4a+2=.22.数学讲究记忆方法.如计算(a⁵)²时若忘记了法则,可以借助(a⁵)²=a⁵×a⁵=a⁵+⁵=a¹º,得到正确答案.你计算(a²)⁵-a³×a⁷的结果是.23.现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.24.下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第个图形共有210个小球.三、计算题25.计算:(x-y)²+x(x+2y).26.先因式分解,再计算求值:2x³-8x,其中x=3.27.小红在计算a(1+a)-(a-1)²时,解答过程如下:红的解答从第步开始出错,请写出正确的解答过程.参考答案一、选择题1.D2.D3.C4.D5.B6.C7.C8.D9.B 10.B 11.A 12.C二、填空题13.n(m+n)(m-n)14.3(a-1)²15.2a(a+2)(a-2)16.2417.2(a+2)(a-2)18.m(n+1)(n-1)19.x(x+y)(x-y)20.y(x+1)(x-1)21.2(a-1)²22.(1)a²+b²(2)423.m²-m24.20三、计算题25.解:原式=x²-2xy+y²+x²+2xy=2x²+y².26.解:原式=2x(x²-4)=2x(x+2)(x-2).当x=3时,原式=2×3×(3+2)×(3-2)=30.27.第一步解:(1+a)-(a-1)²=a+a²-(a²-2a+1)=a+a²-a²+2a-1=3a-1.。
2022年中考数学总复习考点培优 第一章数与式 第2节代数式与整式
基础过关
能能力力提提升升
特色题型
-16-
1.2 代数式与整式
16.[HK版教材七下P66习题8.2第13题改编]在一个边长为a的 正方形地块上,开辟出①②③三块面积相等的花坛,花坛之间
由为两3条95a宽2 .为7a的长方形小路隔开,则每块花坛的面积
基础过关
能能力力提提升升
特色题型
-17-
1.2 代数式与整式
基础过关
能能力力提提升升
特色题型
-15-
1.2 代数式与整式
(1)写出第6个等式: 72-62=6×2+1. ; (2)写出你猜想的第n个等式: (n+1)2-n2=2n+1. (用含n的等式表示),并证明. 解:(2)证明:∵左边=(n+1)2-n2=n2+2n+1-n2=2n+1=右边, ∴等式成立.
【解析】(1)由图可知,一块甲纸片的面积为a2,一块乙纸片的 面积为b2,一块丙纸片的面积为ab,∴取甲、乙纸片各1块,其面 积和为a2+b2;(2)设取丙纸片x(x≥0)块才能用它们拼成一个新 的大正方形,∴a2+4b2+xab是一个完全平方式,∴x为4.
基础过关
能力提升
特色题型
-10-
1.2 代数式与整式
11.(2021·湖南衡阳)计算:(x+2y)2+(x-2y)(x+2y)+x(x-4y). 解:原式=(x2+4xy+4y2)+(x2-4y2)+(x2-4xy) =x2+4xy+4y2+x2-4y2+x2-4xy =3x2.
基础过关
能力提升特色题型来自-11-1.2 代数式与整式
专题2代数式与整式含答案解析2023年湖南省中考数学一轮复习专题训练
专题2 代数式与整式一、单选题1.下列运算正确的是()A.3a﹣2a=a B.(a3)2=a5C.2√5﹣√5=2D.(a﹣1)2=a2﹣12.下列整式与ab2为同类项的是()A.a2b B.﹣2ab2C.ab D.ab2c3.下列运算正确的是()A.a2+a3=a5B.a3⋅a4=a12C.(a3)4=a7D.a3÷a2=a 4.(2022·长沙)下列计算正确的是()A.a7÷a5=a2B.5a−4a=1C.3a2⋅2a3=6a6D.(a−b)2=a2−b25.(2022·永州)下列各式正确的是().A.√4=2√2B.20=0C.3a−2a=1D.2−(−2)=4 6.(2022·娄底)下列式子正确的是()A.a3⋅a2=a5B.(a2)3=a5C.(ab)2=ab2D.a3+a2=a5 7.(2022·长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100−x)元C.8(100−x)元D.(100−8x)元8.(2022·娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN),例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.09.(2022·怀化)下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C.√(−2)2=2D.(x﹣y)2=x2﹣y210.(2022·常德)计算x4⋅4x3的结果是()A.x B.4x C.4x7D.x11二、填空题11.(2022·邵阳)已知x2−3x+1=0,则3x2−9x+5=.12.(2022·长沙)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它己被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).13.(2022·怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是.14.(2022·永州)若单项式3x m y的与−2x6y是同类项,则m=.15.(2021·株洲)计算:2a2⋅a3=.16.(2021·岳阳)已知x+1x=√2,则代数式x+1x−√2=.17.(2021·怀化)观察等式:2+22=23−2,2+22+23=24−2,2+22+23+24=25−2,……,已知按一定规律排列的一组数:2100,2101,2102,……,2199,若2100=m,用含m的代数式表示这组数的和是.18.(2021·岳阳模拟)若7a x b2与−3a3b y的和为单项式,则x y=.19.(2021·娄底模拟)观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第个图形. 20.(2021·新化模拟)已知a²+2a−5=0,则代数式2a2+4a−1的值是.三、计算题21.(2021·衡阳)计算:(x+2y)2+(x−2y)(x+2y)+x(x−4y).22.(2021·长沙)先化简,再求值:(x−3)2+(x+3)(x−3)+2x(2−x),其中x=−12. 23.(2021·新化模拟)先化简,再求值:(a+b)(a−b)+(a−b)2−(2a2−ab),其中a,b是一元二次方程x2+x−2=0的两个实数根. 24.(2021·永州)先化简,再求值:(x+1)2+(2+x)(2﹣x),其中x=1.25.(2021·永州模拟)先化简,再求值:(a+b)(a-b)+(a+b)2,其中a=-1,b=12答案解析部分1.