新高一数学测试卷(28题)
高一数学测试题(含答案)
![高一数学测试题(含答案)](https://img.taocdn.com/s3/m/1a4ed898a58da0116c1749a6.png)
高一数学测试题(含答案)一.选择题1..下列结论正确的是A.若,a b c d >>,则a c b d ->-B. 若,a b c d >>,则a d b c ->-C.若,a b c d >>,则ac bd >D. 若,a b c d >>,则a b d c> 2.若直线a 不平行于平面α,且a α⊄,则下列结论成立的是A. α内所有的直线与a 异面.B. α内不存在与a 平行的直线.C. α内存在唯一的直线与a 平行.D. α内的直线与a 都相交. 3.圆x 2+y 2=1和圆x 2+y 2-6y +5=0的位置关系是A .外切B .内切C .外离D .内含二.填空题 1.已知sin cos tan 2,sin cos a aa a a+=--则的值是2.已知向量b a ,的夹角为3π,3,1==b a ,则b a -的值是 3.求值:οοοο15sin 105sin 15cos 105cos -=4.设函数⎪⎩⎪⎨⎧≥-<=-2),1(log 2,2)(231x x x e x f x 则))2((f f 的值为= 5.等比数列{}n a 中,0n a >,569a a =,则313233310log log log log a a a a +++⋅⋅⋅+= 6.已知函数f (x )满足f (x )=(2),0,2,0,xf x x x +<⎧⎨⎩≥ 则(7.5)f -=( ).。
三.解答题1.已知)2,(),3,2(x b a ==,(1)当b a 2-与b a +2平行时,求x 的值; (2)当a 与b 夹角为锐角时,求x 的范围.2.已知函数2()2sin 1f x x x θ=+-,⎥⎦⎤⎢⎣⎡-∈23,21x(1)当6πθ=时,求()f x 的最大值和最小值;(2)若()f x 在⎥⎦⎤⎢⎣⎡-∈23,21x 上是单调增函数,且[0,2)θπ∈,求θ的取值范围.3.求过两直线3420x y +-=和220x y ++=的交点且与直线3240x y -+=垂直的直线方程.4. (满分12分)如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别为1CC 、11B C 、1DD 的中点,O 为BF 与1B E 的交点,(1)证明:BF ⊥面11A B EG(2)求直线1A B 与平面11A B EG 所成角的正弦值.5.已知数列{}n a 中,*1121,()2nn na a a n N a +==∈+ (1)求 1234,,,a a a a ; (2)求数列{}n a 的通项公式.高一测试题答案 一.选择题1.B2.B3.A4.C5.A6.D7.C 二.填空题 1.312、73、21- 4、2 5、10 6、2 三.解答题 1.解:(1)由题意得:b a 2-=)1,22(--xb a +2=)8,4(x + 由b a 2-与b a +2平行得:0)4()1(8)22(=+⋅--⋅-x x 分34=∴x (2)由题意得:⎪⎩⎪⎨⎧>•不共线与b a b a 0(3) 即⎩⎨⎧≠->+034062x x343≠->∴x x 且 2解:(1)当6πθ=时,45)21(1)(22-+=-+=x x x x f 分∴当21-=x 时,函数)(x f 有最小值45-当23=x 时,函数)(x f 有最大值4123- (2)要使()f x 在⎥⎦⎤⎢⎣⎡-∈23,21x 上是单调增函数, 则 -sin θ≤-21即sin θ≥21 又)2,0[πθ∈Θ 解得:⎥⎦⎤⎢⎣⎡∈65,6ππθ 3.。
新高一数学试题及答案
![新高一数学试题及答案](https://img.taocdn.com/s3/m/9981d7eb68dc5022aaea998fcc22bcd126ff4287.png)
新高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是不等式x^2 - 4x + 4 > 0的解集?A. x > 2 或 x < 0B. x > 2 或 x < 2C. x > 4 或 x < 4D. x ≠ 22. 函数f(x) = 3x^2 - 2x + 1的顶点坐标是:A. (1/3, 2/3)B. (1, 0)C. (-1, 2)D. (0, 1)3. 若sinθ = 3/5,且θ为锐角,求cosθ的值:A. 4/5B. -4/5C. 3/5D. -3/54. 已知等差数列的前三项和为12,第二项为4,求这个等差数列的首项a1和公差d:A. a1 = 1, d = 3B. a1 = 2, d = 2C. a1 = 0, d = 4D. a1 = 3, d = 15. 圆的半径为5,圆心到直线的距离为4,求圆与直线的位置关系:A. 相切B. 相交C. 相离D. 直线过圆心6. 函数y = ln(x)的定义域是:A. x > 0B. x ≥ 0C. x < 0D. x ≤ 07. 已知三角形ABC的内角A、B、C的度数之和为180°,若sinA = 1/2,求角A的度数:A. 30°B. 45°C. 60°D. 90°8. 根据题目信息,下列哪个选项是错误的:A. 1 + 2 = 3B. 2^3 = 8C. √9 = 3D. √4 = ±29. 已知等比数列的前三项和为13,第二项为5,求这个等比数列的首项a1和公比q:A. a1 = 1, q = 2B. a1 = 2, q = 3C. a1 = 3, q = 2D. a1 = 5, q = 110. 根据题目信息,下列哪个选项是正确的:A. √16 = 4B. √16 = ±4C. √16 = 16D. √16 = -4二、填空题(每题3分,共15分)11. 若函数f(x) = 2x^3 - 3x^2 + x - 5在x = 1处取得极值,则f'(x) = _______。
高一数学试卷及答案
![高一数学试卷及答案](https://img.taocdn.com/s3/m/f3da60bd951ea76e58fafab069dc5022aaea4639.png)
高一数学试卷及答案一、选择题1.在平面直角坐标系中,点A(-3,4)关于原点O的对称点为() A. (3,-4) B. (4,-3) C. (-4,3) D. (-3,4)2.已知集合A={x | -1<x<5},集合B={x | -3≤x≤3},则A和B的交集为() A. {x | -1≤x≤3} B. {x | -3<x<3} C. {x | -3≤x<3} D. {x | -3<x≤3}3.已知抛物线y=x²的图象经平移得到抛物线y=(x+3)²,则两个抛物线图象之间的关系是() A. 平行 B. 相交 C. 相交且它们的公共点的横坐标为-3 D. 相交但它们的公共点的横坐标不为-34.若实数a、b、c满足a>b>c>0,则下列等式成立的是() A. a²-b²=c² B. a/b=b/c C. b/a=c/b D. a+b=c5.已知数列{an}满足a₁=1,an=4an-1+2(n≥2),则a₄的值为() A. 16 B. 18 C. 20 D. 22解析1.点A(-3,4)在平面直角坐标系中的坐标表示为(-3,4),对称点的横坐标是原点O的横坐标的相反数,纵坐标是原点O的纵坐标的相反数,因此点A关于原点O的对称点为(3,-4)。
所以答案是A. (3,-4)。
2.集合A={x | -1<x<5}表示集合A中元素x的取值范围是-1至5之间(不包括-1和5)。
集合B={x | -3≤x≤3}表示集合B中元素x的取值范围是-3至3之间(包括-3和3)。
两个集合的交集即为两个集合中都包含的元素,即取值范围在-1至3之间(不包括-1,包括3)。
所以答案是C. {x | -3≤x<3}。
3.抛物线y=x²的图象在横轴方向平移3个单位得到的抛物线的方程为y=(x+3)²。
平移后的抛物线与原抛物线相交,且它们的公共点的横坐标为-3。
2022新高一入学分班考数学试卷12套(含答案)
![2022新高一入学分班考数学试卷12套(含答案)](https://img.taocdn.com/s3/m/905ea7f1b52acfc788ebc98f.png)
D.不能确定
α
β
B
D
C
10.如图为由一些边长为 1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是
________ cm2。
正视图 A. 11 B.15
左视图 C.18
俯视图 D.22
第Ⅱ卷(答卷)
二. 填空题(本大题共 5 小题, 小题 4 分,共 20 分)
11.函数 y
形 S3 ,以此类推,则 S2006 为(
A.是矩形但不是菱形; C.既是菱形又是矩形;
) B. 是菱形但不是矩形; D.既非矩形又非菱形.
