2016高考数学专题复习导练测第二章函数与基本初等函数(I)章末检测理新人教A版

合集下载

2016届数学理(人教A版)一轮复习导练测第二章函数与基本初等函数I2.9

2016届数学理(人教A版)一轮复习导练测第二章函数与基本初等函数I2.9

§2.9函数模型及其应用1.几类函数模型及其增长差异(1)几类函数模型(2)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x 的函数值比y =x 2的函数值大.( × ) (2)幂函数增长比直线增长更快.( × ) (3)不存在x 0,使000log x n a ax x <<.( × )(4)美缘公司2013年上市的一种化妆品,由于脱销,在2014年曾提价25%,2015年想要恢复成原价,则应降价25%.( × )(5)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(6)f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( √ )1.(2014·湖南)某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1答案 D解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.2.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A .5千米处 B .4千米处 C .3千米处 D .2千米处答案 A解析 由题意得,y 1=k 1x,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号,故选A.3.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ) A .x =15,y =12 B .x =12,y =15 C .x =14,y =10 D .x =10,y =14答案 A解析 由三角形相似得24-y24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.4.(2014·北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟答案 B解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.题型一 二次函数模型例1 某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h ≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系. (1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.解 (1)由题意知最高点为(2+h,4),h ≥1, 设抛物线方程为y =a [x -(2+h )]2+4,当h =1时,最高点为(3,4),方程为y =a (x -3)2+4, 将A (2,3)代入,得3=a (2-3)2+4,解得a =-1. ∴当h =1时,跳水曲线所在的抛物线方程为 y =-(x -3)2+4.(2)将点A (2,3)代入y =a [x -(2+h )]2+4 得ah 2=-1,所以a =-1h2.由题意,得方程a [x -(2+h )]2+4=0在区间[5,6]内有一解. 令f (x )=a [x -(2+h )]2+4=-1h 2[x -(2+h )]2+4,则f (5)=-1h 2(3-h )2+4≥0,且f (6)=-1h2(4-h )2+4≤0.解得1≤h ≤43.所以达到压水花的训练要求时h 的取值范围为[1,43].思维升华 实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定要注意函数的定义域.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ) A .100台 B .120台 C .150台 D .180台答案 C解析 设利润为f (x )万元,则 f (x )=25x -(3 000+20x -0.1x 2) =0.1x 2+5x -3 000 (0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,∴生产者不亏本时的最低产量是150台. 题型二 指数函数模型例2 (1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过________小时才能开车.(精确到1小时)(2)里氏震级M 的计算公式:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍. A .6 1 000 B .4 1000 C .6 10 000 D .4 10 000 答案 (1)5 (2)C解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x ≤0.09,∴0.75x ≤0.3,x ≥log 0.750.3≈4.19. ∴x 最小为5.(2)由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=3-(-3)=6,∴此次地震的震级为6级. 设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1-lg A 0)-(lg A 2-lg A 0)=9-5=4. ∴A 1A 2=104=10 000, ∴9级地震的最大振幅是5级地震最大振幅的10 000倍.思维升华 一般地,涉及增长率问题、存蓄利息问题、细胞分裂问题等,都可以考虑用指数函数的模型求解.求解时注意指数式与对数式的互化,指数函数的值域的影响以及实际问题中的条件限制.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=12k e ,∴k =2ln 2,∴y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024. 题型三 分段函数模型例3 中共十八届三中全会提出要努力建设社会主义文化强国.为响应中央号召.某市2016年计划投入600万元加强民族文化基础设施改造.据调查,改造后预计该市在一个月内(以30天计),民族文化旅游人数f (x )(万人)与时间x (天)的函数关系近似满足f (x )=4(1+1x ),人均消费g (x )(元)与时间x (天)的函数关系近似满足g (x )=104-|x -23|.(1)求该市旅游日收益p (x )(万元)与时间x (1≤x ≤30,x ∈N *)的函数关系式;(2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率来收回投资,按此预计两年内能否收回全部投资.解 (1)由题意知p (x )=f (x )g (x )=4(1+1x)(104-|x -23|)(1≤x ≤30,x ∈N *).(2)由p (x )=⎩⎨⎧4(1+1x)(81+x )(1≤x ≤23,x ∈N *),4(1+1x )(127-x )(23<x ≤30,x ∈N *).①当1≤x ≤23时,p (x )=4(1+1x )(81+x )=4(82+x +81x )≥4(82+2x ·81x)=400, 当且仅当x =81x,即x =9时p (x )取得最小值400.②当23<x ≤30时,p (x )=4(1+1x )(127-x )=4(126+127x -x ).设h (x )=127x -x ,则有h ′(x )=-127x 2-1<0, 所以h (x )在(23,30]上为减函数,则p (x )在(23,30]上也是减函数,所以当x =30时,p (x )min =4(126+12730-30)=4001415>400. 所以当x =9时,p (x )取得最小值400万元.则两年内的税收为400×15%×30×12×2×1.5%=648>600,所以600万元的投资可以在两年内收回.思维升华 (1)分段函数的特征主要是每一段自变量变化所遵循的规律不同.分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(2)构造分段函数时,要力求准确、简洁,做到分段合理,保证不重不漏.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0 (n ≤10),100 (10<n ≤15),200 (15<n ≤20),300 (20<n ≤25),400 (n >25).现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( ) A .600元 B .900元 C .1 600元 D .1 700元答案 D解析 ∵k (18)=200(元),∴f (18)=200×(18-10)=1 600(元). 又∵k (21)=300(元),∴f (21)=300×(21-10)=3 300(元),∴f (21)-f (18)=3 300-1 600=1 700(元).故选D.函数应用问题典例:(12分)某工厂统计资料显示,一种产品次品率p 与日产量x (x ∈N *,80≤x ≤100)件之间的关系如下表所示:其中p (x )=1a -x (a 为常数).已知生产一件正品盈利k 元,生产一件次品损失k3元(k 为给定常数).(1)求出a ,并将该厂的日盈利额y (元)表示为日生产量x (件)的函数; (2)为了获得最大盈利,该厂的日生产量应该定为多少件?思维点拨 (1)首先根据图表确定次品率p (x ),利用“日盈利额=正品盈利总额-次品损失总额”求出y 关于x 的函数;(2)求第(1)步建立函数模型的最大值. 解 (1)根据列表数据可得a =108,所以p (x )=1108-x(x ∈N *,80≤x ≤100),[2分]由题意,当日产量为x 时,次品数为1108-x ·x ,正品数为(1-1108-x )·x ,[3分]所以y =(1-1108-x )·x ·k -1108-x ·x ·13k ,[5分] 整理得y =13kx (3-4108-x )(x ∈N *,80≤x ≤100).[6分](2)令t =108-x ,t ∈[8,28],t ∈N *.[7分] 则y =13k (108-t )(3-4t )=13k [328-3(t +144t)]≤13k (328-3×2·t ·144t )=2563k .[10分] 当且仅当t =144t ,即t =12时取得最大盈利,此时x =96.答 为了取得最大盈利,该工厂的日生产量应定为96件.[12分]答题模板解函数应用题的一般程序第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:解模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思——对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.温馨提醒 (1)本题函数模型的建立分为两个阶段:先求次品率p (x ),再求日盈利额关于日产量x 的函数,要在充分理解题意的基础上建模;(2)求函数模型的最值时一定要考虑函数的定义域;解题步骤的最后要对所求问题作答.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础.2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.3.解函数应用题的四个步骤:①审题;②建模;③解模;④还原. 失误与防范1.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型. 2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A 组 专项基础训练(时间:45分钟)1.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .118元 B .105元 C .106元 D .108元答案 D解析 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h (cm)与燃烧时间t (小时)的函数关系用图象表示为( )答案 B解析 根据题意得解析式为h =20-5t (0≤t ≤4),其图象为B.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨 答案 B解析 依题意,得每吨的成本为y x =x 10+4 000x -30,则yx≥2 x 10·4 000x-30=10, 当且仅当x 10=4 000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨,故选B.4.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( ) A .10元 B .20元 C .30元 D.403元 答案 A解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15, t =150时,150k 2-150k 1-20=150×15-20=10. 5.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元答案 C解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32. 因为x ∈[0,16],且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.6.如图是某质点在4秒钟内作直线运动时,速度函数v =v (t )的图象,则该质点运动的总路程为________cm.答案 11解析 总路程为(2+4)×1×12+4×1+12×2×4=11. 7.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a , ∴e -8b =12,容器中的沙子只有开始时的八分之一时, 即y =a e -bt =18a , e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.8.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.答案 9解析 设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧ 9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9.9.某地上 年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)(元)成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]解 (1)∵y 与(x -0.4)成反比例,∴设y =k x -0.4(k ≠0). 把x =0.65,y =0.8代入上式,得0.8=k 0.65-0.4,k =0.2. ∴y =0.2x -0.4=15x -2, 即y 与x 之间的函数关系式为y =15x -2. (2)根据题意,得(1+15x -2)·(x -0.3) =1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6.经检验x 1=0.5,x 2=0.6都是所列方程的根.∵x 的取值范围是0.55~0.75,故x =0.5不符合题意,应舍去.∴x =0.6.∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.10.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值. 解 (1)由题意得当0<x ≤4时,v =2;当4<x ≤20时,设v =ax +b ,显然v =ax +b 在(4,20]内是减函数,由已知得⎩⎪⎨⎪⎧ 20a +b =0,4a +b =2,解得⎩⎨⎧ a =-18,b =52,所以v =-18x +52, 故函数v =⎩⎪⎨⎪⎧ 2, 0<x ≤4,-18x +52, 4<x ≤20.(2)设年生长量为f (x )千克/立方米,依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧2x , 0<x ≤4,-18x 2+52x , 4<x ≤20, 当0<x ≤4时,f (x )为增函数,故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+1008,f (x )max =f (10)=12.5. 所以当0<x ≤20时,f (x )的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.B 组 专项能力提升(时间:25分钟)11.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00答案 C解析 当x ∈[0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)分别代入 可得⎩⎪⎨⎪⎧k 2=-20,b =400.∴y =400-20x . ∴y =f (x )=⎩⎪⎨⎪⎧80x , 0≤x ≤4,400-20x , 4<x ≤20.由y ≥240, 得⎩⎪⎨⎪⎧ 0≤x ≤480x ≥240或⎩⎪⎨⎪⎧ 4<x ≤20,400-20x ≥240.解得3≤x ≤4或4<x ≤8,∴3≤x ≤8.故第二次服药最迟应在当日下午4:00.故选C.12.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A .2B .6C .8D .10答案 A解析 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x 100,令104·(100-10x )·70·x 100≥112×104,解得2≤x ≤8.故x 的最小值为2. 13.某工厂采用高科技改革,在两年内产值的月增长率都是a ,则这两年内第二年某月的产值比第一年相应月产值的增长率为( )A .a 12-1B .(1+a )12-1C .aD .a -1答案 B解析 不妨设第一年8月份的产值为b ,则9月份的产值为b (1+a ),10月份的产值为b (1+a )2,依次类推,到第二年8月份是第一年8月份后的第12个月,即一个时间间隔是1个月,这里跨过了12个月,故第二年8月份产值是b (1+a )12.又由增长率的概念知,这两年内的第二年某月的产值比第一年相应月产值的增长率为b (1+a )12-b b=(1+a )12-1. 14.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.答案 7解析 设第n (n ∈N *)年的年产量为a n ,则a 1=12×1×2×3=3;当n ≥2时,a n =f (n )-f (n -1)=12n (n +1)·(2n +1)-12n (n -1)(2n -1)=3n 2.又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-52≤n ≤52,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年.15.某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)当0<x <80,x ∈N *时,L (x )=500×1 000x 10 000-13x 2-10x -250 =-13x 2+40x -250; 当x ≥80,x ∈N *时,L (x )=500×1 000x 10 000-51x -10 000x+1 450-250 =1 200-(x +10 000x), ∴L (x )=⎩⎨⎧ -13x 2+40x -250(0<x <80,x ∈N *),1 200-(x +10 000x )(x ≥80,x ∈N *).(2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950, ∴当x =60时,L (x )取得最大值L (60)=950.当x ≥80,x ∈N *时,L (x )=1 200-(x +10 000x)≤1 200-2 x ·10 000x=1 200-200=1 000,∴当x =10 000x,即x =100时, L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000, 即年产量为100千件时,该厂在这一商品的生产中所获利润最大.。

