2018年浙江省金华五中八年级上学期期中数学模拟试卷与解析答案
【八年级数学试题】2018年八年级数学上期中模拟试题C(浙教版含答案)
2018年八年级数学上期中模拟试题C(浙教版含答案)
绝密★启用前
期中模拟试卷3(数学浙教版八年级)
考试范围浙教版八年级上册1-3 考试时间1,解得>,故选c.考点不等式组的解集
5.有下列四个命题
①等弧所对的圆周角相等;
②相等的圆周角所对的弧相等;
③平分弦的直径垂直于弦;
④三点确定一个圆.
其中正确的有()
A1个 B2个 c3个 D4个
【答案】A
点评本题主要考查了圆周角的性质定理,以及确定圆的条等圆的基本知识.解题的关键是要注意命题的细节,逐一做出准确的判断.6.如图,在Rt△ABc中,∠B=90°,ED是Ac的垂直平分线,交Ac于点D,交Bc于点E.已知∠BAE=10°,则∠c的度数为()A.30° B.40° c.50° D.60°
【答案】B
【解析】
考点线段垂直平分线的性质.
7.如图,在Rt△ABc中,∠c=90°,直线DE是斜边AB的垂直平分线交Ac于D.若Ac=8,Bc=6,则△DBc的周长为()A.12 B.14 c.16 D.无法计算
【答案】B.
【解析】试题解析∵DE是AB的垂直平分线,
∴DA=DB,
△DBc的周长为cB+cD+DB。
浙江省金华市八年级上学期期中数学试卷
B . -1或2
C . 2
D . -2
8. (2分) 等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是( )
A . 25°
B . 40°
C . 25°或40°
D . 不能确定
9. (2分) 如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为( )
16. (1分) (2018八下·江都月考) 如图,O为矩形ABCD的对角线交点,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,则∠COF=________°.
17. (1分) (2016八上·永城期中) 如图,∠BAC=100°,若MP和NQ分别垂直平分AB和AC,则∠PAQ=________.
11. (2分) (2017九上·鄞州月考) 如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则 的长是( )
A .
B .
C .
D .
12. (2分) 如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2) ﹣1= .
20. (5分) 如图,若∠B=40°,∠C=71°,∠BME=133°,∠EPB=140°,∠F=47°.求∠A,∠D.
21. (10分) (2019九上·马山月考) 如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.
(1) 画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标。
(1) 求证:AB=AC;
(2) 若∠C= ,AB=6,求 的长.
25. (6分) 观察下面的一列式子:
浙江省金华市八年级上学期数学期中考试试卷
浙江省金华市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列数中,比大的实数是()A . -5B . 0C . 3D .2. (2分)二次函数y=ax2+bx+c的图像如图所示,则点Q(a,)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)(-7)2的算术平方根是()A . ±7B . -7C . 7D .4. (2分)以下列各组数为边的三角形不是直角三角形的是()A . 24,10,26B . 5,3,4C . 60,11,61D . 5,6,95. (2分)计算的结果是()A .B . 3C .D . 816. (2分) (2017八下·黄冈期中) 如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A . 10尺B . 11尺C . 12尺D . 13尺7. (2分) (2018·鄂州) 下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m 为常数),当x>0时,y随x增大而增大,则一次函数y=-2 x + m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y = x2中偶函数的个数为2个.A . 1B . 2C . 3D . 48. (2分)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为A .B .C .D . 29. (2分) (2019七下·兰州期中) 我们规定:,例如,则的值为()A .B .C .D .10. (2分) (2017八上·双柏期末) 一次函数y=kx+b,当k<0,b>0时的图象大致位置是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2017八上·郑州期中)无理数的个数有________个12. (2分) (2019八下·诸暨期中) 如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为________.13. (1分) (2018八上·惠山期中) 4的平方根是________.14. (1分)一次函数y=﹣5x+2的图象不经过第________ 象限.15. (1分) (2019八上·禅城期末) 如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用________表示C点的位置.16. (1分) (2020七下·甘南期中) 观察下列各式:(1) =5;(2) =11;(3) =19;…根据上述规律,若 =a,则a=________.三、解答题(一) (共3题;共25分)17. (10分) (2019八上·桐梓期中) 如图:在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)S△ABC=________.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1(其中点A、B、C的对称点分别为点A1、B1、C1).(3)写出点A1、B1、C1的坐标.A1________,B1________,C1________.18. (10分)计算。
浙江省金华市2018-2019学年第一学期八年级期中测试-数学试题卷参考答案及评分建议
AB DC 在△ABF 和△DCE 中, ∠B ∠C , BF CE
∴△ABF≌△DCE(SAS); (2)∵△ABF≌△DCE, ∴∠DEC=∠AFB, ∴OE=OF, ∴△OEF 是等腰三角形. 21.(8 分) 解:(1)设 BD=x,则 CD=28﹣x. ∵AD⊥BC, ∴∠ADB=∠ADC=90° . 在 Rt△ABD 中,由勾股定理,得 AD2=AB2﹣BD2. ∴AD2=252﹣x2. 在 Rt△ACD 中,由勾股定理,得 AD2=AC2﹣CD2. ∴AD2=172﹣(28﹣x)2. ∴252﹣x2=172﹣(28﹣x)2. 解得 x=20,即 BD=20. ∴CD=28﹣20=8. (2)在 Rt△ABD 中,由勾股定理,得 AD AB2 BD2 15 . ∴ S△ABC
2018-2019 学年第一学期八年级期中测试数学试题卷 参考答案及评分建议
一、单选题(共 10 题 共 30 分) 1.D 2.A 3.B 4.D 5.C 6.B 7.B 8.C 9.A 10.A 二、填空题(共 6 题 共 24 分) 11. 26≤t≤36 13. 如果两个角相等,那么这两个角是对顶角 15. 9.5
∠ABE ∠CAF ∵ AB AC ∠BAE ∠ACF
∴△ABE≌△CAF(ASA); ∴BE=AF,AE=CF, 所以 CF+EF=AE+EF=AF=BE
(3) 图④, 解:∵△ABC 的面积为 15,CD=2BD,
1 3 由图 3 中证出△ ABE≌△CAF, ∴△ACF 与△ BDE 的面积之和等于△ ABE 与△ BDE 的面积之和, 即等于△ ABD 的面 积,是 5.
∵DE 是线段 AC 的垂直平分线, ∴EA=EC,即△ EAC 是等腰三角形, ∴∠EAC=∠C, ∴∠AEB=∠EAC+∠C=2∠C, ∵∠B=2∠C, ∴∠AEB=∠B,即△ EAB 是等腰三角形, ∴AE 是△ ABC 是一条特异线. (2)解:如图 2 中,
浙江省金华市八年级上学期数学期中考试试卷
浙江省金华市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·泰兴月考) 下列图形中不是轴对称图形的是()A .B .C .D .2. (2分)(2017·包头) 若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A . 2cmB . 4cmC . 6cmD . 8cm3. (2分) (2016九上·武胜期中) 在平面直角坐标系中,已知点P(2,1)与点Q(2,﹣1),下列描述正确是()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 都在y=2x的图象上4. (2分) (2015七下·农安期中) 小新要制作一个三角形木架,现有两根长度分别为8cm和5cm的木棒,如果要求第三根木棒的长度是整数,第三根木棒的长度可以是()A . 3cmB . 6cmC . 13cmD . 5.5cm5. (2分) (2019八上·衢州期中) 同学们都玩过跷跷板的游戏,如图是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠AOA′=50°,则当跷跷板的另一头B着地时,∠COB′等于()A . 25°B . 50°C . 65°D . 130°6. (2分)小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A . 2;SASB . 4;ASAC . 2;AASD . 4;SAS7. (2分) (2020七下·哈尔滨期中) 如图,在三角形模板ABC中,∠A=60°,D、E分别为AB、AC上的点,则∠1+∠2的度数为()A . 180°B . 200°C . 220°D . 240°8. (2分) (2020八上·石景山期末) 如图,已知∠O ,点 P 为其内一定点,分别在∠O 的两边上找点 A 、B ,使△ PAB 周长最小的是()A . .B .C .D .9. (2分)(2020·马龙模拟) 如图,在△ABC中,AB=4,若将ABC绕点B顺时针旋转60°,点A的对应点为点A′,点C的对应点为点C′,点D为A′B的中点,连接AD则点A的运动路径AB与线段AD、A′D围成的阴影部分的面积是()A . ﹣2B . ﹣4C . ﹣2D . ﹣410. (2分)(2019·十堰) 如图,直线,直线,若,则()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2018·陆丰模拟) 已知一个多边形的内角和与它的外角和正好相等,则这个多边形是________边形.12. (2分)如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添________根木条.13. (1分)若△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,则△ABC的AB边上的高是________.14. (1分) (2015八上·武汉期中) 如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2 ,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为________ cm.15. (1分)(2020·定安模拟) 如图,矩形中,沿着直线折叠,使点落在处,交于,,,则的长是________.16. (1分) (2019八上·孝南月考) 如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AC=8cm,则DE+BD的长为________.三、解答题 (共7题;共34分)17. (5分) (2020八上·永吉期中) 如图,点M是∠AOB的OB边上一点.⑴作∠AOB的平分线OC;⑵作线段OM的垂直平分线,交OC于点N.要求:尺规作图,不写作法,保留作图痕迹.18. (5分) (2020八上·临河月考) 如图,点D是边BC上的中点,连接AD ,过C作,过B作.求证:.19. (5分) (2019七下·阜宁期中) 如图,在中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,求的度数.20. (2分) (2018八上·天台月考) 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)①请画出△ABC关于x轴对称的△A1B1C1 ,并写出点A1的坐标;②请画出△ABC关于y轴对称的△A2B2C2 ,并写出点A2的坐标;(2)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标。
【八年级数学试题】2018初二数学上期中试卷(含答案和解释)
2018初二数学上期中试卷(含答案和解释)
平移.菁优网版权所有
分析(1)根据长方形的性质,易得P得坐标;
(2)根据题意,P的运动速度与移动的时间,可得P运动了8个单位,进而结合长方形的长与宽可得答案;
(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与c上两种情况,分别求解可得答案.