9.如图 ,D 是直角△ABC 斜边 BC 上一点,AB=AD,记∠CAD= ,∠ABC= .若 10 ,则 的度数是 (
)
A
A.40
B. 50
C. 60
W=
20 30
2x 1 x
8
1 x 82
82
12
14
8
1 8
x
82
2x
40
1 x 6 6 x 11 12 x 16
化简得
W=
1 18
x2 x2
14 2x
1
26
x 6 6 x
11
………………10
分
8
1 8
x2
4x
48
12 x 16
①当 W= 1 x 2 14 时,∵ x ≥0,函数 y 随着 x 增大而增大,∵1≤ x ≤6 8
4
1
5
2
x
①
2 x 1 6 x
②
由①得:x>-1
由②得: x 4
所以原不等式组的解集为: 1 x 4
高一数学试卷试题及答案
![高一数学试卷试题及答案](https://img.taocdn.com/s3/m/9e039e06fe00bed5b9f3f90f76c66137ee064fa4.png)
高一数学试卷试题及答案高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。
下面给大家分享一些关于高一数学试卷试题及答案,希望对大家有所帮助。
一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知是第二象限角,,则()A.B.C.D.2.集合,,则有()A.B.C.D.3.下列各组的两个向量共线的是()A.B.C.D.4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()A.2B.23C.1D.05.在区间上随机取一个数,使的值介于到1之间的概率为A.B.C.D.6.为了得到函数的图象,只需把函数的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.函数是()A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数8.设,,,则()A.B.C.D.9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()A.π4B.π2C.π3D.π10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是A.B.C.D.11.已知函数的定义域为,值域为,则的值不可能是()A.B.C.D.12.函数的图象与曲线的所有交点的横坐标之和等于A.2B.3C.4D.6第Ⅱ卷(非选择题,共60分)二、填空题(每题5分,共20分)13.已知向量设与的夹角为,则=.14.已知的值为15.已知,则的值16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)17.(本小题满分10分)已知.(Ⅰ)求的值;(Ⅱ)求的值.18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B 两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.(Ⅰ)求1+sin2α1+cos2α的值;(Ⅱ)求cos∠COB的值.19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的值.20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.(1)写出f(x)的最小正周期及图中x0,y0的值;(2)求f(x)在区间-π2,-π12上的值和最小值.21.(本小题满分12分)已知向量的夹角为.(1)求;(2)若,求的值.22.(本小题满分12分)已知向量).函数(1)求的对称轴。
高一新生数学试题及答案
![高一新生数学试题及答案](https://img.taocdn.com/s3/m/f19b6ad9c67da26925c52cc58bd63186bceb9293.png)
高一新生数学试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 3,那么f(1)的值为:A. -1B. 1C. 3D. 52. 下列哪个不是一次函数?A. y = 2x + 1B. y = 3x^2C. y = -5x + 7D. y = 4x - 63. 若a > 0,b < 0,且|a| > |b|,则a + b:A. 大于0C. 等于0D. 不确定4. 以下哪个是二次函数的图像?A. 一条直线B. 一个圆C. 一个抛物线D. 一个椭圆5. 计算(2x - 3)(x + 4)的结果为:A. 2x^2 + 5x - 12B. 2x^2 - 5x + 12C. 2x^2 + 5x + 12D. 2x^2 - 5x - 126. 已知x^2 - 5x + 6 = 0,那么x的值为:A. 2或3C. -2或3D. -2或-37. 函数y = x^3 - 3x^2 + 2的导数为:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. 3x^2 - 6x + 1D. 3x^2 - 6x - 28. 以下哪个是反比例函数?A. y = 2/xB. y = 2xC. y = x^2D. y = 1/x^29. 计算sin(30°)的值为:A. 1/2C. 1/√2D. √2/210. 已知向量a = (3, -2),向量b = (1, 2),则向量a + b的坐标为:A. (4, 0)B. (2, 0)C. (4, 2)D. (2, 2)二、填空题(每题3分,共30分)11. 函数f(x) = x^2 - 4x + 4的最小值为_________。
12. 已知函数f(x) = x^2 + 2x + 1,求f(-1)的值为_________。
13. 计算(3x - 2)^2的结果为_________。
14. 函数y = 1/x的图像是_________。
新教材高一数学试卷(附答案)
![新教材高一数学试卷(附答案)](https://img.taocdn.com/s3/m/c2c93b2e28ea81c759f5784d.png)
学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知集合{1,2,4}A =,集合,,xB zz x A y A y ⎧⎫==∈∈⎨⎬⎩⎭∣,则集合B 中元素的个数为( ) A.4 B.5 C.6 D.72.设集合{1,2,4}A =,{240}B x x x m =-+=∣.若{}1A B ⋂=,则B =( ) A.{1,3}-B.{1,0}C.{1,3}D.{1,5}3.设全集I 是实数集R ,{|2M x x =>或2}x <-与{13}N x x =<<∣都是I 的子集(如图所示),则阴影部分所表示的集合为( )A.{2}x x <∣B.{}|21-≤<x xC.{12}<≤∣x xD.{22}-≤≤∣x x4.若正实数x ,y 满足35x y xy +=,则43x y +的最小值为( ) A.245B.275C.5D.65.已知,,a b c ∈R ,则下列说法中错误的是( ) A.22a b ac bc ⇒≥> B.a bc c>,0c a b <⇒< C.33a b >,110ab a b>⇒< D.22a b >,110ab a b>⇒<6.函数()f x =M ,()g x =N ,则M N ⋂=( ) A.[1,)-+∞B.11,2⎡⎫-⎪⎢⎣⎭C.11,2⎛⎫- ⎪⎝⎭D.1,2⎛⎫-∞ ⎪⎝⎭7.下列四个函数中,在区间(0,)+∞上单调递增的是( ) A.()3f x x =-B.2()3f x x x =-C.()||f x x =-D.1()1f x x =-+ 8.函数2441()2x f x x -+=的大致图象是( )A. B.C. D.9.函数422y x x =-的大致图象是( )A. B.C. D.10.函数()f x =( )A.[2,2]-B.(2,3)-C.[2,1)(1,2]-⋃D.(2,1)(1,2)-⋃11.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如表:A.20 3mB.18 3mC.15 3mD.14 3m二、填空题12.已知集合{25}A x x =-∣,{621}B x m x m =--∣,若A B ⊆,则实数m 的取值范围是_______.13.设2()21f x x ax =-+,[0,2]x ∈,当3a =时,()f x 的最小值是__________,若()f x 的最小值为1,则a 的取值范围为_____________.14.已知y f x =()是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则0x <时,f x ()的解析式为___________________.15.已知集合{}2|20P x x x =--≤,{|012}Q x x =<-≤,则()P Q ⋂=R __________. 16.若幂函数()y f x =的图象过点(4,2),则(16)f =_______.17.已知函数()f x 是定义在R 上的奇函数,当0x >时,2()22f x x ax a =-++,其中a ∈R . (1)当1a =时,(1)f -=_________;(2)若()f x 的值域是R ,则a 的取值范围为______________.18.已知偶函数()f x 的部分图象如图所示,且(3)0f =,则不等式()0f x <的解集为_________.三、解答题19.已知函数()221()2m m f x m m x +-=+⋅,m 为何值时,函数()f x 是(1)正比例函数?(2)反比例函数?(3)幂函数?20.已知函数2()8f x x kx =--在定义域[5,10]内是单调函数.(1)求实数k 的取值范围;(2)是否存在实数k ,使函数()f x 的最小值为7?若存在,求出k 的值;若不存在,说明理由.21.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求函数()f x 的解析式;(2)已知()||g x x =,若对任意的t ∈R ,m ∈R ,不等式22(2)(2)()f t t f t k g m -+-<恒成立,求实数k 的取值范围?22.已知函数()f x 是定义在(2,2)-上的奇函数,满足1(1)5f =,当20x -<≤时,有2()4ax b f x x +=+.(1)求函数()f x 的解析式;(2)判断()f x 的单调性,并利用定义证明; (3)解不等式(21)()0f x f x -+<.参考答案1.答案:B解析:因为{1,2,4}A =,所以集合11,,1,,,2,424x B zz x A y A y ⎧⎫⎧⎫==∈∈=⎨⎬⎨⎬⎩⎭⎩⎭∣, 所以集合B 中元素的个数为5.故选B. 2.答案:C 解析:{1}A B ⋂=,1B ∴∈,21410m ∴-⨯+=,解得3m =,{}2430{1,3}B x x x ∴=-+==∣.故选C.3.答案:C解析:因为,{22}M x x =-∣,所以阴影部分表示的集合为(){12}I N M x x ⋂=<∣.故选C. 4.答案:B解析:35x y xy +=,13155y x∴+=,131********43(43)32555555255x y x y x y y x y x⎛⎫∴+=+⋅+=++++ ⎪⎝⎭,当且仅当4956x yy =时等号成立. 43x y ∴+的最小值为275.故选B. 5.答案:D解析:对于A ,20c ≥,则由a b >可得22ac bc ≥,故A 中说法正确; 对于B ,由a b c c>,得0a b a bc c c --=>,当0c <时,有0a b -<,则a b <,故B 中说法正确; 对于C ,33a b >,0ab >,33a b ∴>两边同乘331a b,得到3311b a >,11a b ∴<,故C 中说法正确;对于D ,22a b >,0ab >,22a b ∴>两边同乘221a b ,得到2211b a >,不一定有11a b<,故D 中说法错误.故选D. 6.答案:B解析:要使函数()f x =120x ->,解得12x <,所以1|2M x x ⎧⎫=<⎨⎬⎩⎭,要使函数()g x =10x +≥,解得1x ≥-,所以{|1}N x x =≥-, 因此1|12M N x x ⎧⎫⋂=-≤<⎨⎬⎩⎭,故选B.7.答案:D解析:对于A ,()3f x x =-为一次函数,在区间(0,)+∞上单调递减,不符合题意;对于B ,2()3f x x x =-为二次函数,在区间30,2⎛⎫⎪⎝⎭上单调递减,不符合题意;对于C ,,0,()||,0x x f x x x x -≥⎧=-=⎨<⎩在区间(0,)+∞上单调递减,不符合题意;对于D ,1()1f x x =-+在区间(0,)+∞上单调递增,符合题意.故选D.8.答案:D解析:易知函数2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时,15(2)032f -=<,对应点在第四象限,故排除A.故选D. 9.