新人教七年级下学期第9章不等式与不等式组综合检测题2及答案

合集下载

人教版数学七年级下册第九章 不等式与不等式组 试题及答案2

人教版数学七年级下册第九章 不等式与不等式组 试题及答案2

人教版数学七年级下册第九章 不等式与不等式组 试题及答案一、选择题:1、若y -x>y ,x -y<x +y ,那么,下列式子中正确的是 ( ) A.y -x<0 B.xy<0 C.x +y>0 D. 2.用不等式表示图中的解集,其中正确的是( )A. x ≥-2B. x >-2C. x <-2D. x ≤-2 3.下列说法正确的是( )A.x =1是不等式-2x <1的解集B.x =3是不等式-x <1的解集C.x >-2是不等式-2x <4的解集D.不等式-x <1的解集是x <-1 4.不等式x -3>1的解集是( )A.x >2B. x >4C.x -2>D. x >-4 5.下列4种说法:① x =45是不等式4x -5>0的解;② x =25是不等式4x -5>0的一个解;③ x >45是不等式4x -5>0的解集;④ x >2中任何一个数都可以使不等式4x -5>0成立,所以x >2也是它的解集,其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个6.若(1)1a x a -<-的解集为x >1,那么a 的取值范围是( ) A 、a >0 B 、a <0 C 、a <1 D 、a >1 7、如图1,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g )的取值范围,在数轴上可表示为( )8、如果不等式组 有解,那么m 的取值范围是( )(A)m>3 (B) m ≥3 (C) m<3 (D)m ≤3y0x>A图1Ax +1>0x -1≤01 2 0 1 2 0 (A) (B) 1 2 01 0 (C) (D)9.把不等式组⎪⎩⎪⎨⎧<+-<22332x x -的解集在数轴上表示出来,正确的是( )10.不等式x-1≦2的非负整数解有( )A .1个B .2个C .3个D .4个11.关于x 的不等式2x+a<1只有2个正整数解,则a 的取值范围为( ) A .53a -<<- B .-5≦a<-3 C .-5<a ≦-3 D .-5<a<-312.已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( ) A .a+c >b+dB .a ﹣c >b ﹣dC .ac >bdD .13.若m >n ,下列不等式不一定成立的是( ) A .m+3>n+3B .﹣3m <﹣3nC .D .m 2>n 214、若关于x 的不等式⎩⎨⎧x -m <0,5-2x ≤1整数解共有2个,则m 的取值范围是A .3<m <4B .3≤m <4C .3<m ≤4D .3≤m ≤4 15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里16、有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( ) A 、x=1,y=3 B 、x=3,y=2 C 、x=4,y=1 D 、x=2,y=3二、填空题:1、不等式的解集是_______,其中整数解是________.2.不等式组52(1)1233x x x >-⎧⎪⎨-≤-⎪⎩的整数解的和是______. 3.不等式x ≤313的正整数解是____ 4、若关于x 的方程2x 2+x ﹣a=0有两个不相等的实数根,则实数a 的取值范围是________.31047x x ->⎧⎨<⎩6.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .7. 关于的分式方程的解为正实数,则实数的取值范围是 . 8.已知不等式组的解集为x >﹣1,则k 的取值范围是 .9.已知不等式组29611x x x k +>-+⎧⎨->⎩的解集为1x >-,则k 的取值范围是 .10.不等式组⎩⎨⎧>->-02532x x 的解集是 .11.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打 折.三、解下列不等式组:1. 2.3.(1)解不等式组:(2)解方程:x 2322x m mx x++=--m ⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325⎩⎨⎧<>-621113x x 11x-2(+2)22x 3①x ②+>≤⎧⎪⎨⎪⎩532x-12x =+4.解不等式4113x x -->,并在数轴上表示解集.5.解不等式组,并求此不等式组的整数解.6.解不等式组x 3(2)421512x x x ⎧--≥⎪⎨-+<⎪⎩,并把解集在数轴上表示出来.四、解答题:1.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .2.将23本书分给若干名学生,如果每人4本,那么有剩余;如果每人5本,却又不够.问共有多少名学生?3.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产. (1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m 的值.4. 某种为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金元;若购买甲种书柜4个,乙种书柜3个,共需资金元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金元,请设计几种购买方案供这个学校选择.5.由多项式乘法:,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:示例:分解因式:(1)尝试:分解因式:______); (2)应用:请用上述方法....解方程:.102014402043206.小明在解不等式的过程中出现了错误,解答过程如下:解不等式:解:去分母,得2(x+4)﹣3(3x﹣1)≥1(第一步)去括号,得2x+8﹣9x﹣3≥1,(第二步)移项,得2x﹣9x≥1+8﹣3,(第三步)合并同类项,得﹣7x≥6.(第四步)两边都除以﹣7,得.(第五步)(1)小明的解答过程是从第步开始出现错误的.(2)请写出此题正确的解答过程.(3)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.7.为落实“绿水青山就是金山银山”的发展理念,某工程队负责在山脚下修建一座水库的土方施工任务队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米,每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元(1)每台A型、B型挖掘机一小时分别挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,该工程队施工的最低费用是多少元?8.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s,人离开的速度为4 m/s,那么导火线的长度应为多少㎝?参考答案一、选择题:1-5 BACBB6-10 CACCD11-15 CADCC16 B二、填空题:1、 4731<<x ; 0,12.3. 1,2,3 4、a >﹣5. m <6且m ≠2.6. 50(1﹣x )2=32 7. m<6且m ≠2. 8. k ≤﹣2. 9. 2-≤k 10. x>4 11. 8三、解下列不等式组:1. 425≤<x2.无解3. 解:(1)解①得:x >﹣1, 解②得:x ≤6,故不等式组的解集为:﹣1<x ≤6;(2)由题意可得:5(x+2)=3(2x ﹣1), 解得:x=13, 检验:当x=13时,(x+2)≠0,2x ﹣1≠0, 故x=13是原方程的解. 4. 解:4x-1-3x>3 4x-3x>3+1 4x >,将不等式的解集表示在数轴上如下:5. 解:⎪⎪⎩⎪⎪⎨⎧+<-->②1)37(2①21x x x x由①得:x>31由②得:x <4,不等式组的解集为:<31x <4. 则该不等式组的整数解为:1、2、3. 6. 解:由①得:﹣2x ≥﹣2,即x ≤1, 由②得:4x ﹣2<5x+5,即x >﹣7, 所以﹣7<x ≤1. 在数轴上表示为:四、解答题:1. 解: (1)x ≥1; (2)x ≤3;(3);(4)1≤x ≤3.2. 解:设共有x 名学生。

