激光多普勒测速技术..共22页文档

合集下载

激光多普勒测速技术..

激光多普勒测速技术..
统和信号处理器方面有了很大的发展。光束扩展,空 间滤波,偏振分离,频率分离,光学频移等近代光学 技术相继应用到激光测速仪中。 (3)1981年至今。在此期间,应用研究得到快速发 展。
福建农林大学交通学院 2007级物流管理2班 徐建福
激光多普勒测速技术的原理
激光测速的原理大致是这样:激光束 射向流动着的粒子,粒子发出的散射光的
在测纯净的水或空气速度时,必须由人 工掺入适当的粒子作散射中心。 被测流体要有一定的透明度,管道要有透明 窗口。
激光多普勒测速技术的特点
尽管如此,这种测速方法所具有的优越性,使它在许多场合成为一种
必不可少的检测手段。多年的研究使多普勒测速仪技术得以迅速发展,从
不能辨别流向到可以辨别流向,从一维测量发展到多维测量,围绕这一技 术的基本原理、设计方法和应用技术,学者们曾在有关杂志及重大国际会 议上发表了许多论文。早在七十年代就有重要著作面世,而且它的应用面 也不断扩大,从流体测速到固体测速,从单相流到多相流,从流体力学实 验室速度场测量到实际上较远距离的大气风速测量,从一般气、液体速度 测量到人体血管中血流速度测量,其应用范围有了极大的扩展。反过来, 各类应用对这一测速技术及测速仪器也提出许多更新更高的要求。
频率改变了,通过光电装置测出频率的变
化,就测得了粒子的速度,也就是流动的
速度。
5
激光多普勒测速技术的原理
6
激光多普勒测速技术的原理
7
激光多普勒测速技术的特点
优 点
速度方向的灵敏度好 测量精度高
空间分辨率极高,测量量程大 属于非接触测量,动态响应快
激光多普勒测速技术的特点
(1)属于非接触测量:激光束的交点就是测
激光多普勒测速技术
学院:机械工程学院

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。

多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。

例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。

如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。

但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。

设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术王素红多普勒效应多普勒效应是由于波源或观察者的运动而出现观测频率与波源频率不同的现象。

由澳大利亚物理学家J. Doppler1842年发现的。

声波的多普勒效应在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低。

为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低。

这种现象称为多普勒效应。

为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好像波被压缩了。

因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被拉伸了。

光波的多普勒效应当单频的激光源与探测器处于相对运动状态时,探测器所接收到的光频率是变化的。

当光源固定时,光波从运动的物体散射或反射并由固定的探测器接收时,也可观察到这一现象,这就是光学多普勒效应。

它又被称为多普勒-斐索效应,是因为法国物理学家斐索(1819—1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法。

光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。

如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。

20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去。

1929年哈勃根据光谱红移总结出著名的哈勃定律:星系的远离速度υ与距地球的距离r成正比,即υ = Hr, H 为哈勃常数。

根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小。

由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫(G. Gamow)和他的同事们提出大爆炸宇宙模型。

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速技术LDV

激光多普勒测速技术LDV

《现代流体测试技术》第八章激光多普勒测速技术刘宝杰,于贤君2015年6月15日主要内容8.1关键背景8.2基本原理8.3 测量精度的影响因素8.4典型应用案例8.5思考题测速技术的分类测量技术激光多普勒测速仪(LDV)皮托管接触式非接触式气动探针热线风速仪粒子图像测速技术(PIV、SPIV)激光诱导荧光技术(LIF、PLIF )DGV、MTV ……Laser Doppler Velocimeter简称LDV激光多普勒效应什么是多普勒效应?多普勒效应声波设光源O、运动微粒P和静止的光检测器S之间的相对位置如,粒子的运动速度为下图所示。

