电磁感应中的导轨类问题(改)

合集下载

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。

[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。

现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。

电磁感应导轨问题归纳(有答案).

电磁感应导轨问题归纳(有答案).

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1. 模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变. 2. 常见模型类型 “电—动—电”型“动—电—动”型示意图已知量棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计过程分析S 闭合,棒ab 受安培力F =BLER,此时加速度a =BLEmR,棒ab 速度v↑→感应电动势E ′=BLv ↑→电流I ↓→安培力F =BIL ↓→加速度a ↓,当安培力F =0时,a =0,v 最大,最后匀速运动棒ab 释放后下滑,此时加速度a =gsin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =ER ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mgsin α时,a =0,v 最大,最后匀速运动能 量 转 化 通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动 形式 变加速运动 变加速运动 最终 状态匀速运动,vm =E ′BL匀速运动vm =mgRsin αB2L2一、单棒问题 1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv (2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动 (5)最终状态:匀速直线运动 (6)两个极值①v=0时,有最大加速度:Fm F mg a mμ-=②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为: (1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向; (2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况; (4)列出牛顿第二定律或平衡方程求解. (一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙(1)磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得: v =Δx Δt =7 m/s I =BLv r +R,mg =BIL 解得B =0.1 T(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +RQ =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h时开始做匀速运动,在此过程中NM 22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-FB F( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。

电磁感应中的滑轨问题

电磁感应中的滑轨问题

刻 , 据牛 顿第 二定律 ,有 一 根 g B — 一]2 L _
在 t t A △ — O 时 间 内 到 + t( )
2v
A v
m —

时刻 , 线框 已经达 到平衡 状 态. c 当 边开 始 离 开磁 场 时 , 去恒力 F , 撤 。 重新 施加 外力 F, 使得线 框做 加速 度
2s 后撤 去 F, 经过 0 5 金属 棒停 止运 动. l 乙 再 . 5s 图 一 所 示 为金 属棒 的 7~ 3 t图象 , g取 1 IS 求 : 0I ・ 一. T
所在平面垂直. 现将~质量 为 m、
电阻可 以忽略 的金 属棒 MN 从 图 示位 置 由 静 止 开 始 释 放 . 属 棒 金
后 , 灯泡保 持正 常发 光 , 经 MN 的电流 为 I 1 , 小 流 一2 。
此时金 属棒 MN 所 受 的重力 和安培 力相 等 , 落 速度 下

/ Q ( 在o 2 这 时 内 根 牛 第 定 1 ~ 段 间 ,据 顿 二 ) s
解析 律 一 ,

达 最 值, g BL联 上 得B / 到 大 有 = I 立 式 一 . .
( )设正 常 发 光 时导 体 的速 率 为 , 电磁 感 应 2 有
定 律 和 欧 姆 定 律 得 E— B L, I 得 一 2 mg I = R, P/ . 题 型 3 线 圈 切 割 磁 感 线 问题 ・
有 F一/mg一 1
BL& 。
… 图 可 知 n 1 0m・ 。 又 因 F一0 3 . t联 一 . s , . +0 2 ,
在 电磁感 应 巾 . 导体 棒 在匀 强 磁 场 中沿 导轨 滑 动 问题 , 已成 为 电磁 场 综 合命 题 中 的一 大热 点 , 导轨 问

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。

[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。

(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。

现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。

电磁感应中的动力学问题“双杆”滑轨问题

电磁感应中的动力学问题“双杆”滑轨问题

做变加速运动, 稳定时,
稳定时, 两杆以相同的加
两杆的加速度为0, 以相
速度做匀变速运动
同速度做匀速运动
v
1
v2
1
2 0
t
0
t
例1. 水平放置于匀强磁场中的光滑导轨上, 有一根导体棒ab, 用 恒力F作用在ab上, 由静止开始运动, 回路总电阻为R, 分析ab 的 运动情况, 并求ab的最大速度。
⑴在运动中产生的焦耳热最多是多少 ⑵当ab棒的速度变为初速度的3/4时, cd棒的加速度是多少?
例4:如图所示,两根平行的金属导轨,固定在同一水平面上,磁 感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻 很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为 m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动 过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0 时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过 t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的 速提度高各:为两多金少属?杆的最大速度差为多少?
B
B
F
E1
v
F
1I 2 E2来自F1E1 I
vt
2 E2 Fvt
例4. 光滑平行导轨上有两根质量均为m,电阻均为R 的导体棒1.2,给导体棒1以初速度 v 运动, 分析它们 的运动情况,并求它们的最终速度。….
对棒1, 切割磁感应线产生感应电流I, I又受到磁场的作用力F
v1
E1=BLv1
I=(E1-E2) /2R
对棒1, 切割磁感应线产生感应电流I, I又受到磁场的作用力F

