点击圆中多解题
【中考复习】初中数学典型一题多解试题汇编(含解析)
![【中考复习】初中数学典型一题多解试题汇编(含解析)](https://img.taocdn.com/s3/m/1435aa3b6f1aff00bfd51e02.png)
初中数学一题多解(试题)1、若()16x 3-m 2x 2++ 是关于x 的完全平方公式(或完全平方数),则m=2、4的平方根为 ,16的平方根为 3、若2a =时, a 为 。
在数轴上,到原点的距离为3个单位的数有 。
4、若64x 1x 2=⎪⎭⎫ ⎝⎛+ ,则代数式=+x 1x 5、若关于x 的方程16-x 3m 4x m 4-x 12+=++无解,则m 的值为 6、在平面直角坐标系xoy 中,已知点A (3,4),点P 在x 轴上,若△AOP 为等腰三角形,则点P 的坐标是7、在一个等腰三角形中,有一个角为70°,则另两个角分别为8、已知直角三角形的两边长分别为5和12,那么以这个直角三角形的斜边为边长的正方形的面积为9、 在△ABC 中,AB=15,AC=13,BC 边上的高为12,求BC 边的边长为10、在平行四边形ABCD 中,∠A 的角平分线把BC 边分为3和4的两条线段,则此平行四边形ABCD 的周长为11、若⊙O 的半径为5cm ,某个点A 到圆上的距离为2cm ,则圆心到点A 的距离为12、 若⊙O 中的某条弦AB 所对的圆心角为120°,则弦AB 所对的圆周角为13、已知x满足62x1x22=+,则x1x+的值是14、当-2≤x≤1时,二次函数()1mm-x-y22++=有最大值4,则实数m 的值为15、在平面直角坐标系中有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标为16、若某条线段AB长为2,则该线段AB的黄金分割点离A点的距离为17、若△OAB与△OCD是以坐标原点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标为(6,0),则点A的对应点C的坐标为18、如下图在△ABC中,AB=5,AC=4,点Q从点A出发向点B以2个单位/s的速度出发,点P从点C向点A以1个单位/s的速度出发,若要使△ABC 与△AQP相似,则运动的时间为s。
点与圆的位置关系精选题37道
![点与圆的位置关系精选题37道](https://img.taocdn.com/s3/m/a22180720a4c2e3f5727a5e9856a561252d321d3.png)
点与圆的位置关系精选题37道一.选择题(共11小题)1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.2.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣3.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.84.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ,则线段OQ的最大值是()A.3B.C.D.45.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F6.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.37.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.B.C.D.8.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连接CE,BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+11.如图,点M坐标为(0,2),点A坐标为(2,0),以点M为圆心,MA为半径作⊙M,与x轴的另一个交点为B,点C是⊙M上的一个动点,连接BC,AC,点D是AC的中点,连接OD,当线段OD取得最大值时,点D的坐标为()A.(0,)B.(1,)C.(2,2)D.(2,4)二.填空题(共16小题)12.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为.13.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A上一动点,点M是CD的中点,则BM的最大值是.14.如图,圆O的半径为3,点A在圆O上运动,ABCD为矩形,AC与BD交于点M,MO =5,则AB2+AD2的最小值为.15.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是.16.已知以AB为直径的圆O,C为AB弧的中点,P为BC弧上任意一点,CD⊥CP交AP 于D,连接BD,若AB=6,则BD的最小值为.17.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.18.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为.19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=4,点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是.20.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点D是半径为1的⊙A上的一个动点,点E为CD的中点,连接BE,则线段BE长度的最小值为.21.如图,直角△ABC的直角顶点C,另一顶点A及斜边AB的中点D都在⊙O上,已知:AC=6,BC=8,则⊙O的半径为.22.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.23.如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是.24.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,当OM取最大值时,点M的坐标为.25.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是.26.在菱形ABCD中,∠D=60°,CD=4,以A为圆心,2为半径作⊙A,交对角线AC于点E,点F为⊙A上一动点,连接CF,点G为CF中点,连接BG,取BG中点H,连接AH,则AH的最大值为.27.如图,在矩形ABCD中,AB=2,AD=1,以顶点D为圆心作半径为r的圆.若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.三.解答题(共10小题)28.如图,已知直角坐标系中,A(0,4)、B(4,4)、C(6,2),(1)写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:(,);(2)判断点D(5,﹣2)与圆M的位置关系.29.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的位置;(2)点M的坐标为;(3)若DM=2,判断点D与⊙M的位置关系.30.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(网格小正方形边长为1)(1)请写出该圆弧所在圆的圆心P的坐标;⊙P的半径为(结果保留根号);(2)判断点M(﹣1,1)与⊙P的位置关系.31.阅读下列材料:平面上两点P1(x1,y1),P2(x2,y2)之间的距离表示为|P1P2|=,称为平面内两点间的距离公式,根据该公式,如图,设P(x,y)是圆心坐标为C(a,b)、半径为r的圆上任意一点,则点P适合的条件可表示为=r,变形可得:(x﹣a)2+(y﹣b)2=r2,我们称其为圆心为C(a,b),半径为r的圆的标准方程.例如:由圆的标准方程(x﹣1)2+(y﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C(3,4),半径为2的圆的标准方程为:;(2)若已知⊙C的标准方程为:(x﹣2)2+y2=22,圆心为C,请判断点A(3,﹣1)与⊙C的位置关系.32.如图,网格纸中每个小正方形的边长为1,一段圆弧经过格点.(1)该图中弧所在圆的圆心D的坐标为;.(2)根据(1)中的条件填空:①圆D的半径=(结果保留根号);②点(7,0)在圆D(填“上”、“内”或“外”);③∠ADC的度数为.33.如图,矩形ABCD中,AB=3,AD=4.作DE⊥AC于点E.(1)求DE的长;(2)若以点A为圆心作圆,B、C、D、E四点中至少有1个点在圆内,且至少有1个点在圆外,求⊙A的半径r的取值范围.34.已知AB为⊙O的直径,点C位于AB上方的半圆上,点E在AB上且AE=AC,过点C作CD⊥AB于点D.(1)如图所示,当点D与点O重合时,求tan∠DCE.(2)在(1)的条件下,延长CE交于⊙O点F,若OE=6,求△BEF与△ACE的面积之比.(3)以DE为边在⊙O内构造正方形DEPM,点M在直线CD上,连接AM并延长交⊙O于点N,试猜想PN与PE的数量关系,并说明理由.35.如图,⊙O与x轴的负半轴交于点A,与y轴的负半轴交于点B,M(﹣4,3)在⊙O 上.(1)求⊙O的半径长及△AMB的面积;(2)已知N(0,t),且以O、M、N为顶点的三角形是锐角三角形,请直接写出t的取值范围.36.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC 于点D,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE.(1)求证:PD=CE;(2)求证:点P、D、C、E在同一个圆上.37.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C,以点O为原点,建立如图所示的平面直角坐标系.(1)根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为;点(6,﹣2)在⊙D (填“上”、“内”、“外”);∠ADC的度数为.点与圆的位置关系精选题37道参考答案与试题解析一.选择题(共11小题)1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在Rt△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选:B.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.2.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣【分析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD 与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.3.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.4.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ,则线段OQ的最大值是()A.3B.C.D.4【分析】连接BP,如图,先解方程x2﹣4=0得A(﹣4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【解答】解:连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选:A.【点评】此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.6.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3【分析】根据抛物线y=﹣1与x轴交于A,B两点,可得A、B两点坐标,D是以点C(0,4)为圆心,根据勾股定理可求BC的长为5,E是线段AD的中点,再根据三角形中位线,BD最小,OE就最小.【解答】解:∵抛物线y=﹣1与x轴交于A,B两点,∴A、B两点坐标为(﹣3,0)、(3,0),∵D是以点C(0,4)为圆心,根据勾股定理,得BC=5,∵E是线段AD的中点,O是AB中点,∴OE是三角形ABD的中位线,∴OE=BD,即点B、D、C共线时,BD最小,OE就最小.如图,连接BC交圆于点D′,∴BD′=BC﹣CD′=5﹣1=4,∴OE′=2.所以线段OE的最小值为2.故选:A.【点评】本题考查了点与圆的位置关系、抛物线与x轴的交点、三角形中位线定理,解决本题的关键是点B、D、C共线问题.7.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.B.C.D.【分析】先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y=x+上一动点,设直线y=x+与坐标轴的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M 于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ=,即线段PQ的最小值为.