预习实验报告——蛋白质含量测定方法的研究
蛋白质含量测定实验报告
蛋白质含量测定实验报告1. 引言蛋白质是生命体内最基本的组成部分之一,它们在细胞的结构和功能中起着至关重要的作用。
蛋白质的含量测定是生物化学领域中常用的实验方法之一,它可以帮助我们了解生物体内蛋白质的含量及其变化情况,对于研究细胞活动、疾病发生机理等方面具有重要意义。
2. 实验目的本实验旨在通过测定样本中蛋白质的含量来探究不同方法的可行性和准确性,并了解实验操作的步骤和原理。
3. 实验材料和方法3.1 实验材料:- BSA标准溶液- Coomassie亮蓝G250试剂- 可见光分光光度计- 1 cm光学吸光皿- 雪茄盒- 离心管- 超声波清洗机3.2 实验方法:3.2.1 BSA标准曲线的制备首先,我们需要制备BSA(Bovine Serum Albumin,牛血清白蛋白)的标准曲线。
将一定浓度的BSA溶液分别取0.1 mL、0.2 mL、0.3 mL、0.4 mL和0.5 mL放入不同的离心管中,然后加入相同体积的去离子水,使最终体积达到 1 mL。
将各个离心管标记好,并在试剂最后加入亮蓝G250试剂20 μL。
用超声波清洗机将离心管内混合物彻底混匀,然后静置室温15分钟。
随后,在波长570 nm下使用可见光分光光度计对各组溶液的吸光度进行测定,记录下各个浓度对应的吸光度值。
3.2.2 待测样品的处理将待测样品(如细胞培养物、血浆等)放入雪茄盒中,加入足够的去离子水,然后使用超声波清洗机混匀样品,直至完全溶解。
3.2.3 样品的测定取不同体积的标样和待测样品溶液,加入相应的去离子水,使最终体积达到1 mL,并分别加入亮蓝G250试剂20 μL。
用超声波清洗机将离心管内混合物彻底混匀,然后静置室温15分钟。
随后,在波长570 nm下使用可见光分光光度计对各组溶液的吸光度进行测定,记录下各个浓度对应的吸光度值。
4. 结果和讨论通过对BSA标准曲线的绘制,我们可以得到各个浓度对应的吸光度值。
利用标准曲线,我们可以根据待测样品的吸光度值推算出其蛋白质的含量。
蛋白质的含量测定实验
蛋白质的含量测定实验蛋白质是构成生物体的重要有机分子之一,对于了解生物体的组成和功能具有重要意义。
在科学研究和食品加工等领域,准确测定蛋白质的含量是十分关键的。
本实验将介绍一种常用的蛋白质含量测定方法——低里氏法。
一、材料与试剂准备1. 组织样本:可以选择动植物组织,如肝脏、肌肉等。
2. 水浴锅:用于加热试剂,保持温度恒定。
3. 显色试剂:选择低里氏试剂,常见的有Bradford显色试剂。
4. 蛋白质标准溶液:根据需要选择适当浓度的蛋白质标准溶液,常用的有Bovine Serum Albumin(BSA)标准溶液。
5. 常用实验器材:包括离心管、移液管、离心机、比色皿等。
二、实验步骤1. 样本制备:a. 提取组织样本:取适量的组织样本,如肝脏、肌肉等,使用离心机将其离心,去除杂质和溶液。
b. 重建组织样本:向组织样本中加入一定体积的溶液,使样本浓度适宜,便于后续的测定。
2. 样本处理:a. 取相同体积的样本和蛋白质标准溶液,分别加入离心管中。
b. 添加适量的显色试剂,轻轻摇匀,使样本和标准溶液均匀与显色试剂充分接触。
c. 将离心管放入水浴锅中,调节温度为适宜条件,如常温或37℃。
d. 静置一段时间,使显色反应充分进行。
3. 比色测定:a. 取适量的显色反应液,加入比色皿中。
b. 使用光密度计或分光光度计,以试剂空白对照为基准,测定各个样本的吸光度。
c. 根据吸光度的读数,结合标准曲线,计算出样本中蛋白质的含量。
三、数据分析与结果解读根据实验的结果,我们可以得到样本中蛋白质的含量。
通过对不同样本的测定,可以比较不同组织或不同处理条件下蛋白质含量的差异。
同时,通过与蛋白质标准溶液的比较,可以验证测定方法的准确性和可靠性。
实验结果的解读应根据具体情况进行。
如果是在科学研究中,可以将结果与已有文献进行比较,探讨其在生物体功能或代谢方面的意义。
如果是在食品加工中,可以根据蛋白质含量的测定结果来评估食品的营养价值和质量。
蛋白质含量测定实验报告
蛋白质含量测定实验报告
实验目的:测定样品中蛋白质的含量。
实验原理:
蛋白质是生物体中重要的营养成分,其含量的测定对于食品、生物化学研究等都具有重要意义。
本实验采用双氧水法测定蛋白质的含量。
双氧水法原理是将双氧水与被测物中的蛋白质发生氧化反应,生成到氨基酸的过氧化氢,过氧化氢再与钼酸铵生成深蓝色化合物。
根据形成的深蓝色化合物的吸光度与蛋白质的含量成正比关系,可以通过比色法测定样品中蛋白质的含量。
实验步骤:
1. 将待测样品和标准蛋白质溶液分别取1ml到不同的试管中。
2. 加入4ml双氧水试剂,混匀。
3. 在室温下放置20分钟。
4. 加入适量的硫酸试剂,混匀。
5. 在60℃水浴锅中恒温加热10分钟。
6. 冷却至室温。
7. 分别将标准蛋白质溶液和待测样品溶液吸取1ml到比色皿中。
8. 用比色皿中的溶液分别测定吸光度,以比色皿中双氧水试剂为参比。
9. 根据标准曲线计算待测样品中蛋白质的含量。
实验结果:
根据吸光度测定值和标准曲线得到待测样品中蛋白质的含量为X mg/ml。
实验讨论:
蛋白质的含量测定是一项常见的实验,通过双氧水法可以快速准确地测定样品中蛋白质的含量。
在实验过程中,应注意操作的准确性和实验条件的控制,避免测定误差的产生。
此外,标准曲线的制备和测定结果的分析也是关键步骤,应进行仔细的处理和验证。
实验结论:
经过测定,得到待测样品中蛋白质的含量为X mg/ml。
蛋白质测定的实验报告
蛋白质测定的实验报告蛋白质测定的实验报告引言:蛋白质是生命体内重要的组成部分,对于维持生命活动起着重要作用。
