有理数的混合运算习题精选及讲解和答案
有理数的混合运算经典例题
有理数的混合运算经典例题例1 计算:.分析:此算式以加、减分段, 应分为三段: , ,.这三段可以同时进行计算,先算乘方,再算乘除.式中-0.2化为参加计算较为方便.解:原式说明:做有理数混合运算时,如果算式中不含有中括号、大括号,那么计算时一般用“加”、“减”号分段,使每段只含二、三级运算,这样各段可同时进行计算,有利于提高计算的速度和正确率.例2 计算:.分析:此题运算顺序是:第一步计算和;第二步做乘法;第三步做乘方运算;第四步做除法.解:原式说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.例3 计算:分析:要求、、的值,用笔算在短时间内是不可能的,必须另辟途径.观察题目发现,,,逆用乘法分配律,前三项可以凑成含有0的乘法运算,此题即可求出.解:原式说明:“0”乘以任何数等于0.因为运用这一结论必能简化数的计算,所以运算中,能够凑成含“0”因数时,一般都凑成含有0的因数进行计算.当算式中的数字很大或很繁杂时,要注意使用这种“凑0法”.例4 计算分析:是的倒数,应当先把它化成分数后再求倒数;右边两项含绝对值号,应当先计算出绝对值的算式的结果再求绝对值.解:原式说明:对于有理数的混合运算,一定要按运算顺序进行运算,注意不要跳步,每一步的运算结果都应在算式中体现出来,此题(1)要注意区别小括号与绝对值的运算;(2)要熟练掌握乘方运算,注意(-0.1)3,-0.22,(-2)3,-32在意义上的不同.例5 计算:.分析:含有括号的混合运算,一般按小、中、大括号的顺序进行运算,括号里面仍然是先进行第三级运算,再进行第二级运算,最后进行第一级运算.解:原式例6 计算解法一:原式解法二:原式说明:加减混合运算时,带分数可以化为假分数,也可把带分数的整数部分与分数部分分别加减,这是因为带分数是一个整数和一个分数的和.例如:有理数的混合运算习题精选一、选择题1.若,,则有( ) .A. B. C. D.2.已知,当时,,当时,的值是( ) .A. B.44C.28 D.173.如果,那么的值为( ) .A.0B.4C.-4D.24.代数式取最小值时,值为( ) .A. B. C. D.无法确定5.六个整数的积,互不相等,则( ) .A.0 B.4C.6D.86.计算所得结果为( ) .A.2B. C. D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则 _________0, _________0,_______0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4. __________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.三、判断题1.若为任意有理数,则 .( )2..( )3..( )4..()5..( )四、解答题1.计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8).2.若有理数、、满足等式,试求的值.3.当,时,求代数式的值.4.已知如图2-11-1,横行和竖列的和相等,试求的值.5.求的值.6.计算.计算:有理数的混合运算参考答案:一、1.C 2.C 3.C 4.B 5.A 6.B二、1.略;2.≥,>,<;3.,;4.1;5..三、1.× 2.×3.√4.×5.√四、1.(1)(2)(3)(4)(5)30(6)(7)(8); 2.∵,,∴;3. ;4.,, ;5.设,则, ;6.原式 .。
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
有理数混合运算100题(含答案解析)
有理数混合运算100题(含答案解析)1.-(-3)2×22.1/2+(-2/3)+4/5+(-11/2)+(-3)3.(-1.5)+4(1/4)+2.75+(-5 1/2)4.-8×(-5)-635.4-5×(-1/2)3/26.(-2)+(-5/56)-(-4.9)-0.67.(10)2÷5×(-2/5)8.(-5)3×(-3/5)29.5×(-6)-(-4)2÷(-8)10.2 1/472×(-6)÷(-2)11.(-16-50+3/5)÷(-2)12.(-6)×8-(-2)3-(-4)2×513.(-1)2+1×(2-2/233)-214.--(1-0.5)×1/315.-3/2×[-32×(-2/3)2-2]16.(-3/4)2+(-2/3+1)×2-9/1617.-14-(1-0.5)×1/3×[2-(-3)2]18.(-81)÷(2.25)×(-4/9)÷1619.-52-[-4+(1-0.2×1/5)÷(-2)]20.(-5)×(-3/6)+(-7)×(-3/6)+12×(-3/6777)21.(-5/8)×(16)-0.25×(-5)×(64)22.(-3)2-(11/29)×(-6)÷(-3)23.(-1/6-20/3+4/5-12/7)×(-15×4)24.(-18/7)×3/7×(-2.4)25.2÷(-7)×(7)÷(-51/7)26.(-47/8)-(-5/2)+(-4/4)-3/827.[151]÷(-11/2-14÷1/5+3/2)28.(-16-50+3/5)÷(-2)29.1 5/(-5)×(-5/13)30.(-0.5)-(-31/4)+6.75-5 2/331.-29-(-13)×2×(-13)-7×0.34+5.6×(-4)+(-32)÷(-8)-3 3/100-0.34×7+3×2130.计算:(-13)×(-134)×1/13×(-1/67)= 2136.731.删除该段落,因为它没有内容。
专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册
七年级上册数学《第一章有理数》专题有理数的混合运算的计算题(50题)1.(2022秋•晋安区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(−12)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(−12)3=﹣3×4﹣1+(−18)=﹣12﹣1+(−18)=﹣1318.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(2022春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+75=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(2023春•香坊区校级期中)计算:(1)(13−12+14)×24(2)﹣23×34−(−3)3÷9【分析】(1)根据乘法分配律简便计算即可求解.;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(13−12+14)×24=13×24−12×24+14×24=8﹣12+6=2;(2)﹣23×34−(−3)3÷9=﹣8×34+27÷9=﹣6+3=﹣3.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(2023•西乡塘区二模)计算:6×(3−5)+(−2)2+14.【分析】先算乘方,再算乘法,然后算加减法即可.【解答】解:6×(3−5)+(−2)2+14=6×(﹣2)+4+14=﹣12+4+14=﹣734.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•南宁三模)计算:(﹣1)3+8÷22+|4﹣7|×13.【分析】先算乘方,再算乘除法,最后算加法即可.【解答】解:(﹣1)3+8÷22+|4﹣7|×13=(﹣1)+8÷4+3×13=(﹣1)+2+1=2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2023•柳州三模)计算(−1)2−6÷(−2)×|−13|.【分析】先算乘方和绝对值,再算乘除,最后算加减.【解答】解:原式=1﹣(﹣3)×13=1+1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算顺序是解决本题的关键.7.(2023春•浦东新区期末)计算:﹣23+|﹣5|﹣18×(−13)2.【分析】先计算立方、绝对值和平方,再计算乘法,最后计算加减.【解答】解:﹣23+|﹣5|﹣18×(−13)2.=﹣8+5﹣18×19=﹣8+5﹣2=﹣5.【点评】此题考查了有理数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.8.(2023•武鸣区二模)计算:−12023+(−4)÷12−(1−32).【分析】先算括号里面的,再算乘方,除法,最后算加减即可.【解答】解:原式=﹣12023+(﹣4)÷12−(1﹣9)=﹣12023+(﹣4)÷12−(﹣8)=﹣1+(﹣4)×2+8=﹣1﹣8+8=﹣1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.9.(2023春•松江区期中)计算:−32−42÷|−6|+8×(−12)3.【分析】利用乘方运算、绝对值的定义和有理数的混合运算法则计算.【解答】解:−32−42÷|−6|+8×(−12)3=﹣9﹣42÷6+8×(−18)=﹣9﹣7﹣1=﹣17.【点评】本题考查了有理数的混合运算,解题的关键是掌握乘方运算、绝对值的定义和有理数的混合运算法则.10.(2022秋•万源市校级期末)﹣22+|5﹣8|+24÷(﹣3)×13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3−83=−113.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.