考研数学集训班内部线性代数笔记整理

合集下载

考研_线性代数_笔记精华_3打印

考研_线性代数_笔记精华_3打印

一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。

2、掌握:行列式的基本性质及推论。

3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。

二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。

三、重要公式1、若A为n阶方阵,则│kA│= kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi四、题型及解题思路1、有关行列式概念与性质的命题2、行列式的计算(方法)1)利用定义2)按某行(列)展开使行列式降阶3)利用行列式的性质①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。

②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。

③逐次行(列)相加减,化简行列式。

④把行列式拆成几个行列式的和差。

4)递推法,适用于规律性强且零元素较多的行列式5)数学归纳法,多用于证明3、运用克莱姆法则求解线性方程组若D =│A│≠0,则Ax=b有唯一解,即x1=D1/D,x2= D2/D,…,xn= Dn/D其中Dj是把D中xj的系数换成常数项。

注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。

4、运用系数行列式│A│判别方程组解的问题1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法则求出第二章矩阵一、重点1、理解:矩阵的定义、性质,几种特殊的矩阵(零矩阵,上(下)三角矩阵,对称矩阵,对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵)2、掌握:1)矩阵的各种运算及运算规律2)矩阵可逆的判定及求逆矩阵的各种方法3)矩阵的初等变换方法二、难点1、矩阵的求逆矩阵的初等变换2、初等变换与初等矩阵的关系三、重要公式及难点解析1、线性运算1)交换律一般不成立,即AB≠BA2)一些代数恒等式不能直接套用,如设A,B,C均为n阶矩阵(A+B)2=A2+AB+BA+B2≠A2+2AB+B2(AB)2=(AB)(AB)≠A2B2(AB)k≠AkBk(A+B)(A-B)≠A2-B2以上各式当且仅当A与B可交换,即AB=BA时才成立。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

线性代数-考研笔记

线性代数-考研笔记

第一章行列式性质1 行列式与它的转置行列式相等。

性质2互换行列式的两行(列),行列式变号。

推论如果行列式的两行(列)完全相同,则此行列式等于零。

性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。

第行(或者列)乘以,记作(或)。

推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。

第行(或者列)提出公因子,记作(或)。

性质4行列式中如果两行(列)元素成比例,此行列式等于零。

性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:=性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。

引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即或推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

范德蒙德行列式克拉默法则①如果线性方程组①的系数行列式不等于零,即,那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。

定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。

定理5 如果齐次线性方程组的系数行列式定理如果,则它的系数行列式必为零第二章矩阵级其运算定义1 由个数排成的行列的数表,称为行列矩阵;以数为元的矩阵可简记作或矩阵也记作。