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。

初中数学 人教版七年级下册第9章《不等式与不等式组》综合知识测试卷(带答案)

初中数学 人教版七年级下册第9章《不等式与不等式组》综合知识测试卷(带答案)

人教版七年级下册第9章《不等式与不等式组》综合知识测试卷满分100分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分)1.下列为一元一次不等式的是()A.x+y>5B.+3<2C.﹣x=3D.+≥12.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.2℃~3℃B.2℃~8℃C.3℃~6℃D.6℃~8℃3.若x﹣3<0,则()A.x﹣2>0B.2x>﹣1C.2x<3D.18﹣3x>0 4.如果不等式组的解集是x>5,则a的取值范围是()A.a≥5B.a≤5C.a=5D.a<55.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.6.已知点P(1+m,3)在第二象限,则m的取值范围是()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣17.若关于x的不等式3x﹣2m≥0的负整数解为﹣1,﹣2,则m的取值范围是()A.﹣6≤m<﹣B.﹣6<m≤﹣C.﹣≤m<﹣3D.﹣<m≤﹣3 8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折9.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1 10.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为()A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90二.填空题(共8小题,满分24分)11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为克.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.不等式3x﹣6>0的解集为.14.用不等式表示“x的5倍不大于3”为:.15.如图,数轴上所表示的关于x的不等式是.16.不等式组的解集是x>4,那么m的取值范围是.17.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为.18.不等式1﹣4x≥x﹣8的非负整数解为.三.解答题(共7小题,满分46分)19.(5分)解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)20.(6分)设a为不超过1的正整数,b为与2之间的整数,求的值.21.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.22.(7分)如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m 的取值范围.23.(7分)解不等式组:并将解集在数轴上表示.24.(7分)若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.25.(8分)某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?参考答案一.选择题(共10小题)1.下列为一元一次不等式的是()A.x+y>5B.+3<2C.﹣x=3D.+≥1【解答】解:A、含有2个未知数,故A不符合题意;B、未知数在分母位置,故B不符合题意;C、是一元一次方程,故C不符合题意;D、是一元一次不等式,故D符合题意.故选:D.2.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.2℃~3℃B.2℃~8℃C.3℃~6℃D.6℃~8℃【解答】解:∵甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,∴将这两种蔬菜放在一起同时保鲜,适宜的温度是3℃~6℃,故选:C.3.若x﹣3<0,则()A.x﹣2>0B.2x>﹣1C.2x<3D.18﹣3x>0【解答】解:A、若x﹣3<0,则x﹣2<1,故此选项错误;B、若x﹣3<0,则2x<6,故此选项错误;C、若x﹣3<0,则2x<6,故此选项错误;D、若x﹣3<0,则9﹣3x>0,所以18﹣3x>0,此选项正确.故选:D.4.如果不等式组的解集是x>5,则a的取值范围是()A.a≥5B.a≤5C.a=5D.a<5【解答】解:∵不等式组的解集是x>5,∴a≤5,故选:B.5.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.【解答】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.6.已知点P(1+m,3)在第二象限,则m的取值范围是()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣1【解答】解:点P(1+m,3)在第二象限,则1+m<0,解可得m<﹣1.故选:A.7.若关于x的不等式3x﹣2m≥0的负整数解为﹣1,﹣2,则m的取值范围是()A.﹣6≤m<﹣B.﹣6<m≤﹣C.﹣≤m<﹣3D.﹣<m≤﹣3【解答】解:不等式3x﹣2m≥0,解得:x≥m,∵不等式的负整数解只有﹣1,﹣2,∴﹣3<m≤﹣2,∴﹣<m≤﹣3.故选:D.8.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折【解答】解:设打x折,根据题意得120•﹣80≥80×5%,解得x≥7.所以最低可打七折.故选:B.9.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1【解答】解:解不等式x+5≥1得x≥﹣4,解不等式>,得:x<﹣1,则不等式组的解集为﹣4≤x<﹣1,故选:B.10.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为()A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90【解答】解:由题意可列出的不等式为10x﹣5(20﹣x)>90,故选:C.二.填空题(共8小题)11.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为不少于1.5克.【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴白质的含量不少于1.5克.故答案是:不少于1.512.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.13.不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.14.用不等式表示“x的5倍不大于3”为:5x≤3.【解答】解:x的5倍表示为5x,不大于3表示为5x≤3,故答案为:5x≤3.15.如图,数轴上所表示的关于x的不等式是x≤2.【解答】解:一元一次不等式的解集是2左边的部分(包含2),因而解集是x≤2.故答案为:x≤2.16.不等式组的解集是x>4,那么m的取值范围是m≤4.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.17.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为4.【解答】解:∵(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,∴|m|﹣3=1,m+4≠0,解得:m=4,故答案为:418.不等式1﹣4x≥x﹣8的非负整数解为1、0.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.三.解答题(共7小题)19.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)【解答】解:5x﹣2>3x+3,2x>5,∴.20.设a为不超过1的正整数,b为与2之间的整数,求的值.【解答】解:∵a为不超过1的正整数,b为与2之间的整数,∴a=1,b=1或2,∴=1或.21.解不等式+1≥,并把它的解集在数轴上表示出来.【解答】解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.22.如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m的取值范围.【解答】解:不等式组整理得:,解得:x≤﹣2,由x+2+m=0,得到x=﹣2﹣m,可得﹣2﹣m≤﹣2,解得:m≥0.23.解不等式组:并将解集在数轴上表示.【解答】解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.24.若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.25.某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?【解答】解:(1)设每个篮球、足球的价格分别是x元,y元,根据题意得:,解得:,答:每个篮球、足球的价格分别是70元,80元;(2)设购买了篮球m个,根据题意得:70m≤80(60﹣m),解得:m≤32,∴m最多取32,答:最多可购买篮球32个.。