因此,准确测定蛋白质的含量对于生物学研究和医学诊断具有重要意义。
本实验旨在通过两种常用的蛋白质测定方法——布拉德福法和BCA法,来测定未知蛋白质溶液的含量,并比较两种方法的优缺点。
实验材料和方法:实验所需材料包括:布拉德福试剂盒、BCA试剂盒、未知蛋白质溶液、标准蛋白质溶液、比色皿、吸光度计等。
实验步骤如下:1. 准备工作:将布拉德福试剂盒和BCA试剂盒从冰箱中取出,恢复至室温。
2. 制备标准曲线:分别取不同浓度的标准蛋白质溶液,加入相应的试管中,然后按照试剂盒说明书的方法进行反应,最后测定吸光度。
3. 测定未知样品:将未知蛋白质溶液加入比色皿中,然后按照试剂盒说明书的方法进行反应,最后测定吸光度。
4. 计算蛋白质浓度:根据标准曲线上的吸光度值,通过线性回归计算未知蛋白质溶液的浓度。
实验结果:经过实验测定,我们得到了未知蛋白质溶液的浓度。
使用布拉德福法测定的结果为X g/L,而使用BCA法测定的结果为Y g/L。
讨论:布拉德福法和BCA法是常用的蛋白质测定方法,它们各自有着优缺点。
布拉德福法是一种基于蛋白质与染料结合的方法。
其优点是操作简单,结果稳定可靠。
然而,布拉德福法对于某些蛋白质可能存在的干扰物敏感,因此在选择试剂盒时需要根据具体样品的特点进行选择。
此外,布拉德福法对于低浓度的蛋白质测定不够敏感,因此在测定低浓度样品时需要进行稀释。
BCA法是一种基于蛋白质与铜离子的还原反应的方法。
其优点是对于大部分蛋白质都具有较好的灵敏度和特异性。
此外,BCA法在测定低浓度样品时表现出较好的线性关系,因此在测定低浓度样品时更为适用。
然而,BCA法对于一些干扰物,如还原剂和某些金属离子,也较为敏感,因此在实验操作时需要注意。
综上所述,布拉德福法和BCA法都是常用的蛋白质测定方法,它们各有优劣。
在实际应用中,我们需要根据具体样品的特点和测定的目的选择合适的方法。
蛋白质含量测定实验报告
一、实验目的1. 理解并掌握考马斯亮蓝法测定蛋白质含量的原理和操作步骤。
2. 学习使用分光光度计进行比色分析。
3. 通过实验,掌握蛋白质含量测定的实际操作,提高实验技能。
二、实验原理考马斯亮蓝法是一种快速、简便的蛋白质定量方法。
该法基于蛋白质与考马斯亮蓝G-250染料的结合,蛋白质含量与染料结合程度呈线性关系。
通过测定溶液在特定波长下的吸光度,可以计算出蛋白质的含量。
实验原理:蛋白质分子中的肽键在碱性条件下能与考马斯亮蓝G-250染料发生结合,形成有色的复合物。
该复合物在特定波长下有特征性吸收峰,其吸光度与蛋白质含量呈线性关系。
三、实验材料1. 蛋白质标准品(如牛血清白蛋白)。
2. 考马斯亮蓝G-250染料。
3. 6.0mol/L NaOH溶液。
4. 双蒸水。
5. 分光光度计。
6. 试管、移液器、吸管等实验器材。
四、实验步骤1. 标准曲线制作:将不同浓度的蛋白质标准品配制成溶液,分别加入考马斯亮蓝G-250染料,在特定波长下测定吸光度,绘制标准曲线。
2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。
3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。
五、实验结果与分析1. 标准曲线制作:根据实验数据,绘制标准曲线,得出线性方程。
2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。
3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。
实验结果显示,待测样品中的蛋白质含量为XX g/L。
六、实验讨论1. 实验过程中,应注意操作规范,避免污染和误差。
2. 在制作标准曲线时,应选择合适的浓度范围,保证线性关系良好。
3. 待测样品的稀释倍数应根据实际浓度选择,以保证在检测范围内。
4. 在测定吸光度时,应注意仪器校准和操作,避免误差。
七、实验总结本次实验通过考马斯亮蓝法测定了待测样品中的蛋白质含量,实验结果准确可靠。
蛋白含量测定实验报告
一、实验目的1. 掌握双缩脲试剂法测定蛋白质含量的原理和方法;2. 熟悉实验操作步骤,提高实验技能;3. 了解蛋白质含量测定的意义和实际应用。
二、实验原理双缩脲试剂法是一种常用的蛋白质定量方法,其原理是蛋白质分子中的肽键在碱性条件下与铜离子反应,生成紫红色络合物。
紫红色络合物的吸光度与蛋白质含量在一定范围内呈线性关系,通过测定吸光度,可以计算出蛋白质的含量。
三、实验材料与仪器1. 实验材料:- 蛋白质标准品- 双缩脲试剂A:硫酸铜溶液- 双缩脲试剂B:酒石酸钾钠溶液- 0.1mol/L氢氧化钠溶液- 0.9%氯化钠溶液- 试管、移液器、分光光度计、天平等2. 实验仪器:- 双缩脲试剂瓶- 磁力搅拌器- 水浴锅- 721型分光光度计四、实验步骤1. 配制标准蛋白质溶液:准确称取一定量的蛋白质标准品,用0.1mol/L氢氧化钠溶液溶解,配制成一定浓度的标准蛋白质溶液。
2. 混合试剂:将双缩脲试剂A和双缩脲试剂B按照一定比例混合,配制成双缩脲试剂。
3. 设置实验组:取若干支试管,分别加入不同浓度的标准蛋白质溶液、待测蛋白质溶液和0.9%氯化钠溶液。
4. 添加试剂:向每组试管中加入适量的双缩脲试剂,混匀。
5. 水浴加热:将试管放入水浴锅中,加热至60℃,保持10分钟。
6. 冷却:取出试管,置于室温下冷却。
7. 测定吸光度:用721型分光光度计在540nm波长下测定吸光度。
8. 绘制标准曲线:以标准蛋白质溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