其中光源光波的频率为f Array则粒子接收到的光波频率为:当U << c时,上式可以非常近似地表示为:激光多普勒效应当静止的光检测器接收到微粒散射的光波时,其间同样存在多普勒效应,其频率为:粒子向四周散射的光的频率,就是其接受到光的频率:激光多普勒效应由以上两式可得:激光多普勒效应多普勒频移f D:激光多普勒测速仪(LDV/LDA)激光器入射光学单元被测流场收集光学单元信号采集和处理激光多普勒测速仪(LDV/LDA)1964年,Yeh和Cummins三个阶段:1964-1972年:发展阶段——平均速度测量1973-1978年:成熟阶段——湍流速度测量1979年-至今:应用发展阶段——计算机化8.2.2 示踪粒子8.2.3 信号采集和处理激光光源:氩(Ar)离子激光器:476.5nm、488nm、514.5nmLDV的光源能不能不用激光光源?定向性高亮度,高能量密度相干性8.2.2示踪粒子>>>跟得上>> 粒子的跟随性问题>> 粒子的光散射性问题>>> 看得见8.2.2示踪粒子>> 粒子的跟随性8.2.2示踪粒子湍流中粒子的跟随性水中粒子的跟随性>> 粒子的跟随性8.2.2示踪粒子湍流中粒子的跟随性空气中粒子的跟随性>> 粒子的跟随性8.2.2示踪粒子高速气流中粒子的跟随性可压流中粒子的阻力系数:为Knudsen数激波波前速度波后速度x(激波下游的距离),inch在超声速或高亚音速中理想的粒子直径应小于>> 粒子的跟随性mm8.2.2示踪粒子 粒子的直径粒子的密度粒子的形状除了流体的性质外,粒子对其跟随性的主要影响因素:>> 粒子的跟随性8.2.2示踪粒子1.散射光是由包括不同阶的球谐波组成的,它们是强度取决于两种介质的特性和粒子直径与光波波长的比值;米氏(G.Mie)散射理论:1908年2.当粒子直径远小于光波波长时,散射光强度分布如下图所示,这种散射称为瑞利(Rayleigh)散射;瑞利(Rayleigh)散射>> 粒子的光散射性8.2.2示踪粒子3.当粒子直径逐渐增大,散射光强度分布逐渐偏离对称,前向比后向散射更多的光线,这种效应称为米氏效应。

激光多普勒测速实验教程

激光多普勒测速实验教程

激光多普勒测速实验教程
一、实验概述
激光多普勒测速实验是一种常用的测速方法,通过测量目标物体表面反射回来的激光光束频率变化,从而得出目标物体的速度。

本实验将介绍激光多普勒测速的原理、实验装置搭建、实验步骤及注意事项。

二、实验原理
激光多普勒效应是指当激光束照射到运动的物体表面时,反射回来的光束频率会因为物体运动而发生变化。

根据多普勒效应公式,可以得出:
$$f_r = f_0 \\cdot \\left(1 + \\frac{v}{c} \\cdot \\cos\\theta\\right)$$
其中,f r为接收到的激光频率,f0为激光发射频率,v为物体运动速度,c为光速,$\\theta$为激光与物体运动方向的夹角。

三、实验装置
该实验所需装置包括: - 激光发射器 - 激光接收器 - 反射镜 - 运动平台 - 计算机
四、实验步骤
1.将激光发射器和激光接收器固定在实验台上,使其间距一定。