解答解(1)根据长方形的性质,可得AB与轴平行,Bc与x轴平行;
故B的坐标为(4,6);
(2)根据题意,P的运动速度为每秒2个单位长度,
当点P移动了4秒时,则其运动了8个长度单位,
此时P的坐标为(4,4),位于AB上;
(3)根据题意,点P到x轴距离为5个单位长度时,有两种情况
P在AB上时,P运动了4+5=9个长度单位,此时P运动了45秒;
P在c上时,P运动了4+6+4+1=15个长度单位,此时P运动了 =75秒.
点评根据题意,注意P得运动方向与速度,分析各段得时间即可.
26.(8分)(2018 襄阳)为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a 折售票,节假日按团队人数分段定价售票,即人以下(含人)的团队按原价售票;超过人的团队,其中人仍按原价售票,超过人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为1(元),节假日购票款为2(元).1与2之间的函数图象如图所示.(1)观察图象可知a= 6 ; b= 8 ; = 10 ;
(2)直接写出1,2与x之间的函数关系式;。
2018-2019学年最新浙教版八年级数学上学期期中考试模拟测试卷及答案解析-精品试题
八年级(上)期中数学试卷一、选择题(每小题3分,共30分):1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.(x3)4=x7B.x3•x4=x12C.(﹣2x)2=4x2 D.(3x)3=9x33.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性4.关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A.关于直线x=4对称B.关于直线x=2对称C.关于直线y=4对称D.关于直线y=2对称5.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.6.若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A.18或15 B.18 C.15 D.16或177.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形D.斜边和一条直角边分别相等的两个直角三角形8.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90° C.2α+∠A=90°D.α+∠A=180°9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行二、填空题(每小题3分,共30分):11.计算:(1)b5•b=;(2)(103)5= ;(3)(2ab2)3= .12.三角形按边分类可分为:三边都不相等的三角形和三角形两类.13.已知点A(2,﹣3),则点A关于y轴的对称点坐标为.14.如图,∠BAC=∠ABD,请你添加一个条件:,使OC=OD(只添一个即可).15.“生活中处处有数学”,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,我们就可以得到一个著名的常用几何结论,这一结论是:.16.一个凸多边形的内角和是其外角和的2倍,则这个多边形是边形.17.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为.18.已知2m=a,32n=b,则23m+10n= .三、填空题(共3小题,每小题2分,满分6分)19.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.20.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正确的是.21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.三、解答题(共60分)2)如图1,在平面直角坐标系x0y中,A(﹣1,5),B(﹣1,0),C(﹣4,3).①△ABC的面积是.②作出△ABC关于y轴的对称图形△A1B1C1.(2)如图2,按下列要求作图:(不写作法,保留作图痕迹)①作出△ABC的角平分线BD;②作出△ABC的高CG..23.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.24.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.25.如图,已知△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的角平分线.(1)请证明:AD=A′D′;(2)把上述结论用文字叙述出来:;(3)请你再写出一条其他类似的结论:.26.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图1,①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图2,①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)27.如图(1),在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)当x= 时,PQ⊥AC;(2)当0<x<2时,求出使PQ∥AB的x值;(3)当2<x<4时,①是否存在x,使△BPQ是直角三角形?若存在,请求出x的值,若不存在,请说明理由;②设PQ与AD交于点O,探索:OP与OQ的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分):1.下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列运算正确的是()A.(x3)4=x7B.x3•x4=x12C.(﹣2x)2=4x2 D.(3x)3=9x3考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方与积的乘方运算法则、同底数幂的乘法,结合选项进行判断即可.解答:解:A、(x3)4=x12,计算错误,故本选项错误;B、x3•x4=x7,计算错误,故本选项错误;C、(﹣2x)2=4x2,计算正确,故本选项正确;D、(3x)3=27x3,计算错误,故本选项错误;故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的乘法,属于基础题,掌握运算法则是关键.3.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性考点:三角形的稳定性.分析:用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.解答:解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A.关于直线x=4对称B.关于直线x=2对称C.关于直线y=4对称D.关于直线y=2对称考点:坐标与图形变化-对称.分析:观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.解答:解:∵点P(﹣1,3)和点Q(﹣1,5)对称,∴PQ平行与y轴,所以对称轴是直线y=(3+5)=4.∴点P(﹣1,3)和点Q(﹣1,5)关于直线y=4对称.故选C.点评:本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.5.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.考点:轴对称-最短路线问题;坐标与图形性质.分析:根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.解答:解:若在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B 的距离之和最小,则可以过点A作关于y轴的对称点,再连接B和作出的对称点连线和y轴的交点即为所求,由给出的四个选项可知选项C满足条件.故选C.点评:本题考查了轴对称﹣最短路线问题,在一条直线上找一点使它到直线同旁的两个点的距离之和最小,所找的点应是其中已知一点关于这条直线的对称点与已知另一点的交点.6.若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A.18或15 B.18 C.15 D.16或17考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:分两种情况考虑:当5为等腰三角形的腰长时和底边时,分别求出周长即可.解答:解:当5为等腰三角形的腰长时,6为底边,此时等腰三角形三边长分别为5,5,6,周长为5+5+6=16;当5为等腰三角形的底边时,腰长为6,此时等腰三角形三边长分别为5,6,6,周长为5+6+6=17,综上这个等腰三角形的周长为16或17.故选D点评:此题考查了等腰三角形的性质,以及三角形的三边关系,熟练掌握等腰三角形的性质是解本题的关键.7.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形D.斜边和一条直角边分别相等的两个直角三角形考点:全等三角形的判定.专题:推理填空题.分析:熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、有一个角是45°腰长相等的两个等腰三角形,没有边对应相等不能判断全等,故选项错误;B、周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故选项正确;C、因为已知一个角为100°的等腰三角形,没有指出该角是顶角还是底角,根据三角形内角和公式得,该角为顶角,又因为是等腰三角形则两腰对应相等,根据SAS判定两三角形全等,故选项正确;D、斜边和一条直角边分别相等的两个直角三角形,根据HL判定两三角形全等,故选项正确.故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要认真仔细,最好画图结合图形进行判断.8.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90° C.2α+∠A=90°D.α+∠A=180°考点:全等三角形的判定与性质;等腰三角形的性质.专题:压轴题.分析:由AB=AC,根据等边对等角,即可得∠B=∠C,又由BF=CD,BD=CE,可证得△BDF≌△CED(SAS),根据全等三角形的性质,即可求得∠B=∠C=α,根据三角形的内角和定理,即可求得答案.解答:解:∵AB=AC,∴∠B=∠C,∵BF=CD,BD=CE,∴△BDF≌△CED(SAS),∴∠BFD=∠EDC,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°.故选:A.点评:此题考查了等腰三角形的性质、全等三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.考点:剪纸问题.分析:根据题中所给剪纸方法,进行动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序进行操作,展开得到的图形如选项B中所示.故选B.点评:本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行考点:轴对称的性质;平移的性质.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,由于进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选:B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.二、填空题(每小题3分,共30分):11.计算:(1)b5•b=b6;(2)(103)5= 1015;(3)(2ab2)3= 8a3b6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法及幂的乘方的定义解答.解答:解:(1)原式=b5+1=b6;(2)原式=103×5=1015;(3)原式=23a3b6=8a3b6;故答案为(1)b6;(2)1015;(3)8a3b6.点评:本题考查了幂的乘方及同底数幂的乘法,理清指数的变化是解题的关键.12.三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.考点:三角形.分析:三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.解答:解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.点评:此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).13.已知点A(2,﹣3),则点A关于y轴的对称点坐标为(﹣2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.解答:解:点A(2,﹣3)关于y轴的对称点坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD ,使OC=OD (只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.15.“生活中处处有数学”,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,我们就可以得到一个著名的常用几何结论,这一结论是:三角形的内角和是180°.考点:三角形内角和定理.分析:根据折叠前后的两个角相等,把三角形的三个角转化为一个平角,可以得到三角形内角和定理.解答:解:根据折叠的性质,∠A=∠1,∠B=∠2,∠C=∠3,∵∠1+∠2+∠=180°,∴∠A+∠B+∠C=180°,∴定理为:三角形的内角和是180°.故答案为:三角形的内角和是180°.点评:本题主要考查了三角形的内角和定理的证明,熟练掌握翻折变换的性质是解题的关键.16.一个凸多边形的内角和是其外角和的2倍,则这个多边形是 6 边形.考点:多边形内角与外角.专题:探究型.分析:多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.解答:解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故答案为:6.点评:本题主要考查了多边形内角和公式及外角的特征,求多边形的边数,可以转化为方程的问题来解决.17.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12 .考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大18.已知2m=a,32n=b,则23m+10n= a3b2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法运算规则进行计算.解答:解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.点评:此题考查幂的乘方和同底数幂的乘法运算;幂的乘方:底数不变,指数相乘;同底数幂的乘法:底数不变,指数相加.三、填空题(共3小题,每小题2分,满分6分)19.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.考点:规律型:图形的变化类.专题:压轴题.分析:对称规律是:(1)这几幅图是A、B、C、D、E、F六个字母的对称图形;(2)1、3、5是上下对称;2、4、6是左右对称.根据此规律即可得到图形.解答:解:由题意,1,3,5上下对称即得,且图形由复杂变简单.故答案为.点评:本题考查了图形的变化,1,3,5图形上下对称,2,4,6左右对称,即得.20.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正确的是①②③④.考点:全等三角形的判定与性质;等边三角形的性质;相似三角形的判定与性质.专题:推理填空题.分析:首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.