【答案】A【解析】【解答】解:A、3a﹣2a=a,故A符合题意;B、(a3)2=a6,故B不符合题意;C、2√5﹣√5=√5,故C不符合题意;D、(a﹣1)2=a2-2a+1,故D不符合题意;故答案为:A.【分析】利用合并同类项是把同类项的系数相加,字母和字母的指数不变,可对A作出判断;利用幂的乘方,底数不变,指数相乘,可对B作出判断;再利用合并同类二次根式的法则,可对C作出判断;然后根据(a-b)2=a2-2ab+b2,可对D作出判断.2.【答案】B【解析】【解答】解:∵ab2和﹣2ab2所含的字母相同,相同的字母系数也相同,∴ab2和﹣2ab2是同类项.故答案为:B.【分析】所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的单项式,根据定义分别判断即可.3.【答案】D【解析】【解答】解:A、a2+a3不能合并,故A不符合题意;B、a3·a4=a7,故B不符合题意;C、(a3)4=a12,故C不符合题意;D、a3÷a2=a,故D符合题意;故答案为:D.【分析】只有同类项才能合并,可对A作出判断;利用同底数幂相乘,底数不变,指数相加,可对B 作出判断;利用幂的乘方,底数不变,指数相乘,可对C作出判断;利用同底数幂相除,底数不变,指数相减,可对D作出判断.4.【答案】A【解析】【解答】解:A、a7÷a5=a2,故该选项正确,符合题意;B、5a−4a=a,故该选项不正确,不符合题意;C、3a2⋅2a3=6a5,故该选项不正确,不符合题意;D、(a−b)2=a2−2ab+b2,故该选项不正确,不符合题意.故答案为:A.【分析】同底数幂相除,底数不变,指数相减,据此判断A;合并同类项法则:同类项的系数相加减,所得的结果作为系数,字母和字母的指数不变,据此判断B;根据单项式与单项式的乘法法则“把系数与同底数幂分别相乘,对于只在某一个单项式中含有的字母,则连同指数作为积的一个因式”可判断C;根据完全平方公式的展开式是一个三项式可判断D.5.【答案】D【解析】【解答】解:A、√4=2,故A不符合题意;B、20=1,故B不符合题意;C、3a-2a=a,故C不符合题意;D、2-(-2)=2+2=4,故D符合题意;故答案为:D.【分析】利用正数的算术平方根只有一个,可对A作出判断;利用任何不等于0的数的0次幂为1,可对B作出判断;合并同类项是把同类项的系数相加,字母和字母的指数不变,可对C作出判断;利用减去一个数等于加上这个数的相反数,可对D作出判断.6.【答案】A【解析】【解答】解:a3⋅a2=a5,故A选项符合题意;(a2)3=a6,故B不符合题意;(ab)2=a2b2,故C不符合题意;a3,a2不是同类项,不能合并,故D不符合题意.故答案为:A.【分析】同底数幂相乘,底数不变,指数相加,据此判断A;幂的乘方,底数不变,指数相乘,据此判断B;积的乘方,先将每一个因式进行乘方,然后将所得的幂相乘,据此判断C;整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序及系数没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数都不变,但不是同类项的不能合并,据此可判断D.7.【答案】C【解析】【解答】解:设购买甲种读本x本,则购买乙种读本(100-x)本,乙种读本的单价为8元/本,则购买乙种读本的费用为8(100-x)元故答案为:C.【分析】设购买甲种读本x本,则购买乙种读本(100-x)本,根据乙种读本的单价×本数可得购买乙种读本的费用,据此解答.8.【答案】C【解析】【解答】解:∵lgM+lgN=lg(MN),∴(lg5)2+lg5×lg2+lg2=lg5(lg5+lg2)+lg2=lg5·lg10+lg2=lg5+lg2=lg10=1.故答案为:C.【分析】原式可边形为lg5(lg5+lg2)+lg2,然后结合lgM+LGN=lg(MN)进行计算.9.【答案】C【解析】【解答】解:A、(2a2)3=8a6≠6a6,故此选项错误,不符合题意;B、a8÷a2=a6≠a4,故此选项错误,不符合题意;C、√(−2)2=2,故此选项正确,符合题意;D、(x﹣y)2=x2﹣2xy+y2≠x2﹣y2,故此选项错误,不符合题意.故答案为:C.【分析】积的乘方,先对每一个因式分别进行乘方,然后将所得的幂相乘;幂的乘方,底数不变,指数相乘,据此判断A;同底数幂相除,底数不变,指数相减,据此判断B;根据二次根式的性质“√a2=|a|”可判断C;根据完全平方公式的展开式是一个三项式,可判断D.10.【答案】C【解析】【解答】解:x4⋅4x3=4x4+3=4x7,故C正确.故答案为:C.【分析】单项式乘以单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和,据此计算.11.【答案】2【解析】【解答】解:3x2−9x+5=3x2−9x+3+2=3(x2−3x+1)+2∵x2−3x+1=0∴3x2−9x+5=0+2=2故答案为:2.【分析】待求式可变形为3(x2-3x+1)+2,然后将已知条件代入进行计算.12.【答案】DDDD【解析】【解答】解:2200是200个2相乘,YYDS(永远的神)的理解是正确的;2200=(2100)2≠2002,DDDD(懂的都懂)的理解是错误的;∵21=2,22=4,23=8,24=16,25=32⋯,∴2的乘方的个位数字4个一循环,∵200÷4=50,∴2200的个位数字是6,JXND(觉醒年代)的理解是正确的;∵2200=(210)20,1060=(103)20,210=1024,103=1000,且210>103∴2200>1060,故QGYW(强国有我)的理解是正确的;故答案为:DDDD.【分析】根据乘方的意义可得DDDD的理解是错误的,观察发现:2的乘方的个位数字4个一循环,据此判断JXND;根据幂的乘方法则可得2200=(210)20,1060=(103)20,且210>103,据此判断QGYW. 13.【答案】744【解析】【解答】解:由题意知,第n行有n个数,第n行的最后一个偶数为n(n+1),∴第27行的最后一个数,即第27个数为27×28=756,∴第27行的第21个数与第27个数差6位数,即756−2×6=744,故答案为:744.【分析】由题意知,第n行有n个数,第n行的最后一个偶数为n(n+1),求出第27行的最后一个数,据此解答.14.【答案】6【解析】【解答】解:∵单项式3x m y的与−2x6y是同类项∴m=6.故答案为:6.【分析】利用同类项中相同字母的指数相等,可求出m的值.15.【答案】2a5【解析】【解答】解:2a2⋅a3=2a2+3=2a5.故答案:2a5.【分析】根据单项式乘单项式法则"单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式."可求解.16.【答案】0【解析】【解答】x+1x−√2=√2−√2=0故答案为:0.