高中数学第二章基本初等函数(Ⅰ)章末检测(B)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)章末检测(B)新人教A版必修1

【创新设计】2015-2016学年高中数学 第二章 基本初等函数(Ⅰ)章末检测(B )新人教A 版必修1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N等于( )A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为( )A .[2,8]B .[0,8]C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( )A .1B .2C .-1 D.124.21log 52 等于( )A .7B .10C .6 D.925.若100a =5,10b =2,则2a +b 等于( )A .0B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是( )A .23.1<13.12<13.11.5B .13.11.5<23.1<13.12C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为( )A.23 B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ;②lg ab =lg a -lg b ;③12lg(ab )2=lg ab ;④lg(ab )=1log ab 10.其中正确命题的个数为( )A .0B .1C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图象的交点个数是( )A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=⎩⎪⎨⎪⎧ 12x , x ≥4f x +1, x <4,则f (2+log 23)的值为______.14.函数f (x )=log a 3-x 3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x+5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.20.(12分)设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4, (1)若t =log 2x ,求t 的取值范围;(2)求f (x )的最值,并写出最值时对应的x 的值.21.(12分)已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0},∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8].]3.D [由f (3x )=log 29x +12, 得f (x )=log 23x +12,f (1)=log 22=12.] 4.B [21log 52 =2·2log 52=2×5=10.]5.B [由100a =5,得2a =lg 5,由10b =2,得b =lg 2,∴2a +b =lg 5+lg 2=1.]6.D [∵13.11.5=1.5-3.1=(11.5)3.1, 13.12=2-3.1=(12)3.1,又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2,∴(12)3.1<(11.5)3.1<23.1,故选D.] 7.A [∵log 89=log 232log 223=23log 23, ∴原式=23.] 8.B [∵ab >0,∴a 、b 同号.当a 、b 同小于0时①②不成立;当ab =1时④不成立,故只有③对.]9.C [y =lg x +310=lg(x +3)-1, 即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a|-4+1|=a 3,f (1)=a |1+1|=a 2,∵a 3>a 2,∴f (-4)>f (1).]13.124解析 ∵log 23∈(1,2),∴3<2+log 23<4,则f (2+log 23)=f (3+log 23) =23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124. 14.-3解析 ∵3-x 3+x>0,∴-3<x <3 ∴f (x )的定义域关于原点对称.∵f (-x )=log a 3+x 3-x =-log a 3-x 3+x=-f (x ), ∴函数f (x )为奇函数.∴f (-2)=-f (2)=-3.15.(-∞,1)解析 函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1},令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32, 所以(-∞,1)为函数y 的递增区间.16.52 12解析 y =124x --3·2x +5=12(2x )2-3·2x +5. 令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4. 当t =3时,y min =12; 当t =1时,y max =12×(1-3)2+12=52. 17.解 (1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1,则⎩⎪⎨⎪⎧ x >02-3x >0x ≤2-3x,解得0<x ≤12, 若0<a <1,则⎩⎪⎨⎪⎧ x >02-3x >0x ≥2-3x ,解得12≤x <23, 综上所述,a >1时,不等式解集为(0,12]; 0<a <1时,不等式解集为[12,23). 18.解 (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1], 故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1], 故值域为[-98,0]. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解.记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a<0, 过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a>0, 过点(0,-1),必有一个根为正,符合要求.故a 的取值范围为(0,+∞).19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0. 即当1<x <43时,f (x )<g (x ); 当x >43时,f (x )>g (x ). 20.解 (1)∵t =log 2x ,14≤x ≤4,∴log 214≤t ≤log 24, 即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x )=(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14, ∴当t =-32即log 2x =-32,x =322-时, f (x )min =-14. 当t =2即x =4时,f (x )max =12.21.解 (1)由对数函数的定义知1+x 1-x>0, 故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ), ∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,① 而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0. 故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,② 而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解 (1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1.∴f (x )=1-2x 2+2x +1. (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1, 设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++. 因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x >0.又(12x +1)( 22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

word1 / 7第二章 基本初等函数(Ⅰ)注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.()0a a >可以化简为( )A .32aB .18a C .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5< D .0.10.2212<log 25< 3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy=( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B .12y x =-C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa xx f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有word2 / 7()()1212f x f x x x -<0-成立,则实数a 的取值X 围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值X 围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数22logy x =,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)()31320.5log 511lg3lg91lg 812730.25-⎛⎫++-+-+ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.word3 / 719.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值X 围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).word4 / 721.(12分)已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(12分)若函数f (x )满足21(log )1a a f x x x a ⎛⎫=⋅- ⎪-⎝⎭ (其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值X 围.word1 / 72018-2019学年必修一第二章训练卷基本初等函数(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B .8.【答案】A 【解析】A,22xy x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C .11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值X 围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)word2 / 713.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-. 16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭, 点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2xf x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422xx -⎛⎫-= ⎪⎝⎭,即112=42xx⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析.【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}.word3 / 721.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222x x -+.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x=(2x-2)2-4.∵x ∈[0,1],∴2x∈[1,2],∴当2x=2,即x =1时,g (x )取得最小值-4; 当2x=1,即x =0时,g (x )取得最大值-3. 22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡+⎣.【解析】(1)令log a x =t (t ∈R ),则x =a t,∴2()()1t ta f t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数.当0<a <1时,y =a x为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1, ∴a的取值X 围为)(21,23⎡+⎣.。

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质(2)课后训练1新人教A版必

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质(2)课后训练1新人教A版必

2.2.2 对数函数及其性质课后训练1.函数y =2+log 2x (x ≥1)的值域为( ).A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞)2.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ).A .B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}3.函数y 12log (43)x -( ).A .(0,1] B.3,4⎛⎫+∞ ⎪⎝⎭ C.3,24⎛⎫ ⎪⎝⎭ D.3,14⎛⎤ ⎥⎝⎦ 4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ).A .log 2x B.12x C .12log x D .2x -2 5.小华同学作出的a =2,3,12时的对数函数y =log a x 的图象如图所示,则对应于C 1,C 2,C 3的a 的值分别为( ).A .2,3,12 B .3,2,12 C.12,2,3 D.12,3,2 6.不等式13log (5+x )<13log (1-x )的解集为______. 7.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.8.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f 12⎛⎫ ⎪⎝⎭=0,则不等式f (log 4x )<0的解集是______.9.已知函数f (x )=log a (x +1),g (x )=log a (4-2x )(a >0,且a ≠1).(1)求函数f (x )-g (x )的定义域;(2)求使函数f (x )-g (x )的值为正数的x 的取值范围.10.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝值y与声压P的函数关系式.(2)某地声压P=0.002帕,试问该地为以上所说的什么区?(3)2011年春节联欢晚会中,赵本山、王小利、小沈阳等表演小品《同桌的你》时,现场多次响起响亮的掌声,某观众用仪器测量到最响亮的一次音量达到了90分贝,试求此时中央电视台演播大厅的声压是多少?参考答案1. 答案:C ∵x ≥1,∴log 2x ≥0,∴y ≥2.2. 答案:D 由log 2x >1,得x >2,∴M N ={x |2<x <3}.3. 答案:D 由题意列不等式组12log (43)0,(1)430.(2)x x -≥⎧⎪⎨⎪->⎩ 对于①有12log (4x -3)≥12log 1,解得x ≤1;对于②有4x >3,解得x >34.所以34<x ≤1. 4. 答案:A 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2,故f (x )=log 2x .5. 答案:C 直线y =1与函数y =log a x 的图象交点的横坐标是底数a ,则由图象得对应C 1的a 的值为12,对应C 3的a 的值为3,对应C 2的a 的值为2. 6. 答案:{x |-2<x <1} 原不等式等价于50,10,51,x x x x +>⎧⎪->⎨⎪+>-⎩解得-2<x <1.7. 答案:4 由log 2x ≤2,得0<x ≤4,所以A =(0,4].又A B ,则a >4,所以c =4.8. 答案:122x x ⎧⎫<<⎨⎬⎩⎭由题意可知,f (log 4x )<012-<log 4x <12124log 4-<log 4x <1241log 42⇔<x <2. 9. 答案:解:(1)由题意可知,f (x )-g (x )=log a (x +1)-log a (4-2x ),要使函数f (x )-g (x )有意义,自变量x 的取值需满足10,420,x x +>⎧⎨->⎩解得-1<x <2. 故函数f (x )-g (x )的定义域是(-1,2).(2)令f (x )-g (x )>0,得f (x )>g (x ),即log a (x +1)>log a (4-2x ),当a >1时,可得x +1>4-2x ,解得x >1.由(1)知-1<x <2,∴1<x <2;当0<a <1时,可得x +1<4-2x ,解得x <1,由(1)知-1<x <2,∴-1<x <1.综上所述,当a >1时,x 的取值范围是(1,2);当0<a <1时,x 的取值范围是(-1,1).10. 答案:解:(1)由已知,得y =20lg 0p p .又P 0=2×10-5,则y =20lg 5210p -⨯. (2)当P =0.002时,y =20lg 50.002210-⨯=20lg 102=40(分贝). 由已知条件知40分贝小于60分贝,所以该地区为无害区.(3)由题意,得90=20lg0p p ,则0p p =104.5, 所以P =104.5P 0=104.5×2×10-5=2×10-0.5≈0.63(帕).。