行数和列数都等于的矩阵称为阶矩阵或阶方阵。

阶矩阵也记作。

特殊定义:两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。

浙江省考研数学复习资料线性代数重要定理及推论总结

浙江省考研数学复习资料线性代数重要定理及推论总结

浙江省考研数学复习资料线性代数重要定理及推论总结线性代数是考研数学中的重要内容之一,掌握线性代数的重要定理及推论对于提高数学水平和应对考试具有重要意义。

在浙江省考研数学复习中,以下是一些线性代数的重要定理和推论的总结。

一、向量与矩阵1. 零向量的性质零向量加上任意向量都等于该向量本身,即0+a=a,其中a为任意向量。

2. 向量的倍数对于任意向量a和标量a,有aa=aa=(aa)a,其中a为标量。

3. 矩阵的加减性质矩阵加法满足交换律和结合律,即a+a=a+a,(a+a)+a=a+(a+a)。

矩阵减法满足a−a=a+(−a)。

4. 矩阵的转置矩阵的转置满足以下性质:(a^a)^a=a(a+a)^a=a^a+a^a(aa)^a=aa^a,其中a和a为矩阵,a为标量。

二、矩阵运算1. 矩阵乘法若矩阵a的列数等于矩阵a的行数,则a和a可以相乘,得到的乘积矩阵a的行数等于a的行数,列数等于a的列数。

(aa)a=a(aa)a(aa)=(aa)a=a(aa),其中a、a和a为矩阵,a为标量。

2. 矩阵的逆若矩阵a非奇异(即可逆),则存在矩阵a的逆矩阵a^−1,满足下列条件:aa^−1=a^−1a=a,其中a为单位矩阵。

3. 矩阵的行列式矩阵的行列式a表示为|a|,满足以下性质:若矩阵a可逆,则|a|≠0。

若矩阵a和a同阶,则|aa|=|a||a|。

若矩阵a的某一行(列)元素全为零,则|a|=0。

若矩阵a的两行(列)互换位置,则|a|=−|a|。

三、特征值与特征向量1. 特征值与特征向量的定义对于矩阵a和标量a,如果存在非零向量a使得aa=aa,则称a为矩阵a的特征值,a为对应于特征值a的特征向量。

2. 特征值与特征向量的性质特征向量和特征值之间的关系满足以下性质:aa=aa,则对于任意正整数a,有a^aa=a^aa。

a阶实对称矩阵a的特征值为实数,a阶复数对称矩阵a的特征值为复数。

特征值的乘法与特征向量的加法满足交换律,即(aa)a=a(aa)。

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

考研线代知识点总结

考研线代知识点总结

考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。

这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。

本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。

二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。

2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。

3.矩阵的秩、行阶梯形式、简化阶梯形式等。

三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。

2.线性变换的概念、性质、矩阵表示、不变量等。

四、特征值与特征向量1.特征值、特征向量的概念及求解方法。

2.矩阵的对角化、相似矩阵等。

五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。

2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。

六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。

2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。

3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。

4.注重理论联系实际,熟练运用线性代数知识解决实际问题。

总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。

考研数学线性代数六大重点笔记+常考题型

考研数学线性代数六大重点笔记+常考题型

考研数学线代 6 大部分重点及常考题型一、行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。

如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。

所以要熟练掌握行列式常用的计算方法。

1.重点内容:行列式计算(1)降阶法这是计算行列式的主要方法,即用展开定理将行列式降阶。

但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。

(2)特殊的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。

2.常见题型(1)数字型行列式的计算(2)抽象行列式的计算(3)含参数的行列式的计算(4)代数余子式的线性组合二、矩阵矩阵是线性代数的核心,是后续各章的基础。

矩阵的概念、运算及理论贯穿线性代数的始终。

这部分考点较多。

涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。

有些性质得证明必须能自己推导。

这几年还经常出现有关初等变换与初等矩阵的命题。

1.重点内容:(1)矩阵的运算(2)伴随矩阵(3)可逆矩阵(4)初等变换和初等矩阵(5)矩阵的秩2.常见题型:(1)计算方阵的幂(2)与伴随矩阵相关联的命题(3)有关初等变换的命题(4)有关逆矩阵的计算与证明(5)解矩阵方程(2013 年和 2014 年连续出大题,要重视)(6)矩阵秩的计算和证明三、向量向量部分既是重点又是难点,由于n 维向量的抽象性及在逻辑推理上的较高要求,导致考生在学习理解上的困难。

考生至少要梳理清楚知识点之间的关系,最好能独立证明相关结论。

1.重点内容:(1)向量的线性表示线性表示经常和方程组结合考察,特点,表面问一个向量可否由一组向量线性表示,其实本质需要转换成方程组的内容来解决,经常结合出大题。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

随机变量之于概率正如矩阵之于线性代数。

考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。

所以随机变量的理解至关重要。

讨论完随机变量之后,讨论其描述方式。

分布即为描述随机变量的方式。

分布包括三种:分布函数、分布律和概率密度。

其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。

之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

介绍完一维随机变量之后,推广一下就得到了多维随机变量。

线性代数笔记

线性代数笔记

线性代数笔记(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数笔记第一章行列式 .................................................................................................. 错误!未定义书签。

第二章矩阵 ...................................................................................................... 错误!未定义书签。

第三章向量空间............................................................................................. 错误!未定义书签。

第四章线性方程组.......................................................................................... 错误!未定义书签。