【分析】直接代入计算即可.17.【答案】(2100−1)m【解析】【解答】由题意规律可得:2+22+23+⋯+299=2100−2.∵2100=m∴2+22+23+⋯+299+2=2100=m=20m,∵2+22+22+⋯+299+2100=2101−2,∴2101=2+22+23+⋯+299+2100+2=m+m=2m=21m.2102=2+22+23+⋯+299+2100+2101+2=m+m+2m=4m=22m.2103=2+22+23+⋯+299+2100+2101+2102+2=m+m+2m+4m=8m=23m.……∴2199=299m.故2100+2101+2101+⋯+2199=20m+21m+⋯+299m.令20+21+22+⋯+299=S①21+22+23+⋯+2100=2S②②-①,得2100−1=S∴2100+2101+2101+⋯+2199=20m+21m+⋯+299m= (2100−1)m故答案为:(2100−1)m.【分析】利用已知等式可得到数字的变化规律,再根据2100=m,由此可求出这组数据的和. 18.【答案】9【解析】【解答】解:∵7a x b2与−3a3b y的和为单项式,∴7a x b2与−3a3b y是同类项,∴x=3,y=2,∴x y=32=9,故答案为:9.【分析】根据题意7a x b2与−3a3b y是同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同,由此求出x、y的值,进而可求得x y的值.19.【答案】2021【解析】【解答】解:观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,⋯第n个图形五角星的个数是:1+3•n=1+3n,∵6064−13=2021,∴用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.【分析】把每个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,据此规律找出第n个图形五角星的个数为:1+3n,据此求解即可.20.【答案】9【解析】【解答】解:∵a2+2a-5=0,∴a2+2a=5,∴a2+2a-1=2(a2+2a)-1=2×5-1=10-1=9.故答案为:9.【分析】将a2+2a-5=0变形为a2+2a=5,然后将代数式含字母的部分提取公因式2后整体代入所求的代数式进行化简求值.21.【答案】解:(x+2y)2+(x−2y)(x+2y)+x(x−4y)=x2+4xy+4y2+x2−4y2+x2−4xy=3x2【解析】【分析】利用完全平方公式、平方差公式、单项式乘以多项式将原式展开,然后去括号、合并即可.22.【答案】解:原式=x2−6x+9+x2−9+4x−2x2,=−2x,将x=−12代入得:原式=−2x=−2×(−12)=1【解析】【分析】根据平方差公式“(a+b)(a-b)=a2-b2”、完全平方公式“(a-b)2=a2-2ab+b2”和根据单项式与多项式的乘法法则“单项式与多项式相乘,就是依据分配律用单项式去乘多项式的每一项,再把所得的积相加”可去括号,再根据合并同类项法则“把同类项的系数相加,字母和字母的指数不变”可将多项式化简,然后把x的值代入化简后的代数式计算即可求解.23.【答案】解:原式= a2−b2+a2−2ab+b2−2a2+ab=﹣ab∵a,b是一元二次方程x2+x−2=0的两个实数根,∴ab=﹣2,则原式=﹣ab=2【解析】【分析】根据平方差公式、完全平方公式及去括号法则分别去括号,再合并同类项化为最简形式,进而根据根与系数的关系可得ab=﹣2,即可得出答案.24.【答案】解:(x+1)2+(2+x)(2﹣x)=x2+2x+1+4﹣x2=2x+5,当x=1时,原式=2+5=7.【解析】【分析】根据完全平方公式、平方差公式以及合并同类项法则可将原式化简为2x+5,然后将x 的值代入计算.25.【答案】解:原式=a2−b2+a2+2ab+b2=2a2+2ab当a=﹣1 ,b= 12时,原式=2a2+2ab=2×(−1)2+2×(−1)×1 2=1【解析】【分析】利用平方差公式和完全平方公式先去括号,再合并同类项化为最简形式,然后将a,b 的值代入代数式进行计算。
中考数学专题复习专题02 代数式与整式(课件)
知识点梳理
知识点4 :幂的运算
1. 同底数幂乘法:底数不变,指数相加,am·an= am+n ,如 a3 ·a-2= a . 2. 同底数幂除法: 底数不变,指数相减 ,am÷an= am-n (a≠0) 3. 幂的乘方: 底数不变,指数相乘 ,(am)n= amn . 4. 积的乘方: 各因式乘方的积 ,(ambn)p= ampbnp ,如(-2a2b)3= -8a6b3 , (-ab)2= a2b2 .
典型例题
知识点4 :幂的运算
【例12】(2022•南充)比较大小:2-2 30.(选填>,=,<)
【考点】零指数幂;负整数指数幂
【解答】解:∵2-2= 1 ,30=1,
4
∴2-2<30, 故答案为:<. 【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义, 零指数幂的意义是解决问题的关键.
知识点梳理
知识点5 :整式的乘除
4.(1)乘法公式:(a+b)(a-b)= a2-b2 ; (a+b)2= a2+2ab+b2 ;
(2)常见的变形有:a2+b2=(a+b)2-2ab; (-a-b)2=(a+b)2;
(a-b)2= a2-2ab+b2 ; (a-b)2=(a+b)2-4ab; (-a+b)2=(a-b)2
“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,
其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x
本,则购买乙种读本的费用为( )
A.8x元
B.10(100-x)元 C.8(100-x)元 D.(100-8x)元
【考点】列代数式. 【解答】【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100-x)元. 故选:C.
2020河南中考数学考点突破(课件+训练):2代数式与整式
2-3 (2019漯河临颍一模)下列运算正确的是( A )
A.(-3x)2=9x2 C. 16 - 4=4
B.(-x)-1= 1
x
D.(-x2)3=x5
栏目索引
命题探究
栏目索引
超级总结
名师点拨
1.进行幂的运算时切记不要混淆运算法则,如:同底数幂的乘法法则是底数
不变,指数相加:
am
·
an=
m+n
a
(m,
B.(-3)2=6 D.(-a3)2=a5
解析 选项A, 8 - 2=2 2- 2= 2;选项B,(-3)2=9;选项C,3a4与2a2不是同类项,不 能合并;选项D,(-a3)2=a6.故选A.