高考数学课标通用(理科)一轮复习真题演练:第二章函数概念与基本初等函数Ⅰ2-4Word版含解析

高考数学课标通用(理科)一轮复习真题演练:第二章函数概念与基本初等函数Ⅰ2-4Word版含解析

真题操练集训421 1.[2016 ·新课标全国卷Ⅲ ] 已知 a =23 5,c =25 3,b =4 ,则()A .b<a<cB .a<b<cC .b<c<aD .c<a<b答案: A41211分析:因为 a =23=16 3 ,= 5=5, =3 ,且幂函数b 4 16c251y =x3y =16x在 R 上单一递加,因此在 R 上单一递加,指数函数b<a<c.2.[2015 ·四川卷 ] 假如函数 f(x)=12(m -2)x 2+(n -8)x +1(m ≥0,≥ 在区间1,2 上单一递减,那么 mn 的最大值为()n 0)2A .16B .18C .25D . 812答案: B1分析: ①当 m =2 时,∵f(x)在 2,2 上单一递减,∴ 0≤n<8,mn= 2n<16.12②当 m ≠2 时,函数 f(x)=2(m - 2)x +(n -8)x +1(m ≥0,n ≥0)n -8的对称轴方程为 x =-.m -2a .当 m >2 时,抛物线张口向上,1∵f(x)在 2,2 上单一递减,n -8∴- ≥2,即 2m +n ≤12.m -2又 2m +n ≥2 2mn ,∴ 2 2mn ≤12,∴mn ≤18.当 2m =n =6,即 m =3,n =6 时取等号, ∴mn 的最大值为 18.b .当 m <2 时,抛物线张口向下,∵ 在1 ,2 上单一递减, f(x)2n -8 ≤1,即 m +2n ≤18,即 n ≤9-1m. ∴-m -2 22 又∵ 0≤m <2,n ≥0,121281∴mn ≤9m -2m =- 2(m -9) + 2 <- 1(2-9)2+81=16.22综上所述, mn 的最大值为 18,应选 B.3.[2014 ·浙江卷 ] 在同向来角坐标系中,函数f(x)=x a(x>0),g(x)=log a x 的图象可能是 ()A BC D答案: D分析:当 a>1 时,函数 f(x)=x a(x>0)单一递加,函数g(x)=log a x 单一递加,且过点 (1,0),由幂函数的图象性质可知 C 错;当0<a<1时,函数 f(x)=x a(x>0)单一遂增,函数g(x)=log a x 单一递减,且过点(1,0),清除 A,又由幂函数的图象性质可知 B 错,应选 D.4.[2013 ·重庆卷 ]3-a a+6 (-6≤a≤3)的最大值为 ()A. 9B.9 2C. 3D.32 2答案: B分析:易知函数y=(3-a)(a+6)的两个零点是3,- 6,对称轴为3=-+的最大值为= 3+3392,则a2y(3a)(a6)y22293-a 6+a 的最大值为 2,应选 B.5.[2014 ·辽宁卷 ] 对于 c >0,当非零实数 a ,b 知足 4a 2-2ab +4b2-c =0 且使 |2a +b|最大时, 3a -4b +5c 的最小值为 ________.答案: -2分析: 设 2a +b =x ,则 2a =x -b ,∴(x -b)2-b(x -b)+4b 2-c =0,x 2-3bx +6b 2-c =0,即 6b 2-3xb +x 2-c =0.∴Δ=9x 2-4×6×(x 2-c)≥0,∴3x 2-8x 2+8c ≥0,∴x2≤85c.当 |2a +b|=|x|取最大时,有 (2a +b)2=85c ,∴4a 2+4ab +b2=85c.又∵4a 2-2ab +4b 2=c ,①b 22 a. ∴ = ,∴b =a 3 32将 b =3a 代入①,得22 4 24a -2a ·a +9 a ·4= c ,3∴a =3c,b =c或 a =- 3 c,b =- c .2 1010 210 10当 a =3c,b =c时,有2101034 5 34 5a -b +c =3c - c +c210102 10 4 10 5 110 2 = c -c +c = 5 c -5 -2≥-2, 1 10 5当 c =5 ,即 c =2时等号建立.3 1此时 a =4,b =2.3当 a =- 2c10, b =-c10时,3 4 5a -b +c =-2 10 + c410 5 + =c c210 5+ >0,c c综上可知,当5 3 1c =2,a =4,b =2时,3 4 5 a -b +cmin=- 2.课外拓展阅读结构二次函数解决问题二次函数是中学数学的一个重要知识, 它与一元二次不等式、 一元二次方程的联系是诸多命题者的关注点. 对于有些问题若能充足利用二次函数的性质, 则会水到渠成. 下边就给出几种结构二次函数解决问题的例题.1.结构二次函数求根式函数的最值[ 典例 1] 求函数 y =x 2+ 1-x 2的最值.[ 思路剖析 ] 利用换元法转变为二次函数求最值.[ 解] 令 1-x 2=u ,则 x 2=1-u 2,且 0≤u≤1.因此 y=1-u2+u=- u-122+54,55因此 1≤y≤4,故 y min=1,y max=4.2.结构二次函数解不等式(1)从结论的外形结构作形式联想进行结构[ 典例 2]已知a<b<c,求证:a2b+b2c+c2a<ab2+bc2+ca2.[ 思路剖析 ]察看结论的特色,若将不等式移项后,有a2b+b2c +c2a-(ab2+bc2+ca2)<0,设 A=a2b+ b2c+ c2a-(ab2+bc2+ ca2)=(b-c)a2+(c2- b2)a+(b2c-bc2),考虑到 a 是按降幂摆列的,故可联想到结构二次函数f(x)=(b-c)x2+(c2-b2)x+(b2c-bc2)求解.[ 证明 ] 令 A= a2b+b2c+ c2a-(ab2+bc2+ca2)=(b-c)a2+(c2-b2)a+(b2c-bc2).设 f(x)=(b- c)x2+(c2-b2)x+(b2c-bc2)=(b-c)(x-b)(x-c),因为 b<c,因此函数 f(x)的图象张口向下,且与 x 轴交点的横坐标为 b,c,因此当 x<b 或 x>c 时,f(x)<0.又 a<b,因此 f(a)<0,即 A<0,因此 a2b+b2c+c2a<ab2+bc2+ca2.(2)利用二次函数的最值特色进行结构[典例 3]已知 a1,a2,, a n为实数,试证: (x-a1)2+(x-a2)2++ (x-a n)2≥n a12+a22++ a n2- a1+a2++a n2n[ 思路剖析 ]所证不等式的左侧可看作是对于 x 的二次函数,只要证此二次函数的最小值是n a21+a22++a2n- a1+a2++a n2n即可.[ 证明 ] 设 f(x)= (x-a1)2+(x-a2)2++(x-a n)2=nx2-2(a1+a2++a n)x+(a12+a22++a2n).因为 n>0,因此对于二次函数f(x),a1+a2++a n当 x=n时, f(x)有最小值,且 f(x)min =n a12+a22++a n2- a1+a2++a n2n.因此 f(x)≥n a12+a22++a n2- a1+a2++a n2n,故原不等式成立.(3)利用根与系数的关系结构二次函数[ 典例4]已知112a>3,b>3,ab=9,求证:a+b<1.[ 思路剖析]已知条件出现了2ab=9,而结论中有a+b,若设a22+b=t,则 a,b 为二次函数 f(x)=x -tx+9的图象与 x 轴的两个交点11的横坐标,因为a>3,b>3,依据二次函数的性质,易证t<1.2[ 证明 ]设 t=a+b,又 ab=9,22则 a,b 为二次函数 f(x)=x -tx+9的图象与 x 轴的两个交点的横坐标.11因为 a>3,b>3,二次函数的图象张口向上,因此有1 1 1 2f 3 >0,即 9-3t+9>0,解得 t<1,即 a+b<1.。

高考数学课标通用(理科)一轮复习真题演练:第二章函数概念与基本初等函数Ⅰ2-7Word版含解析

高考数学课标通用(理科)一轮复习真题演练:第二章函数概念与基本初等函数Ⅰ2-7Word版含解析

真题操练集训1.[2016 ·新课标全国卷Ⅰ]函数 y=2x2-e|x|在[ -2,2]的图象大概为()A BC D答案: D分析:当 x≥0 时,令函数f(x)=2x2-e x,则 f′(x)=4x-e x,易知 f′(x)在[0 ,ln 4)上单一递加,在 [ln 4,2] 上单一递减,又 f′(0)=-1=2- e>0,f′(1)=4- e>0,f′(2)=8-e2>0,因此存在1<0,f′20∈0,1是函数f(x)的极小值点,即函数f(x)在, 0上单一递减,x2(0 x )在(x0,2)上单一递加,且该函数为偶函数,切合条件的图象为 D.2. [2016 ·新课标全国卷Ⅱ ] 已知函数f(x)(x∈R)知足f(- x)=2-x+1f(x),若函数 y=x与y=f(x)图象的交点为(x1,y1),(x2,y2),,(x m,y m),则m(x i+y i)=()i =1A .0B.m C.2m D.4m 答案: B分析:由于 f(x)+f(-x)=2, y=x+1+1,因此函数==x1x y f(x) x+1m m与 y=x的图象都对于点 (0,1)对称,因此x i=0,y i=m×2=m,2i=1i=1应选 B.ax+b3.[2015 ·徽卷安 ]函数 f(x)=x+c2的图象如下图,则以下结论建立的是 ()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0D.a<0,b<0, c<0答案: C分析:函数的定义域为 { x|x≠-c} ,联合图象知- c>0,∴c<0.令 x=0,得bf(0)=c2,又由图象知f(0)>0,∴b>0.令f(x)=0,得bx=- a,b联合图象知-a>0,∴a<0.应选 C.4.[2015 ·北京卷 ] 如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是 ()A .{ x|-1<x≤0}B.{ x|-1≤x≤1}C.{ x|-1<x≤1}D.{ x|-1<x≤2}答案: C分析:令 g(x)=y=log2(x+1),作出函数 g(x)图象如图.x+y=2,x=1,由得y=log2 x+1 ,y=1.∴联合图象知,不等式f(x)≥log2(x+1)的解集为 { x|-1<x≤1} .5.[2014 ·新课标全国卷Ⅰ]如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线 OA,终边为射线 OP,过点 P 作直线 OA 的垂线,垂足为 M,将点 M 到直线 OP 的距离表示成 x的函数 f(x),则 y=f(x)在[0,π]上的图象大概为 ()A BC D答案: C分析:如下图,π当 x∈0,2时,则 P(cos x,sin x),M(cos x,0),|MM ′|作 MM ′⊥OP,M′为垂足,则|OM|=sin x,f x1π∴=sin x,∴f(x)=sin xcos x=sin 2x,则当 x=时, f(x)max cos x24 1=2;f x当 x∈2,π时,有|cos x|=sin( -πx),π1f(x)=- sin xcos x=-2sin 2x,3π1当 x= 4 时, f(x)max=2.只有C 选项的图象切合.课外拓展阅读函数图象的变换问题1.对称变换经过特别值,我们能够获得函数y=a x与 y=1a x(a>0,a≠1)的图1象对于 y 轴对称,函数 y=log a x 与 y=log a x(a>0,a≠1)的图象对于 x轴对称,原由是y=1a x=a-x,y=log1a x=- log a x.推行到一般,能够获得:函数 f(x)的图象与函数 f(-x)的图象对于 y 轴对称,函数 f(x) 的图象与函数- f(x)的图象对于 x 轴对称.2.平移变换(1)左右平移变换一般地,函数图象左右平移变换时,当h>0 时,将函数 f(x)的图象向右平移 h 个单位长度后,获得函数f(x-h)的图象;向左平移 h个单位长度后,获得函数 f(x+h)的图象.(2)上下平移变换一般地,函数图象上下平移变换时,当h>0 时,将函数 f(x)的图象向上平移 h 个单位长度后,获得函数 f(x)+h 的图象;向下平移 h 个单位长度后,获得函数 f(x)-h 的图象.3.翻折变换(1)画函数 f(|x|)的图象时,先画出函数 f(|x|)在 y 轴右边的图象,再将此部分图象对于 y 轴翻折,即得函数 f(|x|)在 y 轴左边的图象.(2)画函数 |f(x)|的图象时,先画出函数 f(x)的图象,再将 x 轴下方的图象对于 x 轴翻折,即得函数 |f(x)|的图象.x+3[ 典例 1]为了获得函数y=lg10的图象,只要把函数y=lg x 的图象上全部的点 ()A .向左平移 3 个单位长度,再向上平移 1 个单位长度B.向右平移 3 个单位长度,再向上平移 1 个单位长度C.向左平移 3 个单位长度,再向下平移 1 个单位长度D.向右平移 3 个单位长度,再向下平移 1 个单位长度[ 思路剖析 ] y=lg x+3= lg x+310-1向上平移 1个单位长度y=lg x+3向下平移 1个单位长度向右平移 3个单位长度y=lg x向左平移 3个单位长度x+3[分析 ]由于y=lg10=lg(x+3)-1,因此只要将y=lg x 的图象上全部的点向左平移 3 个单位长度,再向下平移 1 个单位长度,即可x+3获得函数 y=lg10的图象.[答案 ]C[ 典例2]已知函数y=f(x)的周期为2,当x∈[ -1,1]时f(x)=x2.那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有() A.10 个B.9个C.8 个D.1个[ 思路剖析 ][ 分析 ]画出两个函数图象如下图,可看出交点有10 个.[答案 ]A。