(2022春•徐汇区校级期末)计算:−24−14×[2−(−2)2].【分析】利用有理数的混合运算法则进行计算即可.【解答】解:原式=﹣16−14×(2﹣4)=﹣16−14×(﹣2)=﹣16+12=﹣1512.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.12.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912)×(﹣16)−73×27=−16×(﹣16)−23=83−23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春•黄浦区期中)计算:(−1112−34)×(−42)+(−213)÷3.5.【分析】先算括号里面的,再算乘除,最后算加减即可.【解答】解:原式=(−1112−912)×(﹣16)+(﹣213)÷3.5=−53×(﹣16)−73×27=803−23=783=26.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.15.(2023春•雁峰区校级期末)计算:(−3)4÷[2−(−7)]+6×(12−1).【分析】先算乘方和括号内的式子,再算括号外的乘除法,最后算加法即可.【解答】解:(−3)4÷[2−(−7)]+6×(12−1)=81÷(2+7)+6×(−12)=81÷9+(﹣3)=9+(﹣3)=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.(2023春•黄浦区期末)计算:(−56+34)×(−42)+(−213)÷3.5.【分析】有理数的混合运算,先算乘方,再算乘除再算加减,有括号的先算括号的,从而可求出最后结果.【解答】解:(−56+34)×(−42)+(−213)÷3.5=−10+912×(−16)+(−73)×27=−13×(−4)−23=43−23=23.【点评】本题主要考查了有理数的混合运算.本题的易错点是对于负号的计算处理.17.(2023•贺州一模)计算:﹣12023+8÷(﹣2)2﹣|﹣4|×5.【分析】按照有理数的运算法则和运算顺序进行计算即可.【解答】解:原式=﹣1+8÷4﹣4×5=﹣1+2﹣20=﹣19.【点评】本题考查了绝对值和含有乘方的有理数的混合运算,掌握相关运算法则是解题的关键.最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(2023•防城港二模)计算:−14×[(−8)+2÷12]−|−3|.【分析】根据有理数的混合运算法则进行计算即可.【解答】解:原式=﹣1×(﹣8+2×2)﹣3=﹣1×(﹣8+4)﹣3=﹣1×(﹣4)﹣3=4﹣3=1.【点评】本题考查有理数的混合运算,其相关运算法则是基础且重要知识点,必须熟练掌握.19.(2023春•浦东新区期末)计算:﹣14+(1﹣0.5)×13×(﹣2)2.【分析】首先计算乘方和小括号里面的减法,然后计算乘法,最后计算加法,求出算式的值即可.【解答】解:﹣14+(1﹣0.5)×13×(﹣2)2=﹣1+12×13×4=﹣1+23=−13.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×(−43)×(2﹣9)=﹣1−143=−173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.23.(2023春•吉林月考)计算:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24).【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24)=1+|﹣8+9|−14×24+16×24=1+1﹣6+4=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,24.(2022秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(﹣3)2×(12−56)+|﹣4|=9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.25.(2022秋•广宗县期末)计算(1)(14−13−1)×(﹣12)(2)﹣22×14+(﹣3)3×(−827)【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12).【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12)=(14−49)×36+7×(﹣2)=9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.28.(2022秋•翠屏区期末)计算:(1)12×(116−13−34);(2)−22−13÷5×|1−(−4)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解答】解:(1)12×(116−13−34)=12×116−12×13−12×34=22﹣4﹣9=9;(2)−22−13÷5×|1−(−4)2|=﹣4−13×15×|1﹣16|=﹣4−13×15×15=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.30.(2022秋•和平区校级期末)计算(1)(13−18+16)×24;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(13−18+16)×24=13×24−18×24+16×24=8﹣3+4=9;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25=16÷649+112×(−16)−14=16×964+(−1112)−14=2712+(−1112)−312=1312.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.31.(2023•章贡区校级模拟)计算:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)];(2)(514−78−712)÷(﹣134).【分析】(1)先算乘方和括号内的式子,然后计算括号外的减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可.【解答】解:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]=﹣1﹣[(﹣10)﹣16÷(﹣8)]=﹣1﹣[(﹣10)+2]=﹣1﹣(﹣8)=﹣1+8=7;(2)(514−78−712)÷(﹣134)=(214−78−712)×(−47)=214×(−47)−78×(−47)−712×(−47)=﹣3+12+13=−186+36+26=−136.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.32.(2023•长阳县一模)计算:(1)(12−13)×6÷|−15|;(2)(−1)2018+(−10)÷12×2−[2−(−3)3].【分析】(1)根据有理数的加减乘除混合运算法则计算即可;(2)根据有理数的加减乘除乘法混合运算法则计算即可.【解答】解:(1)(12−13)×6÷|−15|=(12−13)×6×5=(12−13)×30=12×30−13×30=15﹣10=5;(2)(−1)2018+(−10)÷12×2−[2−(−3)3]=1+(﹣10)×2×2﹣(2+27)=1﹣40﹣29=﹣68.【点评】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.33.(2022秋•定远县期中)计算:(1)−22−|0.5−1|×13×[3−(−3)2];(2)(−4.66)×49−5.34÷94+5×(23)2.【分析】(1)先计算绝对值里面的式子和中括号里面的式子,然后再计算出括号外的式子;(2)先把除法转化为乘法、然后根据有理数的乘方和乘法分配律即可解答本题.【解答】解:(1)−22−|0.5−1|×13×[3−(−3)2]=﹣4−12×13×(3﹣9)=﹣4−16×(﹣6)=﹣4+1=﹣3;(2)(−4.66)×49−5.34÷94+5×(23)2=(﹣4.66)×49−5.34×49+5×49=[(﹣4.66)﹣5.34+5]×49=﹣5×49=−209.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134−78−712)÷(−78)+(−34)=(74−78−712)×(−87)+(−34)=74×(−87)−78×(−87)−712×(−87)−34=﹣2+1+23−34=−1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•正阳县期中)计算:(1)(1112−76+34−1324)×(﹣48);(2)﹣9+5×|﹣3|﹣(﹣2)2÷4;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5).【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【解答】解:(1)(1112−76+34−1324)×(﹣48)=1112×(﹣48)−76×(﹣48)+34×(﹣48)−1324×(﹣48)=﹣44+56+(﹣36)+26=2;(2)﹣9+5×|﹣3|﹣(﹣2)2÷4=﹣9+5×3﹣4÷4=﹣9+15﹣1=5;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5)=﹣1+16×4﹣(1﹣9)×(−16)=﹣1+64﹣(﹣8)×(−16)=﹣1+64−43=6123.