答案:B解析:42()2f x x x =-的定义域为R ,4242()()2()2()f x x x x x f x -=---=-=, 所以函数为偶函数,故排除C 、D , 当1x =时,(1)121f =-=-,故选B. 10.答案:C解析:要使函数有意义,须满足240,10,x x ⎧-⎨-≠≥⎩解得22x -≤≤,且1x ≠,故函数()f x 的定义域为[2,1)(1,2]-⋃.故选C. 11.答案:C解析:设用水量为3m x ,水费为y 元,(1)当012x ≤≤时,3y x =,令354x =,可得18x =(舍去);(2)当1218x <≤时,1236(12)636y x x =⨯+-=-,令63654x -=,可得15x =;(3)当18x >时,123669(18)990y x x =⨯+⨯+-=-,令99054x -=,可得16x =(舍去).故选C.12.答案:{34}m m ∣解析:A B ⊆,216,62, 215,m m m m ->-⎧⎪∴--⎨⎪-⎩解得5,4, 3,m m m >-⎧⎪⎨⎪⎩即34m .故实数m 的取值范围是{34}m m ∣. 13.答案:-7;(,0]-∞解析:当3a =时,2()61f x x x =-+在2[]0,x ∈上单调递减,max ()(2)7f x f ∴==-.由函数的解析式知(0)1f =,若()f x 的最小值为1,则()f x 在[0,2]x ∈上单调递增, 而2()21f x x ax =-+的图象开口向上,对称轴为直线x a =, 0a ∴≤,即a 的取值范围是(,0]-∞.14.答案:2()2f x x x =--解析:当0x <时,0x ->,则22()()2()2f x x x x x -=---=+,又()f x 是R 上的奇函数,2()(),()2f x f x f x x x ∴-=-∴-=+,即2()2f x x x =--.故0x <时,f x ()的解析式为2()2f x x x =--. 15.答案:{|23}x x <≤解析:由题意得{}2|20{|12}P x x x x x =--≤=-≤≤,{|012}{|13}Q x x x x =<-≤=<≤, {|1P x x ∴=<-R C 或2}x >, (){|23}P Q x x ∴⋂=<≤R C .故答案为{|23}x x <≤. 16.答案:4 解析:17.答案:(1)-2 (2)(,2][2,)-∞-⋃+∞解析:(1)1a =,∴当0x >时,2()23f x x x =-+.又函数()f x 是定义在R 上的奇函数,(1)(1)(123)2f f ∴-=-=--+=-.(2)由函数()f x 是定义在R 上的奇函数,可得(0)0f =,当0x >时,函数()f x 的图象的对称轴方程为x a =, 若()f x 的值域是R ,则当0x >时,2()22f x x ax a =-++必须满足: 20,44(2)0a a a >⎧⎨∆=-+≥⎩或0,(0)20,a f a ≤⎧⎨=+≤⎩解得2a ≥或2a ≤-,即a 的取值范围是(,2][2,)-∞-⋃+∞. 18.答案:(3,3)-解析:由题中函数()f x 在[0,)+∞上的图象可知,在区间[0,3)上,()0f x <,在区间[3,)+∞上,()0f x ≥,又()f x 为偶函数,所以在区间(3,0]-上,()0f x <,在区间(,3]-∞-上,()0f x ≥. 综上可得,不等式()0f x <的解集为(3,3)-.21. 19.答案:(1)若函数()f x 为正比例函数, 则2211,20,m m m m ⎧+-=⎨+≠⎩ 1m ∴=.(2)若函数()f x 为反比例函数,则2211,20,m m m m ⎧+-=-⎨+≠⎩1m ∴=-.(3)若函数()f x 为幂函数,则221m m +=,1m ∴=- 解析:20.答案:(1)由题意可知函数2()8f x x kx =--的图象的对称轴方程为2kx =, 因为函数2()8f x x kx =--在定义域[5,10]内是单调函数, 所以52k ≤或102k≥,即10k ≤或20k ≥, 所以实数k 的取值范围是(,10][20,)-∞⋃+∞.(2)当10k ≤时,函数2()8f x x kx =--在区间[5,10]上单调递增, 因此函数在区间[5,10]上的最小值是(5)1757f k =-=,解得2k =; 当20k ≥时,函数2()8f x x kx =--在区间[5,10]上单调递减, 因此函数在区间[5,10]上的最小值是(10)92107f k =-=,解得172k =(舍去). 综上,存在2k =,使函数()f x 的最小值为7. 解析:答案:(1)因为12()2x x bf x a+-+=+是定义域为R 的奇函数,所以(0)0f =,(1)(1)f f -=-,即201ba-+=+,211222b b a a --+-+=-++, 解得2b =,1a =,已知函数的奇偶性,先用特殊值确定参数的值,再验证.此时122()21x x f x +-+=+,111222222222()()021212121x x x x x x x x f x f x -+++--+-+⋅--+-+=+=+=++++,符合题意,所以122()21x x f x +-+=+.(2)因为()||g x x =,所以min ()0g x =,因为对任意的t ∈R ,m ∈R ,不等式()()2222()f t t f t k g m -+-<恒成立, 所以对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,所以对任意的t ∈R ,不等式()()()222222f t t f t k f t k -<--=-+恒成立,又1224()22121x x xf x +-+==-+++, 所以易知()f x 在R 上单调递减,所以对任意的t ∈R ,2222t t t k ->-+,即2320t t k -->, 所以4120k ∆=+<,解得13k <-.解析:22.答案:(1)因为函数()f x 是定义在(2,2)-上的奇函数, 所以(0)0f =,即04b=,解得0b =. 因为1(1)5f =,所以1(1)55a f -=-=-,所以1a =,所以当20x -<≤时,2()4xf x x =+. 当[0,2)x ∈时,(2,0]x -∈-, 则22()()44x xf x f x x x -=--=-=++. 综上所述,2()(22)4xf x x x =-<<+. (2)函数()f x 在(2,2)-上为增函数.证明如下: 任取12,(2,2)x x ∈-,且12x x <, 则()()1212221244x x f x f x x x -=-++ ()()2212121222124444x x x x x x x x +--=++()()()()1221212212444x x x x x x xx ---=++()()()()21122212444x x x x xx --=++,因为1222x x -<<<,所以210x x ->,1240x x -<, 所以()()()()211222124044x x x x x x --<++,即()()12f x f x <, 故2()4xf x x =+在(2,2)-上为增函数. (3)因为函数()f x 是定义在(2,2)-上的奇函数,所以(21)()0f x f x -+<等价于()(21)(12)f x f x f x <--=-, 由(2)知2()4xf x x =+在(2,2)-上为增函数, 则12,22,2212,x x x x <-⎧⎪-<<⎨⎪-<-<⎩解得1123x -<<,故原不等式的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭.。
高一数学测试题及答案
![高一数学测试题及答案](https://img.taocdn.com/s3/m/5e407f29c950ad02de80d4d8d15abe23492f0315.png)
高一数学测试题及答案# 高一数学测试题及答案一、选择题(每题3分,共15分)1. 若函数f(x) = 2x^2 + 3x + 1,求f(-1)的值。
A. -2B. 0C. 2D. 42. 已知等差数列的前三项为3,7,11,求该数列的通项公式。
A. an = 2n + 1B. an = n^2 + 2C. an = 4n - 1D. an = 2n - 13. 函数y = ln(x)的定义域是:A. (0, +∞)B. (-∞, +∞)C. (-∞, 0)D. (-∞, 0] ∪ [0, +∞)4. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,求圆心坐标。
A. (-2, -3)B. (2, 3)C. (-3, 2)D. (3, -2)5. 若sinθ = 3/5,且θ为锐角,求cosθ的值。
A. 4/5B. √(1 - (3/5)^2)C. -4/5D. √(1 - (4/5)^2)答案:1. C2. C3. A4. B5. B二、填空题(每空2分,共10分)1. 已知函数f(x) = ax^3 + bx^2 + cx + d,若f(0) = 4,则d的值为______。
2. 根据题目,我们可以知道等差数列的公差d = 7 - 3 = 4,因此通项公式为an = a1 + (n-1)d,将a1 = 3代入,得到an = 3 + (n-1)* 4 = 4n - 1。
3. 对数函数的定义域是其内部参数大于0的范围,因此y = ln(x)的定义域为x > 0。
4. 圆的方程中,圆心坐标可以通过公式(a, b) = (2, 3)得到,其中a 和b分别是圆的方程中的常数项。
5. 根据三角函数的基本恒等式sin^2θ + cos^2θ = 1,我们可以解得cosθ = √(1 - sin^2θ) = √(1 - (3/5)^2)。
三、解答题(每题10分,共30分)1. 求函数f(x) = x^3 - 3x^2 + 2的极值点。
新教材高一数学期末基础复习测试卷含详解
![新教材高一数学期末基础复习测试卷含详解](https://img.taocdn.com/s3/m/63b0e5ac82d049649b6648d7c1c708a1284a0a9b.png)
新教材高一数学期末复习测试卷考试时间:120分钟满分:150分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()ln(2)2f x x x m =++-的一个零点附近的函数值的参考数据如下表:x 00.50.531250.56250.6250.751()f x 1.307-0.084-0.009-0.0660.2150.5121.099由二分法,方程ln(2)20x x m ++-=的近似解(精确度为0.05)可能是()A .0.625B .0.009-C .0.5625D .0.0662.函数12x y -=的图像可看作是把函数2x y =经过以下哪种变换得到()A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变3.若偶函数()f x 在(],1∞--上是增函数,则()A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭B .()()3212f f f ⎛⎫<-<- ⎪⎝⎭C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭D .()()3122f f f ⎛⎫-<-< ⎪⎝⎭4.已知函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是()A .[]3,2--B .[)3,0-C .(],2-∞-D .(],0-∞5.以下给出了四组函数:(1)y =2y =(2)y x =与=m (3)211x y x -=-与1y x =+(4)=u 与=m 其中有()组函数是同一个函数A .4B .3C .2D .16.已知22x -<<,13y <<,则2x y -的取值范围是()A .()8,0-B .()8,2-C .()4,2-D .()10,2--7.若关于x 的不等式20x bx c ++<(a ,b ,c 为常数)的解集为{}16x x -<<,则不等式20cx bx a +->(a ,b ,c 为常数)的解集为()A .1123x x ⎧⎫-<<-⎨⎬⎩⎭B .1{|3x x -<或1}2x <-C .{}32x x -<<-D .{|2x x -<或3}x <-8.使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的为前4个编号中的是()322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345A .328B .457C .253D .00710.已知函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩若方程()0f x a -=有三个不同的实数根,则实数a 的取值可能是()A .0B .12C .13D .111.在一个质地均匀的正四面体木块的四个面上分别标有数字1,2,3,4连续抛掷这个正四面体木块两次,并记录每次正四面体木块朝下的面上的数字,记事件A 为“两次记录的数字之和为偶数”,事件B 为“第一次记录的数字为偶数”;事件C 为“第二次记录的数字为偶数”,则下列结论正确的是()A .