高考数学专题复习导练测第二章函数与基本初等函数I阶段测试三课件理新人教A

高考数学专题复习导练测第二章函数与基本初等函数I阶段测试三课件理新人教A

导班等。
心态调整
03
引导学生正确看待考试成绩,调整心态,增强自信心和学习动
力。
THANKS
感谢观看
对数函数性质
函数的图像是单调的,当$a>1$时 ,图像是增函数;当$0<a<1$时 ,图像是减函数。
对数函数的应用
在物理学、工程学等领域,对数函 数被用来描述声音传播、放射性衰 变等自然现象。
04
阶段测试题目解析
选择题解析
选择题1解析
选择题3解析
这道题考查了函数的定义域,根据题 意,函数$f(x) = log_{2}(x - 1)$的定 义域为$(1, + infty)$,故选D。
03
基本初等函数详解
一次函数
01
02
03
一次函数定义
$y=kx+b$,其中$k$和 $b$为常数,且$k neq 0$。
一次函数性质
函数的图像是一条直线, 斜率为$k$,截距为$b$ 。
一次函数的应用
在现实生活中,一次函数 可以用来描述匀速直线运 动、匀加速直线运动等物 理现象。
指数函数
指数函数定义
对全体学生的成绩进行统计,分析各分数段的分 布情况,了解整体水平。
成绩对比
将本次成绩与前几次测试进行对比,观察学生成 绩的波动情况。
进步与退步
关注学生个体在本次测试中的成绩变化,鼓励进 步,分析退步原因。
知识掌握情况评估
知识点覆盖率
评估测试题目对知识点的覆盖程度,了解学生对哪些知识点掌握 不够扎实。
解答题2解析
这道题考查了函数的奇偶性,根据题意,函数$f(x) = x^{3}$ 是奇函数,且在区间$( - infty,0)$上是减函数,在区间$(0, + infty)$上是增函数,故答案为$( - infty,0)$和$(0, + infty)$ 。

人教版高三数学第二学期函数的概念与基本初等函数多选题单元 期末复习测试提优卷

人教版高三数学第二学期函数的概念与基本初等函数多选题单元 期末复习测试提优卷

人教版高三数学第二学期函数的概念与基本初等函数多选题单元 期末复习测试提优卷一、函数的概念与基本初等函数多选题1.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈,则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦; 若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.2.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y =+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121xyzm ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.3.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( )A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;4.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=,由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为10,2⎡⎢⎣⎦,则“复区间长度”为()221b a -==+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,212x =,所以12a b ⎧=⎪⎪⎨+⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.5.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.6.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-,当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.8.已知函数1()xx f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()x x f x e'=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.9.下列说法中,正确的有( )A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x x f x -+-=-==+++,则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++,所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.10.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.11.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+ B .1log (1)log (2)a a a a ++>+ C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥,所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.12.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.13.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+ D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围. 【详解】由函数解析式可得11,01()11,01x x f x x x⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.14.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.15.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论.【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”;对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.16.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论. 【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()t t f t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+17.已知53a =,85b =,则( ) A .a b < B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b+>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.18.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,边长为3,所以当((0,1),A B C 时成立,正确;故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.19.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞ C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++ ⎪+⎝⎭,12121299()()f x f x x xx x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD 【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.20.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xx e e e f x f x e e e------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.。

【决胜高考】2016高考数学专题复习导练测 第二章 函数与基本初等函数(I)章末检测 理 新人教A版

【决胜高考】2016高考数学专题复习导练测 第二章 函数与基本初等函数(I)章末检测 理 新人教A版

【决胜高考】2016高考数学专题复习导练测 第二章 函数与基本初等函数(I )章末检测 理 新人教A 版(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2010·XX 四县市一中联考)已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.下列四个函数中,与y =x 表示同一函数的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3.设a =log 3π,b =log 23,c =log 32,则( ) A .a >b >c B .a >c >b C .b >a >c D .b >c >a4.(2010·XX 高三联考)由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增5.函数f (x )=|x |-k 有两个零点,则( ) A .k =0B .k >0 C .0≤k <1D .k <06.若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y7.(2011·XX 月考)函数y =lg|x |x的图象大致是( )8.(2010·XX)若函数f (x )=212log ,0,log (),0,x x x x >⎧⎪⎨-<⎪⎩若f (a )>f (-a ),则实数a 的取值X 围( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)9.(2011·XX 模拟)已知幂函数f (x )的图象经过点(18,24),P (x 1,y 1),Q (x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论:①x 1f (x 1)>x 2f (x 2); ②x 1f (x 1)<x 2f (x 2);③f x 1x 1>fx 2x 2; ④f x 1x 1<f x 2x 2. 其中正确结论的序号是( ) A .①②B .①③ C .②④D .②③10.(2010·XXXX、XX 、晋中5月联考)已知函数f (x )=112log (421)x x +-+的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值X 围是( )A .(0,12]∪[2,+∞)B.[14,1)∪(1,4]C .[1,1)∪(1,2]D .(0,1]∪[4,+∞)题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知对不同的a 值,函数f (x )=2+a x -1(a >0,且a ≠1)的图象恒过定点P ,则P 点的坐标是________.14.(2011·XX 模拟)定义在R 上的函数f (x )满足f (x )=2log (1),0(1)(2),0x x f x f x x -≤⎧⎨--->⎩,则f (2 011)的值为__________.15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.(2011·潍坊模拟)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x+1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x,则①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3.其中所有正确命题的序号是________. 三、解答题(本大题共6小题,共70分) 17.(10分)(2011·XX 模拟)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,XX 数a 的取值X 围.18.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.19.(12分)已知函数f (x )=2x-12|x |.(1)若f (x )=2,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,XX 数m 的取值X 围.20.(12分)(2011·XX 模拟)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,XX 数a 的取值X 围.21.(12分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值.22.(12分)(2011·XX 模拟)对于定义域为[0,1]的函数f (x ),如果同时满足以下三条:①对任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数.(1)若函数f (x )为理想函数,求f (0)的值;(2)判断函数f (x )=2x-1 (x ∈[0,1])是否为理想函数,并予以证明;(3)若函数f (x )为理想函数,假定存在x 0∈[0,1],使得f (x 0)∈[0,1],且f [f (x 0)]=x 0,求证:f (x 0)=x 0.答案1.B [由2x -x 2>0, 得x (x -2)<0⇒0<x <2,故A ={x |0<x <2},由x >0,得2x>1, 故B ={y |y >1},∁R B ={y |y ≤1}, 则(∁R B )∩A ={x |0<x ≤1}.] 2.B3.A [∵log 32<log 22<log 23,∴b >c . 又∵log 23<log 22=log 33<log 3π, ∴a >b ,∴a >b >c .] 4.B [①当x ≥0且y ≥0时, x 2+y 2=1,②当x >0且y <0时,x 2-y 2=1,③当x <0且y >0时,y 2-x 2=1, ④当x <0且y <0时,无意义.由以上讨论作图如右,易知是减函数.]5.B [令y =|x |,y =k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象,得k >0.]6.C [∵0<x <y <1,∴由函数的单调性得3x <3y,log x 3>log y 3,(14)x >(14)y ,即选项A 、B 、D 错,故选C.]7.D8.C [由分段函数的表达式知,需要对a 的正负进行分类讨论.f (a )>f (-a )⇒⎩⎪⎨⎪⎧a >0log 2a >log 12a 或⎩⎪⎨⎪⎧a <0log 12-a >log 2-a ⇒⎩⎪⎨⎪⎧a >0a >1或⎩⎪⎨⎪⎧a <0-1<a⇒a >1或-1<a <0.]9.D [依题意,设f (x )=x α,则有(18)α=24,即(18)α=(18)12,所以α=12,于是f (x )=x 12. 由于函数f (x )=x 12在定义域[0,+∞)内单调递增,所以当x 1<x 2时,必有f (x 1)<f (x 2),从而有x 1f (x 1)<x 2f (x 2),故②正确;又因为f x 1x 1,f x 2x 2分别表示直线OP 、OQ 的斜率,结合函数图象,容易得出直线OP 的斜率大于直线OQ 的斜率,故f x 1x 1>f x 2x 2,所以③正确.]10.A [∵f (x )的值域为[0,+∞),令t =4x -2x +1+1,∴t ∈(0,1]恰成立,即0<(2x )2-2·2x +1≤1恰成立,0<(2x -1)2成立,则x ≠0,(2x )2-2·2x +1≤1可化为2x (2x-2)≤0,∴0≤2x≤2,即0≤x ≤1, 综上可知0<x ≤1.]11.D [因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,-f (1)<0,即f (-25)<f (80)<f (11).]12.C [将f (x )<12化为x 2-12<a x ,利用数形结合,分a >1和0<a <1两种情况求解.结合图象得⎩⎪⎨⎪⎧ a >1a -1≥12或⎩⎪⎨⎪⎧0<a <1a ≥12,解得1<a ≤2或12≤a <1.]13.(1,3) 14.-1解析 由已知得f (-1)=log 22=1, f (0)=0,f (1)=f (0)-f (-1)=-1, f (2)=f (1)-f (0)=-1,f (3)=f (2)-f (1)=-1-(-1)=0, f (4)=f (3)-f (2)=0-(-1)=1,f (5)=f (4)-f (3)=1,f (6)=f (5)-f (4)=0, 所以函数f (x )的值以6为周期重复性出现, 所以f (2 011)=f (1)=-1. 15.154解析 由0≤|log 0.5x |≤2解得14≤x ≤4,∴[a ,b ]长度的最大值为4-14=154.16.①②④解析 由f (x +1)=f (x -1)可得f (x +2)=f [(x +1)+1]=f (x +1-1)=f (x ),∴2是函数f (x )的一个周期.又函数f (x )是定义在R 上的偶函数, 且x ∈[0,1]时,f (x )=(12)1-x ,∴函数f (x )的简图如右图,由简图可知②④也正确. 17.解 (1)∵f (x )的不动点为(1,1)、(-3,-3),∴有⎩⎪⎨⎪⎧a +b -b =1,9a -3b -b =-3,∴a =1,b =3.………………………………………………(4分)(2)∵函数总有两个相异的不动点, ∴ax 2+(b -1)x -b =0,Δ>0,即(b -1)2+4ab >0对b ∈R 恒成立,……………………………………………………(7分)Δ1<0,即(4a -2)2-4<0,………………………………………………………………(9分) ∴0<a <1.………………………………………………………………………………(10分) 18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.……………………………………………………………………………………(3分)设x ∈[0,1],则-x ∈[-1,0].∴f (-x )=14-x -12-x =4x -2x.又∵f (-x )=-f (x )∴-f (x )=4x -2x.∴f (x )=2x -4x.……………………………………………………………………………(8分)(2)当x ∈[0,1],f (x )=2x-4x=2x-(2x )2,∴设t =2x (t >0),则f (t )=t -t 2. ∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.……………………………………………(12分)19.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x-12x .…………………………………………………………………(3分)由条件可知2x -12x =2,即22x -2·2x-1=0,解得2x=1± 2.∵2x>0,∴x =log 2(1+2).……………………………………………………………(6分)(2)当t ∈[1,2]时,2t ⎝⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t-1). ∵22t -1>0,∴m ≥-(22t +1).…………………………………………………………(9分)∵t ∈[1,2],∴-(1+22t)∈[-17,-5],故m 的取值X 围是[-5,+∞).……………………………………………………(12分) 20.解 (1)设f (x )图象上任一点坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,……………………………………………………………………………(2分)∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x.……………………………………………………………………………(6分)(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2]. ∵x ∈(0,2],∴a +1≥x (6-x ),…………………………………………………………(8分)即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2], q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,∴a ≥7.……………………………………………(12分)21.解 (1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|)=⎩⎪⎨⎪⎧30+t 40-t , 0≤t <10,40-t 50-t , 10≤t ≤20.……………………………………………………(4分)(2)当0≤t <10时,y 的取值X 围是[1 200,1 225],在t =5时,y 取得最大值为1 225;……………………………………………………(8分)当10≤t ≤20时,y 的取值X 围是[600,1 200], 在t =20时,y 取得最小值为600.所以第5天,日销售额y 取得最大值为1 225元;第20天,日销售额y 取得最小值为600元.………………………………………(12分) 22.(1)解 取x 1=x 2=0,可得f (0)≥f (0)+f (0)⇒f (0)≤0. 又由条件①得f (0)≥0,故f (0)=0.………………………………………………………(4分)(2)解 显然f (x )=2x-1在[0,1]满足条件①f (x )≥0; 也满足条件②f (1)=1.若x 1≥0,x 2≥0,x 1+x 2≤1,则f (x 1+x 2)-[f (x 1)+f (x 2)]=2x 1+x 2-1-[(2x 1-1)+(2x 2-1)]=2x 1+x 2-2x 1-2x 2+1=(2x 2-1)(2x 1-1)≥0,即满足条件③,故f (x )是理想函数.………………………………(8分)(3)证明 由条件③知,任给m 、n ∈[0,1], 当m <n 时,n -m ∈[0,1],∴f (n )=f (n -m +m )≥f (n -m )+f (m )≥f (m ). 若x 0<f (x 0),则f (x 0)≤f [f (x 0)]=x 0,前后矛盾. 若x 0>f (x 0),则f (x 0)≥f [f (x 0)]=x 0,前后矛盾.故f (x 0)=x 0.……………………………………………………………………………(12分)。