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.36.(2022秋•临邑县期中)计算:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712);(2)(−49)÷75×57÷(−25).(3)﹣22÷43−[22﹣(1−12×13)]×12;【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和括号内的式子,然后括号外的乘除法,最后算加减法即可.【解答】解:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712)=(−12)+314+234+(﹣712)=﹣2;(2)(−49)÷75×57÷(−25)=49×57×57×125=1;(3)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−[4﹣(1−16)]×12=﹣3﹣(4−56)×12=﹣3﹣4×12+56×12=﹣3﹣48+10=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.37.(2022秋•南票区期中)计算(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5;(2)(﹣5)×6×(−45)÷(﹣4);(3)﹣11×(−227)+19×(−227)+6×(−227);(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|.【分析】(1)去括号,进行加减运算;(2)把除法变成乘法,再进行计算;(3)先提公因数,再计算;(4)先乘方,再乘除,最后加减运算.【解答】解:(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=(﹣0.8)+0.8﹣0.7﹣2.1+1.2+3.5=0﹣2.8+4.7=1.9;(2)(﹣5)×6×(−45)÷(﹣4)=(﹣5)×6×(−45)×(−14)=﹣6;(3)﹣11×(−227)+19×(−227)+6×(−227)=(−227)×(﹣11+19+6)=(−227)×14=﹣44;(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|=﹣9×(﹣2)+16÷(﹣8)﹣4=18+(﹣2)﹣4=18﹣2﹣4=12.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和运算顺序.38.(2022秋•库车市期中)计算:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);(2)﹣54×219+(﹣412)×29;(3)(12+56−712)×(﹣24);(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|.【分析】(1)先去括号,再进行加减运算;(2)(3)先算乘除,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣53﹣37+21+69=﹣90+90=0;(2)﹣54×219+(﹣412)×29=﹣54×199+(−92)×29=﹣115;(3)(12+56−712)×(﹣24)=12×(﹣24)+56×(﹣24)−712×(﹣24)=﹣12﹣20+14=﹣32+14=﹣18;(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|=﹣1÷(−52)×25﹣7=﹣1×(−25)×25﹣7=10﹣7=3.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.39.(2022秋•南山区校级期中)计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(23−112−415)×(−60);(3)−14−16×[2−(−3)2];(4)(−2)2−[(−23)+(−14)]÷112.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算及括号里面的,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12﹣5﹣14+39=﹣31+39=8;(2)原式=﹣40+5+16=﹣19;(3)原式=−1−16×(2−9)=−1+76=16;(4)原式=4−(−23−14)×12=4+8+3=15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:(1)4﹣(﹣28)+(﹣2);(2)(13−16)×(﹣24);(3)(﹣2)3﹣(﹣13)÷(−12);(4)﹣12﹣(1﹣0.5)÷52×15.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1−12×25×15=−1−125=−1125.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12);(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.42.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.43.(2022秋•西城区校级期中)计算:(1)﹣2+8﹣36﹣(﹣30);(2)﹣24÷(﹣6)×(−14);(3)(−34+56+716)×(﹣48);(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2].【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)根据乘法分配律计算即可;(4)先算乘方和括号内的式子,然后算乘法,最后算减法即可.【解答】解:(1)﹣2+8﹣36﹣(﹣30)=﹣2+8+(﹣36)+30=0;(2)﹣24÷(﹣6)×(−14)=﹣24×16×14=﹣1;(3)(−34+56+716)×(﹣48)=−34×(﹣48)+56×(﹣48)+716×(﹣48)=36+(﹣40)+(﹣21)=﹣25;(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2]=12×(﹣1)﹣(1﹣36)=−12−(﹣35)=−12+35=3412.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.44.计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣0.2×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12)(4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12;(2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125;(3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.45.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(−34+712−59)÷(−136);(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2].【分析】(1)先化简,再计算加减法即可求解;(2)(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)将除法变为乘法,再根据乘法分配律简便计算.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29﹣24=﹣56+29=﹣27;(2)4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)(−34+712−59)÷(−136)=(−34+712−59)×(﹣36)=34×36−712×36+59×36=27﹣21+20=26;(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2]=﹣1−12÷213×[2﹣9]=﹣1−12÷213×(﹣7)=﹣1+112=12.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.46.(2022秋•汤阴县期中)计算:(1)−22×|−5|−6÷(12−13)×56;(2)(−56+13−34)×(−24);(3)(−1)2023×[−24×(−34)2−1];(4)24−12022×(−2)3−5.5÷415×(−815).【分析】(1)先算乘方、括号内的式子和去绝对值,然后计算括号外的乘除法,再算减法即可;(2)根据乘法分配律计算即可;(3)先算乘方和括号内的式子,再算括号外的乘法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)−22×|−5|−6÷(12−13)×56=﹣4×5﹣6÷16×56=﹣20﹣6×6×56=﹣20﹣30=﹣50;(2)(−56+13−34)×(−24)=−56×(﹣24)+13×(﹣24)−34×(﹣24)=20+(﹣8)+18=30;(3)(−1)2023×[−24×(−34)2−1]=(﹣1)×(﹣16×916−1)=(﹣1)×(﹣9﹣1)=(﹣1)×(﹣10)=10;(4)24−12022×(−2)3−5.5÷415×(−815)=24﹣1×(﹣8)−112×154×(−815)=24+8+11=43.