2.在运动平台上放置反射镜,调整反射镜位置,使激光光束正好反射回
激光接收器。

3.启动激光发射器,发射激光光束照射到运动平台上的反射镜。

4.记录激光接收器接收到的频率数据,并测量反射镜在运动平台上的速
度。

5.利用多普勒效应公式计算出反射镜的运动速度,与实际测得的速度进
行对比。

五、注意事项
1.实验中需注意激光光束安全,避免直接照射眼睛。

2.反射镜位置调整需准确,确保激光正好反射回激光接收器。

3.实验过程中要小心操作,避免损坏实验装置。

通过本实验,可以深入了解激光多普勒测速的原理与应用,提高实验操作能力和理论水平。

激光多普勒测速课件

激光多普勒测速课件
信号处理与控制系统的性能直接影响测速结果的准确性和实时性,是整 个测速系统的关键部分。
03
激光多普勒测速技术实验方法
实验准备与操作流程
实验设备
激光多普勒测速仪、水槽、电源、信号发生器、示波器等。
实验材料
水、透明玻璃或有机玻璃板、测量尺等。
实验准备与操作流程
操作步骤
1
2
1. 安装激光多普勒测速仪,确保其稳定运行。
材料科学、纳米技术等领域。
在材料表面形貌测量中,激光多普勒测速技术可以测 量材料表面的粗糙度、形貌和纹理等信息,提供材料
表面的三维形貌和表面动力学特征。
激光多普勒测速技术还可以用于测量材料表面的应力 、应变和热流等参数,为表面工程和材料科学研究提
供重要数据。
06
结论与展望
技术总结
激光多普勒测速技术是一种非接触、无损、高 精度、高分辨率的测量 技术,具有广泛的应用 前景。
在流体速度测量中,激光多普勒测速技术可以测量液体、气体和等离子体等流体的速度,具有广泛的应 用范围。
激光多普勒测速技术可以测量流体的平均速度和瞬时速度,提供流场的速度分布和流速矢量等信息,为 流体力学研究和工程应用提供重要数据。
粒子速度测量
激光多普勒测速技术在粒子速度测量中 具有高精度、非接触和实时性的优点, 广泛应用于气溶胶、燃烧颗粒、生物细 胞等领域。
未来,激光多普勒测速技术将不断优化,提高测量精度和 稳定性,拓展应用范围,为科学研究和技术创新提供更多 可能性。
同时,随着技术的进步和应用需求的增加,激光多普勒测 速技术的成本将逐渐降低,使得更多的领域和行业能够受 益于该技术的应用。
THANKS
感谢观看
在粒子速度测量中,激光多普勒测速技术可 以测量粒子在气体或液体中的速度,提供粒 子的运动轨迹和速度分布等信息。

激光多普勒测速实验教程

激光多普勒测速实验教程

激光多普勒测速实验教程在科学研究和工程实践中,激光多普勒测速技术被广泛应用于测量目标物体的速度和位移。

本文将介绍激光多普勒测速的基本原理、实验装置搭建步骤和实验操作流程,帮助读者了解该技术的应用和实验方法。

1. 概述激光多普勒测速是利用多普勒效应来测量目标物体相对于激光束的速度的技术。

当激光束照射到运动的物体上,如果物体沿激光束的方向运动,就会出现多普勒频移现象。

通过测量多普勒频移,可以计算出物体的速度和运动方向。

2. 实验装置搭建步骤2.1 材料准备•一台激光器•一个光电探测器•一台信号处理器•一根光纤•一个运动的目标物体2.2 搭建步骤1.将激光器和光电探测器分别固定在实验台上,使激光束可以直线照射到目标物体上。