高考物理二轮复习:电磁感应解答题原创改编命制经典题(二)

高考物理二轮复习:电磁感应解答题原创改编命制经典题(二)

[高考物理专题复习-选择性必修二一电磁感应-微元法应用]-—2022.04.21士心命制【试题研讨】某物理小组想出了一种理想化的“隔空”加速系统,该系统通过利用其中一个金属棒在磁场中运动产生感应电流从而使另一个金属棒获得一定速度,这样就避免了直接对其进行加速时所带来的磨损和接触性损伤,该加速系统可以建模抽象为在水平平行导轨上放有两个金属棒A、B,质量均为m,电阻均为R,处在竖直向下的匀强磁场中,磁感应强度为B,导轨宽度可调节,为研究问题方便,组长提议导轨电阻和所有摩擦均不计,金属棒长度为d。

现进行如下操作来分析模型,检测模型正确性。

请解决下列以下情景中他们遇到的问题。

(以下所有过程中.......A.和.B.均未发生碰撞......)(1)【情景一】(如左图)AB所在导轨宽度均为L(d>L),若使金属棒A以速度v0启动,后无外力摄入,达到匀速时:(i)此过程中通过金属棒B的电荷量q1为多少(ii)两金属棒之间距离x1为多少(iii)此过程中金属棒A产生的焦耳热Q1为多少(2)【情景二】(如中图)B所在导轨宽度为L,A所在导轨宽度为2L(d>2L),若使金属棒以速度v0启动,后无外力摄入,当金属棒A速度变为0.8v0时:(i)此过程中通过金属棒B的电荷量q2为多少(ii)此过程中电路产生的焦耳热为Q2多少(3)【情景三】(如右图)金属棒AB所在导轨宽度均为L(d>L),组长发现,只施加一个短程力使金属棒A获得一定初速度不足以使金属棒B加速获得人为理想速度,因此组长决定,在金属棒A上施加长程恒力F,则回答下列问题:(i)假设时间足够长,导轨无限长.........,猜想两金属棒AB最终运动状态如何,并画出金属棒A和B各自速度关于时间的图像(在一个图中同时体现.........A.、B.)(ii)依据第(i)问的图像判断金属棒A加速度最终恒定吗,若恒定,求出该定值;若不恒定,求出加速度与时间的表达式(4)【情景四】将B去掉,只剩下A,同样给A施加外力F。

电磁感应中导轨问题的分类及应用

电磁感应中导轨问题的分类及应用

电磁感应中导轨问题的分类及应用一、单动式导轨的基本特点和规律如图所示,间距为l的平行导轨与电阻R相连,整个装置处在大小为B、垂直导轨平面向上的匀强磁场中。

质量为m、电阻为r的导体从静止开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。

1.电路特点导体为发电边,与电源等效。

当导体速度为v时,其电动势为E=Blv。

2.安培力特点安培力为运动阻力,并随速度按正比规律增大F B=Blv=B2l2v/(R+r)∝v3.加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动ma=mgsinθ-μmgcosθ-B2l2v/(R+r)4.两个极值的规律当v=0时,F B =0,加速度最大为a=gsinθ-μgcosθ当a=0时,F合=0,速度最大。

根据平衡条件有mgsinθ=-μmgcosθ+B2l2v/(R+r)所以最大速度为v m=mg(sinθ-μcosθ)(R+r)/(B2l2)5.匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。

P G=P F+Pμ P G=mgv m sinθ Pμ=μmgv m cosθP F=F m v m=I m E m=E m2/(R+r)=I m2(R+r)当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这就是发电导轨在匀速运动过程中最基本的能量转化和守恒定律mgv m sinθ= F m v m=I m E m=E m2/(R+r)=I m2(R+r)二、双动式导轨的基本问题和规律如图所示,间距为l的光滑平行导轨水平放置,处在大小为B、方向竖直向上的匀强磁场中,质量均为m、电阻均为r的两根导体分别在平行于导轨方向的两个大小相等、方向相反的水平拉力F作用下,以速度v向左右两侧反向匀速运动。