2016届高考数学理专题复习导练测第2章函数与基本初等函数(I)阶段测试(2)(新人教A版)

2016届高考数学理专题复习导练测第2章函数与基本初等函数(I)阶段测试(2)(新人教A版)

【决胜高考】2016高考数学专题复习导练测 第二章 函数与基本初等函数(I )阶段测试(二)理 新人教A 版(范围:§2.1~§2.3)一、选择题1.函数y =2-x lg x的定义域是( ) A .{x |0<x <2}B .{x |0<x <1或1<x <2}C .{x |0<x ≤2}D .{x |0<x <1或1<x ≤2}答案 D解析 由题意知,要使函数有意义只需⎩⎪⎨⎪⎧ 2-x ≥0,x >0,lg x ≠0,解得0<x <1或1<x ≤2,所以函数y =2-x lg x的定义域为{x |0<x <1或1<x ≤2}. 2.已知f (x )=⎩⎪⎨⎪⎧ log 3x , x >0,a x +b , x ≤0且f (0)=2,f (-1)=3,则f (f (-3))等于( )A .-2B .2C .3D .-3答案 B 解析 f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12. 故f (-3)=(12)-3+1=9, f (f (-3))=f (9)=log 39=2.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( ) A .(13,23) B .[13,23) C .(12,23) D .[12,23) 答案 D解析 由已知,得⎩⎪⎨⎪⎧ 2x -1≥0,2x -1<13,即12≤x <23. 4.(2014·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3 答案 D解析 因为0<a <1,a x <a y ,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12<1,A 不成立.B 中,当x =0,y =-1时,ln 1<ln 2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立.D 中,因为函数y =x 3在R 上是增函数,故选D.5.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)答案 A解析 因为π>3>2,且当x ∈[0,+∞)时f (x )是增函数,所以f (π)>f (3)>f (2). 又函数f (x )为R 上的偶函数,所以f (-3)=f (3),f (-2)=f (2),故f (π)>f (-3)>f (-2).二、填空题6.(2013·四川)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.答案 {x |-7<x <3}解析 令x <0,则-x >0,∵x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x )=x 2+4x ,又f (x )为偶函数,∴f (-x )=f (x ),∴x <0时,f (x )=x 2+4x ,故有f (x )=⎩⎪⎨⎪⎧ x 2-4x ,x ≥0,x 2+4x ,x <0.再求f (x )<5的解,由⎩⎪⎨⎪⎧ x ≥0,x 2-4x <5,得0≤x <5;由⎩⎪⎨⎪⎧ x <0,x 2+4x <5,得-5<x <0,即f (x )<5的解为(-5,5).由于f (x )向左平移两个单位即得f (x +2),故f (x +2)<5的解集为{x |-7<x <3}.7.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f (2015.5)=________.答案 1.5解析 f (2 015.5)=f (-0.5)=f (0.5)=0.5+1=1.5.8.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,则f (2 015)、f (2 016)、f (2 017)从大到小的顺序为________________.答案 f (2 017)>f (2 016)>f (2 015)解析 由f (x +2)=-f (x )得f (x +4)=f (x ),所以f (x )的周期是4,所以f (2 015)=f (3),f (2 016)=f (0),f (2 017)=f (1).因为直线x =1是函数f (x )的一条对称轴,所以f (2 016)=f (0)=f (2).由1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,可知当1≤x ≤3时,函数单调递减,所以f (2 017)>f (2 016)>f (2 015).三、解答题9.已知函数f (x )=2|x -2|+ax (x ∈R )有最小值.(1)求实数a 的取值范围;(2)设g (x )为定义在R 上的奇函数,且当x <0时,g (x )=f (x ),求g (x )的解析式. 解 (1)f (x )=⎩⎪⎨⎪⎧ a +x -4,x ≥2,a -x +4,x <2,要使函数f (x )有最小值,需⎩⎪⎨⎪⎧ a +2≥0,a -2≤0,∴-2≤a ≤2. 即当a ∈[-2,2]时,f (x )有最小值.故a 的取值范围为[-2,2].(2)∵g (x )为定义在R 上的奇函数,∴g (-0)=-g (0),∴g (0)=0.设x >0,则-x <0.∴g (x )=-g (-x )=(a -2)x -4,∴g (x )=⎩⎪⎨⎪⎧ a -x -4, x >0,0, x =0,a -x +4, x <0.10.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上只有f (1)=f (3)=0.(1)试判断函数y =f (x )的奇偶性;(2)试求方程f (x )=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.解(1)∵f(1)=0,且f(x)在[0,7]上只有f(1)=f(3)=0,又∵f(2-x)=f(2+x),令x=-3,f(-1)=f(5)≠0,∴f(-1)≠f(1),且f(-1)≠-f(1).∴f(x)既不是奇函数,也不是偶函数.(2)f(10+x)=f[2+8+x]=f[2-(8+x)]=f(-6-x)=f[7-(13+x)]=f[7+13+x]=f(20+x),∴f(x)以10为周期.又f(x)的图象关于x=7对称知,f(x)=0在(0,10)上有两个根,则f(x)=0在(0,2 005]上有201×2=402个根;在[-2 005,0]上有200×2=400个根;因此f(x)=0在闭区间上共有802个根.。