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

人教版七年级数学 下册 第九章 不等式与不等式组 单元综合与测试题(含答案)

人教版七年级数学 下册 第九章 不等式与不等式组 单元综合与测试题(含答案)

第九章 不等式与不等式组 单元复习与检测题(含答案)一、选择题1、不等式的解集在数轴上表示正确的是( )A. B.C. D.2、据长春气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t (℃)的范围是( )A.t <17B.t >25C.t =21D.17≤t ≤25 3、已知a<-1,则下列不等式中,错误的是( )A .-3a>+3B .1-4a>4+1C .a+2>1D .2-a>34、对于命题“b a 、是实数,若22,b a b a >>则”,若结论保持不变,怎样改变条件,命题才是真命题.给出以下 四种改法:(1)22,0b a b a b a >>>则是实数,若、 (2)22,0b a b a b a b a >>+>则且是实数,若、 (3)22,0b a b a b a ><<则是实数,若、 (4)22,0b a b a b a b a ><+<则且是实数,若、 其中真命题的个数是A.1个B.2个C.3个D.4个 5、不等式x x ->32的解集是( )A .2<xB .2>xC .1>xD .1<x 6、不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A.1个B.2个C.3个D.4个 7、把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是8、若不等式组3,x x a >⎧⎨>⎩的解集是x>a ,则a 的取值范围是( ) A .a<3 B .a=3 C .a>3 D .a ≥39、如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)无解10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于160元,则至多可打( )A. 6折B. 7折C. 8折D. 9折二、填空题11、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

2022年人教版初中数学七年级下册第九章不等式与不等式组综合测评练习题(含详解)

2022年人教版初中数学七年级下册第九章不等式与不等式组综合测评练习题(含详解)