9. 计算待测蛋白质含量:根据待测蛋白质溶液的吸光度,从标准曲线上查得相应的蛋白质浓度,计算待测蛋白质含量。
五、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制标准曲线。
2. 待测蛋白质含量计算:根据待测蛋白质溶液的吸光度,从标准曲线上查得相应的蛋白质浓度,计算待测蛋白质含量。
六、讨论与心得1. 实验过程中,要注意实验操作的准确性,避免误差产生。
2. 双缩脲试剂法测定蛋白质含量具有操作简便、快速、灵敏等优点,但在实际应用中,要注意选择合适的试剂和仪器,以保证实验结果的准确性。
测蛋白质含量实验报告
测蛋白质含量实验报告测蛋白质含量实验报告蛋白质是生物体内最基本的组成部分之一,具有重要的生理功能。
因此,准确测定蛋白质含量对于生物学研究和食品科学等领域具有重要意义。
本文将介绍一种常用的测定蛋白质含量的方法——布拉德福法,并通过实验结果探讨其应用范围和局限性。
布拉德福法是一种基于蛋白质与染料结合的原理来测定蛋白质含量的方法。
该方法利用染料与蛋白质之间的亲和作用,通过测定染料的吸光度来间接测定蛋白质的含量。
在实验中,我们使用了布拉德福试剂和标准蛋白质溶液,以及待测样品。
首先,我们需要制备一系列不同浓度的标准蛋白质溶液。
通过将已知浓度的标准蛋白质与布拉德福试剂混合,形成一种混合物。
然后,利用分光光度计测定该混合物的吸光度,并绘制标准曲线。
标准曲线的横坐标为标准蛋白质的浓度,纵坐标为吸光度。
通过测定待测样品的吸光度,并利用标准曲线,我们可以计算出待测样品中蛋白质的浓度。
在实验过程中,我们发现布拉德福法具有一定的优点和局限性。
首先,该方法操作简单,结果可靠。
布拉德福试剂与蛋白质结合后会发生颜色变化,通过测定吸光度可以准确测定蛋白质的含量。
其次,该方法适用范围广。
无论是高浓度还是低浓度的蛋白质溶液,布拉德福法都可以进行测定。
此外,该方法对于不同种类的蛋白质也适用。
无论是动物蛋白质还是植物蛋白质,布拉德福法都可以准确测定其含量。
然而,布拉德福法也存在一些局限性。
首先,该方法对于某些特定的蛋白质可能不适用。
某些蛋白质的氨基酸组成可能会影响其与布拉德福试剂的结合情况,从而导致测定结果的不准确。
其次,该方法对于含有干扰物的样品可能会出现误差。
某些样品中可能存在与蛋白质结合的其他物质,这些物质可能会干扰布拉德福试剂与蛋白质的结合,导致测定结果的偏差。
综上所述,布拉德福法是一种常用的测定蛋白质含量的方法,具有操作简单、适用范围广的优点。
然而,该方法也存在一定的局限性,对于某些特定的蛋白质和含有干扰物的样品可能会出现误差。
测蛋白质含量实验报告
测蛋白质含量实验报告
《测蛋白质含量实验报告》
摘要:本实验旨在通过测定不同食物中蛋白质含量的实验,探讨不同食物的营养成分。
实验结果表明,豆类食物中蛋白质含量最高,而糖类食物中蛋白质含量最低。
这一结果对于人们合理膳食具有一定的指导意义。
引言:蛋白质是人体生命活动所必需的营养成分之一,它对于维持人体正常的生理功能具有重要作用。
因此,了解不同食物中蛋白质含量的差异,对于合理膳食具有重要意义。
实验方法:本实验选取了豆类、肉类、奶类和糖类食物四种常见食物,通过酸水解法测定其蛋白质含量。
具体操作步骤为:首先将不同食物样品分别加入硫酸和酚酸,然后在高温下进行水解反应,最后用比色法测定水解产物中蛋白质的含量。
实验结果:经过实验测定,豆类食物中蛋白质含量最高,达到25%,其次是肉类食物,含量在20%左右;奶类食物蛋白质含量在15%左右;而糖类食物中蛋白质含量最低,仅为5%左右。
讨论:通过本实验结果可以看出,不同食物中蛋白质含量存在明显差异。
豆类食物中蛋白质含量最高,因此适合作为蛋白质的补充来源;而糖类食物中蛋白质含量较低,不宜作为蛋白质的主要来源。
因此,人们在日常饮食中应根据实际情况选择不同的食物,以保证蛋白质的摄入量。
结论:本实验通过测定不同食物中蛋白质含量,得出了豆类食物中蛋白质含量最高,而糖类食物中蛋白质含量最低的结论。
这一结果对于人们合理膳食具有一定的指导意义,有助于人们更加科学地选择食物,保证蛋白质的摄入量,维
持身体健康。
蛋白质含量测定实验报告
蛋白质含量测定实验报告一、实验目的。
本实验旨在通过测定食物中蛋白质含量的方法,掌握蛋白质的测定原理和操作技能,加深对蛋白质的认识,为日常饮食提供科学依据。
二、实验原理。
本实验采用了比色法测定蛋白质含量。
比色法是根据蛋白质与双酚类物质在碱性条件下生成紫色化合物的原理,利用紫外可见光谱法测定其吸光度,从而计算出蛋白质的含量。
三、实验步骤。
1. 样品制备,将食物样品研磨成粉末状。
2. 蛋白质提取,取适量样品加入提取液,振荡离心,收集上清液。
3. 比色反应,将提取液与试剂混合,待反应完成后进行测定。
4. 吸光度测定,用紫外可见光谱仪测定吸光度。
5. 计算蛋白质含量,根据吸光度值计算出样品中蛋白质的含量。
四、实验结果。
经过实验测定,得出食物样品中蛋白质含量为Xg/100g。
五、实验分析。
通过本次实验,我们了解了蛋白质含量测定的原理和方法,掌握了比色法测定蛋白质含量的操作技能。
同时,也发现不同食物样品中蛋白质含量的差异,为我们科学合理地进行日常饮食提供了参考。
六、实验总结。
蛋白质是人体生命活动的重要组成部分,合理摄入足够的蛋白质对维持身体健康至关重要。
通过本次实验,我们不仅学会了测定蛋白质含量的方法,也增加了对蛋白质的认识,为我们的健康饮食提供了科学依据。
七、实验感想。
本次实验让我深刻认识到蛋白质在日常饮食中的重要性,也让我对科学实验有了更深的理解和体会。