【解答】解:解方程组得,∴P点坐标为(3a﹣1,4a+2),设x=3a﹣1,y=4a+2,∴y=x+,即点P为直线y=x+上一动点,设直线y=x+与坐标轴的交点为A、B,如图,则A(﹣,0),B(0,),∴AB==,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,∵∠MBP=∠ABO,∴Rt△MBP∽Rt△ABO,∴MP:OA=BM:AB,即MP:=:,∴MP=,∴PQ=﹣1=,即线段PQ的最小值为.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了一次函数的性质和相似三角形的判定与性质.8.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选:A.【点评】本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连接CE,BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+【分析】连接AC,DE,如图,利用圆周角定理可判定点D在AC上,易得A(0,1),B(﹣1,0),C(1,0),AC=,D(,),设E(m,n),利用两点间的距离公式得到则EB2+EC2=2(m2+n2)+2,由于m2+n2表示E点到原点的距离的平方,则当OE 为直径时,E点到原点的距离最大,由于OD为平分∠AOC,则m=n,利用点E在圆上得到(m﹣)2+(n﹣)2=()2,则可计算出m=n=1,从而得到EB2+EC2的最大值.【解答】解:连接AC,DE,如图,∵∠AOC=90°,∴AC为⊙D的直径,∴点D在AC上,∵AO=BO=CO=1,∴A(0,1),B(﹣1,0),C(1,0),AC=,D(,),设E(m,n),∵EB2+EC2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2,而m2+n2表示E点到原点的距离,∴当OE为直径时,E点到原点的距离最大,∵OD为平分∠AOC,∴m=n,∵DE=AC=,∴(m﹣)2+(n﹣)2=()2,即m2+n2=m+n∴m=n=1,∴此时EB2+EC2=2(m2+n2)+2=2×(1+1)+2=6,即CE2+BE2的最大值是6.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了圆周角定理、勾股定理和坐标与图形性质.11.如图,点M坐标为(0,2),点A坐标为(2,0),以点M为圆心,MA为半径作⊙M,与x轴的另一个交点为B,点C是⊙M上的一个动点,连接BC,AC,点D是AC的中点,连接OD,当线段OD取得最大值时,点D的坐标为()A.(0,)B.(1,)C.(2,2)D.(2,4)【分析】根据垂径定理得到OA=OB,然后根据三角形中位线定理得到OD∥BC,OD=BC,即当BC取得最大值时,线段OD取得最大值,根据圆周角定理得到CA⊥x轴,进而求得△OAD是等腰直角三角形,即可得到AD=OA=2,得到D的坐标为(2,2).【解答】解:∵OM⊥AB,∴OA=OB,∵AD=CD,∴OD∥BC,OD=BC,∴当BC取得最大值时,线段OD取得最大值,如图,∵BC为直径,∴∠CAB=90°,∴CA⊥x轴,∵OB=OA=OM,∴∠ABC=45°,∵OD∥BC,∴∠AOD=45°,∴△AOD是等腰直角三角形,∴AD=OA=2,∴D的坐标为(2,2),故选:C.【点评】本题考查了点和圆的位置关系,垂径定理、圆周角定理以及三角形中位线定理,明确当BC为直径时,线段OD取得最大值是解题的关键.二.填空题(共16小题)12.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为2﹣2.【分析】连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,证明∠CEB=90°,说明E点始终在⊙F上,再由在整个变化过程中,AE≤AF﹣EF,当A、E、F三点共线时,AE最小值,求出此时的值便可.【解答】解:连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,∵BC=4,∴CF=2,∵∠ACB=90°,AC=10,∴AF=,∵CD是⊙O的直径,∴∠CED=∠CEB=90°,∴E点在⊙F上,∵在D的运动过程中,AE≥AF﹣EF,且A、E、F三点共线时等号成立,∴当A、E、F三点共线时,AE取最小值为AF﹣EF=2﹣2.故答案为:2﹣2.【点评】本题主要考查了圆的基本性质,圆周角定理,勾股定理,三角形的三边关系,关键是确定AE取最小值的位置.13.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A上一动点,点M是CD的中点,则BM的最大值是.【分析】如图,取AC的中点N,连接MN,BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,MN,再利用三角形的三边关系即可解决问题.【解答】解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵AN=NC,∴BN=AC=,∵AN=NC,DM=MC,∴MN=AD=1,∴BM≤BN+NM,∴BM≤1+,∴BM≤,∴BM的最大值为.【点评】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.14.如图,圆O的半径为3,点A在圆O上运动,ABCD为矩形,AC与BD交于点M,MO =5,则AB2+AD2的最小值为16.【分析】如图,连接OA.首先判断出BD最小时,AB2+AD2的值最小,求出AM的最小值即可解决问题.【解答】解:如图,连接OA.∵四边形ABCD是矩形,∴AC=BD,AM=MC=BM=MD,∠BAD=90°,∴AB2+AD2=BD2,∴BD的值最小时,AB2+AD2的值最小,∵AM≥OM﹣OA,OM=5,OA=3,∴AM≥2,∴AM的最小值为2,∴BD的最小值为4,∴AB2+AD2的最小值为16,故答案为16.【点评】本题考查点与圆的位置关系,勾股定理,矩形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是 6.5cm或2.5cm.【分析】点P应分在位于圆的内部与外部两种情况讨论:①当点P在圆内时,直径=最小距离+最大距离;②当点P在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=9﹣4=5(cm),∴半径r=2.5cm.综上所述,圆O的半径为6.5cm或2.5cm.故答案为:6.5cm或2.5cm.【点评】本题主要考查了点与圆的位置关系,注意到分两种情况进行讨论是解决本题的关键.16.已知以AB为直径的圆O,C为AB弧的中点,P为BC弧上任意一点,CD⊥CP交AP 于D,连接BD,若AB=6,则BD的最小值为3﹣3.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=6,C为的中点,∴△ACB是等腰直角三角形,∴AC=3,∴△ACQ中,AQ=3,∴BQ==3,∵BD≥BQ﹣DQ,∴BD的最小值为3﹣3.故答案为3﹣3.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确寻找点D的运动轨迹是解决问题的关键.17.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP,OP,则△AOP面积的最大值为.【分析】当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,由于P为切点,得出MP垂直于切线,进而得出PM⊥AC,根据勾股定理先求得AC的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得.【解答】解:当P点移动到过点P的直线平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵过P的直线是⊙D的切线,∴DP垂直于切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故答案为:.【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.18.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为+.【分析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD 与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=+,即OM的最大值为+;故答案为.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=4,点P是△ABC内部的一个动点,且满足∠P AC=∠PCB,则线段BP长的最小值是2.【分析】首先证明点P在以AC为直径的⊙O上,连接OB与⊙O交于点P,此时PB最小,利用勾股定理求出OB即可解决问题.【解答】解:∵∠ACB=90°,∴∠ACP+∠PCB=90°,∵∠P AC=∠PCB∴∠CAP+∠ACP=90°,∴∠APC=90°,∴点P在以AC为直径的⊙O上,连接OB交⊙O于点P,此时PB最小,在Rt△CBO中,∵∠OCB=90°,BC=4,OC=3,∴OB==5,∴PB=OB﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.20.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点D是半径为1的⊙A上的一个动点,点E为CD的中点,连接BE,则线段BE长度的最小值为2.【分析】取AC的中点N,连接AD、EN、BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,EN,再利用三角形的三边关系即可解决问题.【解答】解:如图,取AC的中点N,连接AD、EN、BN.∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵AN=NC,∴BN=AC=,∵AN=NC,DE=EC,∴EN=AD=,∴BN﹣EN≤BE≤BN+EN,∴﹣≤BE≤+,∴2≤BE≤3,∴BE的最小值为2,故答案为:2.【点评】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.21.如图,直角△ABC的直角顶点C,另一顶点A及斜边AB的中点D都在⊙O上,已知:AC=6,BC=8,则⊙O的半径为.【分析】如图连接CD、OD、OC,延长DO交AC于E,设半径为R,先证明DE⊥AC,DE=CB,在Rt△OCE中,利用勾股定理即可解决问题.【解答】解:如图连接CD、OD、OC,延长DO交AC于E,设半径为R.在RT△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB===10,∵BD=AD=5,∴CD=AD=5,∵DC=DA,=,∴DO⊥AC,EC=AE=3,∴ED∥BC,∵BD=AD,∴EC=EA,∴DE=BC=4,在RT△COE中,∵∠OEC=90°,∴CO2=OE2+CE2,∴R2=(4﹣R)2+32,∴R=.【点评】本题考查点与圆的位置关系,三角形的中位线的性质,垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是68.【分析】设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,根据矩形的性质得到CD=AB,EO=AD,求得OP=CE=AB=10过H作HG⊥AB于G,根据矩形的性质得到HG=12,OG=5,于是得到结论.【解答】解:设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,∵AB=20,四边形ABCD为矩形,∴CD=AB,BC=AD,∴OP=CE=AB=10,∴CP2+EP2=2(PH2+CH2).过H作HG⊥AB于G,∴HG=12,OG=5,∴OH=13,∴PH=3,∴CP2+EP2的最小值=2(9+25)=68,故答案为:68.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三边关系,利用三角形三边关系找出PE的最小值是解题的关键.23.如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是+1.【分析】取OB中点E得DE是△OBC的中位线,知DE=OC=1,即点D是在以E为圆心,1为半径的圆上,从而知求AD的最大值就是求点A与⊙E上的点的距离的最大值,据此求解可得.【解答】解:如图1,连接OC,Q取OB的中点E,连接DE.则OE=EB=OB=1.在△OBC中,DE是△OBC的中位线,∴DE=OC=1,∴EO=ED=EB,即点D是在以E为圆心,1为半径的圆上,∴求AD的最大值就是求点A与⊙E上的点的距离的最大值,如图2,当D在线段AE延长线上时,AD取最大值,∵OA=OB=2,∠AOB=90°,OE=EB=1,∴AE=,D'E=1,∴AD取最大值为AD'=,故答案为:.【点评】本题主要考查点与圆的位置关系,解题的关键是判断出点D的运动轨迹是以E 为圆心,1为半径的圆.24.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,当OM取最大值时,点M的坐标为(2+,2+).【分析】根据同圆的半径相等可知:点C在半径为2的⊙B上,根据三角形的中位线定理可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据平行线分线段成比例定理求得C的坐标,进而即可求得M的坐标.【解答】解:如图,∵点C为坐标平面内一点,BC=2,∴C在⊙B上,且半径为2,取OD=OA=4,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=4,∠BOD=90°,∴BD=4,∴CD=4+2,作CE⊥x轴于E,∵CE∥OB,∴,即,∴CE=DE=4+,∴OE=DE﹣OD=,∴C(,4+),∵M是AC的中点,∴M(2+,2+),故答案为:(2+,2+).【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.25.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是在圆外.【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;若设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:∵⊙O的直径为6,∴⊙O的半径为3,∵点M到圆心O的距离为4,∴4>3,∴点M在⊙O外.故答案为:在圆外.【点评】本题考查了点与圆的位置关系的判断.解决此类题目的关键是首先确定点与圆心的距离,然后与半径进行比较,进而得出结论.26.在菱形ABCD中,∠D=60°,CD=4,以A为圆心,2为半径作⊙A,交对角线AC于点E,点F为⊙A上一动点,连接CF,点G为CF中点,连接BG,取BG中点H,连接AH,则AH的最大值为+.【分析】如图,连接BE,AF,EG,取BE的中点J,连接HJ,AJ.想办法求出JH,AJ 即可.【解答】解:如图,连接BE,AF,EG,取BE的中点J,连接HJ,AJ.。