解答:解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确)过C作CM⊥AE于M,CN⊥BD于N,∵△BCD≌△ACE,∴∠BDC=∠AEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM,∴CM=CN,∵CM⊥AE,CN⊥BD,∴△Rt△OCN≌Rt△OCM(HL)∴∠BOC=∠EOC,∴④正确;故答案为:①②③④.点评:此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.考点:利用轴对称设计图案.专题:压轴题.分析:根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.解答:解:如图所示:故一共有13做法,故答案为:13.点评:此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.三、解答题(共60分)2)如图1,在平面直角坐标系x0y中,A(﹣1,5),B(﹣1,0),C(﹣4,3).①△ABC的面积是.②作出△ABC关于y轴的对称图形△A1B1C1.(2)如图2,按下列要求作图:(不写作法,保留作图痕迹)①作出△ABC的角平分线BD;②作出△ABC的高CG..考点:作图-轴对称变换;作图—复杂作图.分析:(1)①直接根据三角形的面积公式解答即可;②根据轴对称的性质作出△A1B1C1;(2)①以点B为圆心,以任意长为半径画圆,分别交AB、BC于点EF,再分别以E、F为圆心,以大于EF为半径画圆,两圆相交于点D,连接BD即可;②过点C作CG⊥BA的延长线于点G即可.解答:解:(1)①∵由图可知,AB=5,边AB上的高为3,∴S△ABC=×5×3=.故答案为:;②如图1所示;(2)如图2,①以点B为圆心,以任意长为半径画圆,分别交AB、BC于点EF,再分别以E、F为圆心,以大于EF为半径画圆,两圆相交于点D,连接BD,则BD为∠ABC的平分线;②过点C作CG⊥BA的延长线于点G,则CG为△ABC的高.点评:本题考查的是轴对称变换及基本作出,熟知关于y轴对称的点的坐标特点是解答此题的关键.23.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.考点:翻折变换(折叠问题).分析:根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.解答:解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.点评:本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.24.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.考点:全等三角形的判定与性质.专题:证明题.分析:求出AD=BC,根据平行线性质求出∠A=∠B,∠ADE=∠BCF,根据ASA推出△AED≌△BFC即可.解答:证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥FB,DE∥FC,∴∠A=∠B,∠ADE=∠BCF,∵在△AED和△BFC中,∴△AED≌△BFC(ASA),∴AE=BF.点评:本题考查了全等三角形的性质和判定,平行线的性质,解此题的关键是推出△AED≌△BFC,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.25.如图,已知△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的角平分线.(1)请证明:AD=A′D′;(2)把上述结论用文字叙述出来:全等三角形的对应角的平分线相等;(3)请你再写出一条其他类似的结论:全等三角形的对应边上的高(或中线)相等.考点:全等三角形的判定与性质.分析:(1)由△ABC≌△A'B'C'的对应边、角相等得到:∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,然后由角平分线的定义可以证得∠BAD=∠B′A′D′,则根据ASA证得△ABD≌△A′B′D′;(2)根据证得的结论得到:全等三角形的对应角的平分线相等;(3)类似的得到:全等三角形的对应边上的高(或中线)相等解答:(1)证明:如图,∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,又∵AD、A′D′分别是△ABC和△A′B′C′的角平分线,∴∠BAD=∠B′A′D′,∴在△ABD与△A′B′D′中,,∴△ABD≌△A′B′D′(ASA),∴AD=A′D′;(2)由(2)中的结论得到:全等三角形的对应角的平分线相等;(3)同理:全等三角形的对应边上的高(或中线)相等.故答案是:全等三角形的对应角的平分线相等;全等三角形的对应边上的高(或中线)相等.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图1,①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图2,①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)考点:作图—复杂作图;全等三角形的判定与性质.分析:①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断;③根据用刻度尺作角平分线的方法作出图形,写出作图步骤即可.解答:解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为:SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中∵,∴Rt△OMP≌Rt△ONP(HL).∴∠MOP=∠NOP∴OP平分∠AOB.③如图所示.。
【真卷】2017-2018年浙江省金华五中八年级(上)数学期中模拟试卷带答案
2017-2018学年浙江省金华五中八年级(上)期中数学模拟试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部3.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.94.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°5.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个 B.2个 C.3个 D.4个8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD平分∠BAC其中正确的有()A.1个 B.2个 C.3个 D.4个9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°11.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②12.(3分)用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上)13.(3分)若A(x,3)关于y轴的对称点是B(﹣2,y),则x=,y=,点A关于x轴的对称点的坐标是.14.(3分)如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=cm,∠ADC=.15.(3分)如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件,则有△AOC≌△BOD.16.(3分)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.17.(3分)如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=.18.(3分)如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.三、解答题(本大题共8小题,共66分)19.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.20.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.21.(8分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.22.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.23.(8分)如图所示,点B和点C分别为∠MAN两边上的点,AB=AC.(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连接BE.(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:≌,≌;并选择其中的一对全等三角形,予以证明.24.(8分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.25.(10分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.26.(12分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.2017-2018学年浙江省金华五中八年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.3.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.4.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.5.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD平分∠BAC其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵D为BC的中点,∴DB=DC,∵在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);所以(1)正确.∵AB=AC,DB=DC,∴AD⊥BC;∠B=∠C,AD平分∠BAC,所以(2)、(3)、(4)正确.故选:D.9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.10.(3分)如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)•180°=1800,解得n=12;那么这个多边形的一个外角是360÷12=30度,即这个多边形的一个外角是30度.故选:A.11.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.12.(3分)用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上)13.(3分)若A(x,3)关于y轴的对称点是B(﹣2,y),则x=2,y=3,点A关于x轴的对称点的坐标是(2,﹣3).【解答】解:∵A(x,3)关于y轴的对称点是B(﹣2,y),∴x=2,y=3;∴A(2,3),∴点A关于x轴的对称点的坐标是(2,﹣3),故答案为:2,3,(2,﹣3).14.(3分)如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=5cm,∠ADC=90°.【解答】解:∵△ABE≌△ACD,∴∠C=∠B=30°,AC=AB=10cm,∵∠A=60°,∴∠ADC=180°﹣60°﹣30°=90°,∴AD=AC=5cm,故答案为:5,90°.15.(3分)如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件AC=BD,则有△AOC≌△BOD.【解答】解:补充条件:AC=BD,∵在△AOC和△DOB中,∴△AOC≌△BOD(AAS).故答案为:AC=BD.16.(3分)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有4处.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.17.(3分)如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【解答】解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,∠2=∠A+∠D,由三角形的内角和定理得,∠1+∠2+∠E=180°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.故答案为:180°.18.(3分)如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.【解答】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240米.故答案为:240.三、解答题(本大题共8小题,共66分)19.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.所以这个多边形的内角和为:(7﹣2)•180°=900°.20.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF21.(8分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).23.(8分)如图所示,点B和点C分别为∠MAN两边上的点,AB=AC.(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连接BE.(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:△ABE≌△ACE,△BDE≌△CDE;并选择其中的一对全等三角形,予以证明.【解答】解:(1)①②③,如图所示:(2)△ABE≌△ACE,△BDE≌△CDE.(3)选择△ABE≌△ACE进行证明.∵AB=AC,AD⊥BC,∴∠BAE=∠CAE,在△ABE和△ACE中∴△ABE≌△ACE(SAS);选择△BDE≌△CDE进行证明.∵AB=AC,AD⊥BC,∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SAS).24.(8分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.【解答】解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.∴E到BC边的距离为4.25.(10分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由如下:在△ABE和△DBC中,∴△ABE E≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△BAM E≌△BDN(SAS),∴BM=BN,∠ABM=∠DBN,∵∠ABD=∠DBC,∠ABD+∠DBC=180°∴∠ABD=∠ABM+∠MBE=90°,∴∠MBE+∠DBN=90°,即:BM⊥BN,∴BM=BN,BM⊥BN.26.(12分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.。
【八年级数学试题】2018年八年级上册期中考试数学试卷(含答案和解释)
2018年八年级上册期中考试数学试卷(含答案和解释)
轴对称变换.
【分析】利用关于x轴对称点的性质以及关于轴对称点性质分别得出对应点坐标进而得出答案.
【解答】解△ABc关于x轴对称的△A1B1c1的各顶点坐标分别为A1(﹣3,﹣2),B1(﹣4,3),c1(﹣1,1),
如图所示△A2B2c2,即为所求.
【点评】此题主要考查了关于坐标轴对称点的性质,正确把握横纵坐标关系是解题关键.
21.求出下列图形中的x值.
【考点】多边形内角与外角.
【分析】根据五边形的内角和等于540°,列方程即可得到结果.【解答】解∵五边形的内角和为(5﹣2)×180°=540,
∴90°x°+(x﹣10)°+x°+(x+20)°=540°,
解得x=110°.
【点评】本题考查了五边形的内角和,熟记五边形的内角和是解题的关键.
22.如图,△ABc,∠c=90°,∠ABc=60°,BD平分∠ABc,若AD=8,求cD的长.
【考点】含30度角的直角三角形;等腰三角形的判定与性质.【分析】根据题意得出∠A=30°,根据角平分线的性质得出∠A=∠ABD,根据30°角所对的直角边等于斜边的一半,得cD= DB,即可得出cD=4.