事件B 与事件C 是互斥事件B .事件A 与事件B 是相互独立事件C .事件B 与事件C 是相互独立事件D .1()4P ABC =12.已知函数)()ln2f x x =+,则()A .()f x 的定义域为()0,∞+B .()f x 在()0,∞+上是减函数C .当0x >时,()(]0,2f x ∈D .1(lg 3)lg 43f f ⎛⎫+= ⎪⎝⎭三、填空题(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.函数()4=-f x x 的定义域为________________.14.若任意[]1,2x ∈,不等式240x mx -+≥恒成立,则实数m 的范围为_________.15.已知x 、y 为正实数,且满足4312x y +=,则xy 的最大值为_____.16.如图,一个电路中有三个元件A ,B ,C 及灯泡D ,每个元件能正常工作的概率都是0.5,且能否正常工作不相互影响,电路的不同连接方式对灯泡D 发光的概率会产生影响,在图①所示的电路中灯泡D 发光的概率为__________;在图②所示的电路中灯泡D 发光的概率为__________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}2128,340x A xB x x x =≤<=+->∣∣.(1)求集合A 与集合B ;(2)求A B ⋃及()R A B ⋃ð(3)若集合{1}C xa x a =<<+∣,且A C C ⋂=,求实数a 的取值范围.18.计算下列各式的值(1)(130.02716-;(2)21log 325log 5log 4ln(ln e)2+⋅-+;(3)已知13a a -+=,求3322a a -+的值.19.已知函数()()3312log ,log x x f x g x =-=.(1)求函数()()263y f x g x ⎡⎤=-+⎣⎦的零点;(2)讨论函数()()()2h x g x f x k ⎡⎤=---⎣⎦在[]1,27上的零点个数.20.已知甲的投篮命中率为0.6,乙的投篮命中率为0.7,丙的投篮命中率为0.5,求:(1)甲,乙,丙各投篮一次,三人都命中的概率;(2)甲,乙,丙各投篮一次,恰有两人命中的概率;(3)甲,乙,丙各投篮一次,至少有一人命中的概率.21.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)40,50[)50,60,…,[]90,100,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在[)50,60的平均成绩是54,方差是7,落在[)60,70的平均成绩为66,方差是4,求两组成绩的总平均数z 和总方差2s .22.设函数()()1(0x xf x k a a a -=-+>且1)a ≠是定义域为R 的偶函数,()512f =(1)求a 的值并用定义法证明()f x 在()0,∞+上的单调性;(2)若()()240f m f m +-->,求实数m 的取值范围;(3)若()()()2221x xg x a a m f x -=+-+在[)1,+∞上的最小值为3-,求m 的值.参考答案:1.C【分析】按照二分法的方法流程进行计算,根据()()0f a f b ⋅<的符号确定根所在的区间,当区间长度小于或等于0.05时,只需从该区间上任取一个数即可.【详解】由题意得()ln(2)2f x x x m =++-在区间(0,)+∞上单调递增,设方程ln(2)20x x m ++-=的解的近似值为0x ,由表格得(0.53125)(0.5625)0f f ⋅<,所以0(0.53125,0.5625)x ∈,因为|0.531250.5625|0.031250.05-=<,所以方程的近似解可取为0.5625.故选:C.2.D【分析】利用函数图像的平移变换法则求解即可.【详解】选项A :函数2x y =向右平移一个单位得到12x y -=;选项B :先把函数2x y =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2x y =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2x y =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x x y --=⨯=;故选:D 3.B【分析】根据()f x 在(],1∞--上是增函数,且3212-<-<-,可得()2f -,32f ⎛⎫- ⎪⎝⎭,()1f -的大小关系,再根据偶函数的性质可得()2f ,32f ⎛⎫- ⎪⎝⎭,()1f -的大小关系.【详解】因为()f x 在(],1∞--上是增函数,且3212-<-<-,所以()()3212f f f ⎛⎫-<-<- ⎪⎝⎭,又()f x 为偶函数,所以()()22f f -=,则()()3212f f f ⎛⎫<-<- ⎪⎝⎭,故选:B .4.A【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】由于函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 在R 上单调递增,所以22220241121a a a a -⎧-≥⎪-⎪<⎨⎪⎪---≤-⎩,解得32a --≤≤,所以a 的取值范围是[]3,2--.故选:A 5.D【分析】根据函数的定义域及对应关系逐项分析即得.【详解】对于(1),函数y =R,函数2y =的定义域为[)0,∞+,故不是同一函数;对于(2),y x =定义域为R,m n ==的定义域为R ,故y x =与=m 对应关系都相同,故为同一函数;对于(3),211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,故不是同一函数;对于(4),=u 的定义域为[)1,+∞,=m (][),11,-∞-⋃+∞,故不是同一函数.所以有1组函数是同一个函数.故选:D.6.A【分析】由条件,结合不等式的性质求出3x y -的取值范围即可.【详解】因为13y <<,所以622y -<-<-又22x -<<,所以820x y -<-<,所以2x y -的取值范围是()8,0-,故选:A.7.A【分析】根据不等式的解集可得-1,6为对应方程的根,将b 和c 均用a 表示,代入所求不等式解出即可.【详解】一元二次不等式20ax bx c ++<的解集为{}16x x -<<,所以0a >,且-1,6是一元二次方程20ax bx c ++=的两个实数根,所以165b a -=-+=,166ca=-⨯=-,所以5b a =-,6c a =-,且0a >;所以不等式20cx bx a +->化为2650ax ax a --->,即26510x x +<+,解得11.23x -<<-因此不等式的解集为11{|}.23x x -<<-故选:A.8.A【分析】先由不等式210x ax -+>对R x ∀∈恒成立得()2,2a ∈-,再由充分不必要条件的概念即可求解【详解】由不等式210x ax -+>对R x ∀∈恒成立,得Δ0<,即()240a --<,解得22a -<<,从选项可知02a <<是22a -<<的充分不必要条件,故选:A.9.BCD【分析】根据给定条件,利用随机数表法按要求每3位一读,求出前4个编号即可判断作答.【详解】依题意,从表中第5行第6列开始向右每3位一读取数据,记录下不超过700的号码,重复号码记第一次的,所以前4个编号是:253,313,457,007,选项A 不满足,B ,C ,D 满足.故选:BCD 10.BC【分析】作函数()f x 的图象,数形结合即可解决.【详解】由题知,函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩的图象如下,方程()0f x a -=可以看成()y f x =与y a =的交点,所以由图知方程()0f x a -=有三个不同的实数根时,01a <<,故选:BC 11.BCD【分析】根据对立事件,独立事件的概念及古典概型概率公式逐项分析即得.【详解】解:对于A ,事件B 与事件C 是相互独立事件,但不是对立事件,故A 错误;对于B ,事件A 与事件B ,1()2P A =,1()2P B =,1()4P AB =,事件A 与事件B 是相互独立事件,故B 正确;对于C ,事件B 与事件C ,1()2P B =,1()2P C =,1()4P BC =,事件B 与事件C 是相互独立事件,故C 正确;对于D ,事件ABC 表示第一次记录的数字为偶数,第二次记录的数字为偶数,故221()444P ABC ⨯==⨯,故D 正确.故选:BCD.12.BD【分析】首先求出函数的定义域,即可判断A ,再根据复合函数的单调性判断BC ,最后由()()4f x f x -+=,即可判断D.【详解】因为)()ln2f x x =+0x >x >,所以x ∈R ,故函数的定义域为R ,故A错误;)()ln 2ln 2ln 2xx f x x ⎛⎫⎛⎫=+=+=-+,因为当,()0x ∈+∞,函数y x =单调递增,又ln y x =-在定义域上单调递减,所以)()ln2f x x =+在(0,)+∞上单调递减,故B 正确;又当,()0x ∈+∞时,1y x =>,所以)ln 0y x =-<,所以()(),2f x ∈-∞,故C 错误;因为())ln2f x x-=-+,())ln2f x x =-+,所以()()4f x f x -+=所以()()1(lg 3)lg lg 3lg 343f f f f ⎛⎫+=+-= ⎪⎝⎭,故D 正确.故选:BD13.(][)(),23,44,-∞-⋃⋃+∞【分析】根据函数定义域的求法求得正确答案.【详解】依题意,26040x x x ⎧--≥⎨-≠⎩,解得2x ≤-或3x ≥,且4x ≠,所以()f x 的定义域为(][)(),23,44,-∞-⋃⋃+∞.故答案为:(][)(),23,44,-∞-⋃⋃+∞14.(],4∞-【分析】任意[]1,2x ∈,不等式240x mx -+≥恒成立等价于4m x x≤+在[]1,2上恒成立,参变分离求最值即可.【详解】任意[]1,2x ∈,不等式240x mx -+≥恒成立等价于4m x x≤+在[]1,2上恒成立,又44x x +≥=,当且仅当2x =时,取等号,∴4m ≤,即实数m 的范围为(],4∞-.故答案为:(],4∞-15.3【分析】用基本不等式求得最值,然后化简既可得最大值.【详解】由已知得1243x y =+≥,即12≥解得3xy ≤(当且仅当43x y =时取""=)故答案为:316.1838【分析】根据相互独立事件的概率乘法公式,以及对立事件的概率计算公式,结合题意,即可求解.【详解】由题意,要使得灯泡D 发光,则满足A ,B ,C 三个元件同时正常工作,根据相互独立事件的概率乘法公式,图①中灯泡D 发光的概率为11112228⨯⨯=;在在图②所示的电路中灯泡D 发光,则满足元件A 正常工作,元件B ,C 中至少要有一个正常工作,所以图②的电路中灯泡D 发光的概率为1113[1(1)(1)]2228⨯---=.故答案为:18;38.17.(1)[)0,3A =,(),4(1,)B =-∞-+∞ (2)()[),40,A B =-∞-+∞ ,()[)R 4,0A B ⋃=-ð(3)[]0,2【分析】(1)解指数不等式和一元二次不等式即可;(2)根据集合的交并补运算即可求解;(3)根据集合的包含关系求解.【详解】(1)由128x ≤<解得03x ≤<,所以[)0,3A =,由2340+->x x 解得<4x -或1x >,所以(),4(1,)B =-∞-+∞ ,(2)由(1)得()[),40,A B =-∞-+∞ ,()[)R 4,0A B ⋃=-ð.(3)因为A C C ⋂=,所以C A ⊆,且{1}C xa x a =<<+≠∅∣,所以013a a ≥⎧⎨+≤⎩,解得02x ≤≤,所以a 的取值范围是[]0,2.18.(1)10π3+(2)8(3)【分析】(1)根据指数幂的运算法则直接计算即可.(2)根据对数和指数幂的计算法则直接计算即可.(3)计算1122a a -+=()1133122221a aa a a a ---⎛⎫= ⎪⎝+++-⎭,计算得到答案.【详解】(1)(()113122113321000104100.0273131272323πππ-⎛⎫⎪⎛⎫⎝⎭+=+-++=+-++=+ ⎪⎝⎭(2)221log 3log 32525l 8og 5log 4ln(ln e o 22ln12)2l g 5log 2206+=-+⨯=-+⋅+-=⋅(3)13a a -+=,故0a >,21112225a a a a --⎛⎫+=++= ⎪⎝⎭,故1122a a -+=()()133122221131a aa a a a ---⎛⎫==-= +-⎪⎝⎭++19.(1)9(2)答案见解析.【分析】(1)由题知()2332log 5log 20x x -+=,进而解方程即可得答案;(2)根据题意,将问题转化为函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数,进而数形结合求解即可.