2.将信号处理器连接到光电探测器输出端。

3.将光纤连接激光器和光电探测器,确保信号传输畅通。

4.调整激光束和目标物体的位置,使其正对光电探测器。

3. 实验操作流程3.1 校准1.打开激光器和信号处理器,初始化设备。

2.调整激光束位置,确保准确照射到目标物体上。

3.根据实验需要,设置信号处理器的参数,包括灵敏度和采样频率等。

3.2 实验操作1.将目标物体放置在激光束前方,并启动其运动。

2.通过信号处理器读取激光多普勒信号。

3.记录和分析信号数据,计算出目标物体的速度和运动方向。

4.反复进行多组实验,验证实验结果的准确性。

4. 结论通过本实验教程的学习,读者可以掌握激光多普勒测速技术的基本原理和实验方法,了解其在速度测量领域的应用和意义。

激光多普勒测速技术在工业、交通等领域具有广泛的应用前景,值得进一步深入研究和探索。

以上是激光多普勒测速实验教程的全部内容,希望对读者对该技术有所帮助。

11.激光多普勒测速技术_LDV_

11.激光多普勒测速技术_LDV_

4. 空间不同方向上的散射光之间还存在相位差。
8.2 基本原理
8.2.2 示踪粒子
m2
>> 粒子的光散射性
粒子的有效散射截面与粒子直径的关系:
几何截面 Nd:YAG(532nm) 瑞利散射
颗粒直径
颗粒直径 → μm
8.2 基本原理
8.2.3 信号采集和处理
>>> 如何提取多普勒频移?
瑞利(Rayleigh)散射
8.2 基本原理
8.2.2 示踪粒子
>> 粒子的光散射性
3. 当粒子直径逐渐增大,散射光强度分布逐渐偏离对称, 前向比后向散射更多的光线,这种效应称为米氏效应。
8.2 基本原理
8.2.2 示踪粒子
>> 粒子的光散射性
3. 当粒子直径逐渐增大,散射光强度分布逐渐偏离对称, 前向比后向散射更多的光线,这种效应称为米氏效应。
实验现场照片,玻璃窗厚度不到3mm
8.4 典型应用案例
LDV的应用示例
示踪粒子
94.2%叶高回转面内的马赫数分布
8.4 典型应用案例
LDV的应用示例
转子出口1截面切向湍流脉动速度
转子出口2截面切向湍流脉动速度
8.4 典型应用案例
LDV的应用示例
不同转速下叶尖泄露流的发展演化过程
>> 光学频移
LDV测量是否有速度幅值的限制?
8.2 基本原理
8.2.3 信号采集和处理
>> 光学频移
频移的第二个功能是实现高湍流度流场的测量!
基底信号与多普勒频 谱的混叠
频移后的信号频谱
8.2 基本原理
8.2.3 信号采集和处理

激光多普勒流速测量技术讲解

激光多普勒流速测量技术讲解

激光多普勒流速测量技术激光多普勒流速测量技术(LDA)是用来测量气体或液体流速的。

这项技术与传统的测量技术相比具有显著优势,它可以精确测量许多不同粒子的速度,而不需要另外的仪器校正。

这项测量技术是非侵入式的,具有很高的频率响应和大的动态范围。

LDA技术常应用在蒸汽流测量、风洞湍流测量和内燃机燃料流测量当中。

Compuscope82G数据采集卡已被证明非常适用于LDA系统数据的采集、存储和传输。

1LDA原理系统采用连续调制激激光多普勒流速测量技术(LDA)是用来测量气体或液体流速的。

这项技术与传统的测量技术相比具有显著优势,它可以精确测量许多不同粒子的速度,而不需要另外的仪器校正。

这项测量技术是非侵入式的,具有很高的频率响应和大的动态范围。

LDA技术常应用在蒸汽流测量、风洞湍流测量和内燃机燃料流测量当中。

Compuscope82G数据采集卡已被证明非常适用于LDA系统数据的采集、存储和传输。

1 LDA原理系统采用连续调制激光,激光被分成两束,先经光学系统聚焦后相互垂直入射到粒子流中。

在两束激光交叉处便产生了干涉图样。

激光束的后向散射经过接收光学系统后聚焦在探测器上,再由探测器实现光电转换。

LDA原理示意图如图1所示。

2干涉图样为了研究光电探测器接收到的信号,必须知道两束光在交叉点产生的干涉图样。

如图2所示,被测对象是一个椭球体表面对应的干涉图光强分布,光强最大的分布点在干涉图的中心。

需要指出的是?当光束角度K减小时?被测对象将会远离聚焦光束?它的长度将增加而宽度减小。

就像前面提到的那样?信号是由粒子经过干涉图样反射的散射光组成,变化的振幅代表了每个干涉图光强的变化。

多普勒脉冲串的频率称为多普勒频率。

该频率与干涉图空间常数(df)相乘可用来测量速度。

从图3可以看出,干涉图空间常数(df)是由激光波长(λ)除以光束反射角(K)正弦的2倍得到。

由于激光波长可以精确测量(精确到0.01%),因此采用LDA技术可以非常精确地测量流体速度。

激光多普勒速度测试技术

激光多普勒速度测试技术

一.绪论1.1 运动物体速度测试技术现状1.1.1 激光多普勒速度测试技术(1)多普勒效应多普勒效应是由于波源或观看者的运动而显现观测频率与波源频率不同的现象。

由澳大利亚物理学家J. Doppler1842 年发觉的。

声波的多普勒效应在日常生活中,咱们都会有这种体会:当一列鸣着汽笛的火车通过某观看者时,他会发觉火车汽笛的声调由高变低。

什么缘故会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,若是频率高,声调听起来就高;反之声调听起来就低。

这种现象称为多普勒效应。

为了明白得这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,仿佛波被紧缩了。

因此,在一按时刻距离内传播的波数就增加了,这确实是观看者什么缘故会感受到声调变高的缘故;相反,当火车驶向远方时,声波的波长变大,仿佛波被拉伸了。

光波的多普勒效应当单频的激光源与探测器处于相对运动状态时,探测器所接收到的光频率是转变的。

当光源固按时,光波从运动的物体散射或反射并由固定的探测器接收时,也可观看到这一现象,这确实是光学多普勒效应。

它又被称为多普勒-斐索效应,是因为法国物理学家斐索(1819—1896)于1848 年独立地对来自恒星的波长偏移做了说明,指出了利用这种效应测量恒星相对速度的方法。