【解答】解∵∠c=90°,∠ABc=60°,
∴∠A=30°,
∵BD平分∠ABc,
∴∠ABD=∠cBD=30°,
∴∠A=∠ABD,。
2018-2019学年最新浙教版八年级数学上学期期中考试模拟测试题及答案-精编试题
八年级上学期期中模拟检测数学试题一.仔细选一选(本题有10个小题,每小题3分,共30分)1.下列“表情图”中,不属于轴对称图形的是()A.B.C.D.2.把三角形的面积分为相等的两部分的是()A.三角形的中线B.三角形的角平分线C.三角形的高 D.以上都不对3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.下列各组长度的线段能构成三角形的是()A.1.5cm 3.9cm 2.3cm B.3.5cm 7.1cm 3.6cmC.6cm 1cm 6cm D.4cm 10cm 4cm5.长为9,6,5,3的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种6.如图,在△ABC中,AD是角平分线,AE是高,已知∠ABC=30°,∠DAE=10°,那么∠C的度数为()A.72°B.60°C.50°D.70°7.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A.49 B.25 C.12 D.18.已知等腰三角形一腰上的中线将它的周长分成9cm和12cm两部分,则等腰三角形的底边长为()A.9cm B.5cm C.6cm或5cm D.5cm或9cm9.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB 的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS10.如图,△ABC中,AB=AC,∠BAC=90°,P是BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CF;③PE=PF;④S四边形AEPF=S△ABC.其中成立的有()A.1个B.2个C.3个D.4个二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案.11.如图,AC与BD交于点P,AP=CP,从以下四个论断①∠B=∠D,②BP=DP,③AB=CD,④AB∥CD中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是.12.将一副常规的三角板按如图方式放置,则图中∠AOB的度数为.13.如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5,AC=12,则△APC 的面积是.14.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.15.如图所示,∠C=∠D=90°,可使用“HL”判定Rt△ABC与Rt△ABD全等,则应添加一个条件是.16.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三.全面答一答(本题有8个小题,共66分)17.已知:如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,BC=DF.求证:∠ABC=∠EDF.18.(1)用直尺和圆规作一个等腰三角形,使得底边长为线段a,底边上的高的长为线段b,要求保留作图痕迹.(不要求写出作法)(2)在(1)中,若a=6,b=4,求等腰三角形的腰长.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=60°,∠C=70°,求∠DAC,∠BOA,∠EAD的度数.20.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是什么?是真命题还是假命题?若是真命题请你证明,若是假命题请你举反例说明.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.在△ABC中,点D在边AC上,BD=BA,点E是AD的中点,点F是BC的中点.(1)求证:EF=BC;(2)过点C作CG∥EF,交BE的延长线于G,求证:△BCG是等腰三角形.23.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、2、的格点△DEF;②计算△DEF的面积.参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)1.下列“表情图”中,不属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误.故选:B.2.把三角形的面积分为相等的两部分的是()A.三角形的中线B.三角形的角平分线C.三角形的高 D.以上都不对【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的两个三角形面积相等知,三角形的中线把三角形的面积分为相等的两部分.【解答】解:把三角形的面积分为相等的两部分的是三角形的中线.故选A.3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42【考点】命题与定理.【分析】证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.【解答】解:42是偶数,但42不是8的倍数.故选:D.4.下列各组长度的线段能构成三角形的是()A.1.5cm 3.9cm 2.3cm B.3.5cm 7.1cm 3.6cmC.6cm 1cm 6cm D.4cm 10cm 4cm【考点】三角形三边关系.【分析】分别计算两个较小的边的和与大边作比较,判断是否能构成三角形.【解答】解:A、因为1.5+2.3=3.8<3.9,所以不能构成三角形,所以选项A不正确;B、因为3.5+3.6=7.1,所以不能构成三角形,所以选项B不正确;C、因为1+6=7>6,所以能构成三角形,所以选项C正确;D、因为4+4=8<10,所以不能构成三角形,所以选项D不正确;故选C.5.长为9,6,5,3的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.【分析】根据三角形三边关系:两边之和大于第三边,两边之和小于第三边进行判断.【解答】解:可以选:①9,6,5;②6,5,3;两种;故选B.6.如图,在△ABC中,AD是角平分线,AE是高,已知∠ABC=30°,∠DAE=10°,那么∠C的度数为()A.72°B.60°C.50°D.70°【考点】三角形内角和定理.【分析】直接利用三角形内角和定理结合角平分线的性质得出∠CAE=40°,进而得出答案.【解答】解:∵AE是高,∠DAE=10°,∴∠AED=90°,则∠ADE=80°,∵∠ABC=30°,∴∠BAE=60°,∵AD是角平分线,∴∠BAD=∠DAC=∠BAE﹣∠DAE=50°,∴∠CAE=40°,∴∠C=∠CAD﹣∠DAE=90°﹣50°=40°.故选:C.7.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A.49 B.25 C.12 D.1【考点】勾股定理的证明.【分析】根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值.【解答】解:如图,∵大正方形的面积是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面积是(25﹣1)÷4=6,又∵直角三角形的面积是ab=6,∴ab=12.故选:C.8.已知等腰三角形一腰上的中线将它的周长分成9cm和12cm两部分,则等腰三角形的底边长为()A.9cm B.5cm C.6cm或5cm D.5cm或9cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形一腰上的中线将它的周长分为12和9两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是12,哪个是9,因此,有两种情况,需要分类讨论.【解答】解:根据题意画出图形,如图所示,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,①若AB+AD的长为12,则2x+x=12,解得x=4,则x+y=9,即4+y=9,解得y=5;②若AB+AD的长为9,则2x+x=9,解得x=3,则x+y=12,即3+y=12,解得y=9;所以等腰三角形的底边为5,等腰三角形的底边为9时,故选D.9.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB 的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定.【分析】熟练掌握三角形全等的判定条件是解答此题的关键.易知:OD=OE,PD=PE,OP=OP,因此符合SSS的条件,故选择A.【解答】解:由作图知:OD=OE、PD=PE、OP是公共边,即三边分别对应相等(SSS),△DOP≌△EOP,故选A.10.如图,△ABC中,AB=AC,∠BAC=90°,P是BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CF;③PE=PF;④S四边形AEPF=S△ABC.其中成立的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等腰直角三角形.【分析】由等腰直角三角形的性质可知AP=BP,可判断①;由条件可证明△AEP≌△CFP,可求得AE=CF,PE=PF,可判断②③;再利用三角形的面积可判断④,则可求得答案.【解答】解:∵△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵P是BC的中点,∴AP=BP=CP,∴∠BAP=45°,∴∠B=∠BAP,故①正确;∵P是BC中点,且AB=C,∴AP⊥BC,∴∠APC=∠EPF=90°,∴∠APE+∠APF=∠APF+∠FPC,∴∠APE=∠FPC,在△AEP和△CFP中∴△AEP≌△CFP(ASA),∴AE=CF,PE=PF,故②③正确;∴S四边形AEPF=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,故④正确;综上可知成立的有4个,故选D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的要求和要填写的内容,尽量完整地填写答案.11.如图,AC与BD交于点P,AP=CP,从以下四个论断①∠B=∠D,②BP=DP,③AB=CD,④AB∥CD中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是③.【考点】全等三角形的判定.【分析】①当添加∠B=∠D后可根据全等三角形的判定定理AAS证出△ABD≌△CDB,①可以;②当添加BP=DP后可根据全等三角形的判定定理SAS证出△ABD≌△CDB,②可以;③当添加AB=CD后,利用SSA不能证出△ABD≌△CDB,③不可以;④根据AB∥CD即可找出∠B=∠C,再根据全等三角形的判定定理ASA即可证出△ABD≌△CDB,④可以.综上即可得出结论.【解答】解:①在△ABD和△CDB中,,∴△ABD≌△CDB(AAS);②在△ABD和△CDB中,,∴△ABD≌△CDB(SAS);③∵在△ABD和△CDB中,AP=CP、∠APB=∠CPD、AB=CD不满足全等三角形的判定定理的条件,∴添上AB=CD不能证出△APB≌△CPD;④∵AB∥CD,∴∠A=∠C.在△ABD和△CDB中,,∴△ABD≌△CDB(ASA).故答案为:③.12.将一副常规的三角板按如图方式放置,则图中∠AOB的度数为105°.【考点】三角形的外角性质.【分析】由于∠COD是△BOC的外角,利用三角形外角性质可求∠COD,再根据对顶角性质,可求∠AOB.【解答】解:如右图,∵∠COD=∠B+∠BCO=60°+45°=105°,∴∠AOB=∠COD=105°.故答案是105°.13.如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5,AC=12,则△APC 的面积是30 .【考点】角平分线的性质.【分析】过P作PE⊥AC于E,根据角平分线性质得出PE=PB=5,根据三角形面积公式求出即可.【解答】解:过P作PE⊥AC于E,∵点P是∠BAC的平分线上一点,PB⊥AB于B,PB=5,∴PE=PB=5,∵AC=12,∴△APC的面积为×AC×PE=30,故答案为:30.14.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.15.如图所示,∠C=∠D=90°,可使用“HL”判定Rt△ABC与Rt△ABD全等,则应添加一个条件是AC=AD .【考点】直角三角形全等的判定.