初中数学七年级下册第九章不等式与不等式组综合测评(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、下列说法中,正确的是( ) A .x =3是不等式2x >1的解 B .x =3是不等式2x >1的唯一解 C .x =3不是不等式2x >1的解 D .x =3是不等式2x >1的解集2、若x +2022>y +2022,则( ) A .x +2<y +2 B .x -2<y -2C .-2x <-2yD .2x <2y3、若a <b ,则下列式子正确的是( ) A .3a >3bB .﹣3a <﹣3bC .3a >3bD .a ﹣3<b ﹣34、若m >n ,则下列不等式成立的是( ) A .m ﹣5<n ﹣5B .55m n < C .﹣5m >﹣5n D .55m n -<- 5、如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >06、在数轴上表示不等式组﹣1<x ≤3,正确的是( )A .B .C .D .7、不等式054ax ≤+≤的整数解是1,2,3,4.则实数a 的取值范围是( ) A .514a -≤<-B .1a ≤-C .54a ≤-D .54a ≥-8、能说明“若x >y ,则ax >ay ”是假命题的a 的值是( ) A .3B .2C .1D .1-9、若不等式(a +1)x >2的解集为x <21a +,则a 的取值范围是( ) A .a <1B .a <-1C .a >1D .a >-110、关于x 的不等式组125261x x x a b++⎧⎪⎨⎪+>+⎩有解且不超过3个整数解,若3a =,那么b 的取值范围是( ) A .13b -< B .2b > C .30b -< D .2b -二、填空题(5小题,每小题4分,共计20分)1、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.2、不等式组210113x x -≥⎧⎪⎨<⎪⎩的解为_________.3、如果|x |>3,那么x 的范围是___________4、某种药品的说明书上贴有如图所示的标签,则一次服用这种药品的最大剂量是______mg .5、去年绵阳市空气质量良好(二级以上)的天数与全年天数(365)之比达到80%,如果明年(365天)这样的比值要超过90%,那么明年空气质量良好的天数比去年至少要增加_____天. 三、解答题(5小题,每小题10分,共计50分)1、某商场同时购进甲、乙、丙三种商品共100件,总进价为6800元,其每件的进价和售价如下表:设甲种商品购进x 件,乙种商品购进y 件.(1)商场要求购进的乙种商品数量不超过甲种商品数量,求甲种商品至少购进多少件? (2)若销售完这些商品获得的最大利润是3100元,求甲种商品最多购进多少件?2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元; (1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?3、解不等式组2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩,并写出所有整数解.4、对于任意一个自然数N ,将其各个数位上的数字相加得到一个数,我们把这一过程称为一次操作,把这个得到的数进行同样的操作,不断进行下去,最终会得到一个一位数K,我们把N称作“K的友谊数”.例如:346→3+4+6=13→1+3=4,所以346是“4的友谊数”.(1)请分别判断1357和859是否是“4的友谊数”,并说明理由;(2)若一个三位自然数M=100a+10b+8(1≤a≤9,1≤b≤9,a,b均为整数)是“4的友谊数”,且满足a﹣b+3能被7整除,请求出所有符合条件的三位自然数M.5、“中秋节”是中华民族古老的传统节日.甲、乙两家超市在“中秋节”当天对一种原来售价相同的月饼分别推出了不同的优惠方案.甲超市方案:购买该种月饼超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种月饼超过300元后,超出300元的部分按90%收费.设某位顾客购买了x元的该种月饼.(1)补充表格,填写在“横线”上;(2)分类讨论,如果顾客在“中秋节”当天购买该种月饼超过200元,那么到哪家超市花费更少?---------参考答案-----------一、单选题1、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A、当x=3时,2×3>1,成立,故A符合题意;B、当x=3时,2×3>1成立,但不是唯一解,例如x=4也是不等式的解,故B不符合题意;C、当x=3时,2×3>1成立,是不等式的解,故C不符合题意;,故D不符合D、当x=3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x>12题意;故选:A.【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.2、C【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.3、D【分析】根据不等式的基本性质判断即可. 【详解】解:A 选项,∵a <b ,∴33a b ,故该选项不符合题意;B 选项,∵a <b ,∴﹣3a >﹣3b ,故该选项不符合题意;C 选项,∵a <b ,∴3a <3b ,故该选项不符合题意;D 选项,∵a <b ,∴a ﹣3<b ﹣3,故该选项符合题意; 故选:D 【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键. 4、D 【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、在不等式m >n 的两边同时减去5,不等式仍然成立,即m ﹣5>n ﹣5,原变形错误,故此选项不符合题意;B 、在不等式m >n 的两边同时除以5,不等式仍然成立,即55m n >,原变形错误,故此选项不符合题意;C 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即﹣5m <﹣5n ,原变形错误,故此选项不符合题意;D 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即55m n-<-,原变形正确,故此选项符合题意. 故选:D . 【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变. 5、B 【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断. 【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大, 即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意; C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意; D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意; 故选:B .【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101a b c <-<<<<. 6、C 【分析】把不等式组的解集在数轴上表示出来即可. 【详解】 解:13x -<,∴在数轴上表示为:故选:C . 【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则. 7、A 【分析】先确定0,a ≠ 再分析0a >不符合题意,确定0,a < 再解不等式,结合不等式的整数解可得:101545a a ⎧-≤⎪⎪⎨⎪≤-⎪⎩<<,从而可得答案.【详解】解: 054ax ≤+≤51ax ∴-≤≤-显然:0,a ≠当0a >时,不等式的解集为:51x a a-≤≤-, 不等式没有正整数解,不符合题意, 当0a <时,不等式的解集为:15,x a a-≤≤- 不等式054ax ≤+≤的整数解是1,2,3,4,101545a a ⎧-≤⎪⎪∴⎨⎪≤-⎪⎩<①<②由①得:1,a ≤- 由②得:51,4a -≤<-所以不等式组的解集为:5 1.4a -≤<- 故选A 【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键. 8、D 【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可. 【详解】解:“若x >y ,则ax >ay ”是假命题, 则0a <, 故选:D . 