第五章特征值与特征向量...................................... 错误!未定义书签。

第一章行列式行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结「篇一」第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幕知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化。

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

第一章行列式二元线性方程组:a x11ax21a12a22yyb1b2aa1112D,aa2122ba112D,1ba222ab111D2ab212xD1D,yD2D排列的逆序数:ttn1ti〔t为排列p1p2p n中大于p i且排于p i前的元素个数〕it为奇数奇排列,t为偶数偶排列,t0标准排列。

a 11 a12a1nn阶行列式:Daaa21222ndet(a)=ij(1)t为列标排列的逆序数.t aaa1p12p np2na n1 an2ann定理1:排列中任意两个元素对换,排列改变奇偶性推论:奇〔偶〕排列变为标准排列的对换次数为奇〔偶〕数定理2:n阶行列式可定义为tD(1)a1a2a=pppn12n (1).t aaat aaa1p12p np2nT 1.D=DT,D为D转置行列式.(沿副对角线翻转,行列式同样不变)推论:两行(列)完全一样的行列式等于零.2.互换行列式的两行(列),行列式变号.记作:r i r〔c i c j〕DD.j 记作:r i r〔c i c j〕DD0.j推论:某一行(列)所有元素公因子可提到行列式的外面.3.行列式乘以k等于某行(列)所有元素都乘以k.记作:kDr i k〔kDc i k〕.记作:kDrki〔kDc i k〕.4.两行(列)元素成比例的行列式为零.记作:r j r i k〔c j c i k〕D0.行列式的性质:a11a12(a1ia1i) a1na11a12a1ia1na11a12a1ia1n5.D a21a22(a2ia2i) a2n Da21a22a2ia2na21a22a2ia2na n1 an2(aniani) annan1an2aniannan1an2aniann上式为列变换,行变换同样成立.6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.记作:c i ckc(r i r i kr j),D不变.ij注:任何n阶行列式总能利用行运算r i+kr j化为上(下)三角行列式.对角行列式上D〔下DT〕三角形行列式00a11011212nn(n1)2 2,n(1)12aa2122Da11a22ann00nn an1an2anna 11 a1ka11a1kabD1det(aij)假设对Dak1c11akkc1kb11b1k设ak1bakkb,假设2nabD2,n11 1n 阶行列式cdc k1 ckkbk1bkkD2det(bij)bn1bnncd2n那么有D=D1D2.有D2n=(ad-bc)n.n.ij余子式:n 阶行列式中把a ij 所在的第i 行和第j 列去掉后,余下n-1阶行列式.代数余子式:ijA ij (1)M引理:n 阶行列式D 中,假设第i 行所有元素除a ij 外都为零,那么有Da ij A ij .行列式等于它的任一行(列)的各元素与其对应的代数余子式乘机之和.定理3:推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘机之和等于零. (代数余子式性质) D,ij,当n aAD ki 当kjijk10,ij;或 D,当j i naAD ikjkij 当 k 10,ij, ; 其中 ij1, 0, 当 当 i ij , j.1111X 德蒙德 行列式:xxxx123n2222Dxxxx =n123nnij ( 1x i x).证明用数学归纳法.jn x11n x21n x 31n nx1设方程组a x111ax211a12a22x2x2a xnxn1na2nb,1b,2aa111n,假设0D ,那么方程组有惟一解:克拉默法ax n11a n2 x 2a nnx nbna n1 ann那么:DDD12nx,x,,x1,其中2nDDDD ja 11 a n1 a 1,a n ,j j 1 1 b 1 b n a 1,a n,j j 1 1a 1nann(j1,2,,n).定理4:假设上线性方程组的系数行列式D0,那么方程组一定有惟一解;假设无解或有两个不同解,那么D0.定理5:假设齐次线性方程组(b n =0)的系数行列式D0,那么齐次线性方程组无非零解;假设有非零解,那么D0.第二章矩阵及其运算对角矩阵(对角阵):n 阶单位矩阵(单位阵):纯量阵:100 λ000λ1E0100Λλ00 λ2E00100 λ0n0 λEAAEA.另可记作diag(,,,)Λ.12n(E)AA,A(E)A.矩阵与矩假设(a)Α是一个ms矩阵,B(b ij)是一个sn矩阵,且CAB,那么C(c ij)是一个mn矩阵,ij阵相乘:且cabababimij1122(1,2,,;j1,2,,n).假设ABBA ,称A与B是可交换的.ijijissjT矩阵转置:假设Α(a ij),那么(a)ΑjiTTTTTT(AB)AB,(AB)BA假设TA,A为对称阵A方阵的行列式:n阶方阵A元素构成的行列式,记A或det A.方阵行列式的运算规律:A 11 A21An1A为行列式A中对应元素的ijT;1.AA伴随矩阵:A* A12A22An2代数余子式.n;2.AAA 1n A2nAnnAA**A A A E 13.ABAB,1AA.逆矩阵:假设ABBAE,那么A可逆,且称B为A的逆矩阵,记B=A-1,A的逆阵是唯一的.定理1:假设矩阵A可逆,那么A0.定理2:假设A0,那么矩阵A可逆,且A1 1.*AA奇异矩阵:当A0时,A称为奇异矩阵.矩阵A可逆的充要条件:A0,即矩阵A是非奇异矩阵。