4.(2014河南)下列各式计算正确的是 ( B )
A.a+2a=3a2 B.(-a3)2=a6
C.a3·a2=a6
用多项式的每一项除以这个单项式,再把所得的商相加
5.整式的混合运算:先乘方,后乘除,最后加减,如果有括号,要先算括号内的.
考点研读
栏目索引
考点四 因式分解 1.因式分解的概念 把一个多项式化成几个整式的 积 的形式,叫做把这个多项式因式分解(或 者分解因式). 2.因式分解的基本方法 (1)提公因式法:ma+mb+mc=m(a+b+c).
栏目索引
第二节 代数式与整式
总纲目录
真题演练 考点研读 命题探究 随堂检测
总纲目录
栏目索引
真题演练
命题点一 整式的运算 命题点二 整式的化简求值
真题演练
栏目索引
真题演练
栏目索引
命题点一 整式的运算 1.(2019河南)下列计算正确的是 ( D ) A.2a+3a=6a B.(-3a)2=6a2
2020年江苏中考数学复习第1章第2课时 代数式与整式
相 关 多 概念:几个单项式的和.如a+2b 概 项 项:每个单项式(连同符号)都叫做多项式的项,不含字母的项叫做 念 式 __常__数__项___如2a-1的项是2a与-1,其中-1是常数项
次数:多项式里次数__最__高__的项的次数.如a2+2a+6的次数是__2_
返回思维导图
第2课时 代数式与整式
返回思维导图
第2课时 代数式与整式
返回目录
一提:如果多项式各项有公因式,应先提公因式,特别注意不能忽略数字
一 因般
因式
式 步 二套:如果没有公因 当多项式为两项且符号相反时,考虑用平方差公式
分骤 解
式,用公式法 当多项式为三项时,考虑用完全平方公式
三检查:检查因式分解是否彻底
返回思维导图
第2课时 代数式与整式
的 运 如m(a+b+c)=ma+mb+mc
运 算 多项式乘多项式:先用一个多项式的每一项去乘另一个多项式的每一项,
算
再把所得的积相加,如(m+n)(a+b)=m(a+b)+n(a+b)=ma+mb+na
+nb
乘法公式 平方差公式:(a+b)(a-b)=__a_2_-__b_2____ 完全平方公式:(a±b)2=__a_2_±__2_a_b_+__b_2
24. (2017淮安18题3分)将从1开始的连续自然数按以下规律排列:
返回目录
则2017在第_4_5___行.
第2课时 代数式与整式
25. (2015淮安18题3分)将连续正整数按如下规律排列:
第 1列 第 2列 第 3列 第 4列 第 5列
第1行 1
2
3
4
第2行
8
7
6
5
第3行 9
中考数学专题02 代数式【考点精讲】(解析版)
考点1:代数式的概念与求值1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用具体数代替代数式中的字母,按运算顺序计算出的结果叫做代数式的值。
求代数式的值分两步:第一步,代数;第二步,计算.要充分利用“整体”思想求代数式的值。
【例1】(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8nm (元) B .8nm(元) C .8mn(元) D .8mn(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可; 【详解】∵m 千克的售价为n 元, ∴1千克商品售价为n m, ∴8千克商品的售价为8nm(元); 故选A .【例2】(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解. 【详解】解:())22222=111113x x x -+-+=+-+=.故选:C【例3】(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.专题02 代数式【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果. 【详解】解:根据题意可知: 第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, …则第n 项是12n n +; 故答案为:12n n +.有关代数式的常见题型为用代数式表示数字或图形的变化规律. 数与图形的规律探索问题,关键要能够通过观察、分析、联想与归纳找出数或图形的变化规律,并用代数式表示出来.1.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可. 【详解】设原件为x 元,∵先打九五折,再打九五折,∴调价后的价格为0.95x ×0.95=0.9025x 元, ∵先提价50%,再打六折,∴调价后的价格为1.5x ×0.6=0.90x 元, ∵先提价30%,再降价30%, ∴调价后的价格为1.3x ×0.7=0.91x 元, ∵先提价25%,再降价25%,∴调价后的价格为1.25x ×0.75=0.9375x 元, ∵0.90x <0.9025x <0.91x <0.9375x 故选B2.(2021·四川达州市·中考真题)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为___________.【答案】2【分析】根据运算程序的要求,将x=3代入计算可求解. 【详解】 解:∵x =3<4∴把x =3代入1(4)y x x =-≤, 解得:312y =-=, ∴y 值为2, 故答案为:2.3.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n .考点2:整式相关概念1.单项式:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.2.多项式:几个单项式的和叫做多项式. 多项式中次数最高的项的次数,叫做这个多项式的次数.3.整式:单项式与多项式统称整式.4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.【例4】(2021·青海中考真题)已知单项式4272m a b -+与223m n a b +是同类项,则m n +=______. 【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可. 【详解】解:∵单项式4272m a b -+与223m n a b +是同类项, ∴2m =4,n +2=-2m +7, 解得:m =2,n =1, 则m +n =2+1=3.故答案是:3.【例5】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a + B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决. 【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,..., ∴第n 个单项式为21n n a +, 故选:A .【例6】已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= . 【答案】17【分析】直接利用单项式的次数确定方法分析得出答案. 【详解】解:∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式, ∴3+|m |+1=7且m ﹣3≠0, 解得:m =﹣3,∴m 2﹣2m +2=9+6+2=17. 故答案为:17.1.①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的 次数2.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数1.(2021·上海中考真题)下列单项式中,23ab 的同类项是( ) A .32a b B .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项 【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致, ∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致, ∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致, ∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致, ∴3ab 不是23a b 的同类项,不符合题意; 故选B2.关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( ) A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【答案】B【分析】根据多项式的项、次数的定义逐个判断即可.【详解】解:A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意; 故选:B .3.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 . 