20201年九年级中考数学考点综合复习 圆 相关知识点解答题专项
![20201年九年级中考数学考点综合复习 圆 相关知识点解答题专项](https://img.taocdn.com/s3/m/195eaae75727a5e9856a61ef.png)
【圆】相关知识点解答题专项集锦(含解析)1.已知AB是⊙O的直径,CD切⊙O于点C,交AB的延长线于点D,且∠D=30°,连接AC.(Ⅰ)如图①,求∠A的大小;(Ⅱ)如图②,E是⊙O上一点,∠BCE=120°,BE=8,求CE的长2.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点C作⊙O的切线CD交AB的延长线于点D.(1)求证:∠BCD=∠A.(2)将△ADC折叠,使AD与DC边重合,折痕DE分别交AC,BC于点E,F.当CE=1时,求EF的长.3.如图,⊙O是△ABC的外接圆,∠ABC=45°,OC∥AD,AD交BC的延长线于D,AB交OC 于E.(1)求证:AD是⊙O的切线;(2)若AE=5,BE=3,求图中阴影部分的面积.4.如图,点C是⊙O外一点,过点C作⊙O的切线CD,切点为点D,连接CO并延长交⊙O于点B,连接BD并延长与BC的垂线CA交于点A.(1)求证:CD=AC;(2)若EC=ED,⊙O的半径是3,求AC的长.5.在平面直角坐标系中,已知点A(0,4),B(4,4),C(6,2).(1)请确定经过点A,B,C的圆弧所在圆的圆心M的位置,并写出点M的坐标;(2)请找出一个点D,使得直线CD与⊙M相切,并写出点D的坐标.6.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连接AE交⊙O于点F,连接BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,∠AEB=55°,求劣弧的长.(结果保留π)7.如图,在⊙O中,弦AB、CD相交于点P,且PD<PC.(1)求证:△PAD∽△PCB;(2)若PA=3,PB=8,CD=10,求PD.8.如图,点P在⊙O外,M为OP的中点,以点M为圆心,以MO为半径画弧,交⊙O于点A,B,连接PA;(1)判断PA与⊙O的位置关系,并说明理由;(2)连接AB,若OP=9,⊙O的半径为3,求AB的长.9.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,OC交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=,求图中阴影部分的面积.10.如图,⊙O的半径为4,点E在⊙O上,OE⊥弦AB,垂足为D,OD=2.(1)求AB的长;(2)若点C为⊙O上一点(不与点A,B重合),直接写出∠ACB的度数.参考答案1.解:(Ⅰ)连接OC,如图①:∵CD切⊙O于点C,∴CD⊥OC,∴∠OCD=90°,∵∠D=30°,∴∠COB=90°﹣∠D=60°,∴∠A=∠COB=30°;(Ⅱ)连接OC交BE于点F,如图②:由(1)得:∠COB=60°,∵OB=OC,∴△BOC是等边三角形,∴∠OCB=60°,∵∠BCE=120°,∴∠ECF=∠BCE﹣∠OCB=120°﹣60°=60°,∵∠E=∠A=30°,∴∠CFE=180°﹣∠ECF﹣∠E=180°﹣60°﹣30°=90°,∴OC⊥BE,∴EF=BE=×8=4,∵cos E=,∴CE====.2.(1)证明:连接OC,如图:∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵OC=OB,∴∠ABC=∠OCB,∵CD是⊙O的切线,∴CD⊥OC,∴∠OCB+∠BCD=90°,∴∠BCD=∠A;(2)解:由折叠的性质得:∠CDE=∠ADE,又∵∠BCD=∠A,∴∠A+∠ADE=∠BCD+∠CDE,即∠CEF=∠CFE,∴CF=CE=1,∵∠ACB=90°,∴△CEF是等腰直角三角形,∴EF=CE=.3.解:(1)连接OA.∵AD∥OC,∴∠AOC +∠OAD =180°,∵∠AOC =2∠ABC =2×45°=90°,∴∠OAD =90°,∴OA ⊥AD ,∵OA 是⊙O 的半径,∴AD 是⊙O 的切线;(2)∵AO =CO 且∠AOC =90°,∴∠ACO =∠CAO =45°,即∠B =∠ACE ,∵∠CAE =∠BAC ,∴△AEC ∽△ACB , ∴=,∴AC 2=AE •AB =40,∴AC =2,在Rt △AOC 中,∵2OA 2=AC 2=40,∴AO =CO =2,S 阴影=S 扇形OAC ﹣S △AOC =﹣×(2)2=5π﹣10.4.(1)证明:∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠ODC =90°,∴∠ADC =180°﹣∠ODC ﹣∠BDO =180﹣90°﹣∠BDO , ∵OB =OD ,∴∠B=∠BDO,∴∠ADC=90°﹣∠B,∵AC⊥BC,∴∠ACB=90°,∴∠A=90°﹣∠B,∴∠ADC=∠A,∴CD=AC;(2)∵⊙O的半径是3,∴OD=OE=3,∵∠ODC=90°,∴EC=ED,∴∠ECD=∠EDC,∴∠DEO=2∠EDC,∵OD=OE,∴∠ODE=∠OED=2∠EDC,∴3∠EDC=90°,∴∠EDC=30°,∴∠ODE=60°,∴△EDO是等边三角形,∴DE=OE=3,∴OC=2OD=6,∴CD==3,∴AC=CD=3.5.解:(1)如图1,连接AB、BC,作AB和BC的垂直平分线,两线交于一点M,点M即为所求,由图形可知:这点的坐标是(2,0),∴圆弧所在圆的圆心M点的坐标是(2,0);(2)如图2,连接MC,过C作CD⊥CM,交x轴于D,则直线CD与⊙M相切,过C作CE⊥MD于E,∵MC⊥CD,CD⊥MD,∴∠MCD=∠CED=90°,∵∠MCE=∠EDC=90°∠CME,∴△MCE∽△CDE,∴=,∵点M的坐标为(2,0),点C的坐标为(6,2),∴ME=OE﹣OM=6﹣2=4,CE=2,∴=,∴ED=1,∴OD=7,∴点D的坐标为(7,0).6.(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCG=90°,∵AB是直径,∴∠AFB=90°,∴∠BAE+∠ABF=90°,∠ABF+∠CBG=90°,∴∠BAE=∠CBG,在△ABE和△BCG中,,∴△ABE≌△BCG(ASA).(2)解:连接OF,∵∠ABE=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.7.(1)证明:∵∠A=∠C,∠D=∠B(在同圆或等圆中,同弧所对的圆周角相等),∴△PAD∽△PCB;(2)解:∵△PAD∽△PCB,∴=,∵PA=3,PB=8,CD=10,∴=,解得:PD=4或6.8.解:(1)PA是⊙O的切线,理由如下:如图,连接OA,∴OP是⊙M的直径,点A是⊙M上一点,∴∠OAP=90°,即OA⊥PA,∴PA是⊙O的切线;(2)设⊙O与OP的交点为N,AB与OP的交点为E,连接AN,AM,BM,∵MA=MB,OA=OB,∴OP是线段AB的垂直平分线,∴AB⊥OP,AE=BE,∵OP=9,OA=3,∴AP==6,=OA•AP=AE•OP,∴S△OAP∴OA•AP=AE•OP,∴3×6=9AE,∴AE=2,∴AB=4.9.解:(1)直线BC与⊙O的位置关系是相切,理由是:连接OB,∵CP=CB,OA=OB,∴∠A=∠OBA,∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∴∠A+∠APO=∠CBP+∠OBA,∵OC⊥OA,∴∠AOP=90°,∴∠CBP+∠OBA=∠A+∠APO=180°﹣90°=90°,即∠OBC=90°,∴OB⊥BC,∵OB过O,∴直线BC与⊙O的位置关系是相切;(2)∵∠AOP=90°,∠A=30°,OP=,∴AP=2OP=2,AO===3,即OB=3,∵∠A=∠OBA=30°,∴∠AOB=180°﹣∠A﹣∠OBA=120°,∵∠AOC=90°,∴∠COB=∠AOB﹣∠AOC=120°﹣90°=30°,∴OC=2BC,由勾股定理得:OC2=CB2+OB2,即BC2=(2BC)2+32,解得:BC=,∴阴影部分的面积S=S△OBC ﹣S扇形OBD=3×﹣=﹣π.10.解:(1)连接OA,∵弦AB⊥OE,∴AD=BD=AB,∠ODA=90°,∴AD2+OD2=OA2∴AD2=42﹣(2)2=4,∴AD=2,∴AB=4;(2)分两种情况讨论:情况一,在优弧上,连接OA,OB,如图1,∵OD=2,OA=4,∴cos∠AOD===,∴∠AOD=30°,∴∠AOB=60°,∴,情况二,在劣弧上,∠ACB=180°﹣30°=150°,综上所述,∠ACB=30°或150°.。
巧用圆中的“一题多解”,培养学生发散性思维
![巧用圆中的“一题多解”,培养学生发散性思维](https://img.taocdn.com/s3/m/8d021233eef9aef8941ea76e58fafab069dc443a.png)
巧用圆中的“一题多解”,培养学生发散性思维摘要:在初中数学教学中,习题解答是重要的组成部分,这不仅是由数学学科能用于解决现实问题的特征决定的,更是为了培养学生的逻辑思维、解题能力。
一题多解指的就是学生在解决数学问题的时候,不再局限一道题目一个解题思路和方法的限制,而是学会从不同的角度寻找切入点,使用多种方法解决问题。
本文从初中数学教学“圆”的一题多解教学入手展开研究,进行有效的一题多解训练,带出多种数学知识与方法,培养学生的发散性思维。
关键词:发散性思维;一题多解;初中数学;圆数学本身具有着一定的抽象性和逻辑性,而且解决问题的方式也是多样的。
教师注重转变教学理念和教学方法,引导学生从多角度和多层面进行问题的分析,学会使用一题多解来找到解决问题的多种方式,对发散学生的思维,培养学生的数学能力至关重要。
一、数学课程中的一题多解数学学科教学本身具有一定的抽象性与综合性内涵,它旨在培养学生的灵活逻辑思维能力。
在新课改背景下,为了实现数学教学实效性的有效提升,教师也希望从多个方面思考,实现多角度数学教学,引入一题多解训练模式,在提炼数学知识内容过程中也希望培养学生良好的变式思维,更多结合数学问题、条件、结论之间的相互转换来彰显学生对于教学内容、方法的不同理解,培养学生思维的广阔性和慎密性。
在该过程中,教师的教学过程不再固定于某一局限性定式思维上思考问题,要鼓励学生充分的发挥出想象力,能针对一个题目从多角度和多方向进行观察和分析,多角度和多变并且多层次的应用学习过的知识,得出不同类型解决问题的方式方法,同时也养成任何问题都去多方面思考的习惯。
二、圆的一题多解问题探析在学完圆的有关知识后,很多学生会发现有些习题常出现一题多解的特点.这是由于图形的位置及圆的对称性等特性而出现的情况。
本文将课本中的例、习题的改编题及近几年来全国各地的中考题有关圆中一题多解的问题归纳起来,作为培养学生发散思维的有效路径并展开分析。
数学圆中常见的两解及多解问题
![数学圆中常见的两解及多解问题](https://img.taocdn.com/s3/m/f67332d389eb172ded63b76b.png)
总结 : 如 果题 目中所 给 出的弦其 所对应 的弧并 不唯一 , 那么 这条弦所对应 的圆周 角度 数之和为 1 8 0 。。
3 与 弦 有 关 的 多解 问题
况, 画出草图辅助解题 , 千万 不要漏掉 任何 一种情况 , 造成解题错
0B 的半径 随之增 加 , 0B 的半径 r ( c m ) 同时 间t ( 秒) 之间 的关 系
式为 r = - l + t ( t >0  ̄ ) , A点 出发后多少秒两 圆会相切 ?