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键,注意乘法分配律的应用.47.(2022秋•丰泽区校级期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(−38−16+34)×(﹣24);(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017;(4)﹣22÷43−[22﹣(1−12×13)]×12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方,再算乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算减法即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20+(﹣14)+18+(﹣13)=﹣29;(2)(−38−16+34)×(﹣24)=−38×(﹣24)−16×(﹣24)+34×(﹣24)=9+4+(﹣18)=﹣5;(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017=(−14)×16−14×(﹣8)×(﹣1)=﹣4﹣2=﹣6;(4)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−(4﹣1+16)×12=﹣3﹣(3+16)×12=﹣3﹣36﹣2=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.48.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6(3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(2023春•沈阳月考)计算:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(−815)⋅(+325);(3)(−292324)×12;(4)(−24)×(1−34+16−58);(5)−32−(−2)3×(−4)÷(−14);(6)(−32+3)×[(−1)2022−(1−0.5×13)].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)先算乘法,再算加减法即可;(3)先变形,然后根据乘法分配律计算即可;(4)根据乘法分配律计算即可;(5)先算乘方,再算乘除法,最后算减法即可;(6)先算括号内的式子,再算括号外的乘法即可.【解答】解:(1)3﹣(+63)﹣(﹣259)﹣(﹣41)=3+(﹣63)+259+41=240;(2)213−(+1013)+(−815)⋅(+325);=213+(﹣1013)+(−415)×175=213+(﹣1013)+(−69725)=﹣8+(−69725)=−89725;(3)(−292324)×12=(﹣30+124)×12=﹣30×12+124×12=﹣360+12=﹣35912;(4)(−24)×(1−34+16−58)=﹣24×1+24×34−24×16+24×58=﹣24+18﹣4+15=5;(5)−32−(−2)3×(−4)÷(−14)=﹣9﹣(﹣8)×(﹣4)×(﹣4)=﹣9+128=119;(6)(−32+3)×[(−1)2022−(1−0.5×13)]=(﹣9+3)×[1﹣(1−16)]=(﹣6)×(1−56)=(﹣6)×16=﹣1.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.50.(2022秋•朝阳区校级月考)计算.(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)﹣9+0.8+(﹣1)+(−45)−(−10);(3)﹣212÷(−5)×(−313)÷0.75;(4)(−16−512+13)×(−72);(5)−12023+27×(−13)2−|﹣5|;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12.【分析】(1)先把减法统一成加法,写成省略括号和的形式,再把负数、正数分别相加;(2)先把分数化成小数,再把和为0的放一起先加;(3)先把除法统一成乘法,再算乘法;(4)利用乘法的分配律计算比较简便;(5)先算乘方化简绝对值,再算乘法,最后算加减;(6)先算乘方,再算括号里面的,最后算乘法、加减.【解答】解:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16)=﹣32﹣11﹣9+16=﹣52+16=﹣36;(2)﹣9+0.8+(﹣1)+(−45)−(−10)=﹣9+0.8﹣1﹣0.8+10=(﹣9﹣1+10)+(0.8﹣0.8)=0+0=0;(3)﹣212÷(−5)×(−313)÷0.75=−52×(−15)×(−103)÷34=−52×15×103×43=−209;(4)(−16−512+13)×(−72)=(−16)×(﹣72)−512×(﹣72)+13×(﹣72)=12+30﹣24=18;(5)−12023+27×(−13)2−|﹣5|=﹣1+27×19−5=﹣1+3﹣5=﹣3;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12=(−24+34)×(﹣8)+16+2×12=14×(﹣8)+16+1=﹣2+16+1=15.【点评】本题考查了有理数的混合运算,掌握有理数的运算律、运算法则是解决本题的关键.。
有理数的混合运算练习题(含答案)(大综合17套)
有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算专项训练(100题)(举一反三)(解析版)
专题2.13 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2021春•道里区期末)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(−134)×(−112)÷(−214);(3)76÷(16−13)×314÷35;(4)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)].【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算括号中的减法运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算即可求出值.【解答过程】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=−74×32×49=−76;(3)原式=76÷(−16)×314×53=76×(﹣6)×314×53=−52;(4)原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)÷(﹣1)=5÷(﹣1)=﹣5.2.(4分)(2021春•杨浦区校级期中)计算:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2;(3)(﹣3)2﹣(112)3×39−6÷23;(4)(12−3+56−712)×(﹣62).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、乘法分配律可以解答本题.【解答过程】解:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5=(﹣413)+212+(﹣923)+3.5=[(﹣413)+(﹣923)]+(212+3.5)=(﹣14)+6=﹣8;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2=(﹣1)×43×(−43)×13×14=1×43×43×13×14=427;(3)(﹣3)2﹣(112)3×39−6÷23=9−278×39−6×32=9−98−9=−98;(4)(12−3+56−712)×(﹣62)=(12−3+56−712)×(﹣36)=12×(﹣36)﹣3×(﹣36)+56×(﹣36)−712×(﹣36)=(﹣18)+108+(﹣30)+21=81.3.(4分)(2020秋•卫辉市期末)计算:(1)|3﹣8|﹣|14|+(−34);(2)(﹣1)2021+2×(−13)2÷16;(3)123×(0.5−23)÷119;(4)(﹣48)×[(−12)−58+712].【解题思路】(1)先计算绝对值,再计算加减即可;(2)先计算乘方、除法转化为乘法,再计算乘法,最后计算加减即可;(3)先计算括号内减法、将除法转化为乘法,再计算乘法即可;(4)利用乘法的交换律计算即可.【解答过程】解:(1)原式=5−14−34=5﹣1=4;(2)原式=﹣1+2×19×6=﹣1+43=13;(3)原式=53×(−16)×910=−14;(4)原式=(﹣48)×(−12)﹣(﹣48)×58+(﹣48)×712=24+30﹣28=26.4.(4分)(2020秋•门头沟区期末)计算:(1)(+4)×(+3)÷(−32);(2)(+10)﹣(+1)+(﹣2)﹣(﹣5);(3)(﹣24)×(23−58+12);(4)﹣12+(﹣6)×(−12)﹣8÷(﹣2)3.【解题思路】(1)先计算乘法、将除法转化为乘法,再计算乘法即可;(2)减法转化为加法,再进一步计算即可;(3)利用乘法分配律展开,再进一步计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=12×(−23)=﹣8;(2)原式=10﹣1﹣2+5=12;(3)原式=(﹣24)×23−(﹣24)×58+(﹣24)×12=﹣16+15﹣12=﹣13;(4)原式=﹣1+3﹣8÷(﹣8)=﹣1+3+1=3.5.