【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键. 9、B 【分析】根据不等式的性质可得10a +<,由此求出a 的取值范围. 【详解】解:不等式(1)2a x +>的解集为21x a <+, ∴不等式两边同时除以(1)a +时不等号的方向改变, 10a ∴+<,1a ∴<-,故选:B . 【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变. 10、C 【分析】先解不等式组,在根据不超过3个整数解,确定a b +的取值范围,即可得出结论. 【详解】解:125261x x x a b++⎧⎪⎨⎪+>+⎩, 解不等式12526x x ++得,2x ≤ 解不等式1x a b +>+得,1x a b >+-,因为不等式组有解,故解集为:12a b x +-<≤,因为不等式组有不超过3个整数解,所以,112a b -≤+-<,把3a =代入,1312b -≤+-<,解得,30b -<故选:C .【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.二、填空题1、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.2、132x ≤<【分析】解不等式组即可.【详解】解:210113xx-≥⎧⎪⎨<⎪⎩,解不等式210x-≥得,12x≥;解不等式113x<得,3x<;不等式组的解集为132x≤<.【点睛】本题考查了解不等式组,解题关键是准确解每个不等式,正确确定不等式组的解集.3、3x>或3x<-【分析】首先算出|x|=3的解,然后根据“大于取两边”的口诀得解.【详解】解:由绝对值的意义可得:x=3或x=-3时,|x|=3,∴根据“大于取两边”即可得到|x|>3的解集为:x>3或x<−3(如图),故答案为:x>3或x<−3.【点睛】本题考查绝对值的意义及不等式的求解,熟练掌握有关不等式的求解方法是解题关键.4、30【分析】根据30≤2次服用的剂量≤60,30≤3次服用的剂量≤60,列出两个不等式组,求出解集,再求出解集的公共部分即可.【详解】设一次服用的剂量为xmg,根据题意得:30≤2x≤60或30≤3x≤60,解得:15≤x≤30或10≤x≤20.则一次服用这种药品的剂量范围是:10~30mg.故答案为30.【点睛】本题考查了一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.5、37【分析】设明年空气质量良好的天数比去年要增加x天,根据题意表示出明年空气质量良好的天数比去年要增加的天数进而得出不等式求出答案.【详解】解:设明年空气质量良好的天数比去年要增加x天,根据题意可得:x>365×(90%﹣80%),解得:x>36.5,∵x为整数,∴x≥37,∴明年空气质量良好的天数比去年至少要增加37天.故答案为:37【点睛】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.三、解答题1、(1)甲种商品至少购进32件;(2)甲种商品最多购进40件.【解析】【分析】(1)先根据题意用含x 的式子表示出y ,再列不等式可得答案;(2)根据甲、乙、丙的进价和售价列出不等式,再解不等式可得答案.【详解】解:(1)根据题意,得40x +70y +90(100-x -y )=6800,解得y =110−52x ,∵乙种商品数量不超过甲种商品数量,∴y ≤x ,∴110−52x ≤x ,解得x ≥3137.答:甲种商品至少购进32件;(2)根据题意,得20x +30y +40(100-x -y )≤3100,由(1),得y =110−52x ,代入不等式,解得x ≤40,答:甲种商品最多购进40件.【点睛】本题考查一元一次不等式的实际应用,能够根据题意用含x 的式子表示出y 是解题关键.2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【解析】【分析】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m 件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据题意的329002500x y x y +=⎧⎨+=⎩解得100300x y =⎧⎨=⎩ 故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m 件,根据题意得:(150-100)m +(400-300)(80-m )≥6500解得m ≤30∵m 为整数∴m 的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.3、不等式组的解集为:13x -≤<;整数解为:-1,0,1,2.【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,从而而可得不等式组得整数解.【详解】 解:()21512323121x x x x --⎧-≤⎪⎨⎪-<+⎩①②, 解不等式①得:1x ≥-,解不等式②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的整数解为:-1,0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、(1)1357不是4的“友谊数”,859是4的“友谊数”,理由见解析;(2)148或958【解析】【分析】(1)根据“友谊数”的定义即可判断;(2)先由M 是“4的友谊数”得出a 和b 的关系式,再由a ﹣b +3能被7整除得出a 和b 所有可能的结果,即可得出答案.【详解】解:(1)∵1+3+5+7=16,1+6=7,∴1357不是4的“友谊数”,∵8+5+9=22,2+2=4,∴859是4的“友谊数”;(2)∵M=100a+10b+8是“4的友谊数”,又∵1≤a≤9,1≤b≤9,∴10≤a+b+8≤26,在10到26之间是“4的友谊数”的有13,22,∴a+b+8=13或22,①若a+b+8=13,则a=5﹣b,∴a﹣b+3=5﹣b﹣b+3=8﹣2b,∵1≤b≤9,∴﹣10≤8﹣2b≤6,在﹣10到6之间能被7整除的有﹣7,0,∴8﹣2b=﹣7或0,∴b=7.5(舍)或b=4,∴a=5﹣4=1,∴M=148,②若a+b+8=22,则a=14﹣b,∴a﹣b+3=14﹣b﹣b+3=17﹣2b,∵1≤b≤9,∴﹣1≤17﹣2b≤15,在﹣1到15之间能被7整除的有0,7,14,∴17﹣2b =0或7或14,∴b =8.5(舍)或b =5或b =1.5(舍),∴a =14﹣5=9,∴M =958,综上M 的值为148或958.【点睛】本题考查的是新定义运算,同时考查二元一次方程的正整数解,不等式的基本性质,解本题的关键是由M 是“4的友谊数”得出a 和b 的关系式.5、(95%10)x +;(95%10)x +;(90%30)x +;(2)当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少【解析】【分析】(1)当200x <时,利用实际在甲超市的花费20095%=+⨯超过200元的费用可求出实际在甲超市的花费;当300x >时,利用实际在乙超市的花费30090%=+⨯超过300元的费用可求出实际在乙超市的花费;(2)当200300x <时,显然选择甲超市花费更少;当300x >时,分95%1090%30x x +<+,95%1090%30x x +=+及95%1090%30x x +>+三种情况求出x 的取值范围(或x 的值),进而可得出结论.【详解】解:(1)当200300x <时,实际在甲超市的花费为200(200)95%(95%10)x x +-⨯=+元;当300x >时,实际在甲超市的花费为200(200)95%(95%10)x x +-⨯=+元,实际在乙超市的花费为300(300)90%(90%30)x x +-⨯=+元.故答案为:(95%10)x +;(95%10)x +;(90%30)x +.(2)当200300x <时,显然选择甲超市花费更少;当300x>时,若95%1090%30+<+,x xx<;解得:400若95%1090%30+=+,x xx=;解得:400若95%1090%30x x+>+,x>.解得:400答:当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少.【点睛】本题考查了一元一次不等式的应用、列代数式以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出各数量;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).。