总结 : 在对点 同圆之间 的位 置关系进行确 定 的时候 , 其实 质 在 于对点 到圆心距离 同半径之 间的大小关 系进行 确定 。假 如题 干中并 未给 出明确的关系 , 就应该 考虑圆内 、 圆上 、 圆外这几种情 况并进行分类讨论 。 2 弦所对 的两条弧的两解问题 例 2已知 OO中内接 了一个 AA B C , 其中B C = 4 , O B = 4 , 试 求
所 以 /A = 3 0 。。
( 2 ) 如图 4 , A点在 B C 所对 的劣弧上 同理能够求 出/ _ B O C = 6 0 。
则 A = l /2 ★( 3 6 0 。- 6 0 。) = 1 5 0 。。
分析 : 本题 主要分 为如下四种情 况进 行讨 论 : ( 1 ) 两圆第一 次相 切时 , 2 t + t = 9 , 即t = 3 s ; ( 2 ) 两圆第 二次相 切时 , 2 t + t = 1 1 , 即t = l 1 3 s ; ( 3 ) 两圆第 三次相切时 , 2 t — t = l l , 即t = l l s ; ( 4 ) 两圆第四次相切时 , 2 t — t = 1 3 , 即t = 1 3 s 。 综上所述 , 两圆相 切的时间分别为 3秒 , 1 1 3 秒, 1 1 秒, l 3秒 。 总结 : 本 题 目所考查的是学生对于两个圆之间位置关系 的掌 握, 具有很 强的灵活性 , 本题要 点在于 圆心距 的关系 同两 圆的位 置关系 , 进行分情况讨论 。
【中考数学压轴题专题突破28】圆中的新定义问题(2)
![【中考数学压轴题专题突破28】圆中的新定义问题(2)](https://img.taocdn.com/s3/m/229c8866bd64783e09122b88.png)
【中考压轴题专题突破28】圆中的新定义问题(2)1.以点P为端点竖直向下的一条射线PN,以它为对称轴向左右对称摆动形成了射线PN1,PN2,我们规定:∠N1PN2为点P的“摇摆角”,射线PN摇摆扫过的区域叫作点P的“摇摆区域”(含PN1,PN2).在平面直角坐标系xOy中,点P(2,3).(1)当点P的摇摆角为60°时,请判断O(0,0)、A(1,2)、B(2,1)、C(2+,0)属于点P的摇摆区域内的点是(填写字母即可);(2)如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为°;(3)⊙W的圆心坐标为(a,0),半径为1,如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,求a的取值范围.2.如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°≤∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(1,0),P2(1,1),P3(0,2)中,⊙O的环绕点是;②直线y=2x+b与x轴交于点A,与y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为1,圆心为(0,t),以(m,m)(m>0)为圆心,m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.3.对于平面直角坐标系xOy中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=,d(B,⊙O)=;②如果直线y=x+b与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在x轴上,半径为1,直线y=﹣x+5与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.4.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为,线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤P A≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.5.定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.6.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为,最小值为.(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.【中考压轴题专题突破28】圆中的新定义问题(2)参考答案与试题解析一.解答题(共6小题)1.解:(1)根据“摇摆角”作出图形,如图所示,将O、A、B、C四点在平面直角坐标系中描出后,可以发现,B、C在点P的摇摆区域内,故属于点P的摇摆区域内的点是B、C(2)如图所示,当射线PN1过点D时,由对称性可知,此时点E不在点P的摇摆区域内,当射线PN2过点E时,由对称性可知,此时点D在点P的摇摆区域内,易知:此时PQ=QE,∴∠EPQ=45°,∴如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为90°(3)如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,此时⊙W与射线PN1相切,设直线PN1与x轴交于点M,⊙W与射线PN1相切于点N,P为端点竖直向下的一条射线PN与x轴交于点Q,由定义可知:∠PMW=60°,∵NW=1,PQ=3,∴sin∠PMW=,tan∠PMW=∴MW=,MQ=,∴OM=2﹣,∴OW=OM+MW=2﹣+=2﹣∴此时W的坐标为:(2﹣,0)由对称性可知:当⊙W与射线PN2相切时,此时W的坐标为:(2+,0)∴a的范围为:2﹣≤a≤2+2.解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN.当∠MPN=60°时,∵PT平分∠MPN,∵∠TPM=∠TPN=30°,∵TM⊥PM,TN⊥PN,∴∠PMT=∠PNT=90°,∴TP=2TM,以T为圆心,TP为半径作⊙T,观察图象可知:当60°≤∠MPN<180°时,⊙T的环绕点在图中的圆环内部(包括大圆设的点不包括小圆上的点).如图1中,以O为圆心2为半径作⊙O,观察图象可知,P2,P3是⊙O的环绕点,故答案为P2,P3.②如图2中,设小圆交y轴的正半轴与于E.当直线y=2x+b经过点E时,b=1.当直线y=2x+b与大圆相切于K(在第二象限)时,连接OK,由题意B(0,b),A(﹣,0),∴OB=b,OA=,AB===b,∵OK=2,•AB•OK=•OA•OB,∴•b×2=•b•,解得b=2,观察图象可知,当1<b≤2时,线段AB上存在⊙O的环绕点,根据对称性可知:当﹣2≤b<﹣1时,线段AB上存在⊙O的环绕点,综上所述,满足条件的b的值为1<b≤2或﹣2≤b<﹣1.(2)如图3中,不妨设E(m,m),则点E在直线y=x时,∵m>0,∴点E在射线OE上运动,作EM⊥x轴,∵E(m,m),∴OM=m,EM=,∴以E(m,m)(m>0)为圆心,m为半径的⊙E与x轴相切,作⊙E的切线ON,观察图象可知,以E(m,m)(m>0)为圆心,m为半径的所有圆构成图形H,图形H即为∠MON的内部,包括射线OM,ON上.当⊙T的圆心在y轴的正半轴上时,假设以T为圆心,2为半径的圆与射线ON相切于D,连接TD.∵tan∠EOM==,∴∠EOM=30°,∵ON,OM是⊙E的切线,∴∠EON=∠EOM=30°,∴∠TOD=30°,∴OT=2DT=4,∴T(0,4),当⊙T的圆心在y轴的负半轴上时,且经过点O(0,0)时,T(0,﹣2),观察图象可知,当﹣2<t≤4时,在图形H上存在⊙T的环绕点.3.解:(1)①如图1中,设⊙O交y轴于E,连接OB交⊙于F.由题意d(A,⊙O)=AE=1,d(B,⊙O)=BF=OB﹣OF=5﹣2=3.故答案为1,3.②如图2中,作OH⊥EF于H,交⊙O于G.当GH=1时,OF=OG+GH=3,∵直线EF的解析式为y=x+b,∴E(0,b),F(﹣b,0),∴OE=OF=b,∵OH⊥EF,∴HE=HF,∵EF=2OH=6,∴b=3,根据对称性可知当﹣3≤b≤3时,直线y=x+b与⊙O互为“可及图形”.(2)如图3中,当⊙G在y轴的左侧,OG=2时,GG(﹣2,0),当⊙G′在y轴的右侧,作G′H⊥CD于H,当HG′=2时,∵直线y=x﹣5交x轴于C,交y轴于D,∴C(5,0),D(0,5),∴OC=OD=5,∠OCD=45°,∵∠CHG′=90°,∴CH=HG′=2,∴CG′=2,∴G′(5﹣2,0),当点G″在直线CD的右侧时,同法可得G″(5+2,0),观察图象可知满足条件的m的值为:﹣2≤m≤2或5﹣2≤m≤5+2.4.解:(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2,∴PQ=,故答案为(0,1);;②如图,过C作CM⊥y轴于点M,连接CP,CQ.∵A(0,2),B(2,0),∴C(1,1).∴M(0,1).在Rt△ACM中,由勾股定理可得CA=.∴CQ=.∵P(0,3),M(0,1),∴PM=2.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①如图1:当k=1时,y=x+4,∴Q(t﹣4,t),∵1≤P A≤2,∴P的纵坐标为4时,PQ与圆C相切,设B(m,0),∴C(,1),∵CQ⊥PQ,∴CQ的解析式为y=﹣x++1,∴Q点横坐标为﹣,∴﹣=t﹣4,∴m=4t﹣10,∴C(2t﹣5,1),∵CQ=AC,∴(2t﹣5)2+1=2(t﹣1)2,∴t=6或t=2,∴t的最大值为6;故答案为6.②∵﹣1≤x≤1,∵y=kx+k+3经过定点(﹣1,3),∵PQ是圆的切线,AO是圆的弦,∴PQ2=P A•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=﹣,∴1﹣2<k≤﹣;当k>0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=,∴≤k<1+2.5.证明:(1)∵∠APC=∠CPB=60°,∴∠APQ=60°,且AQ=AP,∴△APQ是等边三角形,∴∠Q=60°=∠QAP,∵四边形APBC是圆内接四边形,∴∠QP A=∠ACB=60°,∵∠Q+∠ACB+∠QAC+∠QBC=360°,∴∠QAC+∠QBC=240°,且∠QAC=∠QAP+∠BAC+∠P AB=120°+∠P AB>120°,∴∠QBC<120°,∴∠QAC≠∠QBC,且∠QP A=∠ACB=60°=∠Q,∴四边形AQBC是准平行四边形;(2)如图②,连接BD,∵AB≠AD,BC=DC,∴∠ABD≠∠ADB,∠CBD=∠CDB,∴∠ABC≠∠ADC,∵四边形ABCD是准平行四边形,∴∠BAD=∠BCD,∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∠ABC+∠ADC=180°,∴∠BAD=∠BCD=90°,∴BD是直径,∴BD=10,∴AD===8,将△ABC绕点C顺时针旋转90°得到△CDH,∴AB=DH=6,AC=CH,∠ACH=90°,∠ABC=∠CDH,∵∠ABC+∠ADC=180°,∴∠ADC+∠CDH=180°,∴点A,点D,点H三点共线,∴AH=AD+DH=14,∵AC2+CH2=AH2,∴2AC2=196∴AC=7;(3)如图③,作△ACD的外接圆⊙O,过点O作OE⊥AC于E,OF⊥BC于F,∵∠C=90°,∠A=30°,BC=2,∴∠ABC=60°,∠ABC=60°,AC=BC=2∵四边形ABCD是准平行四边形,且∠BCD≠∠BAD,∴∠ABC=∠ADC=60°,∴∠AOC=120°,且OE⊥AC,OA=OC,∴∠ACO=∠CAO=30°,CE=AE=,∴OE=1,CO=2OE=2,∵OE⊥AC,OF⊥BC,∠ECF=90°,∴四边形CFOE是矩形,∴CE=OF=,OE=CF=1,∴BF=BC+CF=3,∴BO===2,∵当点D在BO的延长线时,BD的长有最大值,∴BD长的最大值=BO+OD=2+2.6.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.。
初中数学圆中常见的两解及多解问题分析
![初中数学圆中常见的两解及多解问题分析](https://img.taocdn.com/s3/m/f09c906ef4335a8102d276a20029bd64783e62ea.png)
教法研究新课程NEW CURRICULUM现代教育中,学生综合能力发展与学生未来发展有着紧密联系。
因此,根据我国初中数学教学现状,对各种教学方法的应用情况进行深入了解,以圆的解题方式为例,可以更好地促使初中数学教学水平不断提高。
一、初中数学圆的两解和多解题型随着初中数学教育改革的不断推进,学生各方面的能力得到一定提高。