【分析】此题是一道开放型的题目,答案不唯一,还可以是BC=BD.【解答】解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.16.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32 .【考点】等边三角形的性质;等腰三角形的判定与性质.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.三.全面答一答(本题有8个小题,共66分)17.已知:如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,BC=DF.求证:∠ABC=∠EDF.【考点】全等三角形的判定与性质.【分析】根据等式的性质证得AB=ED,然后利用SSS证明两三角形全等即可.【解答】证明:∵AD=BE,∴AD+DB=BE+DB,即AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(SSS),∴∠ABC=∠EDF.18.(1)用直尺和圆规作一个等腰三角形,使得底边长为线段a,底边上的高的长为线段b,要求保留作图痕迹.(不要求写出作法)(2)在(1)中,若a=6,b=4,求等腰三角形的腰长.【考点】作图—复杂作图;等腰三角形的性质.【分析】(1)作一底边等于a,作底边的垂直平分线,从a上取高为b的线段,顺次连接三点,就是所画的三角形;(2)根据等腰三角形的性质及勾股定理可得答案.【解答】解:(1)如图,等腰三角形ABC即为所求作三角形,其中AB=a,OC=b;(2)由题意知AC=BC,CO⊥AB,且CO=4、AB=6,∴AO=3,则AC==5,即等腰三角形的腰长为5.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=60°,∠C=70°,求∠DAC,∠BOA,∠EAD的度数.【考点】三角形内角和定理.【分析】根据三角形内角和定理、三角形的高的定义、角平分线的定义计算即可.【解答】解:∵AD是高,∴∠ADC=90°,∵∠C=70°,∴∠DAC=90°﹣∠C=90°﹣70°=20°,∵∠ABC+∠C+∠BAC=180°,∴∠BAC=180°﹣(∠ABC+∠C)=180°﹣(60°+70°)=50°,∵AE、BF是角平分线,∴∠ABF=∠ABC=×60°=30°,∠BAE=∠EAC=∠BAC=×50°=25°,∴∠BOA=180°﹣(∠1+∠2)=180°﹣(30°+25°)=125°,∠EAD=∠EAC﹣∠DAC=25°﹣20°=5°.20.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是什么?是真命题还是假命题?若是真命题请你证明,若是假命题请你举反例说明.【考点】命题与定理.【分析】首先交换命题的题设和结论写出该命题的逆命题,然后判断其为真命题,最后写出已知、求证并且证明即可.【解答】解:逆命题:有一边的中线等于该边一半的三角形是直角三角形;为真命题;已知:在△ABC中,AD是BC边的中线,AD=BC,求证:△ABC是Rt△.证明:∵AD是BC边的中线.∴BD=CD=BC,∵AD=BC,∴AD=BD=CD,∴∠1=∠B,∠2=∠C,∴∠1+∠2=∠B+∠C,即∠BAC=∠B+∠C,∵2∠BAC=∠BAC+∠B+∠C=180°,∴∠BAC=90°,∴△ABC是Rt△.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【考点】直角梯形;全等三角形的判定与性质.【分析】(1)因为这两个三角形是直角三角形,BC=BD,因为AD∥BC,还能推出∠ADB=∠EBC,从而能证明:△ABD≌△ECB.(2)因为∠DBC=50°,BC=BD,可求出∠BDC的度数,进而求出∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∵∠A=∠CEB,AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠BCE,又∵BC=BD∴△ABD≌△ECB;(2)解:∵∠DBC=50°,BC=BD,∴∠EDC==65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.22.在△ABC中,点D在边AC上,BD=BA,点E是AD的中点,点F是BC的中点.(1)求证:EF=BC;(2)过点C作CG∥EF,交BE的延长线于G,求证:△BCG是等腰三角形.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】(1)由BD=BA,E是AD的中点,根据等腰三角形三线合一的性质得出BE⊥AD,再根据直角三角形斜边上中线等于斜边的一半即可证明EF=BC;(2)先由CG∥EF,根据平行线的性质得出∠G=∠FEB,又EF=BC=BF,根据等边对等角得出∠FEB=∠CBE,等量代换得到∠G=∠CBE,那么GC=BC,即△BCG是等腰三角形.【解答】证明:(1)∵BD=BA,E是AD的中点,∴BE⊥AD,∴△EBC为直角三角形.∵F是BC的中点,∴EF是直角三角形斜边上中线∴EF=BC;(2)∵CG∥EF,∴∠G=∠FEB,∵EF=BC=BF,∴∠FEB=∠CBE,∴∠G=∠CBE,∴GC=BC,∴△BCG是等腰三角形.23.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、2、的格点△DEF;②计算△DEF的面积.【考点】作图—应用与设计作图;二次根式的应用.【分析】(1)根据图①直接写△ABC的面积即可;(2)①利用勾股定理的逆定理进行解答;②利用(1)方法解答就可以解决问题.【解答】解:(1)S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=.故答案为:;(2)①如下图所示,△DEF即为所求三角形,②S△DEF=5×4﹣×3×2﹣×4×2﹣×5×2=8.2017年2月20日。
2018-2019学年最新浙教版八年级数学第一学期期中考试五校联考及答案解析-精品试题
浙教版八年级数学上册期中模拟试题一、选择题1、在下列各组图形中,是全等的图形是( )2.下列图形中,对称轴最多的是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形 3.以下列各数为边长,不能组成直角三角形的是( )A 、3,4,5B 、5,12,13C 、6,8,10D 、4,5,6 4、下列图形中,不具有稳定性的是( ).5、小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4), 你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃? 应该带( )去A 、第1块B 、第2块C 、第3块D 、第4块 6、下列命题的逆命题...是真命题的是( ) A 、直角都相等; B 、等边三角形是锐角三角形;C 、相等的角是对顶角;D 、全等三角形的对应角相等。
7.如图,在Rt △ABC 中,∠ACB=900,∠A=30°,CD 是斜边AB 上的中线,A 、B 、C 、D 、12 3 4第5题图BCAD第7题图则图中与CD 的长度相等的线段有( ) A 、AD 与BD B 、BD 与BC C 、AD 与BC D 、AD 、BD 与BC8、如图,中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆, 则A B C D E ∠+∠+∠+∠+∠的度数是( ) A 、1800 B 、1500 C 、1350 D 、1200 9、 下列条件中,不能判定....两个直角三角形全等的是( ) A 、两个锐角对应相等 B 、 一条边和一个锐角对应相等 C 、两条直角边对应相等 D 、 一条直角边和一条斜边对应相等10.在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4等于( )A 、 4B 、 5C 、 6D 、 14二、填空题(每小题4分,共32分)11.等腰三角形一边长为1cm ,另一边长为2cm ,它的周长是_____cm . 12.在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=_______.13、一个等腰三角形底边上的高、 和顶角的________互相重合。
2018学年第一学期八年级期中考试数学试卷含答案
2018学年第一学期八年级期中考试数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分。
) 1.三根木条的长度如图,能组成三角形的是( ▲ )2.在下列各组图形中,是全等的图形是( ▲ )A. B. C. D. 3.把不等式x >2表示在数轴上,正确的是( ▲ )4. 下列命题属于真命题的是( ▲) A. 由a b >,得22a b -<-B. 由a b >,得22a b -<-C. 由a b>,得a b >D. 由a b >,得22a b >5.用直尺和圆规作线段的垂直平分线,下列作法正确的是2cm2cm 5cmA.2cm 2cm 4cmB.2cm 3cm 5cmC. 2cm 3cm 4cmD.A .B .C .D .B .D .C .6.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角为( ▲ )A .50°B .80°C .50°或80°D .50°或65°7.如图,△ABC 内有一点D ,且DA =DB =DC ,若∠DAB =20°, ∠DAC =30°,则∠BDC 的大小是( ▲ ) A. 100° B. 80° C. 70°D. 50°8.如图,a 、b 、c 分别表示△ABC 的三边长,则下面与△ABC 一定..全等的三角形是( ▲ )A B C DA. 0B. 1C. 2D. 39.已知直角三角形的两条边长分别是6cm 和8cm ,则它的第三边长为( ▲ )A .5.5cmB .cmC .10cmD .10cm 或10.设a 、b 、c 均为正整数,且c b a ≥≥,满足15=++c b a ,则以a 、b 、c 为边长的三角形有( ▲ )A .5个B .7个C .10个D .12个 二、认真填一填(本题有6小题,每小题3分,共18分) 11.“x 减去y 小于4-”用不等式可表示为 ▲ . 12. 在Rt △ABC 中,∠A =25°,则锐角∠B = ▲ 度. 13.不等式2x >5x -6的正整数解是 ▲ .14. 如图,△ABC 中,AB +AC =6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为 ▲ cm .15.如图,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 ▲ (只写一个即可,不 添加辅助线).AD 50° b a a 72° 50° a 50° b 58° ba AbC a c 72° B50°AB POABCDl(第14题图)21EDCBA16.如图,Rt △ABC ≌Rt △DEB ,点A ,B ,D 在同一直线上,AC=1,DE=3,则△BCE 的面积为 ▲ .三、解答题(本大题有8小题,共52分) 17.(本题4分)解不等式5x >3(x -2)+2.18.(本题4分)已知等腰△ABC 的腰长AB =AC =5,底边长BC =6,试求这个三角形的面积.19.(本题6分)如图,AD ∥BC ,∠A=90°,E 是AB 上一点,且AD=BE , ∠1=∠2. R t △ADE 与Rt △BEC 全等吗?请说明理由;20.(本题6分)如图,在6×6方格纸中(每个小正方形的边长均为1个单位长度),有直线MN 和线段AB ,其中点A ,B ,M ,N 均在小正方形的顶点上. (1)在方格纸中画出线段AB 关于直线MN 的轴对称图形CD ,点A 的对称点为点D ,点B 的对称点 为点C ,连接AD ,BC ; (2)求出四边形ABCD 的周长.B DC E(第16题图)(第20题图)AB M N21.(本题6分)将一副三角板按如图方式叠放在一起,(1)求∠AOD+∠BOC的度数;(2)当AB的中点E恰好落在CD的中垂线上时,求∠AOC的度数.22.(本题8分)如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,若∠AMB=70°,求∠N的度数.23.(本题8分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)ACE BCD△≌△;(2)222AD DB DE+=.24.(本题10分)△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q。
【八年级数学试题】2018年八年级数学上期中试卷(附答案和解释)
2018年八年级数学上期中试卷(附答案和解释)
最短路线问题.