【详解】(1)解:由()()2630f x g x ⎡⎤-+=⎣⎦,得()233 12log 6log 30x x --+=,化简为()2332log 5log 20x x -+=,解得3 log 2x =或31log 2x =,所以,9x =或x =所以,()()2 63y f x g x ⎡⎤=-+⎣⎦的零点为9.(2)解:由题意得()()233 log 2log 1h x x x k =-+--,令()0h x =,得()233 log 2log 1x x k -+-=,令3log t x =,[]1,27x ∈,则[]2 0,3,21t t t k ∈-+-=,所以()h x 在[]1,27上的零点个数等于函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数.()2 21F t t t =-+-在[]0,3上的图像如图所示.所以,当0k >或4k <-时,()F t 在[]0,3上的图像与直线y k =无交点,所以,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时()F t 在[]0,3上的图像与直线y k =有1个交点,所以,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()F t 在[]0,3上的图像与直线y k =有2个交点,所以,()h x 在[]1,27上的零点个数为2.综上,当0k >或4k <-时,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()h x 在[]1,27上的零点个数为2.20.(1)0.21;(2)0.44;(3)0.94.【分析】(1)根据概率乘法得三人都命中概率为0.60.70.50.21⨯⨯=;(2)分甲命中,乙,丙未命中,乙命中,甲,丙未命中,丙命中,乙,丙未命中,三种情况讨论,结合概率乘法和加法公式即可得到答案;(3)采取正难则反的原则,求出其对立事件即三人全未命中的概率,再根据对立事件的概率公式求解即可.【详解】(1)设事件A :甲投篮命中;事件B :乙投篮命中;事件C :丙投篮命中.甲,乙,丙各投篮一次,三人都命中的概率()()()()0.60.70.50.21P ABC P A P B P C ==⨯⨯=.所以甲,乙,丙各投篮一次,三人都命中的概率为0.21.(2)设事件D :恰有两人命中.所以()()P D P ABC ABC ABC =++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++0.40.70.50.60.30.50.60.70.50.44=⨯⨯+⨯⨯+⨯⨯=所以甲,乙,丙各投篮一次,恰有两人命中的概率为0.44.(3)设事件E :至少有一人命中.所以()1()10.40.30.510.060.94P E P ABC =-=-⨯⨯=-=所以甲,乙,丙各投篮一次,至少有一人命中的概率为0.94.21.(1)0.030a =(2)84(3)62z =,237s =【分析】(1)根据每组小矩形的面积之和为1即可求解;(2)由频率分布直方图求第百分位数的计算公式即可求解;(3)根据平均数和方差的计算公式即可求解.(1)解:∵每组小矩形的面积之和为1,∴()0.0050.0100.0200.0250.010101a +++++´=,∴0.030a =.(2)解:成绩落在[)40,80内的频率为()0.0050.0100.0200.030100.65+++⨯=,落在[)40,90内的频率为()0.0050.0100.0200.0300.025100.9++++⨯=,设第75百分位数为m ,由()0.65800.0250.75m +-⨯=,得84m =,故第75百分位数为84;(3)解:由图可知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,故10546620621020z ⨯+⨯==+.设成绩在[)50,60中10人的分数分别为1x ,2x ,3x ,…,10x ;成绩在[)60,70中20人的分数分别为1y ,2y ,3y ,…,20y ,则由题意可得2222121054710x x x ++⋅⋅⋅+-=,2222122066420y y y ++⋅⋅⋅+-=,所以222121029230x x x ++⋅⋅⋅+=,222122087200y y y ++⋅⋅⋅+=,所以()()222222222121012201129230872006237102030s x x x y y y z =++⋅⋅⋅++++⋅⋅⋅+-=+-=+,所以两组市民成绩的总平均数是62,总方差是37.22.(1)2a =或者12a =,证明见解析;(2)()1,+∞;(3)1920.【分析】(1)根据偶函数的定义,结合函数单调性的定义、指数函数的单调性进行求解即可;(2)根据偶函数的性质,结合函数的单调性进行求解即可;(3)利用换元法,结合对勾函数和二次函数的性质分类讨论进行求解即可.【详解】(1) 由函数()()1x x f x k a a -=-+是定义域为R 的偶函数,∴满足()()=f x f x -,即()()11x x x xk a a a k a ---+=+-,11k ∴-=,即2k =,()x x f x a a -∴=+,又()512f =,即152a a -+=,化简为:22520a a -+=,解得:2a =或者12a =,()22x x f x -∴=+,设()12,0,x x ∈+∞且12x x <,则()()12f x f x -()11222222x x x x --=+-+1212112222x x x x =-+-21121222222x x x x x x +-=-+()121212212x x x x +⎛⎫=-- ⎪⎝⎭,由12x x <,得12220x x -<120x x << ,12112x x +∴<,即121102x x +->,()()()212112122102x x x x f x f x +⎛⎫∴-=--< ⎪⎝⎭,()f x \在()0,x ∈+∞单调递增;(2)()f x 是R 上的偶函数,()f x \在()0,x ∈+∞单调递增,在(),0x ∈-∞单调递减.()()240f m f m +--> ,即()()24f m f m +>-,24m m ∴+>-,两边平方得:2244168m m m m ++>+-解得:1m >,实数m 的取值范围为:()1,+∞;(3)由(1)知,()()()()()222221222122x x x x x xg x a a m f x m ---=+-+=+-++将()g x 变形得:()()()()()()2222221222221222x x x x x x x x g x m m ----=+-++=+-++-令22x x t -=+,因为[)1,x ∞∈+,由对勾函数的性质得52t ≥.则原函数化为:()25212,2y t m t t =-+-≥,由题知,()2212y t m t =-+-在5,2t ∞⎡⎫∈+⎪⎢⎣⎭上的最小值为3-,函数()2212y t m t =-+-的对称轴为:()21122m t m -+=-=+,①当1522m +>,即m>2时,()211212322min y m m m ⎛⎫⎛⎫=+-++-=- ⎪ ⎪⎝⎭⎝⎭,解得:32m =-或12m =,均不符合题意,舍去,②当1522m+=,即2m=时,25533523224miny⎛⎫=-⨯-=-≠-⎪⎝⎭,不符合题意,③当1522m+<,即2m<时,()2min55212322y m⎛⎫=-+⨯-=-⎪⎝⎭,解得:1920m=符合题意,所以m的值为19 20 .【点睛】关键点睛:利用换元法,结合对勾函数和二次函数的性质分类讨论是解题的关键.。
高一数学试题及答案(8页)
![高一数学试题及答案(8页)](https://img.taocdn.com/s3/m/9d0858fc294ac850ad02de80d4d8d15abf23007d.png)
高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。
A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。
A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。
A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。
A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。
A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。
A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。
A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。
A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。
A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。
A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。
高一数学测试题(较难)
![高一数学测试题(较难)](https://img.taocdn.com/s3/m/80f1865bf02d2af90242a8956bec0975f465a434.png)
一、选择题(每题5分,共30分)1. 已知集合A={x|x是实数,且|x-1|<2},则集合A的表示方法是()A. (-1,3)B. [-1,3]C. (-1,3]D. [-1,3)2. 已知函数f(x)=2x²-3x+1,则函数f(x)的最小值是()A. -1/4B. -1/2C. -3/4D. -13. 已知等差数列{an}的前n项和为Sn,且a1=1,a5=9,则S10的值是()A. 50B. 60C. 70D. 804. 已知函数f(x)=log₂(x+1),则函数f(x)的定义域是()A. (-∞,-1)∪(-1,+∞)B. [-1,+∞)C. (-∞,-1]∪(0,+∞)D. (-1,+∞)5. 已知向量a=(1,2),向量b=(3,4),则向量a+2b的模是()A. 5B. √41C. 10D. √616. 已知双曲线C: x²/a²-y²/b²=1的左、右焦点分别为F₁(-c,0),F₂(c,0),则双曲线C的离心率e满足()A. e>1B. e=1C. 0<e<1D. e=0二、填空题(每空5分,共20分)1. 已知集合A={1,2,3},集合B={3,4,5},则A∪B=_____。
2. 已知函数f(x)=x³-3x²+1,则函数f(x)的单调递增区间是_____。
3. 已知数列{an}满足a₁=1,a_{n+1}=2a_n+1(n≥1),则a₆=_____。
4. 已知圆C: x²+y²-4x-6y+4=0的圆心坐标为_____。
三、解答题(每题10分,共30分)1. 已知集合A={x|x是实数,且x²-2x<3},求集合A的表示方法。
2. 已知函数f(x)=x⁴-4x³+4x²,求函数f(x)的单调区间和极值。
3. 已知等比数列{an}的前n项和为Sn,且a₂=3,S₃=13,求通项公式an和S₆的值。
高一数学测试卷及答案详解(附答案)
![高一数学测试卷及答案详解(附答案)](https://img.taocdn.com/s3/m/31d777978662caaedd3383c4bb4cf7ec4afeb620.png)
(1)求函数 的定义域;
(2)讨论函数 的单调性.
17.正方体 中,求证:(1) ;
(2) .
18.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为 cm的内接圆柱.
(1)试用 表示圆柱的侧面积;
(2)当 为何值时,圆柱的侧面积最大?
19.求二次函数 在 上的最小值 的解析式.
B DB
A C C A C E
A. D、E、F B. E、D、F C. E、F、D D. F、D、E
第二部分非选择题(共100分)
二、填空题:本大题共4小题,每小题5分,满分20分.
11.幂函数 的图象过点 ,则 的解析式为_______________
12.直线过点 ,它在 轴上的截距是在 轴上的截距的2倍,则此直线方程为__________________________.
……14分
18.本小题主要考查空间想象能力,运算能力与函数知识的综合运用.满分12分.
解:(1)如图: 中, ,即 ……2分
, ……4分
圆柱的侧面积
( )……8分
(2)
时,圆柱的侧面积最大,最大侧面积为 ……12分
19.本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想.满分14分.
B
D
A
D
A
B
二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.
11. 12. 或 13. 14.2;3
三、解答题:
15.本小题主要考查分段函数的图象,考查函数奇偶性的判断.满分12分.