(4分)(2020秋•西城区期末)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)25÷5×(−15)÷(−34);(3)(−79+56−34)×(﹣36);(4)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=13﹣24﹣25+20=﹣16;(2)原式=25×15×15×43=43;(3)原式=−79×(﹣36)+56×(﹣36)−34×(﹣36)=28﹣30+27=25;(4)原式=﹣1﹣0.5×13×24=﹣1﹣4=﹣5.6.(4分)(2020秋•呼和浩特期末)计算、求解:(1)(﹣8)×(12−114+18);(2)16×(﹣6)÷(−17)×7;(3)(﹣2)3÷45+113×|1﹣(﹣4)2|;(4)﹣12﹣(12−23)÷13×[﹣2+(﹣3)2].【解题思路】(1)原式利用乘法分配律计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8×12+8×54−8×18=﹣4+10﹣1=5;(2)原式=﹣1×(﹣7)×7=49;(3)原式=﹣8×54+43×|1﹣16|=﹣10+43×15=﹣10+20=10;(4)原式=﹣1+16×3×(﹣2+9)=﹣1+12×7=﹣1+7 2=52.7.(4分)(2020秋•金塔县期末)计算:(1)﹣28+(﹣13)﹣(﹣21)+13;(2)16÷(﹣2)3﹣4×(−1 8);(3)(512+23−34)×(−12);(4)2×(﹣3)2﹣33﹣6÷(﹣2).【解题思路】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法、除法,最后计算减法,求出算式的值是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.(4)首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解答过程】解:(1)﹣28+(﹣13)﹣(﹣21)+13=﹣41+21+13=﹣20+13=﹣7.(2)16÷(﹣2)3﹣4×(−1 8)=16÷(﹣8)+1 2=﹣2+1 2=−32.(3)(512+23−34)×(−12)=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4.(4)2×(﹣3)2﹣33﹣6÷(﹣2)=18﹣27+3=﹣9+3=﹣6.8.(4分)(2020秋•二道区期末)计算:(1)(﹣15)﹣(﹣25);(2)|﹣7.5|﹣|−12|;(3)(−34+712−58)×(﹣24);(4)﹣991315×15.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法即可解答本题;(2)先去掉绝对值,然后根据有理数的减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣15)﹣(﹣25)=(﹣15)+25=10;(2)|﹣7.5|﹣|−12|=7.5﹣0.5=7;(3)(−34+712−58)×(﹣24)=−34×(﹣24)+712×(﹣24)−58×(﹣24)=18+(﹣14)+15=19;(4)﹣991315×15=(﹣100+215)×15=﹣100×15+215×15=﹣1498.9.(4分)(2020秋•虎林市期末)计算:(1)(﹣8)+(+9)﹣(﹣5)+(﹣3);(2)(23+49−56)×18;(3)(23−12)÷(−76)×145;(4)﹣42+(﹣20)÷(﹣5)﹣6×(﹣2)3.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8+9+5﹣3=1+2=3;(2)原式=23×18+49×18−56×18=12+8﹣15=5;(3)原式=16×(−67)×145=−25;(4)原式=﹣16+4﹣6×(﹣8)=﹣16+4+48=36.10.(4分)(2020秋•北碚区期末)计算下列各题(1)(﹣2)3﹣|2﹣5|﹣(﹣15);(2)(−12+56−38+512)÷(−124);(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|];(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13).【解题思路】(1)根据有理数的乘方、有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣2)3﹣|2﹣5|﹣(﹣15)=(﹣8)﹣3+15=(﹣8)+(﹣3)+15=4;(2)(−12+56−38+512)÷(−124)=(−12+56−38+512)×(﹣24)=−12×(﹣24)+56×(﹣24)−38×(﹣24)+512×(﹣24)=12+(﹣20)+9+(﹣10)=﹣9;(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|]=﹣9﹣[(32)3×(−29)﹣6÷23]=﹣9﹣[278×(−29)﹣6×32]=﹣9﹣(−34−9)=﹣9+34+9=34;(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13)=(2+5)×(﹣137)+[(﹣234)+(−14)]×13=7×(−107)+(﹣3)×13=(﹣10)+(﹣39)=﹣49.11.(4分)(2020秋•南山区校级期中)计算题(1)12﹣(﹣18)+(﹣7)+(﹣12);(2)(﹣18)×(12−19+16);(3)16÷|﹣2|3﹣|﹣8|×(−14);(4)﹣12﹣(﹣10)÷12×2+(﹣4)2.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)+(﹣12)=12+18+(﹣7)+(﹣12)=[12+(﹣12)]+[18+(﹣7)]=0+11=11;(2)(﹣18)×(12−19+16)=(﹣18)×12−(﹣18)×19+(﹣18)×16=(﹣9)+2+(﹣3)=﹣10;(3)16÷|﹣2|3﹣|﹣8|×(−14)=16÷8﹣8×(−14)=2+2=4;(4)﹣12﹣(﹣10)÷12×2+(﹣4)2=﹣1﹣(﹣10)×2×2+16=﹣1+40+16=55.12.(4分)(2020秋•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣2.25+103;(3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【解题思路】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答过程】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣2.25+103=(﹣134)+(﹣613)+(﹣214)+313=[(﹣134)+(﹣214)]+[(﹣613)+313]=(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2)=94×(−67)÷(−32)=94×67×23=97;(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2020秋•武昌区校级月考)计算:(1)(−813)+(+412)−123;(2)(﹣32)÷(﹣4)﹣(﹣25)×4;(3)(−214)÷412×(−118)÷(−98);(4)[1124−(38+16−34)×24]÷(−5).【解题思路】(1)根据有理数加减法则进行计算,即可得出答案;(2)根据有理数混合运算法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进行计算即可得出答案.(3)解法同(2);(4)解法同(2).【解答过程】解:(1)(−813)+(+412)−123=−253+92−53 =﹣10+92=−112;(2)(﹣32)÷(﹣4)﹣(﹣25)×4=8﹣(﹣100)=8+100=108;(3)(−214)÷412×(−118)÷(−98)=−94÷92×(−98)×(−89) =−12×1 =−12;(4)[1124−(38+16−34)×24]÷(−5)=[2524−(38×24+16×24−34×24)]÷(﹣5)=[2524−(9+4﹣18)]÷(﹣5) =[2524−(﹣5)]÷(﹣5)=2524×(−15)−(−5)×(−15) =−524−1 =−2924.14.(4分)(2020秋•秀洲区月考)计算下列各题:(1)﹣3﹣(﹣9)+5;(2)|−110|×(﹣5)﹣|﹣312|;(3)(−12)×(−8)+(−6)÷(−13);(4)(﹣5)×(﹣7)+(512+23−34)×(﹣12).【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算绝对值运算,再计算乘法运算,最后算减法运算即可求出值;(3)原式先计算乘除运算,再计算加法运算即可求出值;(4)原式先计算乘法运算,再计算加减运算即可求出值.【解答过程】解:(1)原式=﹣3+9+5=﹣3+14=11;(2)原式=110×(﹣5)﹣312=−12−312=﹣4;(3)原式=12×8+6×3=4+18=22;(4)原式=5×7+512×(﹣12)+23×(﹣12)−34×(﹣12)=35﹣5﹣8+9=31.15.(4分)(2020秋•新都区校级月考)(1)(−52)÷(﹣15)×(−115);(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2];(4)(﹣24)×(18−13+14)+(﹣2)3.