线性代数知识点汇总

线性代数知识点汇总

线性代数知识点汇总线性代数是数学中的一个分支,研究向量空间及其上的线性变换。

它是现代数学中的一个重要基础学科,广泛应用于各个领域,如物理学、计算机科学、经济学等。

下面是线性代数的主要知识点的汇总。

1.向量空间:向量空间是线性代数的基本概念,它是一个集合,其中的元素称为向量,满足一定的运算规则,如加法和数乘。

向量空间具有加法和数乘封闭性、结合律、分配律等性质。

2.线性变换:线性变换是向量空间之间的一种映射,它保持向量空间中的加法和数乘运算。

线性变换可以用矩阵表示,矩阵的乘法运算对应于线性变换的复合运算。

3.矩阵:矩阵是线性代数中的一种重要工具,它是一个由数构成的矩形阵列。

矩阵可以表示向量空间中的线性变换,也可以用于解线性方程组、计算行列式、求逆矩阵等。

4.行列式:行列式是一个标量值,它是一个方阵的特征量。

行列式的值可以用于判断矩阵的可逆性、计算矩阵的逆、求解线性方程组等。

5.矩阵的逆:对于一个可逆矩阵,存在一个矩阵使得两者的乘积等于单位矩阵。

这个矩阵称为原矩阵的逆矩阵,它具有一些重要的性质,如对角矩阵的逆矩阵等。

6.线性方程组:线性方程组是线性代数中的一种基本问题,它由一组线性方程组成。

线性方程组的解可以通过矩阵的运算(如高斯消元法、矩阵的逆等)来求解。

7.特征值和特征向量:对于一个线性变换,存在一些特殊的向量,使得它们在变换后只改变了大小而没有改变方向。

这些向量称为特征向量,对应的大小称为特征值。

特征值和特征向量可以用于矩阵的对角化、求解差分方程等。

8.内积空间:内积空间是一种向量空间,它定义了一种内积运算。

内积运算满足对称性、线性性、正定性等性质,它可以用于定义向量的长度、角度、正交性等。

9.正交性:在内积空间中,两个非零向量的内积为零时称为正交。

正交性是线性代数中的一个重要概念,它可以用于构造正交基、正交投影、最小二乘法等。

10.最小二乘法:最小二乘法是一种用于拟合数据的方法,它通过最小化残差平方和来确定最优解。

(完整版)线性代数知识点全归纳

(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

线性代数各章复习重点汇总

线性代数各章复习重点汇总

线性代数各章复习重点汇总线性代数是数学的一个重要分支,研究向量空间、线性变换、线性方程组等概念和性质。

下面是线性代数各章的复习重点汇总。

1.线性方程组:-线性方程组的基本概念和性质,包括齐次线性方程组、非齐次线性方程组等。

-线性方程组的解的存在性与唯一性,以及求解线性方程组的方法(高斯消元法、矩阵求逆法、克拉默法则等)。

-线性方程组的等价关系与等价变换。

2.矩阵与行列式:-矩阵的基本概念和性质,如矩阵的加法、减法、乘法等运算。

-方阵的特殊性质,如对称矩阵、反对称矩阵、单位矩阵等。

-行列式的定义和性质,包括行列式的展开定理、行列式的性质推导等。

3.向量空间:-向量空间的定义和性质,如线性相关性、线性无关性、基、维数等。

-子空间的概念和性质,包括子空间的交、和、直和等操作。

-线性组合、张成空间、极大线性无关组等概念。