1.电路特点两导体反方向(相向或背向)运动,均为发电边,与两个同样的电源串联等效。

2.回路中电动势和电流的计算根据欧姆定律,电动势和电流分别为E合=2E=2BlvI= E合/R=2Blv/(2r)=Blv/r3.拉力和安培力的特点和计算拉力为动力,安培力为阻力;在匀速运动的条件下,两者为平衡力。

电磁感应中的杆和导轨问题

电磁感应中的杆和导轨问题

电磁感应中的杆+导轨问题“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。

导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。

下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。

需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。

1.单杆水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a=Fm -=B2L2vmR,a、v同向,随速度的增加,棒的加速度a减小,当a=0时,v最大,电流I=BLv mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化2.单杆倾斜式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F =BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,速度达到最大v m=mgR sin αB2L2收运动形式匀速直线运动尾状态力学特征 受力平衡,a =0电学特征I 不再变化3、有初速度的单杆物理模型杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L动态分析杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLv R ,安培力F =BIL =B 2L 2vR.杆做减速运动:v ↓?F ↓?a ↓,当v =0时,a =0,杆保持静止能量转化情况动能全部转化为内能:Q =12mv 24、含有电容器的单杆物理模型轨道水平光滑,单杆ab 质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定动态分析开始时a=Fm,杆ab速度v?感应电动势E=BLv,经过时间Δt速度为v+Δv,此时感应电动势E′=BL(v+Δv),Δt时间内流入电容器的电荷量Δq=CE′-C E=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa (所以电流的大小恒定)安培力F安=BLI=CB2L2a(所以安培力的大小恒定)F-F安=ma,a=Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量转化情况F做的功使其它形式的能E其它一部分转化为动能,一部分转化为电场能E电场能:W F=E其它=12mv2+E电场能5、含有电源时的单杆物理模型轨道水平光滑,单杆ab质量为m,电阻不计,两导轨间距为L。

高中物理 电磁感应中的导轨上的导体棒问题

高中物理  电磁感应中的导轨上的导体棒问题

电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。

解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。

下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。

想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。

一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。

(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。

当闭合电键后,求金属棒可达到的最大速度。

图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。

解析:闭合电键后,金属棒在安培力的作用下向右运动。

当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。

但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。

金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。

一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。

高三物理电磁感应中“滑轨”问题归类例析含答案

高三物理电磁感应中“滑轨”问题归类例析含答案

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型1、杆与电阻连接组成回路例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。

(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/s2)求:(1)杆ab的最大速度;(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.2、杆与电源连接组成回路例5、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、“双杆”滑切割磁感线型1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例6、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

电磁感应中杆-导轨模型专题

电磁感应中杆-导轨模型专题

电磁感应中杆-导轨模型专题对杆在导轨上运动组成的系统,杆在运动中切割磁感线产生感应电动势,并受到安培力的作用改变运动状态最终达到稳定的运动状态,该系统称为“杆+导轨”模型.“杆+导轨”模型中杆有单杆和双杆之分,导轨可分为水平、竖直、倾斜导轨.求解此类问题的关键有三点:1.电路结构分析分析电路结构找出电源;用电器及其参数2.动力学分析(1)受力分析:杆一般会受到重力、支持力、摩擦力、拉力、安培力,确定哪些力为变力,哪些力为恒力,按效果把力分为动力和阻力(必要时使用力的合成与分解)(2)动态分析:由牛顿第二定律确定加速度的表达式,结合初速度判断杆是加速还是减速,按照下面模式分析:直至确定收尾状态(3)常见收尾状态:①静止;②匀速直线运动;③匀加速直线运动.●3.能量分析●①动能定理Ek′-Ek=W安+W其他力;●②棒的动能、电路中的电能、其他能的转化与守恒.一.单杆--导轨模型1、导轨(1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等;(2)导轨的闭合性:导轨本身可以不闭合,也可闭合;(3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻;(4)导轨的放置:水平、竖直、倾斜放置等等.幻灯片5[例1] 如图1所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中粗线表法),R1= 4Ω、R2=8Ω(导轨其它部分电阻不计).导轨OAC的形状满足方程)(3sin2mxyπ=(单位:m).磁感强度B=0.2T的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻.求:(1)外力F的最大值;(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率;(3)在滑动过程中通过金属棒的电流I与时间t的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值.∵E=BLv , 总R E I = , F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大 Lmax=2m22sin=π Ω382121R R R R ==+总R代入数据得Fmax=0.3(N )(2)R1、R2相并联,由电阻丝R1上的功率121R E P =,可知当max L L =时P1有最大功率,即121R E P =m 22sin =π总R v L B 22(W )图1图1(3)金属棒与导轨接触点间的长度随时间变化)(sin 23m x L π=且x=vt ,E=BLv)(35sin 43B A t R lV R E I π==总总=∴A .随着ab 运动速度的增大,其加速度也增大B .外力F 对ab 做的功等于电路中产生的电能C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能设ab 的速度为v ,运动的加速度a =F -B 2l 2v R m ,随着v 的增大,ab 由静止先做加速度逐渐减小的加速运动,当a =0后做匀速运动,则A 选项错误;由能量守恒知,外力F 对ab 做的功等于电路中产生的电能和ab 增加的动能之和,ab 克服安培力做的功一定等于电路中产生的电能,则B 选项错误,D 选项正确;答案CD2. 如图2所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他电阻均不计,磁感应强度为B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一 水平恒力F 作用下由静止开始向右运动.则 ( )。