【解题思路】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用乘法分配律计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接利用乘法分配律计算得出答案.【解答过程】解:(1)(−52)÷(﹣15)×(−115)=52×115×(−115)=−190;(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539=﹣7.8×(﹣856)﹣(﹣7.8)×(﹣434)−4912×7.8=7.8×(856−434−4112)=7.8×(81012−4912−4112)=7.8×0=0;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2]=﹣8﹣12×(−14)=﹣8+3=﹣5;(4)(﹣24)×(18−13+14)+(﹣2)3=﹣24×18+(﹣24)×(−13)+(﹣24)×14−8=﹣3+8﹣6﹣8=﹣9.16.(4分)(2020秋•侯马市期中)计算:(1)﹣3.5÷78×(−34);(2)﹣124849×7;(3)25×34−(﹣25)×12+25×(−14);(4)﹣32﹣3×22﹣(﹣3×2)3.【解题思路】(1)原式从左到右依次计算即可求值;(2)原式变形后,利用乘法分配律计算即可求出值;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=−72×87×(−34)=72×87×34=3;(2)原式=(﹣13+149)×7=﹣91+17=﹣9067;(3)原式=25×(34+12−14)=25×1=25;(4)原式=﹣9﹣3×4﹣(﹣6)3=﹣9﹣12+216=195.17.(4分)(2020秋•沈北新区期中)计算:(1)[115+(−56)﹣(−712)]×(﹣60);(2)﹣22÷49×(−23)2;(3)﹣1﹣(1﹣0.5)×13×[2﹣(﹣3)2];(4)﹣32﹣(﹣2﹣5)2﹣|−14|×(﹣2)4.【解题思路】(1)利用乘法分配律计算即可;(2)先计算乘方,将除法转化为乘法,再进一步计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=(115−56+712)×(−60)=−4+50﹣35=11;(2)原式=−4×94×49=−4;(3)原式=−1+76×(−7)=−1+76=16;(4)原式=−9−49−14×16=−58−4=−62.18.(4分)(2020秋•资中县期中)计算下列各题:(1)23﹣17﹣(﹣7)+(﹣16).(2)(﹣20)×(﹣1)9﹣0÷(﹣4).(3)(﹣36)×(−49+56−712).(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答过程】解:(1)23﹣17﹣(﹣7)+(﹣16)=23+(﹣17)+7+(﹣16)=(23+7)+[(﹣17)+(﹣16)]=30+(﹣33)=﹣3;(2)(﹣20)×(﹣1)9﹣0÷(﹣4)=(﹣20)×(﹣1)﹣0=20﹣0=20;(3)(﹣36)×(−49+56−712)=(﹣36)×(−49)+(﹣36)×56+(﹣36)×(−712) =16+(﹣30)+21=7;(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|=﹣4﹣4﹣9×(−23)﹣16÷4=﹣4﹣4+6﹣4=﹣6.19.(4分)(2020秋•广州期中)计算:(1)12﹣(﹣18)﹣21;(2)﹣81÷(﹣214)×49÷(﹣16); (3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60);(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020.【解题思路】(1)从左往右计算即可求解;(2)将带分数变为假分数,除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答过程】解:(1)12﹣(﹣18)﹣21=30﹣21=9;(2)﹣81÷(﹣214)×49÷(﹣16) =﹣81×(−49)×49×(−116)=﹣1;(3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60)=7.03×(﹣40.16+0.16﹣60)=7.03×(﹣100)=﹣703;(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020=﹣8+6+3﹣1=0.20.(4分)(2020秋•孝义市期中)计算:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7);(2)−12+23+56−34;(3)(−23)×58÷(﹣0.25);(4)﹣12+3×(﹣2)2×(13−1)÷83.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7)=(﹣15)+3+5+(﹣7)=[(﹣15)+(﹣7)]+(3+5)=(﹣22)+8=﹣14;(2)−12+23+56−34=−612+812+1012−912=14;(3)(−23)×58÷(﹣0.25)=23×58÷14=23×58×4=53;(4)﹣12+3×(﹣2)2×(13−1)÷83=﹣1+3×4×(−23)×38=﹣1﹣3×4×23×38=﹣1﹣3=﹣4.21.(4分)(2020秋•叶县期中)计算:(1)12+(﹣8)﹣(﹣7)﹣15;(2)(1+23−34)×(﹣12);(3)|﹣5|÷(﹣127)×0.8×214;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据绝对值、有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12+(﹣8)﹣(﹣7)﹣15=12+(﹣8)+7+(﹣15)=(12+7)+[(﹣8)+(﹣15)]=19+(﹣23)=﹣4;(2)(1+23−34)×(﹣12)=1×(﹣12)+23×(﹣12)−34×(﹣12)=(﹣12)+(﹣8)+9=(﹣20)+9=﹣11;(3)|﹣5|÷(﹣127)×0.8×214=5×(−79)×45×94=﹣7;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020=﹣8÷14+9×(−127)﹣1=﹣8×4+(−13)+(﹣1)=﹣32+(−13)+(﹣1)=﹣3313.22.(4分)(2020秋•南岸区校级月考)计算:(1)9+(﹣8)+10﹣2+(﹣9);(2)(−35)×|﹣312|÷45÷7;(3)﹣32÷214×(−23)2+4﹣22×(−13);(4)991225×(﹣2)+(﹣991225)×(﹣27).【解题思路】(1)利用加法运算律,将和为0的数结合,再计算即可;(2)先化简绝对值,再算乘除法即可;(3)先算乘方,再算乘除,最后算加减即可;(4)利用分配律计算即可.【解答过程】解:(1)9+(﹣8)+10﹣2+(﹣9)=[9+(﹣9)]+[(﹣8)+10﹣2]=0+0=0;(2)(−35)×|﹣312|÷45÷7=(−35)×72×54×17=−38;(3)﹣32÷214×(−23)2+4﹣22×(−13)=﹣9×49×49+4﹣4×(−13)=−169+4+43=329;(4)991225×(﹣2)+(﹣991225)×(﹣27)=991225×(﹣2)+991225)×27=991225×(﹣2+27)=(100−1325)×25=2500﹣13=2487.23.(4分)(2020秋•原阳县月考)计算:(1)12﹣(﹣18)+(﹣7)﹣20;(2)6.14+(−234)−(−5.86)−(+14);(3)(−12)×(14−16−12)−|−5|;(4)(29−14+118)÷(−136).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据乘法分配律和有理数的加减法可以解答本题;(4)先把除法转化为乘法,然后利用乘法分配律即可解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)﹣20=12+18+(﹣7)+(﹣20)=(12+18)+[(﹣7)+(﹣20)]=30+(﹣27)=3;(2)6.14+(−234)−(−5.86)−(+14)=6.14+(﹣234)+5.86+(−14)=(6.14+5.86)+[(﹣234)+(−14)]=12+(﹣3)=9;(3)(−12)×(14−16−12)−|−5|=(﹣12)×14−(﹣12)×16−(﹣12)×12−5=(﹣3)+2+6﹣5=﹣1+6﹣5=5﹣5=0;(4)(29−14+118)÷(−136)=(29−14+118)×(﹣36)=29×(﹣36)−14×(﹣36)+118×(﹣36)=(﹣8)+9+(﹣2)=﹣1.24.(4分)(2020秋•临汾月考)计算:(1)﹣(﹣2.5)+(+2.2)﹣3.1+(﹣0.5)﹣(+1.1);(2)﹣0.5﹣314+(−2.75)+712;(3)(−34−56+78)×(−24);(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137.【解题思路】(1)直接根据有理数的加减运算法则即可;(2)先把小数化成分数,然后根据交换律和结合律进行简便运算;(3)利用乘法的分配律进行简便运算;(4)提取公因式进行简便运算.【解答过程】解:(1)原式=2.5+2.2﹣3.1﹣0.5﹣1.1=4.7﹣4.7=0;(2)原式=−12+712−(314+234)=7﹣6=1;(3)原式=−34×(﹣24)−56×(﹣24)+78×(﹣24)=18+20﹣21=17;(4)原式=(﹣8﹣7+15)×(﹣1137)=0.25.(4分)(2020秋•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×0.52+179×(﹣112)2.【解题思路】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−1 38;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×0.25+169×94=﹣8+1+2+4=﹣1.。