【分析】分别作点P关于A、B的对称点c、D,连接cD,分别交A、B于点、N,连接c、D、P、PN、N,由对称的性质得出P=D,P=c,∠cA=∠PA;PN=DN,P=D,∠DB=∠PB,得出∠AB= ∠cD,证出△cD 是等边三角形,得出∠cD=60°,即可得出结果.
【解答】解分别作点P关于A、B的对称点c、D,连接cD,
分别交A、B于点、N,连接c、D、P、PN、N,如图所示
∵点P关于A的对称点为D,关于B的对称点为c,
∴P=D,P=D,∠DA=∠PA;
∵点P关于B的对称点为c,
∴PN=cN,P=c,∠cB=∠PB,
∴c=P=D,∠AB= ∠cD,
∵△PN周长的最小值是5c,
∴P+PN+N=5,
∴D+cN+N=5,
即cD=5=P,
∴c=D=cD,
即△cD是等边三角形,
∴∠cD=60°,
∴∠AB=30°;
故选B.
12.为了求1+2+22+23+…+22018+22018的值,可令S=1+2+22+23+…+22018+22018,则2S=2+22+23+24+…+22018+22018+22018,因此2S﹣S=22018﹣1,所以1+2+22+23+…+22018=22018﹣1.仿照以上推理计算出1+5+52+53+…52018的值是()。
浙江省金华市八年级上学期数学期中考试试卷
浙江省金华市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018八上·大田期中) 如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A 点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A . 黑(2,3)B . 黑(3,2)C . 黑(3,4)D . 黑(3,1)2. (2分)如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A . 80°B . 70°C . 60°D . 50°3. (2分) (2016八上·腾冲期中) 如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A . AC=DFB . AB=DEC . ∠A=∠DD . BC=EF4. (2分) (2019七下·监利期末) (a,-6)关于x轴的对称点的坐标为()A . (-a, 6)B . (a, 6)C . (a,-6)D . (-a,-6)5. (2分)(2014·宿迁) 如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()A . 16°B . 22°C . 32°D . 68°6. (2分)有木条4根,长度分别是12cm,10cm,8cm,4cm.选出其中三根组成首尾相接的三角形,能组成三角形的个数是()A . 1B . 2C . 3D . 47. (2分)(2011·南通) 下列长度的三条线段,不能组成三角形的是()A . 3,8,4B . 4,9,6C . 15,20,8D . 9,15,88. (2分) (2015九上·武昌期中) 如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD 的面积最大值是()A . 64B . 169. (2分)已知∠AOB,用尺规作一个角等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=所用到的三角形全等的判断方法是()A . SASB . ASAC . AASD . SSS10. (2分)(2017·安阳模拟) 如图所示的是A,B,C,D三点,按如下步骤作图:①先分别以A,B两点为圆心,以大于 AB的长为半径作弧,两弧相交于M、N两点,作直线MN;②再分别以B,C两点为圆心,以大于的长为半径作弧,两弧相交于G,H两点,作直线GH,GH与MN交于点P,若∠BAC=66°,则∠BPC等于()A . 100°B . 120°C . 132°D . 140°11. (2分) (2016八上·孝义期末) 如图,∠B=45°,∠D=64°,AC=BC,则∠E的度数是()A . 45°B . 26°12. (2分)如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A .B .C .D .二、填空题 (共10题;共10分)13. (1分) (2017八上·临洮期中) 一个正多边形的每个内角度数均为135°,则它的边数为________14. (1分) (2017八上·盂县期末) 若点P(m,3)与点Q(1,n)关于y轴对称,则m=________;n=________.15. (1分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=________ .16. (1分)如图,在中,, BC=12,斜边AB的垂直平分线交BC于D点,则点D到斜边AB的距离为________cm .17. (1分) (2019八下·柳州期末) 如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD 中,AB=3,BD=4.则AC的长为________.18. (1分)(2017·鹤岗) △ABC中,AB=12,AC= ,∠B=30°,则△ABC的面积是________.19. (1分)如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是________20. (1分) (2019八下·杭州期末) 如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.21. (1分) 1、下列能判断两个三个角形全等的条件是________①已知两角及一边对应相等②已知两边及一角对应相等③已知三条边对应相等④已知直角三角形一锐角及一边对应相等⑤已知三个角对应相等.22. (1分) (2018九上·渭滨期末) 菱形ABCD的边长为6,∠ABC=60°,则较长对角线BD的长是________.三、解答题 (共8题;共105分)23. (15分)按要求画图,并描述所作线段.①过点A画三角形的高线;②过点B画三角形的中线;③过点C画三角形的角平分线.24. (15分)如图1,在平面直角坐标系中,点A,B,C的坐标分别是(0,a),(b,0),(a,﹣b)且a2+b2+4a ﹣4b=﹣8,连接BC交y轴于点M,N为AC中点,连接NO并延长至D,使OD=ON,连接BD.(1)求a,b的值;(2)求∠DBC;(3)如图2,Q为ON,BC的交点,连接AQ,AB,过点O作OP⊥OQ,交AB于P,过点O作OH⊥AB于H,交BQ 于E,请探究线段EH,PH与OH之间有何数量关系?并证明你的结论.25. (5分) (2017八上·北部湾期中) 一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.26. (15分) (2019八上·重庆期末) 如图,已知△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠B=36°,∠C=66°.求∠DAE的度数.27. (10分)(2018·湖州) 已知在R t△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且 =m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m= ,求证:AE=DF;(2)如图2,若m= ,求的值.28. (15分)(2018·龙东) 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)①画出△ABC关于x轴对称的△A1B1C1;②画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(2)在(1)的条件下,求线段BC扫过的面积(结果保留π).29. (15分)如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图:作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.30. (15分)(2017·淅川模拟) 如图,AB是半圆O的直径,点C是半圆O上一点,∠COB=60°,点D是OC 的中点,连接BD,BD的延长线交半圆O于点E,连接OE,EC,BC.(1)求证:△BDO≌△EDC.(2)若OB=6,则四边形OBCE的面积为________.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共10题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、三、解答题 (共8题;共105分) 23-1、25-1、26-1、27-1、27-2、28-1、28-2、29-1、29-2、30-1、30-2、。
浙江省2018—2019学年八年级数学上学期期中模拟试卷及答案(一)
初二期中试卷满分:120分考试时间:100分钟2017.11一、选择题(每题3分,共30分)1.下列图形是轴对称图形的有()A. 2个B. 3个C. 4个D. 5个2.下面各组线段中,能组成三角形的是()A. 5,11,6B. 8,8,16C. 10,5,4D. 6,9,143.下列三角形:①有两个角等于60∘;②有一个角等于60∘的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形。
其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④4、等腰三角形一腰上的高与另一腰所成的角为40度,则顶角的度数为( )A. 40∘或65∘B. 50∘或65∘C. 50∘或130∘D. 40∘或130∘5、下列不等式的变形正确的是( )A. 由a<b ,得ac<bcB. 由a<b ,且m ≠0,得mb m a ->-C. 由a<b,得az 2<bz 2D. 由az 2>bz 2,得a>b6、若x,y 满足|x −3|+6-y =0, 则以x,y 的值为两边长的等腰三角形的周长为( ).A. 12B. 14C. 15D. 12或157、如图,在△ABC 和△DEC 中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是( )A. BC=EC ,∠B=∠EB. BC=EC ,AC=DCC. BC=DC ,∠A=∠DD. ∠B=∠E ,∠A=∠D8、关于x 的不等式组{83242-<>-x x a x 有四个整数解,则a 的取值范围是( ) A. 411-<a ≤25- B.411-≤a<25- C.411-≤a ≤25- D.411-<a<25-9、折叠矩形纸片ABCD 的一边AD,使点D 落在BC 边的点F 处,已知AB=8cm,BC=10cm,折痕AE 的长( )A. 5√5cmB. 5√3cmC. 12cmD. 13cm10.如图,∠AOB=45∘,∠AOB 内有一定点P ,且OP=10.在OA 上有一动点Q,OB 上有一动点R.若△PQR 周长最小,则最小周长是( )A. 10B. 10√2C. 20D. 20√2二、填空题(每题4分,共24分)11、如图,在Rt △ABC 中,∠C=90∘,∠ABC 的平分线BD 交AC 于点D. 若BC=4cm ,BD=5cm ,则点D 到AB 的距离是______cm.12、关于x的方程3x−2m=x+5的解为正数,则m的取值范围是___.13.如图,△ABC中,∠BAC=98°,EF,MN分别为AB,AC的垂直平分线,∠FAN=___.14、如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为______.第13题图第14题图第16题图15、在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题。
2018-2019学年最新浙教版八年级数学上学期期中考试达标测试题及答案解析-精品试题
八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,143.)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④4.等腰三角形一腰上的高与另一腰所成的角为40度,则顶角的度数为()A.40° 或65°B.50°或65°C.50°或130°D.40°或130°5 下列不等式的变形正确的是()A.由a<b,得ac<bc B.由a<b,且m≠0,得﹣>﹣C.由a<b,得az2<bz2D.由az2>bz2,得a>b6.平面直角坐标系中,已知A(2,2),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个7 如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个8.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣ C.﹣≤a≤﹣D.﹣<a<﹣9.折叠矩形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,折痕AE的长()A.5cm B.5cm C.12cm D.13cm10.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.二、填空题(每小题4分,共24分)11.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)12.不等式﹣x+3≤2(2x﹣m)的解是x≥2,则m= .13.如图,G是△AFE两外角平分线的交点,P是△ABC的两外角平分线的交点,F,C在AN上,又B,E在AM上;如果∠FGE=66°,那么∠P=度.14.命题“同角的补角相等”的题设是,结论是.15.如图,已知△ADC中,∠ADC=90°,AD=DC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是.16.如图,已知OM⊥ON,正三角形ABC的边长为2,点A、B分别在射线OM,ON上滑动,在滑动过程中,连结OC,则OC的长的最大值是.三、解答题(共66分)17 尺规作图:(画出图形,保留作图痕迹,不写作法,写出结论)已知:∠α,线段a、b.求作:△ABC,使∠B=∠α,AB=b,BC=a.18.解下列不等式(组),并在数轴上表示不等式(组)的解集.(1)3x﹣7>2x﹣6(2).19.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.