光波与声波的不同的地方在于,光波频率的转变令人感觉到是颜色的转变。

若是恒星远离咱们而去,那么光的谱线就向红光方向移动,称为红移;若是恒星朝向咱们运动,光的谱线就向紫光方向移动,称为蓝移。

20 世纪20 年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,第一发觉了光谱的红移,熟悉到了旋涡星云正快速远离地球而去。

1929年哈勃依照光谱红移总结出闻名的哈勃定律:星系的远离速度υ与距地球的距离r 成正比,即υ = Hr, H为哈勃常数。

依照哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时刻内一直在膨胀,物质密度一直在变小。

激光多普勒测速技术

激光多普勒测速技术

南京理工大学课程考核论文课程名称:图像传感与测量论文题目:激光多普勒测速技术姓名:孙玉祥学号:314113002432成绩:任课教师评语:签名:年月丨1文献综述摘要:文章阐述了激光多普勒测速技术的皐本原理及特点,综述了不同类型激光多普勒测速技术各口的优缺点,对后续的信号处理系统进彳亍了分析说明,并对未來激光多普勒测速技术发展方向进行了探讨。

关键词:激光多普勒测速仪柏频信号处理0引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它以其测速精度高、测速范闱广、空间分辨率高、动态响应快、非接触测量等优点在航空航天、机械、能源等领域获得了广泛的应用和快速发展[氏在一个完整的激光多普勒测速系统中,主要分为三个部分:激光发射器、光学光路系统、信号处理部分。

每一部分的学习与研究,都对激光多普勒测速系统的精确度、稳定性和适应性有着重耍的作用。

1激光多普勒测速原理激光的多普勒效应表明,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度、入射光和速度方向的夹角都有关系卩】。

激光多普勒效应的示意图如图1所示,其中o为光源,p为运动物体,s为观察者的位置,激光的频率为v,运动物体的速度为II, 那么激光照射到运动物体表面所产生的多普勒频移星可表示为:式中:e。

为入射光方向单位向最,是散射光的单位向量,c是光速,由上式可知,通过测量激光多普勒频移量的值,便可获得运动物体的速度信息。

图1激光多普勒效应示意图2激光多普勒测速特点激光多普勒测速与传统测速仪相比有如下持点:1.非接触测量:激光汇聚点就是测最探头,测量过程对流场无干扰,故可以很方便地在恶劣环境中进行测星,如火焰、腐蚀性流体流速的测量。

2•空间分辨率高:测点可小于10-4mm3,随着所用激光波长的减小,光路和聚焦元件性能的改进,还可以进一步缩小。

3•动态响应快:速度信号以光速传播,惯性极小,只要配以适当的信号处理器,可进行实时测最。

激光多普勒测速讲解PPT课件

激光多普勒测速讲解PPT课件

νs1 νs 2
νi νi
υ
c
υ
c
(es
(es
ei1)νi
ei2 )νi
νDs
υ
c
(ei2
ei1)νi
应用前面的推导 νDs
2u i
sin
2
或u
iνDs 2 sin
2
7
第7页/共22页
血液流速的测量
➢ 图6-34是激光多普勒显微镜光路图
8
第8页/共22页
(多普勒频移); ➢ 双散射光束型多普勒测速:检测两束散射光之间的频差
(多普勒频差)。
4
第4页/共22页
参考光束型多普勒测速
图6-32所示为参考光束型测速方法的光路的原理图
设 Ei (t) 和ES (t) 分别表示参考光和散射光的电矢量的瞬时值 则
Ei t Ei exp j2νit i ES t ESexp j2νSt S
20
第20页/共22页
其它激光器
准分子激光器:(如ArF,193nm,用于光刻机) 自由电子激光器:工作物质是自由电子束,利用电子加速器 。 ➢ 输出的激光波长可在相当宽的范围内连续调谐,原则上可从厘米波一 直调谐到真空紫外。 ➢ 可以获得极高的光功率输出。 ➢ 将在激光分离同位素、激光核聚变、光化学、激光光谱和激光武器等 方面有着重大的应用前景。目前,自由电子激光器仍处于试验阶段。 化学激光器:将化学能直接转换成激光 、输出的激光波长丰富 、高 功率、高能量激光输出 。 光纤激光器。
13
第13页/共22页
固体激光器
固体激光器是以掺杂离子的绝缘晶体或玻璃作为工作物质的激 光器。 常采用的固体工作物质仍然是红宝石、钕玻璃、掺钕钇铝石榴 石(Nd3+:YAG)等三种 。 固体激光器的特点:输出能量大(可达数万焦耳),峰值功率高 (连续功率可达数千瓦,脉冲峰值功率可达千兆瓦、几十太瓦), 结构紧凑,牢固耐用。 广泛应用于工业、国防、医疗、科研等方面,例如打孔、焊接、 划片、微调、激光测距、雷达、制导、激光视网膜凝结、全息 照相、激光存储、大容量通信等。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术(LDV)1.引言多普勒效应是19世纪奥地利物理科学家多普勒.克里斯琴.约翰(Doppler,Christian Johann)发现的声学效应。