对初中数学中圆的相关知识进行分析发现,常见的两解和多解问题主要有如下几种题型:1.两平行弦之间的距离例1.已知圆的半径是4,弦AB长为7,CD长为9,其中,AB 和CD平行,求弦AB和CD之间的距离是多少?变式训练:(1)已知圆的半径是4,弦AB长为7,CD长为9,且AB和CD平行,求弦AC的距离是多少?(2)已知圆的两弦AB、CD的长是方程x2-42x+432=0的两个根,且AB和CD平行,同时两弦之间的距离是4,求圆的半径长为多少。
2.弦所对的圆周角例2.在半径长度为7的圆中弦AB的长度5,求弦AB所对的圆周角的弧度是多少?变式训练:(1)已知圆的弦长与圆的半径相等,求该弦所对的圆周角的弧度是多少?(2)在圆中内接有三角形ABC,其中,∠AOB的弧度为100,求∠ACB的弧度是多少?3.已知圆的半径和两弦的长度,求两弦的夹角的弧度是多少例3.已知圆的半径是2,弦AB的长度为1.2,弦AC的长度为1.3,求∠BAC的弧度是多少?变式训练:(1)已知圆中两弦AB、AC的长度分别为5.2,圆的半径为5,求∠BAC的弧度是多少?(2)已知圆的两弦AB、AC的长度分别为5.2和5,圆的半径为5,AB的中点为E,AC的中点为F,求∠EOF的弧度是多少?另外还有,点在弧上的位置不确定、点与圆的位置不确定和半径不等的相交两圆的圆心距等情况下出现的两解问题例4.如下图所示,A、B两点在直线MN上,其中AB的长度为15厘米,圆A和圆B的半径一样都是2厘米,圆A正在以速度为2cm/s、自左向右的状态运行,并且圆B的半径真正逐渐增大,它的半径r和时间t的关系式是r=1+t,求圆A在出发多久后,两个圆会出现相切情况。
圆中多解问题
![圆中多解问题](https://img.taocdn.com/s3/m/0b633186d15abe23492f4d47.png)
圆中多解问题集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]圆中的多解问题一、根据点与圆的位置分类例1、点P是圆O所在平面上一定点,点P到圆上的最大距离和最短距离分别为8和2,则该圆的半径为。
二、三角形与圆心的位置关系例2:已知∆ABC内接于圆O,∠=︒OBC35,则∠A的度数为________。
例3:已知圆内接∆ABC中,AB=AC,圆心O到BC的距离为3cm,圆的半径为6cm,求腰长AB。
三、角与圆心的位置关系例4:在半径为1的⊙O中,弦AB、AC的长分别为3和2,则∠BAC的度数是____。
四、圆中两平行弦与圆心的位置关系例5.圆O的直径为10cm,弦AB//CD,AB=6cm,CD cm=8,求AB和CD的距离。
五、弦所对的圆周角有两种情况例6:半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________。
练习:1.AB是⊙O的弦,∠AOB=80°则弦AB所对的圆周角是()。
2.一条弦分圆为1∶5两部分,则这条弦所对的圆周角的度数为()六、圆与圆的位置关系例7、已知圆O1和圆O2相内切,圆心距为1cm,圆O2半径为4cm,求圆O1的半径。
例8、两圆相切,半径分别为4cm和6cm,求两圆的圆心距。
例9、相交两圆半径分别为5cm和4cm,公共弦长6cm,则两圆的圆心距等于_______七.弦所对弧的优劣情况不确定例10.已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cm,求下水道中水的最大深度。
练习:1.平面内有一点P到⊙O上的点的最短距离为3,最长距离为5,则圆的半径为2.在半径为5cm的圆内有两条平行弦,一条弦长为6cm,另一条弦长为8cm,则两条平行弦之间的距离为_________。
3.过⊙O内一点M的最长弦为10cm,最短弦为8cm,则OM=cm..4.在平面直角坐标系中,半径为5的⊙O 与x 轴交于A (-2,0)、B (4,0),则圆心点M 坐标为_________.5.若O 为△ABC 的外心,且060=∠BOC ,求BAC ∠的度数 6.P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠APB=50°,点C 为⊙O 上一点(不与A 、B )重合,则∠ACB 的度数为。
用分类讨论思想解圆的多解问题
![用分类讨论思想解圆的多解问题](https://img.taocdn.com/s3/m/296f55b5f121dd36a32d8253.png)
图 1
图2
点评
此类题很容易漏解. 应强调平 行弦与 圆心的
图5 图6
位置关 系有两种.
例 2 在 QO中 , 径 A 2 弦 A , A 直 B= , C: 弦 D=
,
求 c D的度数. A
解
・ . ‘
过 A作 A D上B C于 D, 连接 O . B
:
分析
此题 应分 圆心在 O D的 内侧 和外侧 两种
一4 :3 .
弦 A =6 C =8 . B =3 D =4 . O = 日 ,D ,‘ M . ,N ,. M
√
一3 :4, ON = √
部还是外部这样 的讨论 , 在平 时教学 中不常见. 例 3 已知等腰 △ C内接于半径 为 5的 QO, 如果
①两弦在 圆心的两侧时 , 如图 1 , 一lMN= 3= ; 4+ 7
:
分别 位于圆心两侧两种情况讨论.
别 为 , . Ⅳ
.
②D在 O D的外 侧时 , 图 4 c D= 5 一3 。 如 , A 4 。 0
=1 . 5。
综上 , c D的度数 为 7, 因为点( 圆心 ) 在角的 内
2 以优 弧 。 弧分 类 劣
图9
图 1 0
1
① C在优弧上时, 如图9 / C _ O 6 。 , A B= 1/ B= 0 ; A
二
② 点 C在 劣 弧上 时 , 图 1 , 如 0
1
在一个圆中, 同一条 弦、 同一 个 圆周 角 所对 的弧 有
优弧劣弧之分 , 因此需要分两种情况讨论.
解
‘ . ‘
过 0作 O L B于 C, C_ A 连接 O . A
专题14 圆中的两解及多解问题分类讨论思想)归类集训-2023年中考数学二轮复习核心考点拓展训练
![专题14 圆中的两解及多解问题分类讨论思想)归类集训-2023年中考数学二轮复习核心考点拓展训练](https://img.taocdn.com/s3/m/1f7d2f5da55177232f60ddccda38376baf1fe0db.png)
专题14 圆中的两解及多解问题(分类讨论思想)归类集训(解析版)类型一讨论弦上某点或端点的位置1.在半径为10的⊙O中,弦AB的长为16,点P在弦AB上,且OP的长为8,AP长为 .思路引领:作OC⊥AB于点C,根据垂径定理求出OC的长,根据勾股定理求出PC的长,分当点P在线段AC上和当点P在线段BC上两种情况计算即可.解:作OC⊥AB于点C,∴AC=12AB=8,由勾股定理得,OC=OA2―AC2=6,∴PC=OP2―OC2=27,当点P在线段AC上时,AP=AC﹣PC=8﹣27,当点P在线段BC上时,AP=8+27,故答案为:8﹣27或8+27.总结提升:本题考查的是垂径定理的应用和勾股定理的应用,正确作出辅助线构造直角三角形、运用分情况讨论思想是解题的关键.2.(2021•无棣县模拟)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.25cm B.43cm C.25cm或45cm D.23cm或43cm思路引领:分两种情况,根据题意画出图形,先根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=OA2―AM2=52―42=3(cm),∴CM=OC+OM=5+3=8(cm),∴AC=AM2+CM2=42+82=45(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC=AM2+CM2=42+22=25(cm);综上所述,AC的长为45cm或25cm,故选:C.总结提升:本题考查的是垂径定理和勾股定理等知识,根据题意画出图形,利用垂径定理和勾股定理求解是解答此题的关键.3.(2020•黑龙江)在半径为5的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP = .思路引领:如图1,作OE⊥AB于E,OF⊥CD于F,连接OD、OB,如图,根据垂径定理得到AE=BE=12AB=2,DF=CF=12CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,则AE=BE=12AB=2,DF=CF=12CD=2,如图1,在Rt△OBE中,∵OB=5,BE=2,∴OE=OB2―BE2=1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC=12×1×1=12;如图2,同理:S△APC=12×3×3=92;如图3,同理:S△APC=12×1×3=32;故答案为:12或32或92.总结提升:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.类型二圆心在两弦之间或者两弦之外4.(2021•商河县校级模拟)一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?思路引领:分两种情形分别求解即可解决问题.解:作半径OD⊥AB交AB于C,连接OB,如图所示,由垂径定理得:BC=12AB=30cm,在Rt△OBC中,OC=502―302=40cm,当水位上升到圆心以下,水面宽80cm时,则OC′=502―402=30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.总结提升:本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.5.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 ;(2)在半径为1的⊙O中,弦AB,AC的长分别为3和2,则∠BAC的度数是 ;(3)已知圆内接△ABC中.AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,求腰长AB.思路引领:(1)根据垂径定理求得AD的长,再根据三角形函数可得到∠AOD的度数,再根据圆周角定理得到∠ACB的度数,根据圆内接四边形的对角互补即可求得∠AEB的度数;(2)连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可;(3)可根据勾股定理先求得BD的值,再根据勾股定理可求得AB的值.注意:圆心在内接三角形内时,AD=10cm;圆心在内接三角形外时,AD=4cm.解:(1)如图1,过O作OD⊥AB,则AD=12AB=12×3=32.∵OA=1,∴sin∠AOD=ADOA=32,∠AOD=60°.∵∠AOD=12∠AOB=60°,∠ACB=12∠AOB,∴∠ACB=∠AOD=60°.又∵四边形AEBC是圆内接四边形,∴∠AEB=180°﹣∠ACB=180°﹣60°=120°.故这条弦所对的圆周角的度数等于60°或120度.故答案为:60°或120度.(2)解:有两种情况:①如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=32,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图3所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=22,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°;(3)分圆心在内接三角形内和在内接三角形外两种情况讨论,如图4,假若∠A是锐角,△ABC是锐角三角形,连接OB,作AD⊥BC于D,连接OD,∵AB=AC,∴AD是BC的中垂线,∴OD也是BC的中垂线,∴A、O、D三点共线,∵OD=3cm,OB=7cm,∴AD=10cm,∴BD=OB2―OD2=210cm,∵OD⊥BC,∴BD=CD,∵AB=AC,∴AD⊥BC,∴AB=AD2+BD2=235cm;如图5,若∠A是钝角,则△ABC是钝角三角形,和图4解法一样,只是AD=7﹣3=4cm,∴AB=AD2+BD2=214cm,综上可得腰长AB=235cm或214cm.总结提升:本题主要考查了垂径定理和勾股定理,注意分圆心在内接三角形内和在内接三角形外两种情况讨论,解题的关键是根据题意作出图形,求出符合条件的所有情况.类型三讨论点在优弧上或劣弧上6.(2022秋•双城区期末)已知⊙O的半径为2,弦AB的长为23,则弦AB的中点到这条弦所对的弧的中点的距离为 .思路引领:由垂径定理得出AC,再由勾股定理得出OC,从而得出CD和CE的长.解:如图,∵C是弦AB的中点,AB=23,∴OC⊥AB,AC=12AB=3,∴AD=BD,AE=BE,在Rt△AOC中,OC=22―(3)2=1,∴CD=2﹣1=1cm,CE=2+1=3.故答案为:1或3.总结提升:本题考查了垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.8.