【答案】0【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0.考点3:整式的运算 1.幂的运算性质:(1)同底数幂相乘底数不变,指数相加. 即:a m ·a n =a m +n (m ,n 都是整数). (2)幂的乘方底数不变,指数相乘. 即:(a m )n =a mn (m ,n 都是整数).(3)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:(ab )n =a n b n (n 为整数).(4)同底数幂相除底数不变,指数相减. 即:a m ÷a n =a m -n (a ≠0,m,n 都为整数). (5)a 0=1(a ≠0), a -n =a1(a ≠0). 2.整式的运算:(1)整式的加减:几个整式相加减,如果有括号就先去括号,再合并同类项.(2)整式的乘法:单项式与单项式相乘,把它们的系数、相同字母分别相乘;单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,即m (a +b +c )=ma +mb +mc ;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m +n )(a +b )=ma +mb +na +nb .(3)整式的除法:单项式除以单项式,把系数与同底数幂分别相除,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加. 3.乘法公式:(1)平方差公式:(a +b )(a -b )=a 2-b 2. (2)完全平方公式:(a ±b )2=a 2±2ab +b 2.(3)常用恒等变换:a 2+b 2=(a +b )2-2ab=(a -b )2+2ab ;(a -b )2=(a +b )2-4ab.【例7】(2021·河南中考真题)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案. 【详解】解:A 、22()a a -=,原计算错误,不符合题意; B 、2222a a a -=,原计算错误,不符合题意; C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意; 故选:C .【例8】(2021·福建中考真题)下列运算正确的是( )A .22a a -=B .()2211a a -=- C .632a a a ÷=D .326(2)4a a =【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案. 【详解】解:A :()221a a a a -=-=,故 A 错误; B :()22121a a a -=-+,故 B 错误; C :63633a a a a -÷==,故C 错误; D :()()2232332622·44a a a a ⨯===.故选:D【例9】(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案. 【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意; B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意; C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意; 故选:D .1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( ) A .8a B .6aC .8a -D .6a -【答案】B【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可. 【详解】解:原式24246a a a a +=⋅==. 故选B .2.(2021·四川宜宾市·中考真题)下列运算正确的是( ) A .23a a a += B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误; 选项B :()32628aa =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误; 选项D :33522a a a a +⋅==,故选项D 正确; 故选:D .3.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .B .C .D .【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案. 【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意; 故选:A .考点4:整式化简求值【例10】(2021·湖南永州市·中考真题)先化简,再求值:,其中.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得. 【详解】解:原式,,将代入得:原式.1.(2021·四川南充市·中考真题)先化简,再求值:,其中.【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.4=±()2234636m n m n =24833a a a ⋅=33xy x y -=4=±()2234639m n m n =24633a a a ⋅=3xy 3x ()()212(2)x x x +++-1x =1x =22214x x x =+++-25x =+1x =2157=⨯+=2(21)(21)(23)x x x +---1x =-【详解】解:原式= = =,当x =-1时,原式==-22.2.(2020•凉山州)化简求值:(2x +3)(2x ﹣3)﹣(x +2)2+4(x +3),其中x =2. 【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x 的值代入计算可得答案. 【详解】原式=4x 2﹣9﹣(x 2+4x +4)+4x +12 =4x 2﹣9﹣x 2﹣4x ﹣4+4x +12 =3x 2﹣1, 当x =2时, 原式=3×(2)2﹣1 =3×2﹣1 =6﹣1 =5. 考点5:因式分解因式分解的步骤:(概括为“一提,二套,三检查”) (1)先运用提公因式法:ma +mb +mc =m (a +b +c ).(2)再套公式:a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2(乘法公式的逆运算).(3)最后检查:分解因式是否彻底,要求必须分解到每一个多项式都不能再分解为止.【例11】(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x - B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可 【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【例12】(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+2241(4129)x x x ---+22414129x x x --+-1210x -()12110⨯--C .()()122y y -+D .()()212y y -+【答案】A 【分析】利用平方差公式因式分解即可. 【详解】解:214y -=()()1212y y -+,故选:A .【例13】(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 . 【答案】49【分析】先根据完全平方公式变形,再代入,即可求出答案. 【详解】∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.本考点是中考的高频考点,其题型一般为填空题,难度中等。
备战中考数学(湘教版)巩固复习第二章代数式(含解析)
备战中考数学(湘教版)巩固复习第二章代数式(含解析)一、单选题1.设某代数式为A,若存在实数x0使得代数式A的值为负数,则代数式A能够是()A.|3﹣x|B.x2+xC.D.x2﹣2x+12.单项式-3πxy2z3的系数和次数分别是()A.-π,5 B.-1,6C.-3π,6D.-3,73.笔记本每本m元,圆珠笔每支n元,买x本笔记本和y支圆珠笔共需()元。