人教版七年级下册数学第九章 不等式与不等式组含答案(附答案)

人教版七年级下册数学第九章 不等式与不等式组含答案(附答案)

人教版七年级下册数学第九章不等式与不等式组含答案一、单选题(共15题,共计45分)1、用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2 cm,若铁钉总长度为a cm,则a满足( )A.2.5<a<4B.2.5≤a<3.5C.3≤a<4D.3<a≤3.52、不等式组的解集在数轴上表示正确的是()A. B. C.D.3、若a<b<0,则下列式子:①a+1<b+2;② >1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个4、关于的不等式组的所有整数解的积为2,则的取值范围为()A. B. C. D.5、在数学表达式:(1)﹣3<0 (2)3x+5>0 (3)x2﹣6(4)x=﹣2 (5)y≠0(6)x≥50中,不等式的个数是()A.2个B.3个C.4个D.5个6、一元一次不等式组的解集为x>a,且a≠-1,则a取值范围是().A.a>-1B.a<-1C.a>0D.a<07、点A(m﹣4,1﹣2m)在第三象限,则m的取值范围是()A.m>B.m<4C. <m<4D.m>48、点(-7,-2m+1)在第三象限,则m的取值范围是()A. B. C. D.9、关于x的不等式组只有5个整数解,则a的取值范围是()A.﹣6<aB.﹣6≤ aC.﹣6<aD.﹣6≤ a10、解不等式组的解集在数轴上表示正确的是()A. B. C.D.11、已知满足方程组,若关于的不等式组的解集为,则的取值范围为()A. B. C. D.12、在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a<B. <a<3C.﹣3<a<﹣D.- <a<313、若a>b,则下列结论正确的是()A.a+2<b+2B.a-5<b-5C. <D.3a>3b14、下面给出5个式子:①3>0;②4x+3y>0;③x;④x﹣1;⑤x+2≤3.其中不等式有()A.2个B.3个C.4个D.5个15、已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A. B. C. D.二、填空题(共10题,共计30分)16、不等式组的所有整数解的积为________ .17、当x________时,代数式的值不小于零.18、不等式组的解为________.19、若关于x的不等式组有且只有三个整数解,则m的取值范围是________.20、不等式2x-4>0的解集是________21、若关于x的不等式|x+a|<b的解集为2<x<4,则ab的值是________。

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。

人教版七年级数学下册 第九章 《不等式与不等式组》章节综合练习含答案

人教版七年级数学下册 第九章 《不等式与不等式组》章节综合练习含答案

人教版七年级数学下册第九章《不等式与不等式组》章节综合练习一、单选题1.如图,天平左盘中物体A 的质量为mg ,,天平右盘中每个砝码的质量都是1g,则m 的取值范围在数轴上可表示为A .B .C .D .2.a 与-x 2的和的一半是非负数,用不等式表示为()A .212a x -<0B .2102a x -£C .21()2a x ->0D .21()02a x -³3.若ab <,则下列不等式一定成立的是()A .66a b ->-B .33a b >C .22a b -<-D .0a b -<4.关于x 的不等式组1020x x +>⎧⎨-≤⎩,其解集在数轴上表示正确的是().A .B .C .D .5.某次数学竞赛共有20道题,答对一道题得10分,答错或不答均扣5分,小强得分超过95分,他至少要答对()A .12道B .13道C .14道D .15道6.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为()A .1k >B .1k <C .1k ³D .1k ≤7.不等式组13x x ≤⎧⎨>-⎩的解集在数轴上表示正确的是()A .B .C.D.8.对于不等式组156333(1)51x x x x ⎧--⎪⎨⎪-<-⎩,下列说法正确的是()A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<C .此不等式组有3个整数解D .此不等式组无解9.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式为()A .8(x ﹣1)<5x+12<8B .0<5x+12<8xC .0<5x+12﹣8(x ﹣1)<8D .8x <5x+12<810.阅读理解:我们把 a b c d 称作二阶行列式,规定它的运算法则为 a b c d=ad ﹣bc ,例如13 24=1×4﹣2×3=﹣2,如果23 1x x->0,则x 的解集是()A .x >1B .x <﹣1C .x >3D .x <﹣3二、填空题11.如果a >b ,则-ac 2________-bc 2(c ≠0).12.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.13.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.14.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解得和是18,则m 的取值范围是__________.三、解答题15.下列数值:76,73,79,80,74.9,75.1,90,哪些是不等式2150x >的解?你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?16.阅读下面解题过程,再解题.已知a >b ,试比较-2009a +1与-2009b +1的大小.解:因为a >b ,①所以-2009a >-2009b ,②故-2009a +1>-2009b +1.③问:(1)上述解题过程中,从第______步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.17.解下列不等式(组):(1)()3151x x ->+(2)()105232x x x +≥⎧⎨-<+⎩18.列方程组或不等式(组)解应用题某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元.本周已售出2辆A 型车和1辆B 型车,销售额为62万元.(1)求每辆A 型车和B 型车的售价各为多少万元?(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,且A 型号车不少于2辆,购车费不少于130万元,通过计算说明有哪几种购车方案?19.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a .例如:12a =,对调个位数字与十位数字得到新两位数21,新两位数与原两位数的和为211233+=,和与11的商为33113÷=,所以()123f =.根据以上定义,回答下列问题:(1)填空:①下列两位数:20,21,22中,“迥异数”为________.②计算:()35f =_________,()10f m n +=________.(2)如果一个“迥异数”b 的十位数字是k ,个位数字是()21m +,且()9f b =;另一个“迥异数”c 的十位数字是4m +,个位数字是21k -,且()11f c =,请求出“迥异数”b 和c .(3)如果一个“迥异数”m 的十位数字是x ,个位数字是3x -,另一个“迥异数”n 的十位数字是4x -,个位数字是2,且满足()()7f m f n -<,请直接写出满足条件的所有x 的值________答案1.D 2.D 3.D 4.D 5.C 6.C7.A8.A9.C10.A11.<12.23-113.714.23m ≤<15.76,79,80,75.1,90是不等式2150x >;还有其它的解;该不等式的解有无数个;所有大于75的数均是该不等式的解.16.(1)②(2)错误地运用了不等式的基本性质3(3)-2009a +1<-2009b +1.17.(1)x <-2;(2)-1≤x <4.18.(1)每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车19.(1)①21;②8;m n +;(2)3665b c ==,;(3)5或7。