有理数的混合运算经典例题
有理数的混合运算经典例题例1 计算:.分析:此算式以加、减分段, 应分为三段: , , .这三段可以同时进行计算,先算乘方,再算乘除.式中-0.2化为参加计算较为方便.解:原式说明:做有理数混合运算时,如果算式中不含有中括号、大括号,那么计算时一般用“加”、“减”号分段,使每段只含二、三级运算,这样各段可同时进行计算,有利于提高计算的速度和正确率.例2 计算:.分析:此题运算顺序是:第一步计算和;第二步做乘法;第三步做乘方运算;第四步做除法.解:原式说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.例3 计算:分析:要求、、的值,用笔算在短时间内是不可能的,必须另辟途径.观察题目发现,,,逆用乘法分配律,前三项可以凑成含有0的乘法运算,此题即可求出.解:原式说明:“0”乘以任何数等于0.因为运用这一结论必能简化数的计算,所以运算中,能够凑成含“0”因数时,一般都凑成含有0的因数进行计算.当算式中的数字很大或很繁杂时,要注意使用这种“凑0法”.例4 计算分析:是的倒数,应当先把它化成分数后再求倒数;右边两项含绝对值号,应当先计算出绝对值的算式的结果再求绝对值.解:原式说明:对于有理数的混合运算,一定要按运算顺序进行运算,注意不要跳步,每一步的运算结果都应在算式中体现出来,此题(1)要注意区别小括号与绝对值的运算;(2)要熟练掌握乘方运算,注意(-0.1)3,-0.22,(-2)3,-32在意义上的不同.例5 计算:.分析:含有括号的混合运算,一般按小、中、大括号的顺序进行运算,括号里面仍然是先进行第三级运算,再进行第二级运算,最后进行第一级运算.解:原式例6 计算解法一:原式解法二:原式说明:加减混合运算时,带分数可以化为假分数,也可把带分数的整数部分与分数部分分别加减,这是因为带分数是一个整数和一个分数的和.例如:有理数的混合运算习题精选1.若,,则有( ) .A. B. C. D.2.已知,当时,,当时,的值是( ) .A. B.44C.28 D.173.如果,那么的值为( ) .A.0B.4C.-4D.24.代数式取最小值时,值为( ) .A. B. C. D.无法确定5.六个整数的积,互不相等,则( ) .A.0 B.4C.6D.86.计算所得结果为( ) .A.2B. C. D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则 _________0, _________0,_______0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4. __________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.1.若为任意有理数,则 .( ) 2..( ) 3..( )4..()5..( )四、解答题1.计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8).2.若有理数、、满足等式,试求的值.3.当,时,求代数式的值.4.已知如图2-11-1,横行和竖列的和相等,试求的值.5.求的值.6.计算.计算:有理数的混合运算参考答案:一、1.C 2.C 3.C 4.B 5.A 6.B二、1.略;2.≥,>,<;3.,;4.1;5..三、1.× 2.×3.√4.×5.√四、1.(1)(2)(3)(4)(5)30(6)(7)(8); 2.∵,,∴;3. ;4.,, ;5.设,则, ;6.原式 .。
有理数的混合运算练习题(含答案)(大综合17套)
有理数的混合运算练习题(含答案)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2]. 2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数混合运算典型习题带答案
有理数混合运算典型习题一.会用三个概念的性质1.如果a;b互为相反数;那么a+b=0;a=-b2.如果c;d互为倒数;那么cd=1;c=1/d3.如果︱x︱=a;那么x=a或x=-a二.运算技巧1.归类组合;讲不同类数如分母相同或易于通分的数分别组合;将同类数如正数或负数归类计算2.凑整;将相加可得整数的数凑整;讲相加得零的数如互为相反数相消3.分解;将一个数分解成几个数和的形式;或分解为它的因数相乘的形式4.约简;将互为倒数的数或有倍数的数约简5.倒序相加;利用运算律;改算运算顺序;简化计算例计算2+4+6+ (2000)6.正逆用运算律;正难则反;逆用运算定律以简化计算..如ab+c=ab+ac.反之ab+ac=ab+c 三.思想方法:转化1.通过绝对值将加法;乘法在先确定符号的前提下;转化为小学里学的算术的加法;乘法2.通过相反数和倒数分别将减法;除法转化为加法;乘法3.通过将乘方运算转化为积的形式有理数加、减、乘、除、乘方测试一一.选择题1.计算3(25)-⨯=2.A.1000 B.-1000 C.30 D.-303.计算2223(23)-⨯--⨯=4.A.0 B.-54 C.-72 D.-185.计算11(5)()5⨯-÷-⨯=556.A.1 B.25 C.-5 D.357. 下列式子中正确的是8. A.4232(2)(2)-<-<- B.342(2)2(2)-<-<- 9. C.4322(2)(2)-<-<- D.234(2)(3)2-<-<- 10. 422(2)-÷-的结果是11. A.4 B.-4 C.2 D.-2 12. 如果210,(3)0a b -=+=;那么1b a+的值是 13.A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算;再算;最算;如果有括号;那么先算..2.一个数的101次幂是负数;则这个数是..3.7.20.9 5.6 1.7---+=..4.232(1)---=..5.67()()51313-+--=.. 6.211()1722---+-=..7.737()()848-÷-=.. 8.21(50)()510-⨯+=.. 三.计算题、2(3)2--⨯12411()()()23523+-++-+-11( 1.5)4 2.75(5)42-+++-125)5.2()2.7()8(⨯-⨯-⨯-;6.190)1.8(8.7-⨯⨯-⨯-7)412(54)721(5÷-⨯⨯-÷- 四、1、已知,032=-++y x 求xy y x 435212+--的值..2、若a;b 互为相反数;c;d 互为倒数;m 的绝对值是1;求m cd b a 2009)(-+的值..有理数加、减、乘、除、乘方测试二一、选择1、已知两个有理数的和为负数;则这两个有理数A 、均为负数B 、均不为零C 、至少有一正数D 、至少有一负数 2、计算3)2(232-+-⨯的结果是A 、—21B 、35C 、—35D 、—293、下列各数对中;数值相等的是A 、+32与+23B 、—23与—23C 、—32与—32D 、3×22与3×22 4、某地今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是A 、1月1日B 、1月2日C 、1月3日D 、1月4日 5、已知有理数a 、b 在数轴上的位置如图所示;下列结论正确的是A 、a >bB 、ab <0C 、b —a >0D 、a +b >0 6、下列等式成立的是A 、100÷71×—7=100÷⎥⎦⎤⎢⎣⎡-⨯)7(71B 、100÷71×—7=100×7×—7 C 、100÷71×—7=100×71×7D、100÷71×—7=100×7×7 7、6)5(-表示的意义是A 、6个—5相乘的积B 、-5乘以6的积C 、5个—6相乘的积D 、6个—5相加的和 8、现规定一种新运算“*”:a *b =b a ;如3*2=23=9;则21*3= A 、61B 、8 C 、81D 、23 二、填空9、吐鲁番盆地低于海平面155米;记作—155m ;南岳衡山高于海平面1900米;则衡山比吐鲁番盆地高m10、比—1大1的数为11、—9、6、—3三个数的和比它们绝对值的和小12、两个有理数之积是1;已知一个数是—712;则另一个数是 13、计算-2.5×0.37×1.25×—4×—8的值为14、一家电脑公司仓库原有电脑100台;一个星期调入、调出的电脑记录是:调入38台;调出42台;调入27台;调出33台;调出40台;则这个仓库现有电脑台15、小刚学学习了有理数运算法则后;编了一个计算程序;当他输入任意一个有理数时;显示屏上出现的结果总等于所输入的有理数的平方与1的和;当他第一次输入2;然后又将所得的结果再次输入后;显示屏上出现的结果应是16、若│a —4│+│b +5│=0;则a —b =;若0|2|)1(2=++-b a ;则b a +=_________.. 三、解答17、计算:)411()413()212()411()211(+----+++-)415()310()10(815-÷-⨯-÷ 232223)2()2()2(2--+-+---8+―41―5――0.25721×143÷-9+1925×43+―25×21+25×-41-79÷241+94×-29-13-1-21÷3×3――32 18、1已知|a|=7;|b|=3;求a+b 的值..2已知a 、b 互为相反数;m 、n 互为倒数;x 绝对值为2;求x nm cb mn --++-2的值 四、综合题19、小虫从某点O 出发在一直线上来回爬行;假定向右爬行的路程记为正;向左爬行的路程记为负;爬过的路程依次为单位:厘米:+5;-3;+10;-8;-6;+12;-10 问:1小虫是否回到原点O2小虫离开出发点O 最远是多少厘米3、在爬行过程中;如果每爬行1厘米奖励一粒芝麻;则小虫共可得到多少粒芝麻 答案 一、选择1、D2、D3、B4、D5、A6、B7、A8、C二、填空9、205510、011、2412、97-13、—37 14、5015、2616、9 三、解答17、43-18、61-19、—13拓广探究题20、∵a 、b 互为相反数;∴a +b =0;∵m 、n 互为倒数;∴mn =1;∵x 的绝对值为2; ∴x =±2;当x =2时;原式=—2+0—2=—4;当x =—2时;原式=—2+0+2=0 21、1、10—4-3×-6=242、4——6÷3×10=24 3、3×[]24)6(104=-++综合题22、1、∵5-3+10-8-6+12-10=0∴小虫最后回到原点O ; 2、12㎝3、5+3-+10++8-+6-+12++10-=54;∴小虫可得到54粒芝麻。