A.mx+ny B.(m+n)(x+ y) C.nx+my D.mn(x+y)4.若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则代数式2021+b﹣a的值等于()A.2021B.2021C.2021D.20215.下列运算中,不正确的是()A.﹣2x+3x=xB.6xy2÷2xy=3y C.(﹣2x2y)3=﹣6x6y3 D.2 xy2•(﹣x)=﹣2x2y26.运算﹣3a+5a的结果为()A.aB.2aC.8aD.-8a7.用代数式表示:“x的5倍与y的和的一半”能够表示为()A.5x+yB.(5x+y)C.x+yD.5x+y8.下列结论正确的是()A.的一次项系数是1B.的系数是0C.是五次单项式D.是六次三项式9.若(x+k)(x-4)的积中不含有x的一次项,则k的值为()A.0B.4C.-4D.-4或410.已知a2﹣ab=20,ab﹣b2=﹣12,则a2﹣b2和a2﹣2ab+b2的值分别为()A.﹣8和32 B.8和32C.﹣32和32 D.8和﹣3211.观看下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有()A.57个B.60个C.63个D.85个12.如图所示的运算程序中,若开始输入的x值为48,我们发觉第一次输出的结果为24,第二次输出的结果为12,…,则第2021次输出的结果为()A.3B.6C.D.二、填空题13.已知单项式3amb2与﹣a4bn﹣1是同类项,那么4m﹣n=_______ _.14.若2x5y2m+3n与﹣3x3m+2ny6是同类项,则|m﹣n|=________.15.某报亭老总以每份0.5元的价格从报社购进某种报纸500份,以每份0.8元的价格销售x份﹙x<500﹚,未销售完的报纸又以每份0.1元的价格由报社收回。
2023年中考数学复习第一部分考点梳理第一章数与式第2节代数式与整式
代数式与整式
1.2 代数式与整式
十年真题精选
十年真题精选(学用见P5~6)
命题点1代数式及其求值[10年3考]
1.(2014·安徽第7题)已知x2-2x-3=0,则2x2-4x的值为
( B )
A.-6
B.6
C.-2或6
D.-2或30
十年真题精选
十年真题精选
教材知识网络
重难考点突破
教材文化延伸
【解析】观察数列可发现21×22=23,22×23=25,23×25=
28,…,所以这一列数据所揭示的规律是前两个数的积等于第
三个数.根据规律,若x,y,z表示这列数中的连续三个数,则x,y,z
满足的关系式是xy=z.(答案不唯一)
十年真题精选
十年真题精选
教材知识网络
重难考点突破
教材文化延伸
-11-
第1个等式:3×12+1=1×(3+1);
第2个等式:3×22+2=2×(6+1);
第3个等式:3×32+3=3×(9+1);
……
按照以上规律,解决下列问题:
(1)写出第4个等式: 3×42+4=4×(12+1) ;
十年真题精选
十年真题精选
教材知识网络
重难考点突破
教材文化延伸
-14-
1.2 代数式与整式
1,故①正确.把a=3代入得3+b=3b=c,可得b= ,c= ,所以b+c
=6,故②错误.把 a=b=c代入得2c=c2=c,所以可得c=0,故③正
确.当a=b且a≠c时,由a+b=ab可得a=b=2,再代入可得c=4,所
以a+b+c=8;当a=c且a≠b时,由c=a+b可得b=0,再代入可得a
2023中考复习大串讲初中数学第2课时代数式和整式 课件(福建版)
5.【2019福建4分】下列运算正确的是( D ) A.a·a3=a3 B.(2a)3=6a3 C.a6÷a3=a2 D.(a2)3-(-a3)2=0
6.【2021厦门质检4分】如图,观察“赵爽弦图”,若图中四个 全等的直角三角形的两直角边分别为a,b,a>b,根据图中 图形面积之间的关系及勾股定理,可直接得到等式( C ) A.a(a-b)=a2-ab B.(a+b)(a-b)=a2-b2 C.(a-b)2=a2-2ab+b2 D.(a+b)2=a2+2ab+b2
福建6年中考聚焦
1.观察下列一组数:12,35,12,177,296 ,…,它们是按一定 13
规律排列的,那么第7个数是___5_0____.
2.观察下列等式:①32-31=2×31;②33-32=2×32;③34 -33=2×33;….根据你发现的规律写出第 个等式: _3_n_+_1_-__3_n=__2_×__3_n___.
考点4 因式分解 要点知识 因式分解的一般步骤: (1)如果有公因式,先提公因式; (2)如果没有公因式,用公式法. 注:分解因式必须进行到使每一个因式都不能再分解为止.
题串考点 分解因式: (1)a2-2a=__a_(a_-__2_)_______; (2)ax2y+axy2=_a_x_y_(_x_+__y_) _; (3)3x(a-b)-2y(b-a)=_(_3_x_+__2_y_)_(a_-__b_)__; (4)3x2-12=__3_(x_+__2_)_(_x_-__2_)_____; (5)x3-x=__x_(x_+__1_)_(_x_-__1_) _; (6)a3-2a2b+ab2=__a_(a_-__b_)_2______.
②x的系数是__1______,次数是___1_____; ③-2x+y2的次数是__2______,一次项系数是__-__2____.
2020年中考数学一轮复习基础考点及题型专题02 代数式和整数(解析版)
专题02 代数式与整式【思维导图】【知识要点】知识点一代数式概念:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.【注意】1.代数式中除了含有字母、数字、运算符号外还可以有括号。
2.代数式中不含有=、<、>、≠等3.对于用字母表示的数,如果没有特别说明,就应理解为它可以表示任何一个数。
代数式的分类:列代数式方法列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了. 列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“×”号或用“·”. (2)数字通常写在字母前面.(3)带分数与字母相乘时要化成假分数. (4)除法常写成分数的形式. 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值. 1.(2019·河北中考模拟)今年苹果的价格比去年便宜了20%,己知去年苹果的价格是每千克a 元,则今年苹果每千克的价格是( ) A .20%aB .120%a-C .20%aD .()120%a -【详解】由题意可得,今年每千克的价格是(1-20%)a 元, 故选D .2.(2014·江西中考真题)如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A .2a ﹣3bB .4a ﹣8bC .2a ﹣4bD .4a ﹣10b【详解】根据题意得:2(a ﹣b+a ﹣3b )=2(2a ﹣4b )=4a ﹣8b ,故选B3.(2017·河南中考模拟)两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A.x(2x﹣3)B.x(2x+3)C.12x﹣3D.12x+3【详解】∵十位数字是x,个位数字比十位数字的2倍少3,∴个位数字为2x−3,∴这个2位数为10x+2x−3=12x−3.故选C4.(2019·柳州市第十四中学中考模拟)小华有x元,小林的钱数是小华的一半还多2元,小林的钱数是()A.122x+B.1(2)2x+C.122x-D.1(2)2x-【详解】小华存款的一半为12x元,则小林的存款数为(12x+2)元,故选A.5.(2018·黑龙江中考真题)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【详解】A. 若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,故正确;B. 若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,故正确;C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,故正确;D. 若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,故不正确;故选D.6.(2016·河南中考模拟)某商店举办促销活动,促销的方法是将原价x元的衣服以4105x⎛⎫-⎪⎝⎭元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【详解】将原价x元的衣服以(4105x-)元出售,是把原价打8折后再减去10元.故选B.7.(2017·河南省郑州一中汝州实验中学中考模拟)用代数式表示“m 的3 倍与n 的差的平方”,正确的是( ) A.3m﹣n2B.(m﹣3n)2C.(3m﹣n)2D.3(m﹣n)2【详解】m的3倍与n的差的平方表示为:(3m﹣n)2.故选C.8.(2018·安徽中考模拟)在下列各式中,不是代数式的是()A.7B.3>2C.2xD.23x2+y2【详解】根据代数式的定义分析可知,A、C、D中的式子都是代数式,B中的式子是不等式,不是代数式.故选B.考查题型一求代数式的值的方法1.(2019·浙江中考模拟)已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±7【详解】解:∵|a|=3,b2=16,∴a=±3,b=±4,又∵|a+b|≠a+b,∴a+b的结果不可以是正数,即34ab=-⎧⎨=-⎩或34ab=⎧⎨=-⎩∴a﹣b=1或7 故选A.2.(2018·山东中考模拟)若x=﹣13,y=4,则代数式3x+y﹣3的值为()A.﹣6B.0C.2D.6试题解析:∵x=﹣13,y=4,∴代数式3x+y﹣3=3×(﹣13)+4﹣3=0.