解: ……2分
函数 的图象如右图……6分
函数 的定义域为 ……8分
高一数学试题大全
![高一数学试题大全](https://img.taocdn.com/s3/m/3c134db6e518964bce847ce9.png)
高一数学试题答案及解析1.在△ABC中,若a = ,b = ,c = ,则△ABC的最大内角的度数为()A.60°B.90°C.105°D.120°【答案】D【解析】略2.如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在的直线是异面直线的有()A.1对B.2对C.3对D.4对【答案】C【解析】如图所示:把展开图再还原成正方体,由经过平面外一点和平面内一点的直线和平面内不进过该点的直线是异面直线可得,AB,CD,EF,GH这四条线段所在直线是异面直线的有:AB和 CD,AB 和 HG,EF 和 HC,共三对,故选 C.【考点】展开图还原几何体,异面直线.3.圆的圆心和半径分别()A.B.C.D.【答案】A【解析】将圆配方得:,故知圆心为(2,-1),半径为,所以选A【考点】圆的一般方程.4.在△中,若,则△的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【答案】A【解析】由正弦定理可得:,再注意到,所以有:,因此△是直角三角形.【考点】正弦定理及三角公式.5.函数的图像的一条对称轴是()A.B.C.D.【答案】C【解析】由图象平移的规则:左加右减可知为向右平移个单位,而的对称轴为所以的对称轴为将选项带入可知C为正确答案.【考点】三角函数图象性质,图象的平移.6.如果有意义,那么的取值范围是()A.B.C.D.【答案】B【解析】∵,∴,即,∴.【考点】三角函数的取值范围.7.△ABC中,a=18,c=25,B=30°,则△ABC的面积为()A.450B.900C.450D.900【答案】A【解析】 .【考点】正弦定理在三角形面积中的应用.8.已知两个等差数列和的前项和分别为和,且,则使得为正偶数时,的值是()A.1B.2C.5D.3或11【答案】D【解析】在等差数列中,若,则.因为两个等差数列和的前项和分别为和,且,所以,为使为正偶数,则须为或,所以或,选D.【考点】1.等差数列的性质;2.等差数列的求和公式.9.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2, (960)分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷,则抽到的人中,做问卷的人数为()A.7B.9C.10D.15【答案】C【解析】法一:因为,根据系统抽样的定义,可知,在编号为1,2,……,960的编号中,每隔30个抽取一个样本,编号在中的编号数共有个,所以在该区间的人中抽取个人做问卷,故选C.法二:因为,又因为第一组抽到的号码为9,则各组抽到的号码为,由解得,因为为整数,所以且,所以做问卷的人数为10人,故选C.【考点】系统抽样.10.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.11.长方体的三个相邻面的面积分别是,这个长方体的顶点都在同一个球面上,则这个球的表面积为()A.B.C.D.【答案】C【解析】设长方体的一个顶点上的三条棱长分别为,则;所以,于是,而它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的体对角线的长是=,所以球的半径是,这个球的表面积为,故选C.【考点】1.空间几何体的表面积;2.球的内接多面体的问题.12.若函数的定义域是,则函数的定义域是()A.B.C.D.【答案】C【解析】利用复合函数的定义域求法,的值域是的定义域,因为函数的定义域是,所以得所以函数的定义域是故选C【考点】函数的定义域及其求法.13.已知函数为上的减函数,则满足的实数的取值范围是()A.B.C.D.【答案】C【解析】因为函数为上的减函数,且满足,那么:,解不等式有:.故选.【考点】函数单调性的应用,绝对值不等式.14.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.15.下列等式中恒成立的是()A.B.C.D.【答案】D【解析】由两角和与差的三角函数公式,,正确,共线D。
高一数学试题精选及答案
![高一数学试题精选及答案](https://img.taocdn.com/s3/m/0746763d814d2b160b4e767f5acfa1c7aa008280.png)
高一数学试题精选及答案一、选择题(每题3分,共15分)1. 若函数f(x)=x^2-4x+m的图像与x轴有两个交点,则m的取值范围是()。
A. m > 4B. m < 4C. m ≥ 4D. m ≤ 42. 已知向量a=(3,-1),b=(2,2),则向量a+2b的坐标为()。
A. (7, 3)B. (7, 0)C. (1, 0)D. (1, 3)3. 函数y=x^3-3x^2+2在区间(0,1)上是()。
A. 增函数B. 减函数C. 先增后减D. 先减后增4. 已知等差数列{an}的前三项分别为1,2,3,则该数列的通项公式为()。
A. an = nB. an = n + 1C. an = n - 1D. an = 2n - 15. 已知圆C的方程为(x-1)^2+(y-2)^2=9,圆心C到直线3x+4y-5=0的距离为()。
A. 1B. 2C. 3D. 4二、填空题(每题3分,共15分)6. 若复数z满足|z|=2,则z的平方的模长为_________。
7. 函数y=cos(2x)的最小正周期为_________。
8. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,则a和b的关系为_________。
9. 已知三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,三角形ABC的类型为_________。
10. 已知函数f(x)=x^3-3x+1,求导数f'(x)=_________。
三、解答题(每题10分,共20分)11. 解方程:x^2-5x+6=0。
12. 证明:对于任意实数x,不等式x^2+x+1≥3/4恒成立。
答案:一、选择题1. D2. A3. D4. A5. B二、填空题6. 47. π8. b^2=3a^29. 直角三角形10. 3x^2-3三、解答题11. 解:将方程x^2-5x+6=0进行因式分解,得到(x-2)(x-3)=0,所以解为x=2或x=3。
高一数学测试题及答案
![高一数学测试题及答案](https://img.taocdn.com/s3/m/d1d21ea1760bf78a6529647d27284b73f3423601.png)
高一数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. √2B. -πC. iD. 3.142. 如果函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. -5D. 53. 集合{1, 2, 3}与{2, 3, 4}的交集是什么?A. {1, 2, 3}B. {2, 3}C. {1, 4}D. 空集4. 以下哪个不等式是正确的?A. |-3| < 3B. |-3| > 3C. |-3| ≤ 3D. |-3| ≥ 35. 圆的方程为(x-2)² + (y-3)² = 16,圆心坐标是?A. (0, 0)B. (2, 3)C. (-2, -3)D. (3, 2)6. 直线方程3x - 4y = 12的斜率是多少?A. 3/4B. -3/4C. 4/3D. -4/37. 函数y = x³ - 2x的极值点是?A. x = 0B. x = 1C. x = -2D. x = 28. 以下哪个数列是等差数列?A. 1, 3, 6, 10B. 2, 4, 8, 16C. 5, 7, 9, 11D. 3, 6, 12, 249. 已知a + b = 5,a - b = 1,那么a² + b²的值是多少?A. 13B. 15C. 17D. 1910. 一个三角形的三边长分别为3, 4, 5,这个三角形是什么形状?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形二、填空题(每题2分,共20分)11. 函数f(x) = x² - 4的顶点坐标是。
12. 若a > 0,b < 0,且|a| < |b|,则a + b 0。
13. 集合A = {x | x < 5}与B = {x | x > 3}的并集是。
14. 已知等差数列的首项为2,公差为3,第5项的值是。
高一数学练习卷(含答案)
![高一数学练习卷(含答案)](https://img.taocdn.com/s3/m/659a89d57f1922791688e88b.png)
高一数学月考试卷一、选择题。
1.设全集U=R ,A=}02|{2≤-x x x ,B=},cos |{R x x y y ∈=, 则图中阴影部分表示的区间是( ) A.[0,1]B.[-1,2]C.),2()1,(+∞⋃--∞D.),2[]1,(+∞⋃--∞2.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形。
以上结论,正确的个数是( )A .1B .2C .3D .43.三角形ABC 中A ,B ,C 的对边分别为,,,,a b c a b c >>且,222c b a +<,则A 的取值范围为 ( )A.),2(ππB.)3,4(ππC.(2,3ππ)D.)4,0(π4.如图,一个平面图形的斜二测画法的直观图是一个边长为a 的正方形,则原平面图形的面积为( ). A.24a 2 B .22a 2 C .a 2 D .2a 25.已知两个正数x ,y 满足x +4y +5=xy ,则xy 取最小值时x ,y 的值分别为 ( ) A. 5, 5B. 10, 5C. 10,25D. 10, 10 6.若y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+2211y x y x y x ,目标函数y ax z 2+=仅在点)0,1(处取得最小值,则a 的取值范围是( )A 、 )2,1(-B 、(-4,2)C 、(-4,0]D 、 (-2,4) 7.已知等比数列}{n a 中41,252==a a ,则1433221+⋅++⋅+⋅+⋅n n a a a a a a a a 等于( ) A.)41(16n--B.)21(16n- C.)41(332n -- D.)21(332n -- 8.如图,在山脚A 测得山顶P 的仰角为30,沿倾斜角为15的斜坡向上走a 米到B ,在B 处测得山顶P 的仰角为60,求山高h=( )B.2aC.2D.a9.设)30cos(cos )(x x x f -=,则)59()2()1(f f f +++的值是( ) A.2359 B.0C.59D.259 10.设R x ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-,则111{},[],222( ) A .是等差数列但不是等比数列 B .是等比数列但不是等差数列 C .既是等差数列又是等比数列 D .既不是等差数列又不是等比数列 二.填空题。
高一数学测试试题及答案
![高一数学测试试题及答案](https://img.taocdn.com/s3/m/30c0fc4954270722192e453610661ed9ac515572.png)
高一数学测试试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}3. 函数f(x) = x^2 - 4x + 4的对称轴是()A. x = -2B. x = 2C. x = 0D. x = 44. 计算(2x - 1)^5的展开式中,x^3的系数是()A. 10B. -10C. 20D. -205. 已知等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()B. 11C. 9D. 76. 函数y = 2x + 3的图象与x轴的交点坐标是()A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)7. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值()A. 6B. 4C. 2D. 08. 圆x^2 + y^2 = 4的圆心坐标是()A. (0, 0)B. (2, 2)C. (-2, -2)D. (1, 1)9. 已知向量a = (3, 1),向量b = (-1, 2),则向量a与向量b的点积为()A. -1B. 1C. 5D. -510. 计算sin(π/6)的值是()B. √3/2C. 1/√2D. √2/2二、填空题(每题4分,共20分)1. 函数y = x^2 - 6x + 9的最小值是______。
2. 已知等比数列{a_n}的首项a_1=2,公比q=3,则a_4等于______。
3. 函数f(x) = 3x - 5的反函数是______。
4. 已知向量a = (2, -3),向量b = (4, -6),则向量a与向量b平行,向量a与向量b的夹角是______。
5. 计算cos(π/3)的值是______。
浙江宁波市效实中学2024-2025学年新高一上学期分班考试数学试卷(解析版)
![浙江宁波市效实中学2024-2025学年新高一上学期分班考试数学试卷(解析版)](https://img.taocdn.com/s3/m/17bfcc70cec789eb172ded630b1c59eef9c79a4b.png)