2016届高考数学理专题复习导练测第二章第1讲函数及其表示新人教A版

2016届高考数学理专题复习导练测第二章第1讲函数及其表示新人教A版

第二章 函数与基本初等函数I第1讲 函数及其表示一、选择题1.下列函数中,与函数y =13x定义域相同的函数为 ( ).A .y =1sin xB .y =ln xxC .y =x e xD .y =sin x x解析 函数y =13x的定义域为{x |x ≠0,x ∈R }与函数y =sin x x的定义域相同,故选D.答案 D2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有 ( ). A .1个B .2个C .3个D .4个解析 由x 2+1=1,得x =0.由x 2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个. 答案 C3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ).解析 根据函数的定义,观察得出选项B. 答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),由图可知0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ), ∴|lg a |=|lg b |,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b,∴ab =1,10<abc =c <12.故应选C. 答案 C5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,-34 C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ 解析 当(x 2-2)-(x -x 2)≤1,即-1≤x ≤32时,f (x )=x 2-2;当x 2-2-(x -x 2)>1,即x <-1或x >32时,f (x )=x -x 2,∴f (x )=⎩⎪⎨⎪⎧x 2-2 ⎝⎛⎭⎪⎫-1≤x ≤32,x -x 2⎝ ⎛⎭⎪⎫x <-1或x >32,f (x )的图象如图所示,c ≤-2或-1<c <-34.答案 B6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )解析 注意本题中选择项的横坐标为小王从出发到返回原地所用的时间,纵坐标是经过的路程,故选D. 答案 D 二、填空题7.已知函数f (x ),g (x )分别由下表给出,则f [g (1)]的值为________________.解析 ∵g (1)=3,∴f [g (1)]=f (3)=1,由表格可以发现g (2)=2,f (2)=3,∴f (g (2))=3,g (f (2))=1. 答案 1 28.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由题意有⎩⎪⎨⎪⎧1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0解得-1<x <0或0≤x <2-1,∴所求x 的取值范围为(-1,2-1). 答案 (-1,2-1)9.已知函数f(x)的图象如图所示,则函数g(x)= f(x)的定义域是______.解析 要使函数有意义,须f(x)>0,由f(x)的图象可知, 当x ∈(2,8]时,f(x)>0. 答案 (2,8]10.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R)是单函数.下列命题: ①函数f (x )=x 2(x ∈R)是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是________.(写出所有真命题的编号)解析 对①,f (x )=x 2,则f (-1)=f (1),此时-1≠1,则f (x )=x 2不是单函数,①错;对②,当x 1,x 2∈A ,f (x 1)=f (x 2)时有x 1=x 2,与x 1≠x 2时,f (x 1)≠f (x 2)互为逆否命题,②正确;对③,若b ∈B ,b 有两个原象时.不妨设为a 1,a 2可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;对④,f (x )=x 2在(0,+∞)上是单调递增函数,但f (x )=x 2在R 上就不是单函数,④错误;综上可知②③正确.答案 ②③ 三、解答题11.设函数f (x )=⎩⎪⎨⎪⎧1,1≤x ≤2,x -1,2<x ≤3,g (x )=f (x )-ax ,x ∈[1,3],其中a ∈R ,记函数g (x )的最大值与最小值的差为h (a ).(1)求函数h (a )的解析式;(2)画出函数y =h (x )的图象并指出h (x )的最小值.解 (1)由题意知g (x )=⎩⎪⎨⎪⎧1-ax ,1≤x ≤2,-a x -1,2<x ≤3,当a <0时,函数g (x )是[1,3]上的增函数,此时g (x )max =g (3)=2-3a ,g (x )min =g (1)=1-a ,所以h (a )=1-2a ;当a >1时,函数g (x )是[1,3]上的减函数,此时g (x )min =g (3)=2-3a ,g (x )max =g (1)=1-a ,所以h (a )=2a -1;当0≤a ≤1时,若x ∈[1,2],则g (x )=1-ax ,有g (2)≤g (x )≤g (1);若x ∈(2,3],则g (x )=(1-a )x -1,有g (2)<g (x )≤g (3),因此g (x )min =g (2)=1-2a ,而g (3)-g (1)=(2-3a )-(1-a )=1-2a ,故当0≤a ≤12时,g (x )max =g (3)=2-3a ,有h (a )=1-a ;当12<a ≤1时,g (x )max =g (1)=1-a ,有h (a )=a . 综上所述,h (a )=⎩⎪⎨⎪⎧1-2a ,a <0,1-a ,0≤a ≤12,a ,12<a ≤1,2a -1,a >1.(2)画出y =h (x )的图象,如图所示,数形结合可得h (x )min =h ⎝ ⎛⎭⎪⎫12=12.12.求下列函数的定义域: (1)f (x )=-xx -3;(2)y =25-x 2-lg cos x ; (3)y =lg(x -1)+lgx +1x -1+19-x.解 (1)⎩⎪⎨⎪⎧4-x >0x -3≠0,⇒x <4且x ≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎪⎨⎪⎧25-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-5≤x ≤5,2k π-π2<x <2k π+π2,k ∈Z ,故所求定义域为⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,5. (3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎪⎨⎪⎧x >1,x >1,x <9或x <-1,解得1<x <9.故该函数的定义域为(1,9).13. 设x ≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)= (x >0),试写出y=g(x)的解析式,并画出其图象. 解 当0<x <1时,x-1<0,x-2<0,∴g(x)= =1.当1≤x <2时,x-1≥0,x-2<0, ∴g(x)= ;当x ≥2时,x-1>0,x-2≥0, ∴g(x)= =2. 故g(x)=其图象如图所示.14.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解 (1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x+1)+1-(ax 2+bx +1)=2ax +a +b ,由题意,得⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减, 所以g (x )min =g (1)=-1,故m <-1.。

高考数学(人教A版文科)一轮复习真题演练集训:第二章 函数概念与基本初等函数Ⅰ2-6 Word版含解析

高考数学(人教A版文科)一轮复习真题演练集训:第二章 函数概念与基本初等函数Ⅰ2-6 Word版含解析

真题演练集训1.[2016·新课标全国卷Ⅰ]若a>b>0,0<c<1,则() A.log a c<log b c B.log c a<log c bC.a c<b c D.c a>c b答案:B解析:对于A,log a c=1log c a,log b c=1log c b.∵0<c<1,∴对数函数y=log c x在(0,+∞)上为减函数,∴若0<b<a<1,则0<log c a<log c b,1log c a>1log c b,即log a c>log b c;若0<b<1<a,则log c a<0,log c b>0,1log c a<1log c b,即log a c<log b c;若1<b<a,则log c a<log c b<0,1log c a>1log c b,即log a c>log b c.故A不正确;由以上解析可知,B正确;对于C,∵0<c<1,∴幂函数y=x c在(0,+∞)上为增函数.∵a >b>0,∴a c>b c,故C不正确;对于D,∵0<c<1,∴指数函数y=c x在R上为减函数.∵a>b>0,∴c a<c b,故D不正确.2.[2014·福建卷]若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A B C D答案:B解析:因为函数y =log a x 过点(3,1),所以1=log a 3,解得a =3,所以y =3-x 不可能过点(1,3),排除A ;y =(-x )3=-x 3不可能过点(1,1),排除C ;y =log 3(-x )不可能过点(-3,-1),排除D.故选B.3.[2015·陕西卷]设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12[ f (a )+f (b )],则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q答案:C解析:∵0<a <b ,∴a +b2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝ ⎛⎭⎪⎪⎫a +b 2>f (ab ),即q >p .又r =12[f (a )+f (b )]=12(ln a +ln b ) =12ln a +12ln b =ln(ab )12=f (ab )=p ,故p =r <q .故选C.4.[2014·天津卷]函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案:D解析:函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )是由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.故选D.5.[2016·浙江卷]已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案:4 2解析:设log b a =t ,则t >1,因为t +1t =52,解得t =2,所以a =b 2①,所以a b =(b 2)b =b 2b =b a ②.联立①②结合b >1,解得b =2,a =4.6.[2015·浙江卷]若a =log 43,则2a +2-a =________. 答案:43 3 解析:2a+2-a =2log 43+2-log 43 =2log 23 +2log 233=3+33=433.。