七年级数学(下)第9章《不等式与不等式组》综合测试题含答案

七年级数学(下)第9章《不等式与不等式组》综合测试题含答案

A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。

七年级数学下册第9章不等式与不等式组试题新人教版(含答案)

七年级数学下册第9章不等式与不等式组试题新人教版(含答案)

不等式及其解集一、选择题1.下列不等式中,正确的是( ). A.4385-<- B.5172< C.(-6.4)2<(-6.4)3 D.-|-27|<-(-3)32.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ).A.2a -b <-3B.2(a -b )<-3C.2a -b ≤-3D.2(a -b )≤-33.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).4.如果a 、b 表示两个负数,且a <b ,则( ). A.1>b a B.b a <1 C.b a 11< D.ab <15.如图,在数轴上表示的解集对应的是( ).A.-2<x <4B.-2<x ≤4C.-2≤x <4D.-2≤x ≤46.a 、b 是有理数,下列各式中成立的是( ).A.若a >b ,则a 2>b 2B.若a 2>b 2,则a >bC.若a ≠b ,则|a |≠|b |D.若|a |≠|b |,则a ≠b 7.|a |+a 的值一定是( ).A.大于零B.小于零C.不大于零D.不小于零二、填空题8.用不等式表示:(1)m -3是正数______;(2)y +5是负数______; (3)x 不大于2______;(4)a 是非负数______; (5)a 的2倍比10大______;(6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.9.用“<”或“>”填空:(1)-2.5______5.2; (2)114-______125-; (3)|-3|______-(-2.3);(4)a 2+1______0; (5)0______|x |+4;(6)a +2______a . 10.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 三、解答题11.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x (4)⋅-<312x12.若a 是有理数,比较2a 和3a 的大小.13.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.14.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.参考答案1.D .2.C .3.A .4.A .5.B .6.D .7.D .8.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x ;(8)-m ≤0. 9.(1) <;(2)>;(3)>;(4)>;(5)<;(6)>. 10..4523≥-x 11.12.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a .13.x ≤3a ,且x 为正整数1,2,3. ∴9≤a <12. 14.+3或-3.。

七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)

七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)

七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)一、选择题(本大题共6个小题,每小题3分,共18分.)1.已知实数a ,b ,若a >b ,则下列结论正确的是( ).A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a >3b2.不等式3(x -1)≤5-x 的非负整数解有( ).A .1个B .2个C .3个D .4个 3.关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( ). A .14 B .7 C .-2 D .2 4.不等式组⎩⎪⎨⎪⎧2x +13-3x +22>1,3-x ≥2的解集在数轴上表示正确的是( ).5.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围为( ).A .m =3B .m >3C .m <3D .m ≥36.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( ). A .4条 B .5条 C .6条 D .7条二、填空题(本大题共6小题,每小题3分,共18分)7.不等式组⎩⎪⎨⎪⎧x ≤3x +2,3x -2(x -1)<4的解集为________.8.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.9.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x <13的解集为________.10.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是________.11.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为________.12.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题 (本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.14.解不等式4x -13-x >1,并把它的解集在数轴上表示出来.15.解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并将它的解集在数轴上表示出来.16.x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?17.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.四、(本大题共3小题,每小题8分,共24分).18.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3a +9,x -y =5a +1的解都为正数,求a 的取值范围.19.旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?20.已知关于x 的不等式组⎩⎪⎨⎪⎧-x -1≥-2x +1,12(x -2a )+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.五、(本大题共2小题,每小题9分,共18分).21.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.22.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).六、(本大题共12分)23. 为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A 、B 两类学校进行扩建,根据预算,扩建2所A 类学校和3所B 类学校共需资金7800万元,扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划扩建A 、B 两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案一、选择题(本大题共6个小题,每小题3分,共18分.)1. D ; 2. C ; 3. D ; 4. B ; 5. D.; 6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.-1≤x <2; 8. 0; 9. x >-1; 10. a >-1;11. x >32;12.131或26或5或45三、解答题 (本大题共5小题,每小题6分,共30分.)13.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(2)解不等式①得x <8, 解不等式②得x >1.所以不等式组的解集为1<x <8.14.解:去分母,得4x -1-3x >3.移项、合并同类项,得x >4.在数轴上表示不等式的解集如图所示:15.解:⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12.②由①得-2x ≥-2,即x ≤1. 由②得4x -2<5x +5,即x >-7. 所以原不等式组的解集为-7<x ≤1. 在数轴上表示不等式组的解集为:16.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x , 解得-52≤x ≤1∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.17.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6,得m =-1,∴m 2-2m -11=-8.四、(本大题共3小题,每小题8分,共24分).18.解:解方程组,得⎩⎪⎨⎪⎧x =4a +5,y =-a +4.∵解都为正数,∴⎩⎪⎨⎪⎧4a +5>0,-a +4>0. 解得-54<a <4.19.解:设旅游者可走x 千米.根据题意,得x 18+3+x 18-3≤4,解得x ≤35. 答:旅游者最远可走35千米. 20.解:⎩⎪⎨⎪⎧-x -1≥-2x +1,①12(x -2a )+12x <0.② 解不等式①,得x ≥2. 解不等式②,得x <a .故当a >2时,不等式组的解集为2≤x <a ;当a <2时,不等式组无解.五、(本大题共2小题,每小题9分,共18分).21.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .∵原不等式组有三个整数解, ∴0≤4+a <1, ∴-4≤a <-3.22.解:(1)设这个月有x 天晴天,由题意得:30x +5(30-x )=550, 解得x =16.(4分) 答:这个月有16天晴天.(2)设需要y 年可以收回成本,由题意得: (550-150)·(0.52+0.45)·12y ≥40000, 解得y ≥8172291.∵y 是整数,∴至少需要9年才能收回成本.六、(本大题共12分)23.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得:⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400, 解得⎩⎪⎨⎪⎧x =1200,y =1800.答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元. (2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得:⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5 ∵a 取整数, ∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.。