(1)BE与DF是否相等?请说明理由.(2)若DF=1,AD=3,求AB的长.20.如图,已知AE与BD相交于点C,AB=AC,DE=DC,M、N、P分别是BC、CE、AD的中点.求证:(1)AD=2PM;(2)PM=PN.21.如图,△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.则线段BD与CE有什么关系?请说明理由.22.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?23.如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP 的长;(3)当t为何值时,△BCP为等腰三角形?参考答案与试题解析一、选择题(每小题3分,共30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个考点:轴对称图形.版权所有分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解答:解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14考点:三角形三边关系.版权所有分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.点评:本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.3.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④考点:等边三角形的判定.版权所有分析:根据等边三角形的判定判断.解答:解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.点评:此题主要考查学生对等边三角形的判定的掌握情况.4.等腰三角形一腰上的高与另一腰所成的角为40度,则顶角的度数为()A.40° 或65°B.50°或65°C.50°或130°D.40°或130°考点:等腰三角形的性质.版权所有专题:分类讨论.分析:分这个三角形为锐角三角形和钝角三角形,再利用三角形内角和定理和可求得顶角的度数.解答:解:①当为锐角三角形时可以画图,如图①,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时可画图为如图②,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°,所以该等腰三角形的顶角为50°或130°,故选C.点评:本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.5.下列不等式的变形正确的是()A.由a<b,得ac<bc B.由a<b,且m≠0,得﹣>﹣C.由a<b,得az2<bz2D.由az2>bz2,得a>b考点:不等式的性质.版权所有分析:根据不等式的性质2、3,可得答案.解答:解;A、c≤0时,不等式不成立,故A错误;B、m>0时,不等式不成立,故B错误;C、z=0时,不等式不成立,故C错误;D、不等式的两边都除以同一个正数,不等号的方向不变,故D正确.故选:D.点评:本题考查了不等式的性质,不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.在平面直角坐标系中,已知A(2,2),在x轴上确定一点P,使△AOP 为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个考点:等腰三角形的判定;坐标与图形性质.版权所有分析:此题应该分情况讨论.以OA为腰或底分别讨论,进而得出答案.解答:解:(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个,以上4个交点没有重合的.故符合条件的点有4个.故选:C.点评:此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质.版权所有分析:本题考查的是全等三角形的判定,可根据全等三角形的判定定理和性质进行求解.解答:解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8 关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣ C.﹣≤a≤﹣D.﹣<a<﹣考点:一元一次不等式组的整数解.版权所有专题:计算题;压轴题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.解答:解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.点评:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.折叠矩形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,折痕AE的长()A.5cm B.5cm C.12cm D.13cm考点:翻折变换(折叠问题).版权所有分析:首先根据勾股定理求出BF的长度,进而求出CF的长度;再根据勾股定理求出EF的长度问题即可解决.解答:解:由题意得:AF=AD,EF=DE(设为x),∵四边形ABCD为矩形,∴AF=AD=BC=10,DC=AB=8;∠ABF=90°;由勾股定理得:BF2=102﹣82=36,∴BF=6,CF=10﹣6=4;在直角三角形EFC中,由勾股定理得:x2=42+(8﹣x)2,解得:x=5,∴AE2=102+52=125,∴AE=(cm).故选A.点评:该命题以矩形为载体,以图形的翻折为方法,以考查翻折变换的性质及其应用为核心构造而成;对综合的分析问题解决问题的能力提出了较高的要求.10.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.考点:勾股定理;点到直线的距离.版权所有专题:计算题.分析:连接AB,BC,AC可得△ABC为等腰三角形,根据等腰三角形面积计算方法计算C到AB的距离(过C作AB边上的高).解答:解:连接AB,BC,AC.找到AC中点D,连接BD.设C到AB的距离为h,小方格边长为1,∴AD=,AB=BC=,∴△ABC为等腰三角形,∴BD⊥AC,且BD=△ABC的面积为S=AC•BD=4.又∵△ABC面积=×AB×h=4,∴h==.故选B.点评:本题考查了勾股定理的运用,考查了等腰三角形面积的计算,根据面积法求C到AB边的距离h是解题的关键.二、填空题(每小题4分,共24分)11.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F或AB∥EF时,就可得到△ABC≌△FED.(只需填写一个即可)考点:全等三角形的判定.版权所有专题:证明题.分析:要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.解答:解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.不等式﹣x+3≤2(2x﹣m)的解是x≥2,则m= 3.5 .考点:解一元一次不等式.版权所有分析:先求出不等式﹣x+3≤2(2x﹣m)的解集,再根据不等式﹣x+3≤2(2x ﹣m)的解是x≥2,列出方程,即可求出m的值.解答:解:﹣x+3≤2(2x﹣m),﹣x+3≤4x﹣2m,﹣x﹣4x≤﹣3﹣2m,﹣5x≤﹣3﹣2m,∴x≥,∵不等式﹣x+3≤2(2x﹣m)的解是x≥2,∴=2∴m=3.5.故填:3.5点评:此题考查了解一元一次不等式;关键是根据不等式的解列出关于m的方程.13.如图,G是△AFE两外角平分线的交点,P是△ABC的两外角平分线的交点,F,C在AN上,又B,E在AM上;如果∠FGE=66°,那么∠P=66度.考点:多边形内角与外角;三角形内角和定理.版权所有分析:利用角平分线的定义和三角形、四边形的内角和可求得:∠G=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A,∠P=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A,所以∠P=∠FGE=66°.解答:解:因为G是△AFE两外角平分线的交点,所以∠FGE=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A;因为P是△ABC两外角平分线的交点,所以∠P=180°﹣×[360°﹣(180°﹣∠A)]=90°﹣∠A;所以∠P=∠FGE=66°.点评:通过此题,得到一个结论:有公共角的两个三角形的另两边的外角平分线的夹角相等.14.命题“同角的补角相等”的题设是如果几个角是同一个角的补角,结论是那么这几个角相等.考点:命题与定理.版权所有分析:把“同角的补角相等”写成如果…那么…的形式.解答:解:“同角的补角相等”的题设为如果几个角是同一个角的补角;结论为那么这几个角相等.故答案为如果几个角是同一个角的补角;那么这几个角相等.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.15.如图,已知△ADC中,∠ADC=90°,AD=DC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是2.考点:勾股定理.版权所有分析:过A、C分别作l3的垂线,可以证得所得两个三角形全等,再根据全等三角形的性质得出边长的关系,利用勾股定理求解即可.解答:解:如下图所示:过点C作CE⊥l3于E,过点A作AF⊥l3于F,则:CE=5,AF=3.∵在△ADC中,∠ADC=90°,∴∠ADF+∠CDE=90°,∵∠ADF+∠DAF=90°,∴∠CDE=∠DAF,在△ADF和△DCE中,,∴△ADF≌△DCE(AAS),∴DE=AF=3,∵CD2=CE2+DE2,∴CD=,∵AC2=AD2+CD2,AD=CD=∴AC=2.故答案为:2.点评:本题考查了勾股定理的运用,解决此类问题一般都要结合三角形的全等问题,是比较基本的知识点,要求熟练掌握.16.如图,已知OM⊥ON,正三角形ABC的边长为2,点A、B分别在射线OM,ON上滑动,在滑动过程中,连结OC,则OC的长的最大值是1+.考点:等边三角形的性质;直角三角形斜边上的中线.版权所有分析:取AB的中点D,连接OD及DC,根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.解答:解:取AB中点D,连OD,DC,OC,有OC≤OD+D C,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为中点,∴BD=1,BC=2,根据勾股定理得:CD=,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.点评:此题考查了等边三角形的性质,直角三角形斜边上的中线等于斜边的一半,以及勾股定理,其中找出OC最大时的长为CD+OD是解本题的关键.三、解答题(共66分)17.尺规作图:(画出图形,保留作图痕迹,不写作法,写出结论)已知:∠α,线段a、b.求作:△ABC,使∠B=∠α,AB=b,BC=a.考点:作图—基本作图.版权所有分析:作∠B=∠α,在∠B的一边上截取BA=b,BC=a,连接AC即可得到所求的△ABC.解答:解:点评:利用边角边画三角形时,应先画出所给的角,再在角的两边上分别截取其余两边.18.解下列不等式(组),并在数轴上表示不等式(组)的解集.(1)3x﹣7>2x﹣6(2).考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.版权所有分析:(1)首先移项,然后合并同类项,即可求解;(2)分别求出不等式组中两个一元一次不等式的解集,表示在数轴上,找出两解集的公共部分,即可得到原不等式组的解集.解答:解:(1)移项,得:3x﹣2x>7﹣6,合并同类项,得:x>1.在数轴上表示为:;(2),由①解得:x≤,由②解得:x<4,把两解集画在数轴上,如图所示:则原不等式的解集为:x≤.点评:本题主要考查了一元一次不等式(组)解集的求法,注意利用不等式的基本性质3时,不等号的方向要改变.19.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.(1)BE与DF是否相等?请说明理由.(2)若DF=1,AD=3,求AB的长.考点:角平分线的性质;全等三角形的判定与性质.版权所有分析:(1)根据角平分线的性质就可以得出CE=CF,再由HL证明△CEB≌△CFD就可以得出结论.(2)证明Rt△CAF≌Rt△CAE可得AE=AF,再根据△CEB≌△CFD可得BE=DF=1,进而可得答案.解答:解:(1)相等,理由:∵AC平分∠BAD,CE⊥AB于E CF⊥AD于F,∴∠F=∠CEB=90°,CE=CF.在Rt△CEB和Rt△CFD中,,∴△CEB≌△CFD(HL),∴BE=DF.(2)∵DF=1,∴BE=1,在Rt△CAF和Rt△CAE中,,∴Rt△CAF≌Rt△CAE(HL),∴AE=AF=3+1=4,∴AB=4+1=5.点评:此题主要考查了全等三角形的判定与性质,以及角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.20.如图,已知AE与BD相交于点C,AB=AC,DE=DC,M、N、P分别是BC、CE、AD的中点.求证:(1)AD=2PM;(2)PM=PN.考点:全等三角形的判定与性质.版权所有专题:证明题.分析:(1)根据等腰三角形底边三线合一性质可证△AMD是RT△,根据直角三角形斜边中线等于斜边长一半即可解题;(2)找到AC中点H,连接HP,HM,找到CD中点G,连接GP,GN,可证△PHM≌△NGP,即可解题.解答:解:(1)∵AB=AC,∴△ABC是等腰三角形,∵M是BC中点,∴AM⊥BC,∵P是RT△AMD斜边上中点,∴AD=2PM;(2)找到AC中点H,连接HP,HM,找到CD中点G,连接GP,GN,则MH是AB边中位线,HP是CD边中位线,PG是AC边上中位线,GN是DE边上中位线,∴MH=AB,HP=CD,PG=AC,GN=DE,MH∥AB,HP∥CD,PG∥AC,GN∥DE,∵AB=AC,DC=DE,∴HM=PG,HP=NG,∴∠CHM=∠BAC,∠PHC=∠DCE,∠NGC=∠CDE,∠PGC=∠ACB,∵AB=AC,DC=DE,∠ACB=∠DCE,∴∠BAC=∠CDE,∠ABC=∠ACB=∠DCE=∠DEC,∴∠PHM=∠NGP,在△PHM和△NGP中,,∴△PHM≌△NGP(SAS),∴PM=PN.