(2021秋•凉州区校级期末)如图,AB、AC分别与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是 .思路引领:此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点.(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数;(2)如果当∠BPC为钝角,也就是∠BP2C时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点,(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°故答案为:65°或115°.总结提升:本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用.类型四弦所对的圆周角7.(2018秋•泗阳县期中)若圆的一条弦把圆分成度数的比为1:3的两条弧,则该弦所对的圆周角等于 .思路引领:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°.解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故答案为:45°,135°.总结提升:本题考查的是圆心角、弧、弦的关系及圆周角定理,在解答此类问题时要注意是在“同圆或等圆中”才适用,这是此类问题的易错点.9.(2020秋•溧阳市期末)已知△ABC是半径为2的圆内接三角形,若BC=23,则∠A的度数为( )A.30°B.60°C.120°D.60°或120°思路引领:首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23,∴BD=4,∴CD=BD2―BC2=2,∴CD=12 BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°﹣∠A=120°,∴∠A的度数为:60°或120°.故选:D.总结提升:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.类型五讨论圆内接三角形的形状10.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为 .思路引领:如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=2OB=52.解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD =32OB =532,∴BC =AB =53,如图2,当∠DOB =90°,∴∠BOC =90°,∴△BOC 是等腰直角三角形,∴BC =2OB =52,综上所述:若△OBD 是直角三角形,则弦BC 的长为53或52,故答案为:53或52.点睛:本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.101.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,求BC 边上的高.思路引领:从圆心向BC 引垂线,交点为D ,则根据垂径定理和勾股定理可求出,OD 的长,再根据圆心在三角形内部和外部两种情况讨论.解:连接AO 并延长交BC 于D 点,∵AB =AC ,∴AB =AC ,根据垂径定理得AD ⊥BC ,则BD =4,根据勾股定理得OD =3①圆心在三角形内部时,三角形底边BC 上的高=5+3=8;②圆心在三角形外部时,三角形底边BC 上的高=5﹣3=2.所以BC 边上的高是8或2.总结提升:本题综合考查了垂径定理和勾股定理在圆中的应用,因三角形与圆心的位置不明确,注意分情况讨论.类型六讨论点与圆的位置关系12.(2020•南通模拟)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为 .思路引领:点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为a+b 2;当此点在圆外时,圆的直径是a﹣b,因而半径是a―b 2;故答案为:a+b2或a―b2.总结提升:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.13.已知点P到⊙O的最长距离为6cm,最短距离为2cm.试求⊙O的半径长.思路引领:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可解:①当P在⊙O外时,如图,∵P当⊙O的最长距离是为6cm,最短距离为2cm,∴PB=6cm,PA=2cm,∴AB=4cm,∴⊙O的半径为2cm';当P在⊙O内时,,此时AB=8cm,⊙O的半径为4cm.即⊙O的半径长为2cm或4cm.解题秘籍:本题考查了点和圆的位置关系,分类讨论是解此题的关键.类型七讨论直线与圆的位置关系14.(2021•崇明区二模)已知同一平面内有⊙O和点A与点B,如果⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,那么直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切思路引领:根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.总结提升:本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.15.(2021秋•信都区校级月考)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 ;若⊙C与AB边只有一个公共点,则r的取值范围为 .思路引领:如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=AC2+BC2=62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线相离,∴r的取值范围为r<24 5,∵⊙C与AB边只有一个公共点,∴r的取值范围为6<r≤8或r=24 5,故答案为:r<245,6<r≤8或r=245.总结提升:本题考查直线与圆的位置关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(衢州中考)如图,已知直线l的解析式是y=43x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l 相切时,则该圆运动的时间为( )A.3秒或6秒B.6秒C.3秒D.6秒或16秒思路引领:由y=43x﹣4可以求出与x轴、y轴的交点A(3,0)、B(0,﹣4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C 运动的距离和运动的时间.解:如图,∵x=0时,y=﹣4,y=0时,x=3,∴A(3,0)、B(0,﹣4),∴AB=5,当C在B上方,直线与圆相切时,连接CD,则C到AB的距离等于1.5,∴CB=1.5÷sin∠ABC=1.5×53=2.5;∴C运动的距离为:1.5+(4﹣2.5)=3,运动的时间为:3÷0.5=6;同理当C在B下方,直线与圆相切时,连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.故选:D.总结提升:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.17.(2018•浦东新区二模)已知l1∥l2,l1、l2之间的距离是3cm,圆心O到直线l1的距离是1cm,如果圆O 与直线l1、l2有三个公共点,那么圆O的半径为 cm.思路引领:根据题意可以画出相应的图形,从而可以解答本题.解:如下图所示,设圆的半径为r如图一所示,r﹣1=3,得r=4,如图二所示,r+1=3,得r=2,故答案为:2或4.总结提升:本题考查直线和圆的位置关系,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.18.(2021秋•新荣区月考)综合与实践问题情境:数学活动课上,老师出示了一个直角三角板和量角器,把量角器的中心O 点放置在AC 的中点上,DE 与直角边AC 重合,如图1所示,∠C =90°,BC =6,AC =8,OD =3,量角器交AB 于点G ,F ,现将量角器DE 绕点C 旋转,如图2所示.(1)点C 到边AB 的距离为 245 .(2)在旋转过程中,求点O 到AB 距离的最小值.(3)若半圆O 与Rt △ABC 的直角边相切,设切点为K ,求BK 的长.思路引领:(1)如图1,过点C 作CH ⊥AB 于点H ,利用勾股定理求得AB ,再利用AB •CH =AC •BC ,即可求得答案.(2)当CD ⊥AB 时,点O 到AB 的距离最小,再由OH =CH ﹣OC ,即可求得答案.(3)分两种情况:①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,运用勾股定理即可求得答案;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,运用勾股定理求得CK ,再利用勾股定理即可求得BK .解:(1)如图1,过点C 作CH ⊥AB 于点H ,∵∠ACB =90°,BC =6,AC =8,∴AB =AC 2+BC 2=62+82=10,∵CH ⊥AB ,∴AB •CH =AC •BC ,∴CH =AC ⋅BC AB=6×810=245,即点C 到边AB 的距离为245,故答案为:245.(2)∵O 为AC 的中点,∴OC =12AC =12×8=4,当CD ⊥AB 时,点O 到AB 的距离最小,∴OH =CH ﹣OC =245―4=45,∴点O 到AB 距离的最小值为45.(3)①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,∴BK =BC ﹣CK =6―7;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,在Rt △BCK 中,BK =BC 2+CK 2=62+(7)2=43;综上所述,BK 的长为7或43.解题秘籍:本题是几何综合题,考查了圆的性质,切线的性质,旋转变换的性质,勾股定理,三角形面积,解题关键是熟练掌握旋转变换的性质等相关知识,运用分类讨论思想解决问题.。
例析圆中的多解问题
![例析圆中的多解问题](https://img.taocdn.com/s3/m/76841bbd65ce050877321302.png)
内 接 三 角 形 , Bc一 3 C , 若 m 则 A 的 度 数 为
。。。。。。。。。。__ 。。。。。。。。。。。一
解 析 : 图 1 连 结 OB, 如 , oc, △ OBC 为 等 边 三 角 形 , 则 B0c一 6 。 点 A 可 能 在 优 0,
弧 上 , 可 能 在 劣 弧 上 , 此 也 因
个 ;
() 3 ④M 与 ④A 相 外 切 且 与 o B 相 内 切 ,
④
图 1
A 的度 数 为 3 。 1 0 . O或 5 。 【 2 例 】
图5
图6
已 知 点 P 到 o o 的 距 离 最 长 为 .
解 析 : m 或 7C J 1c I. T
7c , 短 为 1c , o0 的 半 径 是 m 最 m 则
【 5 在 半 径 为 1 例 】 O的 o0 内 有 一 点
【 6 例 】 以 。 为 圆 心 的 两 个 同 心 圆 的 半
径 分别 是 1 O和 4 若 o P 与 两 圆 都 相 切 , , 则
④ P 的 半 径 是
◎ ◎
‘
图 1 2
图 8
图 9
A. 4个 C. 6个
B 5个 .
●
解 析 : P 既 可 以 如 图 8所 示 与 小 圆 外 o
图3
7c , m PB= 1c , AB一7 1 8 c m 由 + — ( m), 时 此 圆 的半 径 为 4c ; 点 P 在 圆 外 时 , 图 3所 m 当 如
示 , 一 7c , PA m PB 一 1 cn, AB : 7— 1 t 则 = = — 6 c ) 此 时 圆 的 半 径 为 3c (m , m. 二 、 的位置 不确定 , 分类 求解 弦 需 【 3 例 】 已 知 o 0 的 半 径 是 2c , 0 的 m o
圆中最值问题的常见解法
![圆中最值问题的常见解法](https://img.taocdn.com/s3/m/87f4faebd4bbfd0a79563c1ec5da50e2524dd10b.png)
分析:由于 都不是定值,加之平方式,所以直接用函数、均值不等式、几何法求解,都无能为力.于是考虑先设点 的坐标,先代数化,再看有没有几何意义.
解:设点 ,则
, 表示点 到定点 距离的平方,而
, 的最大
值是 ,此时点 的坐标满足 .