故选B.3.(2019·浙江中考模拟)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2 B.﹣2 C.12 D.﹣12【详解】∵点A(m,n)和点B(5,-7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.4.(2016·重庆中考真题)若m=-2,则代数式m2-2m-1的值是()A.9 B.7 C.-1 D.-9【详解】将m=-2代入代数式可得:原式=-2×(-2)-1=4+4-1=7.考查题型二列代数式在探索规律问题中的应用方法1.(2018·重庆市合川区南屏中学中考模拟)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选B .2.(2019·云南中考模拟)一组按规律排列的多项式:a+b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( ) A .1019a b + B .1019a b - C .1017a b - D .1021a b -【详解】解:多项式的第一项依次是a ,a 2,a 3,a 4,…,a n ,第二项依次是b ,﹣b 3,b 5,﹣b 7,…,(﹣1)n+1b 2n ﹣1,所以第10个式子即当n=10时, 代入到得到a n +(﹣1)n+1b 2n ﹣1=a 10﹣b 19. 故选B .3.(2011·江苏中考模拟)观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n -B .2(21)n +C .2(2)n +D .2n【详解】图(1):1+8=9=(2×1+1)2; 图(2):1+8+16=25=(2×2+1)2; 图(3):1+8+16+24=49=(3×2+1)2; …;那么图(n ):1+8+16+24+…+8n=(2n+1)2. 故选B .4.(2018·湖北中考模拟)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A .8B .9C .16D .17【详解】由图可知:第一个图案有三角形1个; 第二图案有三角形4个; 第三个图案有三角形4+4=8个; 第四个图案有三角形4+4+4=12个; 第五个图案有三角形4+4+4+4=16个。
中考数学 第2讲 代数式及整式的运算(解析版)
第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数) 幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1 B .0 C .1 D .2【答案】C .【分析】将m =﹣1代入代数式即可求值;【解答】解:将m =﹣1代入2m +3=2×(﹣1)+3=1; 故选:C .【一领三通1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1 D .(﹣1)n x 2n +1【答案】C .【分析】观察指数规律与符号规律,进行解答便可. 【解答】解:∵x 3=(﹣1)1﹣1x 2×1+1, ﹣x 5=(﹣1)2﹣1x 2×2+1, x 7=(﹣1)3﹣1x 2×3+1, ﹣x 9=(﹣1)4﹣1x 2×4+1, x 11=(﹣1)5﹣1x 2×5+1, ……由上可知,第n 个单项式是:(﹣1)n ﹣1x 2n +1, 故选:C .【一领三通1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【答案】C .【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【一领三通1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y【答案】A.【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,由题意可得点A餐10﹣x;【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:B.【一领三通2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【答案】C.【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【一领三通2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【答案】A.【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【一领三通2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【一领三通2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是______.【答案】(﹣1,8).【分析】根据新运算公式列出关于c、d的方程组,解方程组即可得c、d的值;进一步得到点B的坐标.【解答】解:根据题意,得,解得:.则点B的坐标为(﹣1,8).故答案为:(﹣1,8).【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【答案】2.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.【一领三通3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【答案】C.【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.【一领三通3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【答案】B.【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.【一领三通3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【分析】首先去括号,合并同类项,将两代数式化简,然后代入数值求解即可.【解答】解:∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;【一领三通3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x2+ax﹣y+6与整式2bx2﹣3x+5y﹣1的差不含x和x2项,试求4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)的值.【分析】根据两整式的差不含x和x2项,可得差式中x与x2的系数为0,列式求出a、b的值,然后将代数式化简再代值计算.【解答】解:2x2+ax﹣y+6﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵两个整式的差不含x和x2项,∴2﹣2b=0,a+3=0,解得a=﹣3,b=1,4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)=4a2+8b3﹣4a2b+3a2﹣8b3﹣4a2b=7a2﹣8a2b,当a=﹣3,b=1时,原式=7a2﹣8a2b=7×(﹣3)2﹣8×(﹣3)2×1=7×9﹣8×9×1=63﹣72=﹣9.【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
代数式与整式x
7.(2018贵港,3,3分)下列运算正确的是 ( ) A.2a-a=1 B.2a+b=2ab C.(a4)3=a7 D.(-a)2·(-a)3=-a5
答案 D 选项A中,2a-a=(2-1)a=a,故A错误; 选项B中,2a+b不能再运算,故B错误; 选项C中,(a4)3=a4×3=a12,故C错误; 选项D中,(-a)2·(-a)3=(-a)2+3=(-a)5=-a5,故D正确,故选D.
5.(2018玉林,4,3分)下列计算结果为a6的是 ( ) A.a7-a B.a2·a3 C.a8÷a2 D.(a4)2
答案 C 选项A中,a7与a不是同类项,不能进行合并,不符合题意; 选项B中,a2·a3=a2+3=a5,不符合题意; 选项C中,a8÷a2=a8-2=a6; 选项D中,(a4)2=a4×2=a8,不符合题意.
答案 C 从两方面思考:①符号,各单项式的符号正、负交替出现,故应为(-1)n或(-1)n+1,可举例 验证,n=1时为正号,故应为(-1)n+1.②除符号外的部分为an.故第n个单项式为(-1)n+1an.
3.(2018河北,13,2分)若2n+2n+2n+2n=2,则n= ( ) A.-1 B.-2 C.0 D. 1
.
答案 x(x-1) 解析 x2-x=x(x-1).
7.(2016贺州,17,3分)将m3(x-2)+m(2-x)分解因式的结果是
.
答案 m(x-2)(m+1)(m-1)
解析 m3(x-2)+m(2-x)=m(x-2)(m2-1)=m(x-2)(m+1)(m-1).