效实中学新高一数学能力测试试题卷一、填空题1. 已知 0x 是关于 x 的方程 210x ax −−=的根. 当 32a =− 时, 0x = ___; 当2a =时,3001x x −=_______ 【答案】 ①. 12或2− ②. 8+或8− 【解析】【分析】直接解方程可得第一空,利用整体的思想及方程的思想可先化简代数式,并代入方程的根计算即可得第二空.【详解】显然32a =−时,方程可化为()()22320212x x x x +−==−+, 解之得012x =或02x =−; 2a =时,有202101x x x −−=⇒=+01x =,且20021x x =+, 对于()()()()2200030000011222141xx x x x x x x x −++−===+,当01x =+时,0448x +=+当01x =时,0448x +=−. 故答案为:12或2−;8+8−. 2. 已知实数a ,b ,c 满足2221a b c ++=,则ab bc ca ++的最小值为___,此时 22a b ab ++=______ 【答案】 ①. 12−##0.5− ②. 12##0.5 【解析】【分析】由()20a b c ++≥求出ab bc ca ++的最小值,此时()c a b =−+,再将两边平方,代入2221a b c ++=求出22a b ab ++. 【详解】因为()()222220a b c ab bc ca a b c +++++=++≥,所以()2221122ab bc ca a b c ++≥−++=−,当且仅当0a b c ++=时取等号,所以ab bc ca ++的最小值为12−, 此时()c a b =−+,则()()2222212c a b a ab b =−×+=++, 则222222212a ab b b a b c a +++++=+=, 所以2212a b ab ++=.故答案为:12−;123. 对实数m ,n .定义运算 “⊗”为: m n mn n ⊗=+. 已知关于x 的方程()14x a x ⊗⊗=−.若该方程有两个相等的实数根,则实数a 的值是___,若该方程有两个不等负根,则实数a 的取值范围是___. 【答案】 ①. 0 ②. 0a > 【解析】【分析】首先化简()x a x ⊗⊗,即可得到方程()()2414110a x a x ++++=,再根据()410Δ0a +≠= 计算第一空,由根判别式及韦达定理得到不等式组,即可得到第二空. 【详解】因为a x ax x ⊗=+,所以()()()()()()211x a x x ax x x ax x ax x a x a x ⊗⊗=⊗+=+++=+++,又()14x a x ⊗⊗=−,所以()()211104a x a x ++++=, 即()()2414110a x a x ++++=, 若该方程有两个相等的实数根,则()()()2410Δ1611610a a a +≠ =+−+= ,解得0a =; 若该方程有两个不等负根,则()()()()2410Δ16116101041a a a a+≠=+−+> >+ ,解得0a >, 所以实数a 的取值范围是0a >. 故答案为:0;0a >4. 如图,AB 是半圆O 的直径,弦AD ,BC 相交于点P , 60DPB ∠= ,D 是弧BC 的中点. 则ACAB的值为_______的【答案】12##0.5 【解析】【分析】依题意可得90ACB ∠= ,即可求出30CAD ∠= ,再由D 是弧BC 的中点,得到CAD BAD ∠=∠,即可求出CAB ∠【详解】∵AB 是半圆O 的直径, ∴90ACB ∠= ,∵60APC DPB ∠=∠= , ∴30CAD ∠= ,∵D 是 BC的中点, ∴30∠=∠= CAD BAD , ∴60CAB ∠= , ∴1cos cos 602AC CAB AB ∠===. 故答案为:12. 5. 记()()2211xyx y A xy−−=. 若a b c abc ++=,则abbc ca A A A A =++的值为_________【答案】4 【解析】【分析】依题意a 、b 、c 均不为0,根据所给定义表示出ab A ,bc A ,ca A ,再通分计算可得. 【详解】依题意a 、b 、c 均不0,又()()222222111aba b a b a b A abab−−−−+==,为()()222222111bcb c c b c cb A bcb −−−−=+=,()()222222111cac a c a c ca A caa −−−−=+=,且a b c abc ++=, 所以222222222222111ab bc ca bc ac a b a b c b c b c a c a A A A A ab −−−+++−−−=++=++222222222222a a a b b babc abc c a c b c a b c a c b c b b c a c a abc −−+−−−+−+++= 222222222222a a cc a c b c a b c a c b c b b c a c a a b b ab b−−++−−−−=+++ ()()()222222a a cabc a c b c ab a b c c b cb a b c c a ca b b a b c a b −−+++−−+++−−+++=222222222222abc a c b c a b ab abc c b abc b c c b c a ca abc c aabca ab b −−+++−−=++++−−++ 44abcabc=. 故答案为:46. 若一条直线过ABC 的内心,且平分ABC 的周长. 则该直线分ABC 所成的两个图形的面积之比为_______ 【答案】1:1 【解析】【分析】设ABC 的内心为O ,内切圆的半径为r ,作出图形,再由面积公式计算可得. 【详解】设ABC 的内心为O ,内切圆的半径为r ,内切圆与三边的切点分别为D 、E 、F , 则OE OF OD r ===,且OE BC ⊥,OF AC ⊥,OD AB ⊥,过ABC 的内心,且平分ABC 的周长的直线m ,与BC 交于点M ,AC 交于点N , 则AB AN BM CN CM ++=+,又()12ABMN ANO ABO BMO S S S S AN AB BM r =++=++ , ()12CMN CNO CMO S S S CN CM r =+=+ , 所以ABMN CMN S S = ,即该直线分ABC 所成的两个图形的面积之比为1:1. 故答案为:1:17. 如果甲的身高数或体重数至少有一项比乙大. 则称甲不亚于乙. 在 100 个小伙子中, 如果某人不亚于其他 99 人, 就称他为棒小伙子, 那么 100 个小伙子中的棒小伙子最多可能有 _________人. 【答案】100 【解析】【分析】先讨论有两个、三个小伙子时棒小伙子的最多个数,再设想100个人时的极端情况,分类讨论即可. 【详解】先考虑两个小伙子的情形,如果甲的身高>乙的身高,且乙的体重>甲的体重,可知“棒小伙子”最多有2人.再考虑三个小伙子的情形,如果甲的身高>乙的身高>丙的身高,且丙的体重>乙的体重>甲的体重,可知“棒小伙子”最多有3人.由此可以设想,当有100个小伙子时,设每个小伙子为()1,2,,100i A i = ,其身高为i x ,体重为i y , 当121100i i x x x x x +>>>>>> 且1009911 i i y y y y y +>>…>>…>> 时, 由身高看,i A 不亚于12100,,i i A A A ++ ,由体重看,i A 不亚于1121,,,i i A A A − , 所以,i A 不亚于其他99人,i A 为“棒小伙子”, 因此,100个小伙子中的“棒小伙子”最多可能有100个. 故答案为:100.8. 如果直角三角形的三边都是 200 以内的正整数, 且较长的两边长相差 1 . 那么这样的直角三角形有____________个. 【答案】9 【解析】【分析】利用勾股定理及数的性质计算即可.【详解】不妨设该直角三角形的是三边长依次为,,1x y y +,其中200,N x y x y ∗≤<∈、, 由勾股定理知()2222121x y y x y +=+⇒=+,显然21y +为大于1且小于401的奇数,所以x 为大于1且小于20的奇数,则3,5,7,9,11,13,15,17,19x =,即满足题意的直角三角形有9个. 故答案为:99. 用()S n 表示自然数n 的数字和. 例如: ()10101S =+=,()90990918S =++=.若对任意自然数n ,都有()n S n x +≠. 则满足这个条件的最大的两位整数x 的值是_________. 【答案】97 【解析】【分析】列出90,,80n = 时()n S n +的值,再判断80n <且n 为自然数时()n S n +的取值情况,即可得解.【详解】因()909099S +=,()8989106S +=,()8888104S +=, ()8787102S +=,()8686100S +=,()858598S +=,()848496S +=, ()838394S +=,()828292S +=,()818190S +=,()808088S +=, 当80n <且n 为自然数时,()797995n S n +≤++=, 当90n >且n 为自然数时,nn +SS (nn )>99, 所以若对任意自然数n ,都有()n S n x +≠, x 的值为97. 故答案为:9710. 把一副扑克牌从上到下按照大王、小王、黑桃 A 、红桃 A 、方块 A 、梅花 A 、黑桃 2 、 红桃 2、方块 2、梅花 2、...、黑桃 K 、红桃 K 、方块 K 、梅花 K 的顺序依次叠成一叠,然后执行步骤①: 把整叠牌最上面一张丢掉, 再执行步骤②: 把整叠牌最上面一张移到整叠牌的最下面, 再执行步骤①, 再执行步骤②, ...... 步骤①和步骤②依次执行直至整叠牌只剩下一张,请问:最后剩下的这张牌是_________. 【答案】红桃J 【解析】【分析】根据规律分析每轮丢掉的牌与剩下的牌,即可分析出最后剩下的牌. 【详解】不妨将54张牌按照上述顺序依次标号为1,2, ,54, 第一轮将丢掉1,3,5, ,53;第二轮将丢掉2,6,10, ,54,此时需将4号移到整叠牌的最下面,剩下的牌从上到下按顺序依次为8,12,16,20,24,28,32,36,40,44,48,52,4; 第三轮将丢掉:8,16,24,32,40,48,4,此时需将12号移到整叠牌的最下面, 为剩下的牌从上到下按顺序依次为20,28,36, 44,52,12;第四轮将丢掉:20,36, 52,剩下的牌从上到下按顺序依次为28,44,12; 第五轮将丢掉:28,12,故最后剩下的为44; 又241042+×=,所以第44张为红桃J , 故最后剩下的这张牌是红桃J . 故答案为:红桃J11. 若实数 a b , 满足a b +=,则 a 的取值范围为_________. 【答案】0a ≥ 【解析】【分析】利用根式的意义先确定0a ≥,再利用换元法及反比例函数、二次函数的性质计算即可.【详解】由题意易知00a b a b +≥ −≥ ,所以0a ≥,①显然0a =时,0b =,②当0a >时,不妨设b ta =, 此时()()101110a b t a t a b t a +=+≥⇒−≤≤−=−≥,则()()()21141t a t a t +=⇒+=−若1t =,则00a b a b −=⇒== 若1t =−,则00a b a b +=⇒==,也不符合题意,所以11t −<<,即()()()()()2222418418411181142111t t a t t t t t −−+ ===−=−− ++ +++, 易知11t −<<时1101221t t<+<⇒<+, 令11m t =+,则211842a m =−− ,由二次函数的性质可知211180242a >−−= , 综上,0a ≥. 故答案为:0a ≥.12. 已知()()21R f x ax x =−∈,若关于 x 的方程 ()f x x = 与 ()()f f x x = 都有解,且两个方程的解完全相同,则实数 a 的取值范围是_________. 【答案】1344a −≤≤ 【解析】【分析】分0a =与0a ≠进行讨论,当0a ≠时结合一元二次方程的根的判别式与条件两个方程可知2210a x ax a +−+=要么没有实根,要么实根是方程210ax x −−=的根,计算即可得. 【详解】由已知()210f x x ax x =⇒−−=,()()()22110f f x x a ax x =⇒−−−= ()()342222221110a x a x x a axx a x ax a ⇒−−+−=−−+−+=,由题意可知210ax x −−=有实根, ①当0a =时,有()1f x =−,即1x =−, 令()()f f x x =,即()11f x −=−=,符合要求;②当0a ≠时,()f x x =有解,则140a ∆=+≥,解得14a ≥−, 要满足题意,此时2210a x ax a +−+=要么没有实根, 要么实根是方程210ax x −−=的根,若2210a x ax a +−+=没有实根,则()22410a a a ∆=−−<,解得34a <; 若2210a x ax a +−+=有实根且实根是方程210ax x −−=的根,则由方程210ax x −−=,得22a x ax a +,代入2210a x ax a +−+=, 有210ax +=.由此解得12x a =−,再代入得111042a a +−=,由此34a =, 综上所述, a 的取值范围是1344a −≤≤.故答案为:1344a −≤≤.二、解答题13. 已知函数()22f x x bx c =−++在1x =时有最大值1. (1)求实数⋅b c 的值;(2)设0m n <<,若当m x n ≤≤时,()f x 最小值为1n ,最大值为1m,求m ,n 的值. 【答案】(1)4− (2)1m =,n =【解析】的【分析】(1)依题意可得()1411b f = =,即可求出b 、c 的值;(2)由(1)可得()()2211f x x =−−+,即可得到1m ≥,从而得到()1f m m =且()1f n n=,从而得到m ,n 是关于x 的方程()21211x x−−+=的两个解,即可求出m 、n 的值.【小问1详解】因()22f x x bx c =−++在1x =时有最大值1, 则()14121bf b c = =−++=,解得41b c = =− ,所以4b c ⋅=−;【小问2详解】由(1)可得()()22241211f x x x x =−+−=−−+, 则()1f x ≤,又0m n <<,所以11m≤,则1m ≥, 所以当m x n ≤≤时()f x 单调递减,所以()()21211f m m m=−−+=,且()()21211f n n n=−−+=, 所以m ,n 是关于x 的方程()21211x x−−+=的两个解,即()()212210x x x −−−=, 解方程得11x =,2x =3x =, 又1m n ≤<,所以1m =,n =.为。
高一数学测试题及答案
![高一数学测试题及答案](https://img.taocdn.com/s3/m/1284ec282f3f5727a5e9856a561252d381eb2046.png)
高一数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x + 1答案:B2. 计算下列极限:\[\lim_{x \to 0} \frac{1 - \cos x}{x^2}\]A. 0B. 1C. 2D. -1答案:C3. 已知向量\(\vec{a} = (3, -2)\)和\(\vec{b} = (1, 2)\),求这两个向量的点积。