希望通过今后的学习和实践,能够更好地运用所学知识,为自己和他人的健康提供帮助。
八、参考文献。
1. 《食品分析实验指导》,XXX,XXX出版社,XXXX年。
2. 《食品化学与分析》,XXX,XXX出版社,XXXX年。
以上就是本次蛋白质含量测定实验的报告内容,希望对大家有所帮助。
蛋白质的测定实验报告
蛋白质的测定实验报告蛋白质的测定实验报告引言:蛋白质是生命体内最重要的有机物之一,它在细胞结构、酶催化、免疫功能等方面起着关键作用。
因此,准确测定蛋白质的含量对于生物学研究和临床诊断具有重要意义。
本实验旨在通过测定蛋白质的含量,了解其在生物体内的分布和功能。
实验材料与方法:1. 实验材料:蛋白质标准品、样品、二硫苏糖溶液、布鲁斯基试剂、NaOH溶液、硫酸、显色剂。
2. 实验仪器:分光光度计、离心机、比色皿、移液管等。
3. 实验步骤:a. 制备标准曲线:取不同浓度的蛋白质标准品,分别加入二硫苏糖溶液和布鲁斯基试剂,使其发生显色反应。
使用分光光度计测定吸光度,并绘制标准曲线。
b. 测定样品:取待测样品,加入二硫苏糖溶液和布鲁斯基试剂,使其发生显色反应。
使用分光光度计测定吸光度,并根据标准曲线计算样品中蛋白质的含量。
结果与讨论:经过实验测定,得到了蛋白质标准曲线,并通过该曲线计算了待测样品中蛋白质的含量。
实验结果显示,样品A中蛋白质含量为10mg/mL,样品B中蛋白质含量为15mg/mL。
蛋白质的测定实验是基于布鲁斯基法的原理进行的。
布鲁斯基试剂与蛋白质中的酪氨酸残基发生酸性条件下的酮醇互变反应,生成紫色化合物。
该化合物在特定波长下具有最大吸光度,通过测定吸光度可以间接测定蛋白质的含量。
实验中使用的二硫苏糖溶液起到还原剂的作用,将蛋白质中的二硫键还原为巯基,使其能够与布鲁斯基试剂反应。
NaOH溶液用于调节反应体系的酸碱度,保证反应能够顺利进行。
实验中的离心机起到了样品与试剂的混合作用,使反应能够充分进行。
比色皿则用于容纳反应液体,方便使用分光光度计测定吸光度。
蛋白质的测定实验中需要注意的是,样品的选择和处理。
样品的选择应该具有代表性,并且需要根据实际需要进行适当的稀释或浓缩。
同时,样品的处理过程中要避免蛋白质的降解和损失,以保证测定结果的准确性。
本实验中使用的蛋白质标准品是已知浓度的蛋白质溶液,通过与样品一同进行测定,可以得到样品中蛋白质的含量。
蛋白质含量的测定实验报告
蛋白质含量的测定实验报告一、实验目的。
本实验旨在通过测定食品中蛋白质含量的方法,掌握蛋白质含量的测定原理和操作技能,为食品质量的检验提供科学依据。
二、实验原理。
蛋白质含量的测定方法有多种,本实验采用的是经典的凯氏试剂法。
该方法是利用碱性铜溶液与蛋白质中的蛋白质结合成紫色沉淀,通过比色计算出蛋白质含量。
三、实验仪器和试剂。
1. 仪器,量筒、烧杯、比色皿、分析天平等。
2. 试剂,凯氏试剂、蛋白质标准品、硫酸铜溶液、碱液等。
四、实验步骤。
1. 样品制备,将待测样品称取适量,加入适量的硫酸铜溶液,摇匀后放置一段时间。
2. 沉淀分离,将沉淀转移到预先称量的滤纸上,用水洗涤至无碱性铜试剂残留。
3. 沉淀溶解,将沉淀与少量硫酸铜溶液混合,加入碱液溶解。
4. 比色计算,用比色皿盛放试液,通过比色计算出蛋白质含量。
五、实验结果。
通过实验测得样品的蛋白质含量为XXg/100g。
六、实验分析。
根据实验结果,可以初步判断样品的蛋白质含量符合标准要求。
但需要注意的是,蛋白质含量的测定结果受到多种因素的影响,如样品制备不均匀、操作不规范等,因此在实际应用中还需要结合其他分析方法进行综合判断。
七、实验结论。
本实验通过凯氏试剂法测定了样品的蛋白质含量,结果表明样品的蛋白质含量符合标准要求。
但仍需注意实验操作的规范性,以确保结果的准确性和可靠性。
八、实验总结。
通过本次实验,我们掌握了蛋白质含量的测定方法和操作技能,提高了对食品质量检验的能力,为今后的实验和工作积累了经验。
以上就是本次蛋白质含量的测定实验报告,希望对大家有所帮助。
测蛋白质含量实验报告
测蛋白质含量实验报告测蛋白质含量实验报告引言:蛋白质是构成生物体的重要组成部分,对于维持生命活动具有重要作用。
因此,准确测定蛋白质的含量对于生物学、医学等领域的研究具有重要意义。
本实验旨在通过测定蛋白质含量的方法,探究不同样品中蛋白质的含量差异。
实验方法:1. 准备不同浓度的蛋白质标准溶液,分别为0.1 mg/mL、0.2 mg/mL、0.3mg/mL、0.4 mg/mL和0.5 mg/mL。
2. 取一定量的不同样品,如鸡蛋清、牛奶、豆浆等。
3. 将标准溶液和样品分别加入试管中,每个样品和标准溶液各加入相同体积。
4. 加入适量的Bradford试剂,轻轻摇匀。
5. 在室温下孵育15分钟,使试剂与蛋白质反应。
6. 使用分光光度计,以595 nm波长测量吸光度。
实验结果:通过测量吸光度,得到了不同标准溶液和样品的吸光度值,如下表所示:标准溶液浓度(mg/mL)吸光度0.1 0.220.2 0.340.3 0.470.4 0.610.5 0.75样品吸光度鸡蛋清 0.39牛奶 0.52豆浆 0.45讨论:根据实验结果,可以看出标准溶液的吸光度随浓度的增加而增加,呈现出明显的线性关系。
而样品的吸光度值则介于标准溶液的吸光度之间,说明样品中也含有一定量的蛋白质。
在本实验中,我们使用了Bradford试剂进行蛋白质含量的测定。
Bradford试剂的原理是根据蛋白质与染料之间的结合反应,使染料的吸收峰位发生变化,从而测定蛋白质的含量。
由于Bradford试剂对蛋白质有较高的选择性,且反应时间短,因此被广泛应用于蛋白质含量的测定。
然而,需要注意的是,Bradford试剂对于不同蛋白质的反应性可能存在差异。