B组 2014—2018年全国中考题组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2节代数式与整式
(建议答题时间:45分钟)
命题点一列代数式及求值
1. (2017海南)已知a=-2,则代数式a+1的值为()
A. -3
B. -2
C. -1
D. 1
2. (2017重庆巴蜀模拟)若m=-1,n=2,则n2-2mn-1的值是()
A. 1
B. 7
C. 9
D. -4
3. (2017重庆西大附中模拟)已知2a-b=3,则2b-4a+3的值为()
A. -6
B. 9
C. -3
D. 6
4. (2017淄博)若a+b=3,a2+b2=7,则ab等于()
A. 2
B. 1
C. -2
D. -1
5. (2017宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()
第5题图
A. (a-b)2=a2-2ab+b2
B. a(a-b)=a2-ab
C. (a-b)2=a2-b2
D. a2-b2=(a+b)(a-b)
6. (2017丽水)已知a2+a=1,则代数式3-a-a2的值为________.
第7题图
7. (2017山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.
命题点二整式的相关概念
8. (2017济宁)单项式9x m y 3与单项式4x 2y n 是同类项,则m +n 的值是( )
A. 2
B. 3
C. 4
D. 5
9. (2017河北)=( )
A. 2m 3n
B. 2m 3n
C. 2m n 3
D. m 2
3n
命题点三 整式的运算
10. (2017安徽)计算(-a 3)2的结果是( )
A. a 6
B. -a 6
C. -a 5
D. a 5
11. (2017乌鲁木齐)计算(ab 2)3的结果是( )
A . 3ab 2
B . ab 2
C . a 3b 5
D . a 3b 6
12. (2017武汉)下列计算的结果是x 5的为( )
A. x 10÷x 2
B. x 6-x
C. x 2·x 3
D. (x 2)3
13. (2017江西)下列运算正确的是( )
A. (-a 5)2=a 10
B. 2a ·3a 2=6a 2
C. -2a +a =-3a
D. -6a 6÷2a 2=-3a 3
14. (2017郴州改编)下列运算错误的是( )
A. (a 2)3=a 6
B. a 2·a 3=a 5
C. a -1=1a
D. (a +b )(a -b )=a 2+b 2
15. (2017黄冈)下列计算正确的是( )
A. 2x +3y =5xy
B. (m +3)2=m 2+9
C. (xy 2)3=xy 6
D. a 10÷a 5=a 5
16. (2017天津)计算x 7÷x 4的结果等于________.
17. (2017眉山)先化简,再求值:(a +3)2-2(3a +4),其中a =-2.
18. (2017重庆西大附中模拟)化简:(b+2a)(2a-b)-3(2a-b)2
19. (2017重庆八中模拟)化简:(2x+1)(2x-1)-(x+1)(3x-2).
20. (2017河南改编)计算:(2x+y)2+(x-y)(x+y)-5x(x-y).
21. 先化简,再求值:m(m-1)+(m+1)(m-2),其中m2-m-2=0.
22. 已知b=-2a,求a(a-2b)+2(a+b)(a-b)-(a-b)2的值.
命题点四因式分解
23. (2017常德)下列各式由左到右的变形中,属于分解因式的是()
A. a(m+n)=am+an
B. a2-b2-c2=(a-b)(a+b)-c2
C. 10x2-5x=5x(2x-1)
D. x2-16+6x=(x+4)(x-4)+6x
24. (2017甘肃)分解因式:x2-2x+1=________.
25. (2017安徽)因式分解:a2b-4ab+4b=________.
命题点五图形规律探索
26. (2017烟台) 用棋子摆出下列一组图形:
第26题图
按照这种规律摆下去,第n个图形用的棋子个数为()
A. 3n
B. 6n
C. 3n+6
D. 3n+3
27. (2017随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,下图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()
第27题图
A. 84株
B. 88株
C. 92株
D.121株
28. (2017娄底)刘莎同学用火柴棒依图中的规律摆六边形图案,用10086根火柴棒摆出的图案应是第________个.
第28题图
答案
1. C
2. B
3. C
4. B
5.D【解析】第一个图形的阴影部分的面积为两个正方形的面积差:a2-b2,第二个图形是长方形,长为(a+b),宽为(a-b),∴面积为(a+b)(a-b).
6. 2
7. 1.08a【解析】洗衣机每台进价为a元,商店将进价提高20%后零售价为a(1+20%)=1.2a元,又九折促销为 1.2a·0.9=1.08a,则该型号洗衣机的零售价为1.08a元.
8. D9. B10. A11. D12. C13. A14. D15. D16. x3
17.解:原式=a2+6a+9-6a-8=a2+1,当a=-2时,原式=(-2)2+1=5.
18. 解:原式=4a2-b2-3(4a2-4ab+b2) =4a2-b2-12a2+12ab-3b2=-8a2+12ab-4b2.
19.解:原式=4x2-1-(3x2-2x+3x-2) =x2-x+1.
20.解:原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.
21.解:原式=m2-m+m2-m-2
=2m2-2m-2
=2(m2-m)-2,
∵m2-m-2=0,∴m2-m=2,
∴原式=2×2-2=2.
22. 解:原式=a2-2ab+2(a2-b2)-(a2+b2-2ab)
=a2-2ab+2a2-2b2-a2-b2+2ab
=2a2-3b2.
将b=-2a代入得,
原式=2a2-3(-2a)2=2a2-12a2=-10a2.
23. C24. (x-1)225.b(a-2)2
26. D【解析】第1个图形,棋子个数:3×1+3;第2个图形,棋子个数:3×2+3;第3个图形,棋子个数3×3+3;…;因此,第n个图形棋子的个数等于3·n +3=3n+3.
27.B【解析】当n=1时,芍药的数量为8;当n=2时,芍药的数量为16;
当n=3时,芍药的数量为24;当n=4时,芍药的数量为32,由此可发现规律,芍药的数量是n的8倍,所以芍药的数量为:8n株,所以当n=11时,芍药的数量为8×11=88株.
28. 2017【解析】由图可以找出规律:第n个图形需要5n+1(其中n是正整数)个火柴棒,设5n+1=10086,解得n=2017.。