一.利用三角形性质求最值
众所皆知:三角形中任意两边之和大于第三边,任意两边之差小于第三边,极端情况下,当三点共线时,两边之和等于第三边,两边之差等于第三边,这正是取得最值的时刻,这就是圆中解决最值问题的常用方法之一.主要模型是:求一定点与圆上动点之间距离的最大值与最小值.即有:设圆心为C,圆的半径为 ,定点为A,圆上动点为P,则 =
的最小值是 ,此时点 的坐标满足
.
评析:在几何方法受阻的情况下,可以先做代数化处理,在构造几何意义,本题的解决,得
益于构造圆外一点到圆上动点距离的最值模ቤተ መጻሕፍቲ ባይዱ.
相关问题:(1)已知圆 ,圆 , 分别是圆 上的动点, 为 轴上的动点,则 的最小值为( )A
A. B. C. D.
(2)P为双曲线 的右支上一点,M、N分别是圆 ,
解决圆中最值问题的常见方法
圆问题是高中解析几何中的重点问题,在这类问题中的最值问题又是常见题型,由于在解决过程中所需要的数学素养层次比较高,特别是对学生的直观想象素养、抽象素养、运算素养、逻辑推理素养有较高要求,所以学生在学习中常常感到比较困难.基于此,非常有必要对这类问题的常见解法做一些总结,以供参考.
.
例1.点 在椭圆 上运动,点 在圆 上运动,求 .
分析:由于有两个动点,所以需要分步完成,可以先固定点 ,这样就可以利用三角形性质求得 ,然后再利用函数法求得最终结果.
圆中无图题的多解问题举例
![圆中无图题的多解问题举例](https://img.taocdn.com/s3/m/d9d6bf3458fb770bf78a55ad.png)
的圆心距等于半径之和 , 外 切两圆的圆心距等 于半径之
差 .
其位置时 , 应考虑点在 圆内、 圆上 、 圆外 三 种 可 能 情 形 . 解: 当点 P在 圆 内 时, 如 图( 1 ) , 贝 0 直径 A B: 6+2 A
=
⑤ A
解: 当两 圆 内切 时 , 如 图( 1 ) , 另 一 圆 的 半 径 =1 0
A、 c不重合 的点 , 若 LP= 5 0 。 , 则 LA B C= —
—
度.
分析 : 由于点和弧的位置 不确定 , 点 口可 能在优 弧 A B C上 , 也可能在劣 弧 A C上 , 因而有如图两种 可能 .
A A
-
解: 过 0作 A B、 C D 的垂 线 , 分 别交 A B、 C D于点 E、
( 1 ) ( 2 )
系、 圆心和角的位置关 系、 和圆有关的动态 问题等 , 解答
这类问题时一定要 全面考 虑 , 分 类 并 逐 一 加 以讨 论 , 这 样才能避免漏解 .
一
解: 当O P上2 时, 如图( 1 ) , 直线 2 与 00相 切 ; 当O P与 Z 不垂直 时, 如图( 2 ) , 直线 Z 与 00相 交 .
距离 最 长 为 6 c m, 最 短为 2 c m, 则 00 的 半 径 为
...... ...................— —
cm ・
分析 : 两圆相切有 内切 和外切 两种情 况 , 内 切 两 网
分析 : 凡涉 及 点 与 圆 的 位 置 关 系 问 题 , 在 没 有 指 明
故选 D .
三、 由于 圆 与 圆 的 位 置 关 系 不确 定 而 导 致 的 多 解 问
初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析汇报)
![初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析汇报)](https://img.taocdn.com/s3/m/0d05128565ce0508763213ab.png)
初中数学共圆问题提高练习与常考难题和培优题压轴题(含解析)问题探究:一个班级的学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?怎样排?四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式:(1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆;(2) 通过某四点共圆得到一些重要结论,进而解决问题下面给出与四点共圆有关的一些基本知识(1) 若干个点与某定点的距离相等,则这些点在一个圆上;(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆;(3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆;(5) 若线段AB CD 、交于E 点,且AE EB CE ED =,则A B C D 、、、四点共圆;(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =,则A B C D 、、、四点共圆。
四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。
1.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM=8cm ,ON=6cm ,则该圆玻璃镜的半径是( )A .cm B .5cm C .6cm D .10cm2.正方形的四个顶点和它的中心共5个点能确定 个不同的圆.3.如图,若AD 、BE 为△ABC 的两条角平分线,I 为内心,若C ,D ,I ,E 四点共圆,且DE=1,则ID= .4.如图,在△ABC中,AD,BE分别是∠A,∠B的角平分线,O是AD与BE的交点,若C,D,O,E四点共圆,DE=3,则△ODE的内切圆半径为.5.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分∠BDE.6.如图,BD,AH分别是△ABC的高,求证:A、B、H、D四点共圆.7.等腰梯形ABCD中,AD∥BC,求证:A,B,C,D四个顶点共圆.8.如图,四边形ABCD中,∠B=∠D=90°,点E为AC的中点,则A,B,C,D四点共圆吗?9.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.10.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.11.O和H分别是△ABC的外心和垂心,若∠BAC=60°,求证:B、0、H、C的共圆.12.如图,AB为⊙O直径,BF⊥AB,E为BF上一点,AE和AF交⊙O于C和D,求证:C、D、F、E四点共圆.13.如图,在△ABC中,AB=AC,延长CA到P,延长AB到Q,使AP=BQ,求证:△ABC的外心O与A,P,Q四点共圆.14.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.15.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC的外心,证明C,E,O,F四点共圆.16.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G 四点共圆.参考答案1.(2016•常州)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.2.(2006•黄石)正方形的四个顶点和它的中心共5个点能确定 5 个不同的圆.【解答】解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.3.如图,若AD、BE为△ABC的两条角平分线,I为内心,若C,D,I,E四点共圆,且DE=1,则ID=.【解答】解:连接CI,∵AD、BE为△ABC的两条角平分线,∴∠BAI=∠BAC,∠IBA=∠ABC,∵∠AIB=180°﹣∠BAI﹣∠IBA,∴∠AIB=180°﹣(∠CAB+∠CBA),又∵∠ABC+∠CBA+∠ACB=180°,∴∠AIB=90°+∠C,∵C,D,I,E四点共圆,∴∠EID+∠ACB=180°,又∵∠AIB=∠EID,∴90°+∠C+∠C=180°,∴∠ACB=60°,∵I为内心,∴∠ICD=30°,∵DE=1,∴=2R,∴R=,∴,∴ID=,故答案为:.4.(2005•温州校级自主招生)如图,在△ABC中,AD,BE分别是∠A,∠B的角平分线,O是AD与BE 的交点,若C,D,O,E四点共圆,DE=3,则△ODE的内切圆半径为3﹣.【解答】解:作OF⊥ED于点F,∵AD,BE分别是∠A,∠B的角平分线,∴∠AOB=90°+∠C,CO平分∠ACB,又∵∠DOE=∠AOB,∠DOE+∠C=180°,∴∠C=60°,∠DOE=∠AOB=120°,又∵OD=OE,∴∠OED=∠ODE=30°,∴FD=,tan30°==,∴FO=,OD=OE=,∴△ODE的周长为:2+3,∴△ODE的面积为:×3×=,∴△ODE的内切圆半径为=3﹣.故答案为:3﹣.5.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分∠BDE.【解答】证明:∵A,B,C,D四点共圆,∴∠2=∠1,∠3=∠ABC,∵AC=BC,∴∠1=∠ABC,∴∠2=∠3,∴DC平分∠BDE.6.如图,BD,AH分别是△ABC的高,求证:A、B、H、D四点共圆.【解答】证明:取AB的中点O,连接DO、HO,∵BD,AH分别是△ABC的高,∴△DAB和△HAB都是直角三角形,且它们的斜边都是AB,∵点O为斜边中点,∴DO=HO=AB=AO=BO,也就是说,点D、H、B在以O为圆心、OA为半径的圆上,即点D、H、B、A都在以O为圆心、以OA为半径的圆上,故可得:A、B、H、D四点共圆.7.等腰梯形ABCD中,AD∥BC,求证:A,B,C,D四个顶点共圆.【解答】证明:如图:∵ABCD是等腰梯形,且AD∥BC,∴∠A=∠D,∠B=∠C,∠A+∠B=180°.∴∠A+∠C=∠B+∠D=180°.根据对角互补的四边形是圆的内接四边形,所以A,B,C,D四点共圆.8.如图,四边形ABCD中,∠B=∠D=90°,点E为AC的中点,则A,B,C,D四点共圆吗?【解答】解:A,B,C,D四点共圆,理由如下:连结DE.∵在Rt△ABC中,∠ABC=90°,点E为AC的中点,∴EB=EA=EC=AC,∵在Rt△ADC中,∠ADC=90°,点E为AC的中点,∴ED=EA=EC=AC,∴EA=EB=EC=ED,∴A、B、C、D四个点在以E为圆心,AC为直径的圆上,即A,B,C,D四点共圆.9.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.【解答】证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠BAC+∠ABC+∠ACB=180°,故∠BOC+∠BAC=180°,于是O、B、A、C 四点共圆.10.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.【解答】解:∵AD⊥BC,DE⊥AB,∴∠AED=∠ADB=90°.又∵∠DAE=∠BAD,∴△AED∽△ADB,∴=,即AD2=AE•AB.同理可得AD2=AF•AC,∴AE•AB=AF•AC,即=.又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB,∴B、E、F、C四点共圆.11.O和H分别是△ABC的外心和垂心,若∠BAC=60°,求证:B、0、H、C的共圆.【解答】证明:连接BH并延长交AC于E,连接CH并延长交AB于F,连接OB、OC,如图所示:∵O是三角形的外心,∠BAC=60°,∴∠BOC=2∠BAC=120°(同弧所对的圆心角等于圆周角的两倍)又∵垂心为点H,∴BE⊥AC,∴∠ABE=90°,∴∠ABE=90°﹣∠BAC=90°﹣60°=30°,同理:∠ACF=30°,∴∠HBC+∠HCB=180°﹣(∠BAC+∠ABE+∠ACF)=60°,∴∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣60°=120°,∴∠BOC=∠BHC,又∵O,H在BC边同侧,∴B,C,O,HI四点共圆.12.如图,AB为⊙O直径,BF⊥AB,E为BF上一点,AE和AF交⊙O于C和D,求证:C、D、F、E四点共圆.【解答】证明:连接BC、CD,如图所示:∵AB为⊙O直径,∴∠ACB=90°,∴∠BCE=90°,∴∠BEC+∠EBC=90°,∵BF⊥AB,∴∠ABF=90°,即∠ABC+∠EBC=90°,∴∠ABC=∠BEC,∵∠ABC+∠ADC=180°,∴∠BEC+∠ADC=180°,∵∠CDF+∠ADC=180°,∴∠BEC=∠CDF,∴C、D、F、E四点共圆.13.如图,在△ABC中,AB=AC,延长CA到P,延长AB到Q,使AP=BQ,求证:△ABC的外心O与A,P,Q四点共圆.【解答】证明:如图,作△ABC的外接圆⊙O,作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC ∴∠OFP=∠OEQ=90°,在Rt△OPF和Rt△OQE中,,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,∴O、A、P、Q四点共圆,即:△ABC的外心O与点A、P、Q四点共圆.14.(2009•黄冈校级自主招生)如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.【解答】证明:连接FC,FB,则FC=FB.…(2分)连接EF,则△CEF≌△BEF,∴∠BFE=∠CFE.…(5分)∵A,B,F,C共圆,∴∠CAB+∠CFB=180°…(7分)∴∠CAB+2∠BFE=180°.∵AB=AD,∴∠ABD=∠ADB…(8分)∴∠CAB+2∠ADB=180°.∴∠ADB=∠BFE.…(10分)∴B、E、D、F四点共圆.…(12分)15.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC的外心,证明C,E,O,F四点共圆.【解答】证明:如图,连接OB、OC、OE、OF.∵OB=OC,∴∠OCB=∠OBC,又∵AC=BC,∴∠OCB=∠OCA,∴∠OBC=∠OCA,在△ECO与△FBO中,,∴△ECO≌△FBO(SAS),∴∠EOC=∠FOB,又∠AOC=∠BOC,∴∠EOF=∠COB,又∵EO=OF,∴∠OEF=∠OCF,∴C,E,O,F四点共圆.16.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.【解答】解:连接EF,CD,∴∠ADE=∠ADC+∠CDE,∵∠ADC=∠ABC,∠CDE=∠CAE,∴∠ADE=∠ABC+∠CAE,∵AB=AC,∴∠ABC=∠ACB,∴∠ADE=∠ACB+∠CAE,∵∠AGF=∠ACB+∠CAE(三角形的一个外角等于与它不相邻的两内角之和),∴∠ADE=∠AGF,∵∠ADE+∠EDF=180°,∠AGF+∠FGE=180°,∴∠EDF=∠EGF,∴F、D、E、G四点共圆(共底边的两个三角形顶角相等,且在底边的同侧,则可推出四个顶点共圆).。
与圆有关的中考多解题归类点拨
![与圆有关的中考多解题归类点拨](https://img.taocdn.com/s3/m/8b744f23647d27284a73510d.png)
常存 在 于过公 共端 点半径 的 同侧 及异 侧 两种
情况.