一些特殊的蛋白质,如硫醇蛋白质、胶原蛋白等,可能会导致测定结果的误差。
因此,在具体实验中,需要根据不同样品的特点选择合适的蛋白质测定方法。
此外,实验结果还表明不同样品中蛋白质的含量存在差异。
鸡蛋清中的蛋白质含量较低,而牛奶和豆浆中的蛋白质含量较高。
蛋白质的定量测定实验报告
蛋白质的定量测定实验报告实验目的:本实验旨在学习如何通过定量分析方法来测定蛋白质的含量,并了解其原理与步骤,掌握实验技能。
实验原理:本实验采用了伯威尔法来测定蛋白质的含量,其原理是使用布莱德福试剂与蛋白质反应,得到紫色化合物,再通过光度计量测光密度,最后根据光密度与标准曲线得出蛋白质含量。
实验步骤:1. 制备标准蛋白质溶液:取不同浓度的酪蛋白标准品称取相应的质量,加入去离子水中定容制成相应浓度的标准蛋白质溶液。
2. 取待测样品加入少许的生理盐水加以均匀悬浮后,以PBS (Phosphate Buffer Saline)定容到一定的浓度。
3. 取10ml的试管,依次加入不同浓度的标准蛋白质溶液分别制成标准曲线,其中最高的浓度为2mg/ml。
4. 在本次实验中样品大部分成分已知,加入生理盐水的原因是为了将待测浓度控制在标准曲线范围内,以保证准确度,同样的超出标准曲线的部分需要稀释。
5. 向标准曲线上各试管加入1ml的布莱德福试剂,摇晃后静置5分钟。
6. 在550nm波长下使用光度计测光密度。
7. 记录测得的各标准点吸光值,并作图得到标准曲线。
8. 根据待测样品的吸光值和标准曲线,计算出样品中的蛋白质浓度。
实验结果:根据标准曲线,以及不同待测样品的吸光值,我们成功计算并得出各样品中蛋白质的浓度如下:样品编号蛋白质浓度(mg/ml)1 0.82 1.23 0.54 0.65 0.9实验结论:通过以上实验步骤,我们成功运用伯威尔法测定出了待测样品中蛋白质的含量。
实验结果表明,实验仪器操作规范,数据准确可靠。
蛋白质是生命体中重要的物质,其定量测定对于生物化学研究至关重要。
此次实验,我们不仅掌握了具体测定方法,而且也深化了我们对蛋白质含量分析的理解和认识。
蛋白质测定的实验报告
一、实验目的1. 掌握蛋白质测定的原理和方法。
2. 熟悉实验操作步骤和注意事项。
3. 通过实验,提高实验技能和数据分析能力。
二、实验原理蛋白质是生物体内重要的生物大分子,具有多种生物学功能。
蛋白质的测定方法主要有凯氏定氮法、双缩脲法、比色法等。
本实验采用双缩脲法测定蛋白质含量。
双缩脲法基于蛋白质分子中的肽键与铜离子反应生成紫红色络合物,其颜色深浅与蛋白质含量成正比。
通过测定该络合物在特定波长下的吸光度,可以计算出蛋白质含量。
三、实验材料与试剂1. 实验材料:鸡蛋清、牛奶、豆奶等蛋白质样品。
2. 试剂:(1)双缩脲试剂A:称取硫酸铜0.1g,溶解于100ml蒸馏水中。
(2)双缩脲试剂B:称取酒石酸钾钠0.5g,溶解于100ml蒸馏水中,加入10g 氢氧化钠。
(3)标准蛋白质溶液:称取牛血清白蛋白0.1g,溶解于100ml蒸馏水中,配制成1mg/ml的标准蛋白质溶液。
(4)0.1mol/L氢氧化钠溶液。
四、实验仪器1. 电子天平2. 移液器3. 721分光光度计4. 烧杯5. 试管6. 滴管五、实验步骤1. 样品制备:取适量蛋白质样品,加入蒸馏水稀释至一定浓度。
2. 标准曲线绘制:分别取0、0.2、0.4、0.6、0.8、1.0ml标准蛋白质溶液于试管中,加入2ml双缩脲试剂A,摇匀,静置2min。
然后加入2ml双缩脲试剂B,摇匀,静置2min。
以蒸馏水为空白,于540nm波长下测定吸光度。
以蛋白质浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
3. 样品测定:分别取0.2ml样品溶液于试管中,按照步骤2的操作进行测定。
以蒸馏水为空白,于540nm波长下测定吸光度。
4. 结果计算:根据标准曲线,计算样品中蛋白质含量。
六、实验结果与分析1. 标准曲线绘制:根据实验数据,绘制标准曲线,计算相关系数R²,验证标准曲线的线性关系。
2. 样品测定:根据标准曲线,计算样品中蛋白质含量,并与理论值进行比较。
检测蛋白质实验报告
一、实验目的1. 掌握蛋白质的检测方法;2. 了解不同蛋白质检测方法的原理和应用;3. 培养实验操作技能,提高实验数据分析能力。
二、实验原理蛋白质是生物体内最重要的生物大分子之一,具有多种功能。
蛋白质检测方法主要包括比色法、电泳法、质谱法等。
本实验采用比色法和电泳法对蛋白质进行检测。
1. 比色法:根据蛋白质与特定试剂发生颜色反应的原理,通过测定颜色反应的强度来检测蛋白质含量。
常用的比色法有双缩脲法、考马斯亮蓝法等。
2. 电泳法:利用蛋白质分子在电场中迁移速度的差异,将其分离和鉴定。
常用的电泳法有SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)、SDS-聚丙烯酰胺凝胶垂直板电泳等。
三、实验材料与仪器1. 实验材料:(1)蛋白质样品:鸡蛋清、牛肉、大豆等;(2)试剂:双缩脲试剂、考马斯亮蓝G-250、SDS、丙烯酰胺、甲叉双丙烯酰胺、三羟甲基氨基甲烷(Tris)、氢氧化钠、硫酸铜、氯化钠、氯化钾、甘氨酸等;(3)仪器:电子天平、离心机、电泳仪、凝胶成像系统、比色计等。
2. 仪器:(1)电子天平;(2)离心机;(3)电泳仪;(4)凝胶成像系统;(5)比色计。
四、实验步骤1. 比色法检测蛋白质含量(1)双缩脲法:取一定量的蛋白质样品,加入双缩脲试剂,在特定波长下测定吸光度,计算蛋白质含量。
(2)考马斯亮蓝法:取一定量的蛋白质样品,加入考马斯亮蓝G-250试剂,在特定波长下测定吸光度,计算蛋白质含量。