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章不等式与不等式组综合检测题2
一、选择题:
1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5
D.
1
x
-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )
A. 4a<4b
B. a+4<b+4
C. -4a<-4b
D. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式
2
3
x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么
12a+1
2
t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥1
2
a D .无法确定
5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )
A .a >c >b
B .b >a >c
C .a >b >c
D .c >a >b
6,若a<0关于x 的不等式ax+1>0的解集是( )
A .x>
1a B .x<1a C .x>-1a D .x<-1
a
7,不等式组310
27
x x +>⎧⎨
<⎩的整数解的个数是( )
A .1个
B .2个
C .3个
D .4个
8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )
A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时
9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A .5千米 B.7千米 C.8千米 D.15千米
10,在方程组2122
x y m
x y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示
应是( )
二、填空题
11,不等号填空:若a<b<0 ,则5a -
5b -;a
1 b 1
;12-a 12-b .
12,满足2n-1>1-3n 的最小整数值是________.
13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.
14,满足不等式组1
22
113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩
的整数x 为__________.
15,若|
12x --5|=5-12
x -,则x 的取值范围是________.
16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .
17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.
三、解答题
19,解不等式组,并把它的解集在数轴上表示出来.
(1)9-4(x-5)<7x+4; (2)0.10.81
120.63
x x x ++-<-;
(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,
21
11.3
2x x x x +≥+⎧⎪+-⎨>+⎪⎩
20,代数式
21
3 1-
-x
的值不大于
3
2
1x
-
的值,求x的范围
21,方程组
3,
23
x y
x y a
-=


+=-

的解为负数,求a的范围.
22,已知,x满足
3351,
1
1.
4
x x
x
+>-


⎨+
>-
⎪⎩
化简:5
2+
+
-x
x.
23,已知│3a+5│+(a-2b+5
2
)2=0,求关于x的不等式3ax-
1
2
(x+1)<-4b(x-2)的最小
非负整数解.
24,是否存在这样的整数m,使方程组
2
4563
x y m
x y m
+=+


-=+

的解x、y为非负数,若存在,求
m•的取值?若不存在,则说明理由.
25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?
参考答案
一、1,C ;2,C ;3,A ;4,A.解:不等式t>0利用不等式基本性质1,两边都加上
12a 得12a+t>1
2
a . 5,C.
6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1
a
因此答案应选D . 7,D.解:先求不等式组解集-13<x<7
2
,则整数x=0,1,2,3共4个. 8,D ;9,C.
10,D.解:2122
x y m x y +=-⎧⎨+=⎩ ①+②,得3x+3y=3-m ,∴x+y=33m -,∵x+y ≥0,∴
33m
-≥0,∴m ≤3在数轴上表示3为实心点.射线向左,因此选D . 二、11,>、>、<;12,1.解:先求解集n>
2
5
,再利用数轴找到最小整数n=1. 13,a<0,a=b 解析:ax+b<0,ax<-b ,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-
a
b
=-1,∴b=a. 14,-2,-1,0,1 解析:先求不等式组解集-3<x ≤1,故整数x=0,1,-1,-2. 15,x ≤11 解析:∵│a │=-a 时a ≤0,∴1
2
x --5≤0,解得x ≤11. 16,320≤x ≤340.
17,(12~15)km.解:设甲乙两地距离为xkm ,依题意可得4×(13-10)<x<4•×(13
45
60
-10),即12<x<15. 18,x>2或x<1 解析:由已知可得1010
2020
x x x x ->-<⎧⎧⎨

->-<⎩⎩或者. 三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,
x>25
11
.
(2)
0.10.81120.63x x x ++-<-.解:811263
x x x ++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.
(3)523(1)
3
1722
x x x x ->+⎧⎪
⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x ≤4,∴不等式组的解集
5
2
<x ≤4. (4)6432
21113
2x x x x +≥+⎧⎪
+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的
解集为x>1. 20,5
7

x ;21,a<-3;22,7; 23,解:由已知可得535035
520212
a a a
b b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.
24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113
09
520
9
m m +⎧≥⎪⎪⎨
-⎪≥⎪⎩解得-
1311≤m ≤5
2
,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程2
4563
x y m x y m +=+⎧⎨
-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在
使方程组的解0
0x y ≥⎧⎨
≥⎩
的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.
25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.。

相关文档
最新文档