【必做练习】高三数学一轮总复习第二章函数与基本初等函数Ⅰ课时跟踪检测文

【必做练习】高三数学一轮总复习第二章函数与基本初等函数Ⅰ课时跟踪检测文

第二章函数与基本初等函数Ⅰ第一节函数的概念及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应法则.(3)相同函数:如果两个函数的定义域和对应法则完全一致,则这两个函数相同,这是判断两函数相同的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.(教材习题改编)下列五个对应f,不是从集合A到集合B的函数的是________(填序号).①A =⎩⎨⎧⎭⎬⎫12,1,32 ,B ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12 =-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32 =1;②A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; ③A =B ={1,2,3},f (x )=2x -1; ④A =B ={x |x ≥-1},f (x )=2x +1;⑤A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1.解析:根据函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.答案:③2.(教材习题改编)若f (x )=x -x 2,则f ⎝ ⎛⎭⎪⎫12 =________.解析:f ⎝ ⎛⎭⎪⎫12 =12-⎝ ⎛⎭⎪⎫12 2=14.答案:143.(教材习题改编)用长为30 cm 的铁丝围成矩形,若将矩形面积S (cm 2)表示为矩形一边长x (cm)的函数,则函数解析式为________,其函数定义域为________.解析:矩形的另一条边长为15-x ,且x >0,15-x >0. 故S =x (15-x ),定义域为(0,15). 答案:S =x (15-x ) (0,15)4.函数f (x )=x -4|x |-5的定义域是________________.答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,若A ,B 不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成. [小题纠偏]1.函数y =x 与函数y =xx________(填“是”或“不是”)同一函数. 解析:函数y =x 的定义域为[0,+∞),y =xx的定义域为(0,+∞).因为两个函数的定义域不同,所以不表示同一函数.答案:不是2.函数f (x )=x -1·x +1的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧x -1≥0,x +1≥0,所以x ≥1,所以函数f (x )的定义域是[1,+∞).答案:[1,+∞)3.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为______________________________________________________________.解析:由x +3x2·y =100,得2xy =100,所以y =50x(x >0).答案:y =50x(x >0)4.已知f ⎝ ⎛⎭⎪⎫1x=x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x2(x ≠0).答案:5x +1x2(x ≠0)考点一 函数的定义域常考常新型考点——多角探明[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域1.(2016·南师附中月考)y =x -12x-log 2(4-x 2)的定义域是________. 解析:要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2). 答案:(-2,0)∪[1,2) 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f x +x -1的定义域是________.解析:令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]答案:[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为________. 解析:因为f (x 2+1)的定义域为[-1,1], 则-1≤x ≤1,故0≤x 2≤1, 所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则, 所以1≤lg x ≤2,即10≤x ≤100, 所以函数f (lg x )的定义域为[10,100]. 答案:[10,100]角度三:已知定义域确定参数问题 5.(2016·苏北四市调研)若函数f (x )= 2ax ax22+--1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R , 所以222ax ax +--1≥0对x ∈R 恒成立,即2ax ax22+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0, 解得-1≤a ≤0. 答案:[-1,0][方法归纳] 函数定义域的2种求法考点二 求函数的解析式重点保分型考点——师生共研[典例引领](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,求f (x ).解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )1x-1,将f ⎝ ⎛⎭⎪⎫1x =2fx x-1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,可求得f (x )=23x +13.[由题悟法] 求函数解析式的4个方法[即时应用]1.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.2.根据下列条件求各函数的表达式:(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)已知f ⎝⎛⎭⎪⎫x +1x =x 3+1x3,求f (x ).解:(1)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,所以a =2,b =7,所以f (x )=2x +7.(2)因为f ⎝⎛⎭⎪⎫x +1x =x 3+1x3=⎝ ⎛⎭⎪⎫x +1x 3-3⎝ ⎛⎭⎪⎫x +1x ,所以f (x )=x 3-3x (x ≥2或x ≤-2).考点三 分段函数重点保分型考点——师生共研[典例引领]1.已知f (x )=⎩⎨⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.解析:由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2. 答案:22.(2015·山东高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案:⎣⎢⎡⎭⎪⎫23,+∞ [由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 2=3,所以x 0=-1,所以实数x 0的值为-1或1.答案:-1或12.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-x -2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -2≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6. 答案:[-3,6)2.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于________.解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.答案:743.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为________________________.解析:设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x . 答案:g (x )=3x 2-2x4.已知函数f (x )=⎩⎪⎨⎪⎧a -x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标1.函数f (x )=10+9x -x2x -的定义域为________.解析:要使函数f (x )有意义,则x 须满足 ⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10]. 答案:(1,2)∪(2,10]2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (f (-2))=________.解析:因为f (-2)=(-2)2=4,而f (4)=4+1=5,所以f (f (-2))=5. 答案:53.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________.解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2. 答案:24.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))>g (f (x ))的x 的值是________.解析:当x =1时,f (g (1))=1,g (f (1))=3,不满足f (g (x ))>g (f (x ));当x =2时,f (g (2))=3,g (f (2))=1,满足f (g (x ))>g (f (x ));当x =3时,f (g (3))=1,g (f (3))=3,不满足f (g (x ))>g (f (x )).答案:25.已知函数f (x )=⎩⎪⎨⎪⎧3x,0≤x ≤1,92-32x ,1<x ≤3,当t ∈[0,1]时,f (f (t ))∈[0,1],则实数t的取值范围是________.解析:当t ∈[0,1]时,f (t )=3t∈[1,3];当3t=1,即t =0时,f (1)=3∉[0,1],不符合题意,舍去;当3t ∈(1,3]时,f (3t )=92-32×3t ∈[0,1],由f (3t )=92-32×3t ≥0,得3t≤3,所以t ≤1;由f (3t )=92-32×3t ≤1,得3t≥73,所以t ≥log 373.综上所述,实数t 的取值范围是⎣⎢⎡⎦⎥⎤log 373,1.答案:⎣⎢⎡⎦⎥⎤log 373,16.(2016·南京一中检测)已知f (x )=⎩⎨⎧x 12,x ∈[0,+,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 1212=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x . 答案:g (x )=9-2x9.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3.(2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12. 故x 的取值范围为⎣⎢⎡⎭⎪⎫716,12. 10.(1)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式;(2)若函数f (x )=xax +b(a ≠0),f (2)=1,且方程f (x )=x 有唯一解,求f (x )的解析式. 解:(1)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).(2)由f (2)=1,得22a +b =1,即2a +b =2.由f (x )=x ,得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0, 解此方程得x =0或x =1-ba, 又因为方程有唯一解,故1-b a=0,解得b =1,代入2a +b =2,得a =12,所以f (x )=2x x +2. 三上台阶,自主选做志在冲刺名校1.(2016·金陵中学月考)已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.即a 的取值范围是⎣⎢⎡⎭⎪⎫-1,12. 答案:⎣⎢⎡⎭⎪⎫-1,122.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则使不等式f 解析:∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x-x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x≤x +4成立; 当x =2时,2x =4,x +4=6,2x≤x +4成立; 当x ≥3(x ∈N *)时,2x>x +4. 故满足条件的x 的集合是{1,2}. 答案:{1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是单调增函数或单调减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,单调增区间和单调减区间统称为函数y =f (x )的单调区间.2.函数的最值 [小题体验]1.(教材习题改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ①y =1-3x ;②y =-1x;③y =x 2+1;④y =|x +1|.解析:y =1-3x 在区间(0,2)上是减函数,故①错误,其余均正确.故填②③④. 答案:②③④2.(教材习题改编)若函数y =ax 2+(2a +1)x 在(-∞,2]上是增函数,则实数a 的取值范围是________.解析:应分函数为一次函数还是二次函数两种情况:①若a =0,则y =x 在(-∞,2]上是增函数,所以a =0符合题意;②若a ≠0,则⎩⎪⎨⎪⎧a <0,-2a +12a ≥2,解得-16≤a <0.综合①②得实数a 的取值范围是⎣⎢⎡⎦⎥⎤-16,0. 答案:⎣⎢⎡⎦⎥⎤-16,0 3.已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为______. 答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f x等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的单调增区间是________.解析:由题意画出函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的图象如图所示,所以函数的单调增区间是(-∞,0)和[0,+∞). 答案:(-∞,0)和[0,+∞)2.设函数f (x )是(-3,3)上的增函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.解析:由题意,得⎩⎪⎨⎪⎧m -1>2m -1,-3<m -1<3,-3<2m -1<3,所以-1<m <0.答案:(-1,0)3.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断基础送分型考点——自主练透[题组练透]1.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案:⎣⎢⎡⎦⎥⎤0,32 2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-x 22-=a x 2-x 1x 1x 2+x 21-x 22-.∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a x 2--2ax 2x 2-2=-a x 2+x 2-2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤:(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间重点保分型考点——师生共研[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -2+2,x ≥0,-x +2+2,x <0.画出函数图象如图所示,单调增区间为(-∞,-1]和[0,1],单调减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1)和(1+2,+∞);单调减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝ ⎛⎭⎪⎫13x x 1223-+的单调递增区间为________. 解析:令u =2x 2-3x +1=2⎝ ⎛⎭⎪⎫x -342-18.因为u =2⎝ ⎛⎭⎪⎫x -342-18在⎝ ⎛⎦⎥⎤-∞,34上单调递减,函数y =⎝ ⎛⎭⎪⎫13u在R 上单调递减.所以y =⎝ ⎛⎭⎪⎫1322x 3x 1-+在⎝⎛⎦⎥⎤-∞,34上单调递增.答案:⎝ ⎛⎦⎥⎤-∞,34考点三 函数单调性的应用常考常新型考点——多角探明[命题分析]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值 1.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·苏州调研)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为_____.解析:因为f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .答案:b >a >c角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是________.解析:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.答案:(8,9]角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3, 在定义域R 上是单调递增的, 故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.答案:⎣⎢⎡⎦⎥⎤-14,0 5.已知函数f (x )=⎩⎪⎨⎪⎧a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.已知函数y =f (x )的图象如图所示,那么该函数的单调减区间是________.解析:由函数的图象易知,函数f (x )的单调减区间是[-3,-1]和[1,2]. 答案:[-3,-1]和[1,2]2.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2]. 答案:[1,2]3.(2016·学军中学检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 答案:(-∞,1] 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________. 解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 二保高考,全练题型做到高考达标1.函数f (x )=x -a x 在[1,4]上单调递增,则实数a 的最大值为________.解析:令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,由f (x )在[1,4]上递增,知f (t )在[1,2]上递增,所以a2≤1,即a ≤2,所以a 的最大值为2.答案:22.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 解析:设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调增区间为[3,+∞). 答案:[3,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.解析:由f (x )在R 上是减函数,得0<a <1,且-0+3a ≥a 0,由此得a ∈⎣⎢⎡⎭⎪⎫13,1.答案:⎣⎢⎡⎭⎪⎫13,1 4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6. 答案:65.(2016·南通调研)已知f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是________.解析:当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧3a -1<0,g,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13. 此时,log a x 是减函数,符合题意.答案:⎣⎢⎡⎭⎪⎫17,136.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x=14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞). 答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.(2016·苏州调研)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1]. 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=⎩⎪⎨⎪⎧e x-k ,x ≤0,-k x +k ,x >0是R 上的增函数,则实数k 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧e 0-k ≤k ,1-k >0,解得12≤k <1.答案:⎣⎢⎡⎭⎪⎫12,1 2.(2016·泰州中学期中)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值范围是________.解析:设y =log 12t ,t =x 2-ax +a .因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞, 2 ]上为单调减函数, 且t min >0,故需⎩⎪⎨⎪⎧a 2≥ 2,22-2a +a >0,解得22≤a <2+2 2. 答案:[22,22+2)3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期.[小题体验]1.(教材习题改编)函数f (x )=mx 2+(2m -1)x +1是偶函数,则实数m =________.解析:由f (-x )=f (x ),得2m -1=0,即m =12.答案:122.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )=________.解析:若x <0,则-x >0,f (-x )=-x 3-x +1,由于f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=x 3+x -1.答案:x 3+x -13.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 使f (-x )=-f (x )或f (-x )=f (x ).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________. 解析:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.答案:132.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.解析:由题意得,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-12 2+2=1.答案:13.函数f (x )=(2x +2)2+x2-x的奇偶性为________. 解析:由2+x2-x ≥0,得函数f (x )=(2x +2)2+x2-x的定义域为[-2,2),不关于原点对称,所以函数f (x )为非奇非偶函数.答案:非奇非偶考点一 函数奇偶性的判断基础送分型考点——自主练透[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],∴f (x )=4-x2|x +3|-3=4-x 2x +-3=4-x2x,∴f (-x )=-f (x ), ∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞), 关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x ); 当x <0时,f (x )=x 2-x , 则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ), 故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二 函数的周期性题点多变型考点——纵引横联[典型母题]设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2. (1)求函数的最小正周期;(2)计算f (0)+f (1)+f (2)+…+f (2 015). [解] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )的最小正周期为4. (2)f (0)=0,f (1)=1,f (2)=0,f (3)=f (-1)=-f (1)=-1.又∵f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0,∴f (0)+f (1)+f (2)+…+f (2 015)=0.[类题通法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f x,则T =2a ; (3)若f (x +a )=-1f x,则T =2a .(a >0)[越变越明][变式1] 若母题中条件变为“f (x +2)=-1f x”,求函数f (x )的最小正周期.解:∵对任意x ∈R ,都有f (x +2)=-1f x,∴f (x +4)=f (x +2+2)=-1f x +=-1-1f x=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4). 又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8. [破译玄机]利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三函数性质的综合应用常考常新型考点——多角探明[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有:(1)奇偶性的应用;(2)单调性与奇偶性结合;(3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f(x)是R上的偶函数,且当x>0时,f(x)=x2-x-1,则当x<0时,f(x)=________.解析:∵f(x)是定义在R上的偶函数,∴当x<0时,-x>0.由已知f(-x)=(-x)2-(-x)-1=x2+x-1=f(x),∴f(x)=x2+x-1.答案:x2+x-12.设函数f(x)=x+x+ax为奇函数,则a=________.解析:∵f(x)=x+x+ax为奇函数,∴f(1)+f(-1)=0,即++a1+-1+-1+a-1=0,∴a=-1.答案:-1角度二:单调性与奇偶性结合3.(2016·刑台摸底考试)已知定义在(-1,1)上的奇函数f(x),其导函数为f′(x)=1+cos x,如果f(1-a)+f(1-a2)<0,则实数a的取值范围为________.解析:依题意得,f′(x)>0,则f(x)是定义在(-1,1)上的奇函数、增函数.不等式f(1-a)+f(1-a2)<0等价于f(1-a2)<-f(1-a)=f(a-1),则-1<1-a2<a-1<1,由此解得1<a< 2.答案:(1,2)角度三:周期性与奇偶性结合4.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4. 答案:(-1,4)角度四:单调性、奇偶性与周期性结合5.已知函数f (x )是定义在R 上以5为周期的奇函数,若f (-1)>1,f (2 016)=a +3a -3,则a 的取值范围是________.解析:因为f (x )的周期为5, 所以f (2 016)=f (1), 又因为f (x )是奇函数, 所以f (-1)=-f (1), 即f (2 016)=-f (-1)<-1, 所以a +3a -3<-1,解得0<a <3. 答案:(0,3)[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=1x-x 的图象关于________对称.解析:因为函数f (x )的定义域为(-∞,0)∪(0,+∞),且对定义域内每一个x ,都有f (-x )=-1x+x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称.答案:原点2.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y 轴对称;④没有一个函数既是奇函数又是偶函数.其中正确的结论是________(填序号).解析:函数y =1x 2是偶函数,但不与y 轴相交,故①错;函数y =1x是奇函数,但不过原点,故②错;由偶函数的性质,知③正确;函数f (x )=0既是奇函数又是偶函数,故④错.答案:③3.(2016·南通调研)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=________.解析:因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.答案:124.设奇函数f (x )的定义域为[-6,6].若当x ∈[0,6]时,f (x )的图象如图所示,则不等式f (x )>0的解集是________.解析:奇函数的图象关于原点对称,作出函数f (x )在[-6,0]上的图象(图略),由图象,可知不等式f (x )>0的解集是[-6,-2)∪(0,2).答案:[-6,-2)∪(0,2)5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),。