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中构建△PHM和△NGP并证明其全等是解题的关键.21 如图,△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.则线段BD与CE有什么关系?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形.版权所有分析:易证∠CAE=∠BAD,可得△BAD≌△CAE,根据全等三角形对应边相等的性质可得BD=CE.解答:解:BD=CE,证明:∵∠BAC=∠DAE=90°,∴∠CAE=∠BAD=90°+∠CAD,在△BAD和△CAE中,,∴△BAD≌△CAE,(SAS),∴BD=CE.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD≌△CAE是解题的关键.22.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.版权所有分析:(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.解答:解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.点评:此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP 的长;(3)当t为何值时,△BCP为等腰三角形?考点:等腰三角形的判定;三角形的面积.版权所有专题:动点型.分析:(1)先由勾股定理求出△ABC的斜边AB=10cm,则△ABC的周长为24cm,所以当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,再根据时间=路程÷速度即可求解;(2)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;(3)△BCP为等腰三角形时,分三种情况进行讨论:①CP=CB;②BC=BP;③PB=PC.解答:解:(1)△ABC中,∵∠C=Rt∠,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒);(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t=12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.点评:本题考查了勾股定理,等腰三角形的判定,三角形的周长与面积,三角形的中线,难度适中.利用分类讨论的思想是解(3)题的关键.。
【八年级数学试题】八年级上册数学期中考试卷(2018浙教版含答案)
八年级上册数学期中考试卷(2018浙教版含答案)
八年级第一学期期中检测卷
考试时间90分钟,满分12)3×34 -(12 )0
(2)计算[(2x-)(2x+)+(-6x)]÷(2x)
18、本题6分
请在下图(单位长度是1)的方格中画出两个以AB为边的三角形ABc,使三角形面积为25。
(要求点c在格点上,其中一个为钝角三角形)
19、本题6分
班会时,老师组织甲、乙两班同学进行投篮比赛,每班各抽5名男生和5名女生进行投篮,每人各投5次(女生投篮处距离篮筐比男生近),成绩记录如下表
投进篮筐个数012345
甲班学生数1312 12
乙班学生数012421
根据以上提供的信息回答下列问题
(1)甲、乙两班的投篮平均成绩哪个更好?(2)甲、乙两班的投篮成绩哪个稳定?
6-1 各1分
=-5 1分
(2)原式= 各1分
= 1分
= 1分
18、本题6分
每幅图3分
19、本题6分
(1)算出甲班平均成绩25个和乙班平均成绩3个各得1分,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省金华五中八年级(上)期中数学模拟试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部3.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.94.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°5.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个 B.2个 C.3个 D.4个8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD平分∠BAC其中正确的有()A.1个 B.2个 C.3个 D.4个9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°11.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②12.(3分)用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上)13.(3分)若A(x,3)关于y轴的对称点是B(﹣2,y),则x=,y=,点A关于x轴的对称点的坐标是.14.(3分)如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=cm,∠ADC=.15.(3分)如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件,则有△AOC≌△BOD.16.(3分)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.17.(3分)如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=.18.(3分)如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.三、解答题(本大题共8小题,共66分)19.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.20.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.21.(8分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.22.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.23.(8分)如图所示,点B和点C分别为∠MAN两边上的点,AB=AC.(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连接BE.(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:≌,≌;并选择其中的一对全等三角形,予以证明.24.(8分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.25.(10分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.26.(12分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.2017-2018学年浙江省金华五中八年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.3.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.4.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.5.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD平分∠BAC其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵D为BC的中点,∴DB=DC,∵在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);所以(1)正确.∵AB=AC,DB=DC,∴AD⊥BC;∠B=∠C,AD平分∠BAC,所以(2)、(3)、(4)正确.故选:D.9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.10.(3分)如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)•180°=1800,解得n=12;那么这个多边形的一个外角是360÷12=30度,即这个多边形的一个外角是30度.故选:A.11.(3分)如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.12.(3分)用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上)13.(3分)若A(x,3)关于y轴的对称点是B(﹣2,y),则x=2,y=3,点A关于x轴的对称点的坐标是(2,﹣3).【解答】解:∵A(x,3)关于y轴的对称点是B(﹣2,y),∴x=2,y=3;∴A(2,3),∴点A关于x轴的对称点的坐标是(2,﹣3),故答案为:2,3,(2,﹣3).14.(3分)如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=5cm,∠ADC=90°.【解答】解:∵△ABE≌△ACD,∴∠C=∠B=30°,AC=AB=10cm,∵∠A=60°,∴∠ADC=180°﹣60°﹣30°=90°,∴AD=AC=5cm,故答案为:5,90°.15.(3分)如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件AC=BD,则有△AOC≌△BOD.【解答】解:补充条件:AC=BD,∵在△AOC和△DOB中,∴△AOC≌△BOD(AAS).故答案为:AC=BD.16.(3分)如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有4处.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故答案为:4.17.(3分)如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【解答】解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,∠2=∠A+∠D,由三角形的内角和定理得,∠1+∠2+∠E=180°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.故答案为:180°.18.(3分)如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.【解答】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240米.故答案为:240.三、解答题(本大题共8小题,共66分)19.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.所以这个多边形的内角和为:(7﹣2)•180°=900°.20.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF21.(8分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).23.(8分)如图所示,点B和点C分别为∠MAN两边上的点,AB=AC.(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连接BE.(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:△ABE≌△ACE,△BDE≌△CDE;并选择其中的一对全等三角形,予以证明.【解答】解:(1)①②③,如图所示:(2)△ABE≌△ACE,△BDE≌△CDE.(3)选择△ABE≌△ACE进行证明.∵AB=AC,AD⊥BC,∴∠BAE=∠CAE,在△ABE和△ACE中∴△ABE≌△ACE(SAS);选择△BDE≌△CDE进行证明.∵AB=AC,AD⊥BC,∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SAS).24.(8分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.【解答】解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•A G=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.∴E到BC边的距离为4.25.(10分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由如下:在△ABE和△DBC中,∴△ABE E≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△BAM E≌△BDN(SAS),∴BM=BN,∠ABM=∠DBN,∵∠ABD=∠DBC,∠ABD+∠DBC=180°∴∠ABD=∠ABM+∠MBE=90°,∴∠MBE+∠DBN=90°,即:BM⊥BN,∴BM=BN,BM⊥BN.26.(12分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【解答】解:(1)∵E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA , ∴DE=CE ,OE=OE ,∴Rt △ODE ≌Rt △OCE ,∴OD=OC ,∴△DOC 是等腰三角形,∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线;(2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC ⊥OB ,ED ⊥OA ,∴OE=2DE ,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF ,∴OE=4EF .赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.A Array变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。