在声源和接收器之间发生相对运动时,接收器收到的声音频率不会等于声源发出的原频率,于是称这一频率差为多普勒频差或频移。

1905年,爱因斯坦在狭义相对论中指出,光波也具有类似的多普勒效应。

只要物体产生散射光,就可利用多普勒效应测量其运动速度。

所谓光学多普勒效应就是:当光源与光接收器之间发生相对运动时,发射光波与接收光波之间会产生频率偏移,其大小与光源和光接收器之间的相对速度有关。

二十世纪六十年代,激光器得以发明。

激光的出现大力地促进了各个学科的发展。

由于激光具有优异的相干性、良好的方向性等特点,因此在精密计量,远距离测量等方面获得了广泛的应用。

伴随着激光在光学领域的应用,一门崭新的技术诞生了,这就是多普勒频移测量技术。

1964年,杨(Yeh)和古明斯(Cummins首次证实了可利用激光多普勒频移技术来测量确定流体的速度,激光多普勒测速仪(LDV)以其测速精度高、测速范围广、空间分辨率高、动态响应快、非接触测量等优点在航空、航天、机械、生物学、医学、燃烧学以及工业生产等领域得到了广泛应用和快速发展。

激光多普勒测速仪是利用运动微粒散射光的多普勒频移来获得速度信息的。

2. 激光多普勒测速原理激光多普勒测速原理即为激光多普勒效应:当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度、入射光和速度方向的夹角都有关系。

图1. 激光多普勒效应的示意图激光多普勒效应的示意图如图1所示,其中,o为光源,p为运动物体,s为观察者的位置。

激光的频率为f ,运动物体的速度为V ,那么物体运动产生的多普勒频移量可表示为:()D s o f f V e e c=⋅- (1) 式中:e o 为入射光单位向量,e s 是散射光的单位向量,c 是光速。

激光多普勒测速..

激光多普勒测速..
6/23
2.激光多普勒测速的光路模式
图中所示是参考光模式,激光经分光镜分成两束光,其中一束是弱 光用作参考光,另一束是强光用作照射光束, 它们聚焦到测量区。光电 检测器接受参考光, 同时接受另一束照射光束经过粒子散射在同一方向 上的散射光,它们在光电检测器件中进行光外差,从而得到多普勒频移。 为了使参考光和散射光强度基本相近,必须使参考光减弱。通常参考光 束和照射光束的光强比为1:9左右,这里可以用中性滤光片来减弱参考 光,或者选择合适的分光镜的分光比来实现。
f D f S fo fo 1

u (es e0 ) c
4/23



u (es eo )
当入射光、散射光和速度方向布置成如图所示的那样,就可以 得到简单的多普勒平移表达式:
fD
2 sin / 2

uy
图2 多普勒测速特殊布置 图中θ为入射光方向与接收光方向的夹角,粒子的速度投影到该夹 5/23 角一半的垂直线方向上即得到 u y 。

图1 运动粒子的散射光
3/23
根据相对论,运动微粒P接收到的光波频率fP与光源频率fo之间的关系为

f P f o (1
u e0 ) c
静止的光检测器接收到粒子散射光的频率fS为
f S f P (1
u es ) c

光检测器接收到的光波频率与入射光波频率之差称为多普勒频移,用 fD表示,则
特点:双光束一双散射模式是目前应用最广泛的光路模式。它的多普勒 频移只取决于两束入射光方向,而与散射光方向无关,这是该模式的重 要特点。因为光接收器可以放在任意位置,而且可以采用大的收集立体 角以提高散射光功率。入射光系统可制成集成化光学单元, 大大提高了 9/23 光学系统的稳固性和易调准性。