4.线性变换与矩阵:-线性变换的定义和性质,包括线性变换的特征值、特征向量等。

-线性变换的矩阵表示,以及矩阵与线性变换之间的转换关系。

-线性变换的合成、逆变换等操作,以及线性变换的标准形式(例如,矩阵的对角化)。

5.特征值与特征向量:-特征值与特征向量的定义和性质,包括特征值的重数、特征向量的线性无关性等。

-特征值与特征向量的计算方法,如特征方程的求解、特征值的代入等。

-特征值与特征向量的应用,如对角化矩阵、相似矩阵等。

6.正交性与标准正交基:-向量的正交性和标准正交性的概念和性质,包括向量的点积、向量的夹角等。

-标准正交基的定义和求解方法,如施密特正交化过程等。

-正交矩阵的定义和性质,以及正交矩阵与标准正交基之间的关系。

以上是线性代数各章的复习重点汇总,希望能够帮助你理清知识重点,并提高复习效率。

祝你取得好成绩!。

新疆维吾尔自治区考研数学复习资料线性代数重点知识总结

新疆维吾尔自治区考研数学复习资料线性代数重点知识总结

新疆维吾尔自治区考研数学复习资料线性代数重点知识总结线性代数是考研数学中的重要内容之一,对于准备参加新疆维吾尔自治区考研数学的同学来说,掌握线性代数的重点知识是非常必要的。

本文将为大家总结新疆维吾尔自治区考研数学复习资料中线性代数的重点知识。

一、向量空间向量空间是线性代数的基础概念之一。

向量空间就是指满足特定条件的向量集合。

对于一个向量空间来说,它需要满足以下几个条件:1. 封闭性:即向量集合中的任意两个向量的线性组合仍然属于该向量空间。

2. 零向量:即向量集合中存在一个零向量,它与任意一个向量的和等于该向量本身。

3. 相反向量:即向量集合中的任意一个向量,都存在一个相反向量使得它们的和等于零向量。

二、矩阵和行列式矩阵和行列式是线性代数中的重要工具。

矩阵是一个按照长方阵列排列的数。

行列式是一个标量,它可以用来求解线性方程组的解以及计算矩阵的特征值和特征向量。

三、线性变换与特征值问题线性变换是指将一个向量空间映射到另一个向量空间的变换。

线性变换可以用矩阵来表示。

在线性代数中,我们关注线性变换的特征值和特征向量。

特征值是一个数,特征向量是一个非零向量,它们满足线性变换对应的矩阵与特征向量的乘积等于特征值与特征向量的乘积。

四、内积空间与正交基内积空间是具有内积运算的向量空间。

内积运算可以用来定义向量的长度和两个向量之间的夹角。

正交基是内积空间中的一组向量,它们两两之间的内积为零。

正交基是内积空间中的一组基本工具,可以用来求解线性方程组和进行向量的正交投影等计算。

五、特征值与特征向量的应用特征值和特征向量在数学和物理等领域有广泛的应用。

在数学中,特征值和特征向量可以用来求解线性方程组的解和计算矩阵的行列式。

在物理中,特征值和特征向量可以用来描述系统的特征和研究系统的稳定性。

总结:本文总结了新疆维吾尔自治区考研数学复习资料中线性代数的重点知识,包括向量空间、矩阵和行列式、线性变换与特征值问题、内积空间与正交基以及特征值与特征向量的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档