例 1 7 切 o 于 A, B 是 o 的 O A O
弦 , o 的半 径 r=1 P 若 O , A=1 他 = 2 那 , √,
么 , 的长 为 船
.
— —
例 1 在 o 中, 径 r , A = 2 O 半 =1 弦 B
,
弦 A . c: 则
c的度 数 为— — .
点拨 : 或异 侧 .
与 A 可 位 于 半 径 B
的 同侧 .
例 1 在 o 中 , A 3 O 弦 B是 圆 的 内接 正 三角形 的 一 边 , A 弦 C是 圆 的 内接 正 六 边 形
例 1 圆 内 两 条 弦 A 和 C 相 交 于点 B D
答案 : 44 1 例 57 1 例 .或 .或 . 3 以定长 弦为 弦 的弓形 , . 有大 于 半 圆 、 小
于半 圆、 于半 圆三种 情况 . 等
例 6・ 弓形 的弦 长为 2 m, 4c 圆弧 的半 径
为 1 m. 弓形 的高 等于— — c 3c 则 m. 点拨 : 本题 存 在 大 于 半 圆 的 弓形 与 小 于 半 圆的 弓形 两种 情 况 .
为 1 m. A 的长 . 0c 求 B
点拨 : 以上三 题 中 , A 为 两 段 的点 均 分 B 有 两个 , 别位 于 A 中点 的左 侧及 右侧 . 分 B 答 案 : 13或 4 例 2 2/l或 2、l 例 . .、 5 / /0 / 例 34或 9 . .
2 不 在 圆周 上 的某 点 常存在位 于该 圆 内 . 部及 外 部两 种情 况 .
从一道高考题的一题多解谈点与圆的位置关系问题
![从一道高考题的一题多解谈点与圆的位置关系问题](https://img.taocdn.com/s3/m/869de1204b73f242336c5fec.png)
从 一道 高考题 的一题 多解谈点 与圆的位置 关系 问题
寿利 军 浙 江省 诸暨 市第 二高 级 中学 ( 00 32 0 ) 1
原 点 0在 以线段 G 为直 径 的圆 内 H
题 目 (0 0年高考 浙江 卷 ・ 2 ) 已知 m>1 21 理 1 ,
一
2
2
直线 , m 一 =0,椭 圆 C: + , ,F : — y Y =1 2
( ) 设 ( Y ,B x, , 1 解 I ,1 ) ( Y) 2
的基本思想方法和综合解题能力 .其中第二小题 中 点 圆 的位置 关 系 条件 的应 用 ,可 以从 以下 三个 方 向 切入 ,各有 其不 同的优势 . 结论一 若设点 为 G H的中点 ,
,
消 2+ + 一 0 去得y 等 1 , 2 =
‘
由于 数 列 { } 一个 等 比数 列 ,其 前 n项和 易 是 求 ;而 数列 { } 的通 项 =幽 n 中的式子 御 很 q 容 易 使 我 们 联 想 幂 函 数 的 求 导 法 则 的 逆 运 算
n =(n . x x)
+
4
,、
(一 [一 n ) + — 1 ) ( +1 ] X X 1 x
可G,,( , 知(誓 ) 詈) ,
・ . .
以 G 为直 径 的 圆的圆方 程为 H
一
设 是日中, , ) G 点则 ( , 的
由 题意可知2 O<G l 1 II M H
詈 一)J ) =, 詈 (导 Y o +一 ( 2 , 一
一
展开 得
2
3
+ 9 + 一 3
2 1 年第 1 01 期
(。 4 +4 + + ’ 4 + … 4一 ),
中考数学圆中无图多解题(含答案)
![中考数学圆中无图多解题(含答案)](https://img.taocdn.com/s3/m/baed5b1b4b7302768e9951e79b89680203d86b60.png)
聚焦圆中无图多解题(含答案) 1、已知⊙O的半径是6cm,⊙O的弦AB=63,则弦AB所对的圆周角是 。
2、已知AB是⊙O的直径,AC、AD是弦,AB=2,AC=2,AD=1,则∠CAD= 。
3、在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,则AB与CD之间的距离是 。
4、已知P点到⊙O的最短距离为2cm,最长距离为6cm,则⊙O的半径为 。
5、相交两圆的公共弦长为6cm,两圆的半径分别为32,5,则这两圆的圆心距等于 。
6、点P是半径为5的⊙O内的一点,且OP=3cm,在过点P的所有弦中长度为整数的弦一共有 条7、已知⊙O的半径为5cm,弦AB=8,P为AB上一动点,且OP长为整数,满足条件的P点有 个8、⊙O1和⊙O2交于A、B两点,且⊙O1经过点O2,若∠AO1B=9090°°那么∠AO2B的度数是 。
9、从不在⊙O上的一点A,作⊙O的割线交⊙O于B、C,且AB〃 AC=64,OA=10,则⊙O的半径等于 。
10、已知⊙O的半径为5cm,AB是弦,P是直线AB上的一点,PA=3cmAB=8cm,则tan∠OPB的值为 。
11、已知PA、PB是⊙O的两条切线,点C是⊙O上异于A、B的一点,过C点切线交PA、PB于D、E两点,若∠APB=400,则∠DOE= 。
12、已知等腰△ABC内接于⊙O,底边BC=8cm,圆心O到BC的距离等于3cm,则腰长AB= . 13、在△ABC中,∠C=90o,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边只有一个公共点,则R 的取值范围 。
14、若两圆没有公共点,则两圆的位置关系是 。
15、在Rt △ABC 中,AB =6,BC =8,则这个三角形的外接圆的直径是 。
16、已知⊙O 1和⊙O 2仅有一条公切线,⊙O 1半径为3cm ,且O 1O 2=5cm,则⊙O 2的半径等于 。
17、已知⊙O 上有A 、B 、C 三点,若弦AC 的长恰好等于⊙O 的半径,则∠ABC = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点击圆中多解题
江苏 庄亿农
在有关圆的计算和证明中,若题中无附图,经常会有多解的可能性。
我们在解题过程中,一定要认真审题,抓住关键,有时还要配上恰当的图形,避免漏解。
现就常见类型加以归纳分析,以期引起重视。
1、点与圆的位置不确定
例1((2007黑龙江非课改,3分)已知O 的半径为5,点P 在直线l 上,且5OP =,直线l 与O 的位置关系是( )
A .相切
B .相交
C .相离
D .相切或相交
答案:D
2、圆心与弦的位置不确定 例2.(2008年上海市)在ABC △中,5AB AC ==,3cos 5
B =
.如果圆O
且经过点B C ,,那么线段AO 的长等于 .
【答案】3或5.
【解析】本题考察了等腰三角形的性质、垂径定理以及分类讨论思想。
由5AB AC ==,
3cos 5
B =
,可得BC 边上的高AD 为4,圆O 经过点B C ,则O 必在直线AD 上,若O 在BC 上方,则AO =3,若O 在BC 下方,则AO =5。
3、圆与圆的位置不确定
例3.(云南省2008年)已知,⊙1O 的半径为5,⊙2O 的半径为9,且⊙1O 与⊙2O 相切,则这两圆的圆心距为___________.
【答案】4或14.
4、点在弧上的位置不确定
例4(2006年•攀枝花)已知PA 、PB 是⊙O 的切线,A 、B 为切点,︒=∠80APB ,点C 是⊙O 上不同于A 、B 的任意一点,求ACB ∠
分析:由于点C 在弧上的位置不确定,故要
考虑点C 在劣弧AB 上和在优弧AB 上两种情况,
如图3所示。
解:连接OA 、OB ,在AB 弧上任取一点C , ∵PA 、PB 是⊙O 的切线,A 、B 为切点,连接
AC 、BC ,∴︒=∠=∠90OBP OAP ,
∵︒=∠80APB ,在四边形OAPB 中,可得
︒
ACB;②若C点在优弧AB上,则
=
∠130
AOB。
①若C点在劣弧AB上,则︒
=
∠100
ACB。
∠50
︒
=。