激光多普勒测速实验报告

激光多普勒测速实验报告

一、实验目的1. 了解激光多普勒测速的原理和基本方法;2. 掌握激光多普勒测速仪的使用和操作;3. 学会分析实验数据,验证实验结果。

二、实验原理激光多普勒测速(Laser Doppler Velocimetry,LDV)是一种非接触式、高精度的速度测量技术。

其原理基于多普勒效应,当激光束照射到运动物体上时,反射光或散射光的频率会发生变化,这种变化与物体运动速度成正比。

实验中,激光多普勒测速仪发射一束激光,经透镜聚焦后照射到被测流体上。

被测流体中的微小颗粒对激光产生散射,散射光经过透镜聚焦到光电探测器上,光电探测器将散射光转换成电信号。

通过比较散射光与发射光的频率差异,即可计算出被测流体的速度。

三、实验仪器与设备1. 激光多普勒测速仪(LDV);2. 透镜;3. 光电探测器;4. 计算机及数据采集软件;5. 实验用流体(如水);6. 实验用颗粒(如尘埃、气泡等)。

四、实验步骤1. 将激光多普勒测速仪安装好,确保仪器稳定;2. 在实验容器中注入实验用流体,并加入实验用颗粒;3. 调整透镜和光电探测器的位置,使激光束能够照射到流体中的颗粒上;4. 打开激光多普勒测速仪,设置测量参数,如测量频率、采样频率等;5. 启动实验,观察数据采集软件显示的实验数据;6. 记录实验数据,包括测量时间、颗粒速度等;7. 关闭实验,整理实验器材。

五、实验结果与分析1. 实验数据记录:测量时间:2023年3月15日测量频率:1MHz采样频率:10kHz颗粒速度:v1 = 0.3m/s,v2 = 0.5m/s,v3 = 0.7m/s2. 实验结果分析:(1)实验结果显示,颗粒速度与测量频率、采样频率等参数密切相关。

通过调整测量参数,可以实现对不同速度范围颗粒的测量。

(2)实验数据表明,激光多普勒测速技术具有较高的测量精度。

在实验条件下,颗粒速度的测量误差小于±0.1m/s。

(3)实验过程中,激光多普勒测速仪表现稳定,无故障现象。

激光多普勒血流监测共21页文档

激光多普勒血流监测共21页文档
后脑灌注压,*闭合后充血反应
13
Moor产品
接触式
VMS,DRT4(TREND,PRM2),MoorLAB
非接触式
LDI2,BI,LDLS,FLPI
外围产品
MIC2,SHO2,IRLD20
14
VMS
15
VMS参数
测量参数
Flux(组织灌注量) Conc*(血细胞浓度) DC(回光强度) Temperature(温度)
moorVMS-LDF1:235 x 60 x 200,1.4kg moorVMS-LDF2:235 x 80 x 200,1.5kg.
使用环境:临床或实验室,勿潮湿 使用温度:15-30℃.
关于VMS的无限连接性
17
VMS探头
18
探头座
19
Gene&I
吉安得尔
谢谢!
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
记忆芯片式探头:内置校正参数,即插即用
16
VMS参数
温度测量
范围:5℃ ~50℃. 精度:0.1ºC,准度:±0.3ºC.
。 USB直接输出至PC。 模拟信号输出:BNC接口,0-5V
常规
电源:100-230V AC,30VA,50-60Hz. 尺寸: W x H x D mm,重量:Kg
激光多普勒血流监测
Gene&I
吉安得尔
1 原理
2 应用
3
Moor产品
3
原理
多普勒效应——声波
4
原理
多普勒效应——光波
5
原理
激光多普勒血流仪检测原理
检测深度:激光波长,光纤间距,激光功率,组织特性 通常=1mm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档