A. 5B. -5C. 1D. -1答案:B4. 以下哪个不等式是正确的?A. \(\sqrt{2} < 1.5\)B. \(\sqrt{2} > 1.5\)C. \(\sqrt{2} = 1.5\)D. \(\sqrt{2} < 1\)答案:B5. 计算以下定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 1D. 2答案:A6. 以下哪个是复数的共轭?A. \(z = 3 + 4i\)的共轭是\(3 - 4i\)B. \(z = 3 - 4i\)的共轭是\(3 + 4i\)C. \(z = -3 + 4i\)的共轭是\(-3 - 4i\)D. \(z = -3 - 4i\)的共轭是\(-3 + 4i\) 答案:A7. 以下哪个是二项式定理的应用?A. \((a + b)^2 = a^2 + 2ab + b^2\)B. \((a - b)^2 = a^2 - 2ab + b^2\)C. \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)D. \((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\) 答案:C8. 以下哪个是等差数列的通项公式?A. \(a_n = a_1 + (n - 1)d\)B. \(a_n = a_1 - (n - 1)d\)C. \(a_n = a_1 + nd\)D. \(a_n = a_1 - nd\)答案:A9. 以下哪个是等比数列的通项公式?A. \(a_n = a_1 \cdot r^{n-1}\)B. \(a_n = a_1 \cdot r^n\)C. \(a_n = a_1 \cdot \frac{1}{r^{n-1}}\)D. \(a_n = a_1 \cdot \frac{1}{r^n}\)答案:A10. 以下哪个是三角恒等式?A. \(\sin^2 x + \cos^2 x = 1\)B. \(\sin^2 x + \cos^2 x = 0\)C. \(\sin^2 x + \cos^2 x = 2\)D. \(\sin^2 x + \cos^2 x = x\)答案:A二、填空题(每题4分,共20分)11. 已知\(\sin \theta = \frac{1}{2}\),求\(\cos \theta\)的值。
新高一数学测试卷(28题)
![新高一数学测试卷(28题)](https://img.taocdn.com/s3/m/393261de0d22590102020740be1e650e52eacf01.png)
新高一数学测试卷(28题)2011年重庆戴氏教育培训学校新高一测评卷数学试题卷(本试卷分为A 共28个题,满分150分,考试时间120分钟)说明:全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。
1.) A. B .3C .3±D .3-2.计算22332x x -?的结果是()A .432x- B .2 C .0 D .432x -3.不等式组??>≤-62,31x x 的解集为()A .3x >B .4x ≤C .34x <<D .34x <≤ 4.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC .若?=∠50C ,?=∠60BDE ,则CDB ∠的度数等于()A .?70 B .100? C .?110 D .120? 5.下列调查中,适宜采用全面调查(普查)方式的是()A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .对我国首架大型民用直升机各零部件的检查6. 如图,在ΔABC 中,AB=30,BC=24,CA=27,AE=EF=FB ,EG ∥FD ∥BC ,FM ∥EN ∥AC ,则图中阴影部分的三个三角形的周长之和为()A 、70B 、75C 、81D 、807.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()ABCED 4题图第15题F8.如图,双曲线)0(>=x xky 与直线n mx y +=在第一象限内交于点)5,1(A 和点),1.5(B 根据图象,在第一象限内,一次函数的值大于反比例函数值时x 的取值范同是( ) A. l<x<x5 D. 0<x5</x</x9.如图,ABC Rt ?中,90BAC ∠=,AD BC ⊥,ACB ∠的平分线交AB 于E ,交AD 于F ,下列结论中错误..的是( ) .A CAD B ∠=∠ .B AEF ?是等腰三角形 D .AF CF = .~DACF BCE ??10.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==,PB =①△APD ≌△AEB ;②点B 到直线AE;③EB ED ⊥;④1APD APB S S ??+=;⑤4ABCD S =正方形其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共16分) 11.如图,梯形ABCD 的对角线AC 、BD 交于点O ,若S ΔAOD :S ΔACD =1:4,则S ΔAOD :S ΔBOC 的值为12.已知长方体容器的底面是边长为2cm 的正方形(高度不限),容器内盛有10cm 高的水,10题图APEDCBB 现将底面为边长是1cm 的正方形、高是xcm 的长方体铁块竖直放入容器内,容器内的水高y 关于x 的函数关系式为104 1+=x y ,则x 的取值范围是13.在一个不透明的盒子里装有5个分别写有数字2-,1-,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线522++-=x x y 与x 轴所围成的区域内(不含边界)的概率是.14.含有同种果蔬但浓度不同的A ,B 两种饮料, A 种饮料重40千克,B 种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同重量是千克.三、解答题:(本大题共6个小题,共54分) 1 5. (本小题满分12分,每题6分)(1)计算:0020112cos303)(1)π+--+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年重庆戴氏教育培训学校新高一测评卷数学试题卷(本试卷分为A 共28个题,满分150分,考试时间120分钟) 说明:全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。
1. ) A. B .3C .3±D .3-2.计算22332x x -⋅的结果是( )A .432x- B .2 C .0 D .432x -3.不等式组⎩⎨⎧>≤-62,31x x 的解集为( )A .3x >B .4x ≤C .34x <<D .34x <≤ 4.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC .若︒=∠50C ,︒=∠60BDE ,则CDB ∠的度数等于( ) A .︒70 B .100︒ C .︒110 D .120︒ 5.下列调查中,适宜采用全面调查(普查)方式的是( )A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .对我国首架大型民用直升机各零部件的检查6. 如图,在ΔABC 中,AB=30,BC=24,CA=27,AE=EF=FB ,EG ∥FD ∥BC ,FM ∥EN ∥AC ,则图中阴影部分的三个三角形的周长之和为 ( )A 、70B 、75C 、81D 、807.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )ABCED 4题图第15题F8.如图,双曲线)0(>=x xky 与直线n mx y +=在第一象限内交于点)5,1(A 和点),1.5(B 根据图象,在第一象限内,一次函数的值大于反比例函数值时x 的取值范同是( ) A. l<x<5 B. 0<x<l C. x>5 D. 0<x<l 或x>59.如图,ABC Rt ∆中,90BAC ∠=,AD BC ⊥,ACB ∠的平分线交AB 于E ,交AD 于F ,下列结论中错误..的是( ) .A CAD B ∠=∠ .B AEF ∆是等腰三角形 D .AF CF = .~D ACF BCE ∆∆10.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==,PB =①△APD ≌△AEB ;②点B 到直线AE;③EB ED ⊥;④1APD APB S S ∆∆+=;⑤4ABCD S =正方形 其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共16分) 11.如图,梯形ABCD 的对角线AC 、BD 交于点O ,若S ΔAOD :S ΔACD =1:4,则S ΔAOD :S ΔBOC 的值为12.已知长方体容器的底面是边长为2cm 的正方形(高度不限),容器内盛有10cm 高的水,10题图APEDCBB 现将底面为边长是1cm 的正方形、高是xcm 的长方体铁块竖直放入容器内,容器内的水高y 关于x 的函数关系式为1041+=x y ,则x 的取值范围是 13.在一个不透明的盒子里装有5个分别写有数字2-,1-,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线522++-=x x y 与x 轴所围成的区域内(不含边界)的概率是 .14.含有同种果蔬但浓度不同的A ,B 两种饮料, A 种饮料重40千克,B 种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同重量是 千克.三、解答题:(本大题共6个小题,共54分) 1 5. (本小题满分12分,每题6分)(1)计算:0020112cos303)(1)π+--+-。
(2)解不等式组:20312123x x x +≥⎧⎪-+⎨<⎪⎩,并写出该不等式组的最小整数解。
16.(本小题满分6分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B 处时,发现灯塔A 在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C 处时,发现灯塔A 在我军舰的北偏东60°的方向。
求该军舰行驶的路程.(计算过程和结果均不取近似值)x17.(本小题满分8分) 先化简,再求值:232()111x x x x x x --÷+--,其中x =18.(本小题满分8分)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。
规定:每位考生先在三个笔试题(题签分别用代码123B B B 、、表示)中抽取一个,再在三个上机题(题签分别用代码123J J J 、、表示)中抽取一个进行考试。
小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。
(1)用树状图或列表法表示出所有可能的结构;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“1B ”的下表为“1”)均为奇数的概率。
1 9. (本小题满分1 0分)如图,已知反比例函数(0)ky k x=≠的图象经过点(12,8),直线y x b =-+经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.B D20.(本小题满分1 0分)如图,已知线段AB∥CD ,AD 与B C 相交于点K ,E 是线段AD 上一动点。
(1)若BK=52KC ,求CD AB的值;(2)连接BE ,若BE 平分∠ABC ,则当AE= 12AD 时,猜想线段AB 、BC 、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=1nAD(n>2),而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.B 卷(共5 0分)21.在平面直角坐标系xOy 中,点P(2,a )在正比例函数12y x =的图象上,则点Q( 35a a -,)位于第______象限。
22.某校在“爱护地球 绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调则这l 00名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.23.设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设...S =+S=_________ (用含n 的代数式表示,其中n 为正整数).24.在三角形纸片ABC 中,已知∠ABC=90°,AB=6,BC=8。
过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为_________ (计算结果不取近似值).25.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x =≠满足:当0x <时,y 随x 的增大而减小。
若该反比例函数的图象与直线y x =-都经过点P ,且OP =k=_________.二、解答题:(本大题共3个小题,共30分) 26.(本小题满分8分)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD 。
已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,清说明理由.27.(本小题满分1 0分)已知:如图,以矩形ABCD 的对角线AC 的中点O 为圆心,OA 长为半径作⊙O ,⊙O 经过B 、D 两点,过点B 作BK ⊥ A C ,垂足为K 。
过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE=CK ;(2)如果AB=a ,AD=13a (a 为大于零的常数),求BK 的长:(3)若F 是EG 的中点,且DE=6,求⊙O 的半径和GH 的长.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知:1:5OA OB =,OB OC =,△ABC 的面积15ABC S ∆=,抛物线2(0)y ax bx c a =++≠经过A 、B 、C 三点。
(1)求此抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为?若存在,求出点M 的坐标;若不存在,请说明理由.。