高考数学(人教A版文科)一轮复习真题演练集训:第二章 函数概念与基本初等函数Ⅰ2-7 Word版含解析

高考数学(人教A版文科)一轮复习真题演练集训:第二章 函数概念与基本初等函数Ⅰ2-7 Word版含解析

真题演练集训1.[2016·新课标全国卷Ⅰ]函数y =2x 2-e |x |在[-2,2]的图象大致为( )A BC D答案:D解析:f (2)=8-e 2>0,排除A ;f (2)=8-e 2<1,排除B ;在x >0时,f (x )=2x 2-e x,f ′(x )=4x -e x,当x ∈⎝ ⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.2.[2015·浙江卷]函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )A BC D答案:D解析:因为f (-x )=⎝⎛⎭⎪⎫-x +1x cos(-x )=-⎝⎛⎭⎪⎫x -1x cos x =-f (x ),所以f (x )为奇函数,排除A ,B ;又f (π)=⎝ ⎛⎭⎪⎫π-1πcos π=-π+1π<0,排除C.故选D.3.[2015·安徽卷]函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c >0,d >0D .a >0,b >0,c >0,d <0 答案:A解析:由图象可知f (0)=d >0,f ′(x )=3ax 2+2bx +c ,x 1,x 2为方程3ax 2+2bx +c =0的两根,因此x 1+x 2=-2b 3a ,x 1·x 2=c3a .由图象可知x ∈(-∞,x 1)时,f ′(x )>0,所以a >0.而由图象知x 1,x 2均为正数,所以-2b 3a >0,c3a >0,由此可得b <0,c >0,故选A.4.[2015·北京卷]如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}答案:C解析:如图,由图知,f(x)≥log2(x+1)的解集为{x|-1<x≤1}.5.[2014·新课标全国卷Ⅰ]如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x 的函数f(x),则y=f(x)在[0,π]上的图象大致为()A BC D答案:C解析:由题意知,f (x )=|cos x |·sin x ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=cos x ·sin x =12sin 2x ;当x ∈⎝ ⎛⎦⎥⎤π2,π时,f (x )=-cos x ·sin x =-12sin 2x ,故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【决胜高考】2016高考数学专题复习导练测 第二章 函数与基本初等函数(I )章末检测 理 新人教A 版(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2010·宁德四县市一中联考)已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于 ( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.下列四个函数中,与y =x 表示同一函数的是 ( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x x3.设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a4.(2010·吉安高三联考)由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是 ( )A .增函数B .减函数C .先增后减D .先减后增 5.函数f (x )=|x |-k 有两个零点,则( )A .k =0B .k >0C .0≤k <1D .k <0 6.若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y7.(2011·新乡月考)函数y =lg|x |x的图象大致是( )8.(2010·天津)若函数f (x )=212log ,0,log (),0,x x x x >⎧⎪⎨-<⎪⎩若f (a )>f (-a ),则实数a 的取值范围( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)9.(2011·张家口模拟)已知幂函数f (x )的图象经过点(18,24),P (x 1,y 1),Q (x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论:①x 1f (x 1)>x 2f (x 2); ②x 1f (x 1)<x 2f (x 2);③f x 1x 1>fx 2x 2; ④f x 1x 1<f x 2x 2. 其中正确结论的序号是 ( ) A .①② B .①③ C .②④ D .②③10.(2010·山西阳泉、大同、晋中5月联考)已知函数f (x )=112log (421)x x +-+的值域为[0,+∞),则它的定义域可以是 ( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是 ( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14]∪[4,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知对不同的a 值,函数f (x )=2+a x -1(a >0,且a ≠1)的图象恒过定点P ,则P 点的坐标是________.14.(2011·南京模拟)定义在R 上的函数f (x )满足f (x )=2log (1),0(1)(2),0x x f x f x x -≤⎧⎨--->⎩,则f (2 011)的值为__________.15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.(2011·潍坊模拟)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x+1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x,则①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3.其中所有正确命题的序号是________. 三、解答题(本大题共6小题,共70分) 17.(10分)(2011·合肥模拟)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.18.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.19.(12分)已知函数f (x )=2x-12|x |.(1)若f (x )=2,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.20.(12分)(2011·银川模拟)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.21.(12分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 22.(12分)(2011·合肥模拟)对于定义域为[0,1]的函数f (x ),如果同时满足以下三条:①对任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数.(1)若函数f (x )为理想函数,求f (0)的值;(2)判断函数f (x )=2x-1 (x ∈[0,1])是否为理想函数,并予以证明;(3)若函数f (x )为理想函数,假定存在x 0∈[0,1],使得f (x 0)∈[0,1],且f [f (x 0)]=x 0,求证:f (x 0)=x 0.答案 1.B [由2x -x 2>0, 得x (x -2)<0⇒0<x <2,故A ={x |0<x <2},由x >0,得2x>1, 故B ={y |y >1},∁R B ={y |y ≤1}, 则(∁R B )∩A ={x |0<x ≤1}.] 2.B3.A [∵log 32<log 22<log 23,∴b >c . 又∵log 23<log 22=log 33<log 3π, ∴a >b ,∴a >b >c .] 4.B [①当x ≥0且y ≥0时, x 2+y 2=1,②当x >0且y <0时,x 2-y 2=1,③当x <0且y >0时,y 2-x 2=1, ④当x <0且y <0时,无意义.由以上讨论作图如右,易知是减函数.]5.B [令y =|x |,y =k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象,得k >0.]6.C [∵0<x <y <1,∴由函数的单调性得3x <3y,log x 3>log y 3,(14)x >(14)y ,即选项A 、B 、D 错,故选C.]7.D8.C [由分段函数的表达式知,需要对a 的正负进行分类讨论.f (a )>f (-a )⇒⎩⎪⎨⎪⎧a >0log 2a >log 12a 或⎩⎪⎨⎪⎧a <0log 12-a 2-a⇒⎩⎪⎨⎪⎧a >0a >1或⎩⎪⎨⎪⎧a <0-1<a⇒a >1或-1<a <0.]9.D [依题意,设f (x )=x α,则有(18)α=24,即(18)α=(18)12,所以α=12,于是f (x )=x 12. 由于函数f (x )=x 12在定义域[0,+∞)内单调递增,所以当x 1<x 2时,必有f (x 1)<f (x 2),从而有x 1f (x 1)<x 2f (x 2),故②正确;又因为f x 1x 1,f x 2x 2分别表示直线OP 、OQ 的斜率,结合函数图象,容易得出直线OP 的斜率大于直线OQ 的斜率,故f x 1x 1>f x 2x 2,所以③正确.]10.A [∵f (x )的值域为[0,+∞),令t =4x -2x +1+1,∴t ∈(0,1]恰成立,即0<(2x )2-2·2x +1≤1恰成立,0<(2x -1)2成立,则x ≠0,(2x )2-2·2x +1≤1可化为2x (2x-2)≤0,∴0≤2x≤2,即0≤x ≤1, 综上可知0<x ≤1.]11.D [因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,-f (1)<0,即f (-25)<f (80)<f (11).]12.C [将f (x )<12化为x 2-12<a x ,利用数形结合,分a >1和0<a <1两种情况求解.结合图象得⎩⎪⎨⎪⎧ a >1a -1≥12或⎩⎪⎨⎪⎧0<a <1a ≥12,解得1<a ≤2或12≤a <1.]13.(1,3) 14.-1解析 由已知得f (-1)=log 22=1, f (0)=0,f (1)=f (0)-f (-1)=-1, f (2)=f (1)-f (0)=-1,f (3)=f (2)-f (1)=-1-(-1)=0, f (4)=f (3)-f (2)=0-(-1)=1,f (5)=f (4)-f (3)=1,f (6)=f (5)-f (4)=0, 所以函数f (x )的值以6为周期重复性出现, 所以f (2 011)=f (1)=-1.15.154解析 由0≤|log 0.5x |≤2解得14≤x ≤4,∴[a ,b ]长度的最大值为4-14=154.16.①②④解析 由f (x +1)=f (x -1)可得f (x +2)=f [(x +1)+1]=f (x +1-1)=f (x ),∴2是函数f (x )的一个周期.又函数f (x )是定义在R 上的偶函数, 且x ∈[0,1]时,f (x )=(12)1-x ,∴函数f (x )的简图如右图,由简图可知②④也正确. 17.解 (1)∵f (x )的不动点为(1,1)、(-3,-3),∴有⎩⎪⎨⎪⎧a +b -b =1,9a -3b -b =-3,∴a =1,b =3.………………………………………………(4分)(2)∵函数总有两个相异的不动点, ∴ax 2+(b -1)x -b =0,Δ>0,即(b -1)2+4ab >0对b ∈R 恒成立,……………………………………………………(7分)Δ1<0,即(4a -2)2-4<0,………………………………………………………………(9分) ∴0<a <1.…………………………………………………………… …………………(10分)18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.……………………………………………………………………………………(3分)设x ∈[0,1],则-x ∈[-1,0].∴f (-x )=14-x -12-x =4x -2x.又∵f (-x )=-f (x )∴-f (x )=4x -2x.∴f (x )=2x -4x.……………………………………………………………………………(8分)(2)当x ∈[0,1],f (x )=2x-4x=2x-(2x )2,∴设t =2x (t >0),则f (t )=t -t 2. ∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.……………………………………………(12分)19.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x-12x .…………………………………………………………………(3分)由条件可知2x -12x =2,即22x -2·2x-1=0,解得2x=1± 2.∵2x>0,∴x =log 2(1+2).……………………………………………………………(6分)(2)当t ∈[1,2]时,2t ⎝⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t-1). ∵22t -1>0,∴m ≥-(22t +1).…………………………………………………………(9分)∵t ∈[1,2],∴-(1+22t)∈[-17,-5],故m 的取值范围是[-5,+∞).……………………………………………………(12分) 20.解 (1)设f (x )图象上任一点坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,……………………………………………………………………………(2分)∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x.……………………………………………………………………………(6分)(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2]. ∵x ∈(0,2],∴a +1≥x (6-x ),…………………………………………………………(8分)即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2], q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,∴a ≥7.……………………………………………(12分)21.解 (1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|)=⎩⎪⎨⎪⎧+t -t , 0≤t <10,-t -t , 10≤t ≤20.……………………………………………………(4分)(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值为1 225;……………………………………………………(8分)当10≤t ≤20时,y 的取值范围是[600,1 200], 在t =20时,y 取得最小值为600.所以第5天,日销售额y 取得最大值为1 225元;第20天,日销售额y 取得最小值为600元.………………………………………(12分) 22.(1)解 取x 1=x 2=0,可得f (0)≥f (0)+f (0)⇒f (0)≤0. 又由条件①得f (0)≥0,故f (0)=0.………………………………………………………(4分)(2)解 显然f (x )=2x-1在[0,1]满足条件①f (x )≥0; 也满足条件②f (1)=1.若x1≥0,x2≥0,x1+x2≤1,则f(x1+x2)-[f(x1)+f(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即满足条件③,故f(x)是理想函数.………………………………(8分)(3)证明由条件③知,任给m、n∈[0,1],当m<n时,n-m∈[0,1],∴f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).若x0<f(x0),则f(x0)≤f[f(x0)]=x0,前后矛盾.若x0>f(x0),则f(x0)≥f[f(x0)]=x0,前后矛盾.故f(x0)=x0.……………………………………………………………………………(12分)。

相关文档
最新文档