2. 电泳法检测蛋白质(1)SDS-PAGE:配制SDS-PAGE凝胶,将蛋白质样品加入凝胶孔中,通电使蛋白质分离。
分离后的蛋白质条带通过凝胶成像系统观察和记录。
(2)SDS-聚丙烯酰胺凝胶垂直板电泳:配制SDS-聚丙烯酰胺凝胶垂直板,将蛋白质样品加入凝胶孔中,通电使蛋白质分离。
分离后的蛋白质条带通过凝胶成像系统观察和记录。
五、实验结果与分析1. 比色法检测结果通过双缩脲法和考马斯亮蓝法对蛋白质样品进行检测,结果显示蛋白质含量在预期范围内。
蛋白质的测定实验报告
一、实验目的1. 掌握蛋白质的测定原理和方法;2. 学会使用双缩脲试剂和凯氏定氮法测定蛋白质含量;3. 了解蛋白质在生物体中的重要作用。
二、实验原理蛋白质是由氨基酸通过肽键连接而成的大分子化合物,是生物体的重要组成部分。
蛋白质的测定方法有很多,本实验主要介绍双缩脲试剂法和凯氏定氮法。
1. 双缩脲试剂法:蛋白质分子中的肽键在碱性条件下与铜离子反应,生成紫红色络合物。
根据络合物颜色的深浅,可以测定蛋白质的含量。
2. 凯氏定氮法:蛋白质分子中的氮含量相对稳定,约为16%。
通过测定样品中的氮含量,可以计算出蛋白质的含量。
三、实验材料与仪器1. 实验材料:鸡蛋清、硫酸铵、氯化钠、双缩脲试剂、凯氏定氮试剂、蒸馏水、滴定管、试管、烧杯、电炉、天平等。
2. 仪器:双缩脲比色计、凯氏定氮仪、分析天平、移液管、滴定管、酒精灯等。
四、实验步骤1. 双缩脲试剂法测定蛋白质含量(1)取一定量的鸡蛋清溶液,加入双缩脲试剂,观察颜色变化。
(2)用双缩脲比色计测定吸光度。
(3)根据标准曲线计算蛋白质含量。
2. 凯氏定氮法测定蛋白质含量(1)取一定量的鸡蛋清溶液,加入硫酸铵和氯化钠,混匀。
(2)将混合液转移到凯氏烧瓶中,加入硫酸和硫酸铜,加热消化。
(3)将消化液转移到蒸馏瓶中,加入过氧化氢和氢氧化钠,进行蒸馏。
(4)收集蒸馏液,用滴定管滴定剩余的酸液。
(5)根据滴定结果计算氮含量,进而计算出蛋白质含量。
五、实验结果与分析1. 双缩脲试剂法测定蛋白质含量通过双缩脲比色计测定吸光度,得到蛋白质含量为x g/L。
2. 凯氏定氮法测定蛋白质含量通过滴定计算,得到氮含量为y g/L,进而计算出蛋白质含量为z g/L。
六、实验结论1. 通过双缩脲试剂法和凯氏定氮法,可以测定蛋白质含量。
2. 蛋白质在生物体中具有重要作用,是生命活动的基础。
3. 本实验操作简便,结果可靠,为蛋白质的测定提供了有效方法。
七、注意事项1. 在进行双缩脲试剂法测定时,应确保试剂的准确性,避免误差。
测蛋白质含量实验报告
一、实验目的1. 熟悉蛋白质含量测定的原理和方法;2. 掌握双缩脲法和凯氏定氮法测定蛋白质含量的操作步骤;3. 了解不同方法测定蛋白质含量的优缺点;4. 培养实验操作能力和数据处理能力。
二、实验原理1. 双缩脲法:蛋白质分子中含有大量彼此相连的肽键(-CO-NH-),在碱性溶液中能与Cu2+发生双缩脲反应,生成紫红色络合物。
此反应和两个尿素分子缩合后生成的双缩脲(H2N-OC-NH-CO-NH2)在碱性溶液中与铜离子作用形成紫红色的反应相似,故称之为双缩脲反应。
这种紫红色络合物在540nm处的吸光度与蛋白质含量在一定范围内呈正比关系。
2. 凯氏定氮法:蛋白质中的氮含量相对稳定,约为16%左右。
通过凯氏定氮法测定样品中的氮含量,再乘以 6.25,即可得到蛋白质含量。
该方法包括样品的消化、蒸馏、滴定等步骤。
三、实验材料与仪器1. 实验材料:鸡蛋清、牛肉、花生、大豆、玉米粉等蛋白质样品;标准蛋白质溶液;NaOH溶液;双缩脲试剂;凯氏定氮试剂等。
2. 实验仪器:分光光度计、电子天平、移液器、试管、锥形瓶、凯氏烧瓶、电炉、蒸馏装置、滴定管等。
四、实验步骤1. 双缩脲法(1)配制标准蛋白质溶液:准确称取一定量的标准蛋白质,用蒸馏水溶解并定容至100ml,得到浓度为1mg/ml的标准蛋白质溶液。
(2)制备样品溶液:准确称取一定量的蛋白质样品,用蒸馏水溶解并定容至10ml,得到浓度为0.1mg/ml的样品溶液。
(3)测定吸光度:分别取标准蛋白质溶液和样品溶液各1ml,加入2ml双缩脲试剂,混匀后放置10分钟,用分光光度计在540nm处测定吸光度。
2. 凯氏定氮法(1)样品消化:准确称取一定量的蛋白质样品,加入适量的浓硫酸和硫酸钾,放入凯氏烧瓶中,加热消化至无色透明。
(2)蒸馏:将消化后的溶液转移到蒸馏装置中,加入适量的浓氢氧化钠溶液,加热蒸馏,用硼酸溶液吸收蒸馏出的氨气。
(3)滴定:待吸收完全后,用0.1mol/L盐酸标准溶液滴定至终点,记录消耗的盐酸体积。
考马斯亮蓝法测蛋白质含量实验报告
一、实验目的1. 熟悉考马斯亮蓝法测定蛋白质含量的基本原理和方法。
2. 掌握实验操作步骤,提高实验技能。
3. 学习利用考马斯亮蓝法测定蛋白质含量的方法,并分析实验结果。
二、实验原理考马斯亮蓝法是一种常用的蛋白质定量方法,其原理基于染料结合法。
在一定条件下,考马斯亮蓝G-250染料与蛋白质发生结合,形成蛋白质-染料复合物。
该复合物在595nm波长下的光吸收值与蛋白质浓度成正比。
通过测定吸光度值,可以计算出样品中的蛋白质含量。
三、实验材料与仪器1. 实验材料:- 标准蛋白质溶液(如牛血清白蛋白,BSA)- 待测蛋白质样品- 考马斯亮蓝G-250染料- 95%乙醇- 磷酸- 超纯水- 紫外分光光度计- 移液枪- 烧杯- 玻璃杯- 比色皿2. 实验步骤:1. 配制考马斯亮蓝G-250染液:称取0.01g考马斯亮蓝G-250,溶于5mL 95%乙醇中,加入85% (m/V) 磷酸10mL,最后用超纯水定容至100mL,装入棕色瓶中保存。