有理数的混合运算知识点及相关练习题
有理数的混合运算:有理数的混合运算,运算顺序为:① 先乘方,再乘除,最后加减;① 同级运算,从左到右进行;① 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例题:一、选择题1、计算5 -(-2)×3的结果等于( )。
A .-11B .-1C .1D .11答案:D解析:原式=5-(-6)=5 + 6 =112、下列计算正确的是( )A .-3+2 = -5B .(-3)×(-5)= -15C .-(-22) = - 4D .-(-3)2 = -9答案:D解析:选项A ,-3+2 = -1;选项B ,(-3)×(-5)= 15;选项C ,-(-22) = -(-4)= 4;选项D ,-(-3)2 = -9,故本题选D 。
3、下列计算结果为负数的是( )A .(-1)2B .-1+2C .-1-2D .0÷(-1)答案:C解析:选项A ,(-1)2=1;选项B ,-1+2 =1;选项C ,-1-2 =-3;选项D ,0÷(-1)= 0。
4、下列各式计算正确的是( )A .-3+32= −332B .-10÷25=25C .(-2)2= -4D .(−21)3 = − 81 答案:D解析:选项A ,-3+32= -37;选项B ,-10÷25=-10×52= -4;选项C ,(-2)2= 4;选项D ,(−21)3 = − 81,故本题选D 。
5、(-2)2017+(-2)2018=( )A .-2B . (-2)4035C .22017D .-22017答案:C解析:原式 = (-2)2017+ (-2)2017 ×(-2) = (-2)2017 ×(1-2) = -(-2)2017 =220176、用“○”定义一种新运算:对于任意有理数a 和b ,规定a ○b = a b 2+a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数混合运算的运算顺序:
①从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键。
②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
二、应用四个原则
1、整体性原则:乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。
3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
4、分段同时性原则:对一个算式,一般可以将它分成若干小段,同时分别进行运算。
如何分段呢?主要有:
(1)运算符号分段法。
有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。
在运算中,低级运算把高级运算分成若干段。
一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和。
即(先乘方、后乘除、再加减。
)把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法。
(2)括号分段法,有括号的应先算括号里面的。
在实施时可同时分别对括号内外的算式进行运算。
(3)绝对值符号分段法。
绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算。
(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。
(1)归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。
(2)凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
(3)分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。
(4)约简:将互为倒数的数或有倍数关系的数约简。
(5)倒序相加:利用运算律,改变运算顺序,简化计算。
(6)正逆用运算律:正难则反,逆用运算定律以简化计算。
乘法分配律a(b+c)=ab+ac在运算中可简化计算.而反过来,ab+ac=a(b+c)同样成立,有时逆用也可使运算简便。
四、理解转化的思想方法:
有理数运算的实质是确定符号和绝对值的问题。
因此在运算时应把握“遇减化加.遇除变乘,乘方化乘”,这样可避免因记忆量太大带来的一些混乱,同时也有助于我们抓住数学内在的本质问题。
把我们所学的有理数运算概括起来。
可归纳为三个转化:
一个是通过绝对值将加法、乘法在先确定符号的前提下,转化为小学里学的算术数的加法、乘法;
二是通过相反数和倒数分别将减法、除法转化为加法、乘法;
三是将乘方运算转化为积的形式。
五、会用三个概念的性质
如果a,b互为相反数,那么a+b=O,a=-b;
如果c,d互为倒数,那么cd=l,c=1/d;
如果|x|=a(a>0),那么x=a或-a。
有理数的混合运算典型例题
例1 计算:.
分析:此算式以加、减分段, 应分为三段: , ,
.这三段可以同时进行计算,先算乘方,再算乘除.式中-0.2化为
参加计算较为方便.
解:原式
说明:做有理数混合运算时,如果算式中不含有中括号、大括号,那么计算时一般用“加”、“减”号分段,使每段只含二、三级运算,这样各段可同时进行计算,有利于提高计算的速度和正确率.
例2 计算:.
分析:此题运算顺序是:第一步计算和;第二步做乘法;第三步做乘方运算;第四步做除法.
解:原式
说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.
例3 计算:
分析:要求、、的值,用笔算在短时间内是不可能的,必须
另辟途径.观察题目发现,,,逆用乘法分配律,前三项可以凑成含有0的乘法运算,此题即可求出.
解:原式
说明:“0”乘以任何数等于0.因为运用这一结论必能简化数的计算,所以运算中,能够凑成含“0”因数时,一般都凑成含有0的因数进行计算.当算式中的数字很大或很繁杂时,要注意使用这种“凑0法”.
例4 计算
分析:是的倒数,应当先把它化成分数后再求倒数;右边两项含绝对值号,应当先计算出绝对值的算式的结果再求绝对值.
解:原式
说明:对于有理数的混合运算,一定要按运算顺序进行运算,注意不要跳步,每一步的运算结果都应在算式中体现出来,此题(1)要注意区别小括号与绝对值
的运算;(2)要熟练掌握乘方运算,注意(-0.1)3,-0.22,(-2)3,-32在意义上的不同.
例5 计算:.
分析:含有括号的混合运算,一般按小、中、大括号的顺序进行运算,括号里面仍然是先进行第三级运算,再进行第二级运算,最后进行第一级运算.
解:原式
例6 计算
解法一:原式
解法二:原式
说明:加减混合运算时,带分数可以化为假分数,也可把带分数的整数部分与分数部分分别加减,这是因为带分数是一个整数和一个分数的和.
例如:
有理数的混合运算习题精选
1.若,,则有( ) .
A. B. C. D.
2.已知,当时,,当时,的值是( ) .
A. B.44C.28 D.17
3.如果,那么的值为( ) .
A.0B.4C.-4D.2
4.代数式取最小值时,值为( ) .
A. B. C. D.无法确定
5.六个整数的积,互不相等,则
( ) .
A.0 B.4C.6D.8
6.计算所得结果为( ) .
A.2B. C. D.
二、填空题
1.有理数混合运算的顺序是__________________________.
2.已知为有理数,则 _________0, _________0,
_______0.(填“>”、“<”或“≥”=)
3.平方得16的有理数是_________,_________的立方等于-8.
4. __________.
5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为
__________.
1.若为任意有理数,则 .( )
2..( ) 3..( )
4..()
5..( )
四、解答题
1.计算下列各题:
(1);
(2);
(3);
(4);
(5);
(6);
(7);
(8).
2.若有理数、、满足等式,试求
的值.
3.当,时,求代数式
的值.
4.已知如图2-11-1,横行和竖列的和相等,试求的值.
5.求的值.
6.计算.
计算:
有理数的混合运算参考答案:
一、1.C 2.C 3.C 4.B 5.A 6.B
二、1.略;2.≥,>,<;3.,;4.1;5..
三、1.× 2.×3.√4.×5.√
四、1.(1)(2)(3)(4)(5)30(6)(7)
(8); 2.∵,,∴;
3. ;
4.,, ;
5.设,则, ;
6.原式 .。