2. 配制标准蛋白质溶液:称取适量BSA,用超纯水配制成1mg/mL的标准溶液。
3. 样品处理:取适量待测蛋白质样品,用超纯水稀释至适当浓度。
4. 比色测定:a. 准备一系列标准蛋白质溶液,分别加入5mL考马斯亮蓝G-250染液,充分混匀,室温下放置10min。
b. 将上述溶液倒入比色皿,于595nm波长下测定吸光度值,记录数据。
c. 将待测蛋白质样品按照上述步骤进行处理,测定吸光度值。
5. 绘制标准曲线:以蛋白质浓度为横坐标,吸光度值为纵坐标,绘制标准曲线。
6. 计算待测蛋白质样品的蛋白质含量:将待测蛋白质样品的吸光度值带入标准曲线,计算蛋白质含量。
四、实验结果与分析1. 标准曲线:根据实验数据,绘制标准曲线,线性关系良好。
2. 待测蛋白质样品的蛋白质含量:将待测蛋白质样品的吸光度值带入标准曲线,计算得到蛋白质含量为XX mg/mL。
五、实验讨论1. 考马斯亮蓝法是一种快速、简便、灵敏的蛋白质定量方法,广泛应用于生物、医药、食品等领域。
蛋白质含量的测定实验报告
蛋白质含量的测定实验报告蛋白质含量的测定实验报告引言:蛋白质是生命体内最基本的组成部分之一,对于维持生命活动具有重要作用。
因此,准确测定蛋白质含量对于生物学、医学等领域的研究具有重要意义。
本实验旨在通过一系列的实验步骤,准确测定样品中蛋白质的含量。
实验材料和方法:1. 实验材料:- 样品:选择具有高蛋白含量的食品样品,如鸡蛋、牛奶等。
- 试剂:含有蛋白质的测定试剂盒,如BCA试剂盒。
- 标准品:含有已知蛋白质含量的标准品。
2. 实验步骤:1) 样品预处理:将样品加热至一定温度,使蛋白质变性,以便更好地释放出蛋白质。
2) 标准曲线制备:取一系列已知浓度的标准品,按照试剂盒说明书的要求进行处理,制备标准曲线。
3) 样品处理:将经过预处理的样品与试剂盒中的试剂混合,按照说明书的要求进行反应。
4) 光度测定:使用分光光度计测定反应液的吸光度,并与标准曲线进行比较,计算出样品中蛋白质的含量。
结果与讨论:通过实验测定,我们得到了样品中蛋白质的含量。
根据实验数据,我们可以得出以下结论:1. 样品与标准品的比较:通过与标准品的比较,我们可以确定样品中蛋白质的相对含量。
如果样品的吸光度与标准品相近,说明样品中蛋白质含量较高;反之,如果吸光度较低,则说明样品中蛋白质含量较低。
2. 实验误差的影响:在实验过程中,存在一定的误差。
这些误差可能来自于样品的处理过程、试剂的质量以及实验操作的技巧等方面。
因此,在进行实验时,需要注意控制这些误差,以保证测定结果的准确性和可靠性。
3. 实验结果的应用:蛋白质的测定结果可以应用于许多领域。
例如,在食品工业中,可以通过测定食品样品中的蛋白质含量来评估其营养价值;在医学研究中,可以通过测定体液中的蛋白质含量来诊断疾病。
结论:通过本实验,我们成功地测定了样品中蛋白质的含量。
在实验过程中,我们掌握了一系列的实验技巧和操作步骤,并了解了蛋白质测定的原理和应用。
蛋白质的测定对于生物学和医学等领域的研究具有重要意义,通过准确测定蛋白质含量,我们可以更好地理解生命活动的机制,促进科学的发展和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预习实验报告一:蛋白质含量测定方法的研究
一、研究背景
目前常用的有四种蛋白质含量测定方法:凯氏定氮、Folin-酚法、染料结合法、紫外法,最常用的是后三种。
由于实验材料来源的多样性,每种材料的非蛋白干扰因素不尽相同,所以对于同一类甚至同一物质的测定会有不同的方法,在实际工作中应根据实验材料的具体特点来选用合适的测定方法。
二、研究目标
通过实验研究非蛋白干扰因素(核酸、淀粉、脂类等)对不同蛋白质含量测定方法是否有差异影响,再根据结论进一步进行后续实验,最后找到选择合适测定方法的依据。
三、研究策略
对于小麦、玉米或其他谷物制成的样品液,非蛋白干扰因素主要为淀粉和脂类,用后三种方法分别对该样品液进行蛋白含量测定,综合数据,对结果进行分析,是否有差异;对于绿豆芽下胚轴制成的样品液,非蛋白干扰因素主要为核酸,用后三种方法分别对该样品液进行蛋白含量测定,综合数据,对结果进行分析,是否有差异。
四、研究方案及可行性分析
紫外法测定:由于蛋白质中存在着含有共轭双键的酪氨酸和色氨酸,因此蛋白质具有吸收紫外光的性质,吸收高峰在280毫微米波长处。
在此波长范围内,蛋白质溶液的光密度指与其浓度成正比关系,可作定量测定。
技术上有紫外分光光度计支持。
Folin-酚法测定:根据蛋白质侧链基团中的特殊残基进行含量测定,基础是蛋白质中所含的酪氨酸和色氨酸等残基数与蛋白质含量成正比。
Folin-酚试剂由试剂甲(相当于双缩脲试剂)和试剂乙(磷钨酸和磷钼酸混合液)组成,蛋白质中的肽键与试剂甲生成络合物,由于蛋白质中存在含有酚基的氨基酸,络合物可与试剂乙发生反应,反应颜色与蛋白质的含量成正比,从而可以据此测定蛋白质的含量。
染料结合法测定:考马斯亮蓝G-250在游离状态下呈红色,当它与蛋白质结合后变为青色,前者最大光吸收在465nm,后者在595nm。
在一定蛋白质浓度范围内(0-1000μg/ml),蛋白质—色素络合物在595nm波长下的光吸收与蛋白质含量成正比,可用于蛋白质含量的测定。
预期实验结果:对于两种样品液,分别用后三种方法测定蛋白质含量,数据间存在差异,说明非蛋白干扰因素(核酸、淀粉、脂类等)对不同蛋白质含量测定方法有影响,这几种方法都有其存在的价值,不同的实验材料适合不同的测定方法。
五、具体实验设计
实验材料(共同用到):小麦、玉米或其他谷物制成的样品液、绿豆芽下胚轴制成的样品液。
紫外法测定:
1.实验试剂:1mg/ml的标准牛血清蛋白溶液、浓度约为1mg/ml的待测蛋白质溶液。
2.实验仪器:紫外分光光度计、移液管、试管和试管架。
3.实验步骤:
⑴标准曲线的制作
按上表分别向每支试管加入各种试剂,混匀。
选用光程为1㎝的石英比色杯(手拿磨砂面,2/3-3/4),在280nm下测其光密度值(OD280)。
以OD值为纵坐标,蛋白质浓度为横坐标,绘制标准曲线。
⑵待测蛋白溶液的测定
取待测液1ml,加入蒸馏水3ml,混匀,测其OD280然后由标准曲线上查得待测液的蛋白质浓度。
⑶两种样品溶液的蛋白含量测定
将待测溶液稀释至光密度在0.2—2.0之间,在波长260nm和280nm处,分别测出光密度(OD260、OD280)。
计算OD280/OD260的比值后,由紫外分光光度法测定蛋白质含量校正数据表(由于不同的蛋白质和核酸的紫外吸收是不同的,虽然经过校正,测定结果仍存在一定误差)查出校正因子“F”,将F值代入下面的经验公式直接算出该溶液的蛋白质浓度。
公式:蛋白质浓度(mg/ml)=F×(1/d)×OD280×D 式中:OD280为该溶液在280nm 下的紫外吸收、d为石英比色杯的厚度(cm)、D为溶液的稀释倍数
Folin-酚法
1.实验试剂:Folin-酚试剂(试剂甲、试剂乙)、配置的浓度为250μg/ml的牛血清白蛋白标准溶液。
2.实验仪器:722型分光光度计、恒温水浴、具塞刻度试管:15ml×8、小烧杯×2、漏斗及架、分析天平、移液管:0.5 ml×1,1ml×2,5 ml×1、容量瓶:50ml×1、研钵。
3.实验步骤
⑴标准曲线的制作
牛血清白蛋白标准溶液的配制:
取具塞试管6支,按下表加入牛血清白蛋白标准溶液及蒸馏水,以后各加试剂甲5ml(形成络合物),混合后在室温下放置10分钟,再加0.5ml试剂乙(产生蓝色反应),立即混合均匀(这一步速度要快,否则会使显色程度减弱)。
半小时后,以不含蛋白质的1号试管为对照,与其它5支试管内的溶液依次用722型分光光度计于
标准曲线的绘制:以消光值为纵坐标,以牛血清白蛋白含量(μg/ml)为横坐标,绘制标准曲线。
⑵样品测定
称取绿豆芽下胚轴1g于研钵中,加入适当石英砂,匀浆。
转入50ml容量瓶中,定容,过滤,滤液即为样品液。
取具塞试管2支,分别加入样品液1ml,分别加入试剂甲5ml,混匀后放置10min,然后各加试剂乙0.5ml,迅速混匀,室温下放置半小时,于650nm波长下比色,记录消光值,取其平均值完成计算。
4.结果与计算
从标准曲线中查出测定液中蛋白质的含量(μg/ml),然后计算样品中蛋白质的百分含量。
染料结合法测定:
1.实验试剂:牛血清白蛋白、考马斯亮蓝G-250、乙醇、磷酸(85%)。
2.实验仪器:711型或722型分光光度计、离心机、分析天平(万分之一)、药物天平、量筒10ml×1、研钵、烧杯、量瓶10ml×1、刻度吸管:1ml×2,0.1ml×2、具塞刻度试管:10ml×4、漏斗及架、剪刀。
3.实验步骤
⑴标准曲线的制作
0-100μg/ml标准曲线的制作:
取6支试管,按下表数据配置0-100μg/ml牛血清白蛋白溶液各1ml:
准确吸取所配置各管溶液1ml,分别放入10ml具塞试管中,加入5ml考马斯亮蓝G-250蛋白试剂,盖塞,将试管中溶液纵向倒转混合放置2分钟后用10mm光径的比色杯(对
0-100μg/ml标准曲线的制作:
另取6支试管,按下表数据配置0-100μg/ml牛血清白蛋白溶液各1ml:
与前面步骤相同,做出标准曲线。
⑵样品提取液中蛋白质浓度的测定:
称取新鲜绿豆芽下胚轴3g放入研钵中,滴加适量蒸馏水调成匀浆转移至离心管中,再用适量蒸馏水分次洗涤研钵,洗涤液收集于同一离心管中,稍事搅拌,放置半小时至一个小时(充分提取),然后在4000转/分离心20min,弃去沉淀,上清液转入容量瓶,以蒸馏水定容至50ml待测。
测定:吸取提取液1ml(做一个平行),放入具塞试管中,加入5ml考马斯亮蓝G-250蛋白试剂,充分混合,放置2min后用10mm光径的比色杯在595nm下比色,记录消光值,并通过标准曲线查得毫升溶液中蛋白质的含量,以标准曲线1号试管做空白。
4.结果与计算
式中:A为标准曲线上查得的蛋白质含量,单位为μg/ml
时间安排及分工协作:预计一下午完成实验,充分利用时间,两个样品溶液两个人各配一个,对于需要配置一系列浓度梯度的,我们决定一个人配置,另一个人测其光密度值或光吸收值并记录数据,做下一个样品溶液实验时,两个人的工作互换,这样都可以得到锻炼。
六、质疑及相关思考
⑴Folin-酚法和染料结合法测定的实验指导中,关于绿豆芽下胚轴的样品液制作不相同,不知道对于结果是否会造成影响。
⑵过滤掉的物质里面是否还会残留有不可忽略的蛋白质。
⑶非蛋白质因素很多,本次实验主要通过探究核酸、淀粉及脂质对蛋白质含量测定的影响就可说明非蛋白因素对其有影响吗。
预习提问回答:
1.⑴明确目标物质,清楚目标物质与杂物质的主要性质,找到目标物质区别于杂物质的性质。
⑵利用该性质寻找合适的分离技术,尽可能减少操作步骤,减少目标物质损失。
⑶如有要求,还要保证目标物质的活性。
2.⑴分子质量大⑵具有一定的形状,空间结构⑶具有一些特殊的化学性质及物理性质:如特异性、带电性、变性与复性、亲疏水性、还原性及非还原性等
分离纯化时应注意:针对一个特点进行分离纯化时,其它特点可能会对分离纯化的结果产生影响,实际操作时,要综合考虑,不要破坏其结构,保持其活性。
3.使用缓冲液原因:缓冲液可保证体系处于实验所需的稳定pH范围内,有利于问题的研究。
注意问题:⑴考虑缓冲液的缓冲范围⑵选用缓冲对时,考虑缓冲液是否会对反应造成影响,比如会不会成为反应的反应物或产物。