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题

简单物理 2014年3月第1页光滑导轨运动过程收尾状态v=0匀速匀速无电阻时匀速匀加速应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题RvRFtvtvCvCFtvtvvvttv Fxv1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=g sin α,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,v m=E′BL匀速运动v m=mgR sin αB2L2解析 (1)设甲在磁场区域abcd 内运动时间为t 1,乙从开始运动到ab 位置的时间为t 2, 则由运动学公式得L =12·2g sin θ·t 21,L =12g sin θ·t 22解得t 1= L g sin θ,t 2= 2Lg sin θ (1分)因为t 1<t 2,所以甲离开磁场时,乙还没有进入磁场. (1分) 设乙进入磁场时的速度为v 1,乙中产生的感应电动势为E 1,回路中的电流为I 1,则12mv 21=mgL sin θ (1分) E 1=Bdv 1 (1分) I 1=E 1/2R (1分) mg sin θ=BI 1d (1分)解得R =B 2d 22m 2Lg sin θ (1分)(2)从释放金属杆开始计时,设经过时间t ,甲的速度为v ,甲中产生的感应电动势为E , 回路中的电流为I ,外力为F ,则v =at (1分) E =Bdv (1分) I =E /2R (1分) F +mg sin θ-BId =ma (1分) a =2g sin θ 联立以上各式解得 F =mg sin θ+mg sin θ2g sin θL·t (0≤t ≤ Lg sin θ) (1分) 方向垂直于杆平行于导轨向下. (1分) (3)甲在磁场运动过程中,乙没有进入磁场,设甲离开磁场时速度为v 0,甲、乙产生的热 量相同,均设为Q 1,则v 20=2aL (1分)W +mgL sin θ=2Q 1+12mv 20 (2分)解得W =2Q 1+mgL sin θ乙在磁场运动过程中,甲、乙产生相同的热量,均设为Q 2,则2Q 2=mgL sin θ(2分)根据题意有Q =Q 1+Q 2 (1分) 解得W =2Q (1分)答案 (1)B 2d 22m 2Lg sin θ(2)F =mg sin θ+mg sin θ 2g sin θL ·t (0≤t ≤ Lg sin θ),方向垂直于杆平行于导轨向下(3)2Q突破训练3 如图7甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离s 与时间t的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙图7(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得:v =ΔsΔt =7 m/s I =BLv r +R ,mg =BIL 解得B =0.1 T (2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔS Δt B解得:q =0.67 C(3)Q =mgs -12mv 2解得Q =0.455 J从而Q R =Rr +R Q =0.26 J高考题组1. (2012·山东理综·20)如图8所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强 磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由 静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加 一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好, 图8 不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( ) A .P =2mgv sin θ B .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 答案 AC解析 根据I =E R =BLvR ,导体棒由静止释放,速度达到v 时,回路中的电流为I ,则根据共点力的平衡条件,有mg sin θ=BIL .对导体棒施加一平行于导轨向下的拉力,使其以2v 的速度匀速运动时,则回路中的电流为2I ,则根据平衡条件,有F +mg sin θ=B ·2IL ,所以拉力F =mg sin θ,拉力的功率P =F ×2v =2mgv sin θ,故选项A 正确,选项B 错误;当导体棒的速度达到v 2时,回路中的电流为I 2,根据牛顿第二定律,得mg sin θ-B I 2L =ma ,解得a =g2sin θ,选项C 正确;当导体棒以2v 的速度匀速运动时,根据能量守恒定律知,重力和拉力所做的功之和等于R 上产生的焦耳热,故选项D 错误.2. (2012·江苏单科·13)某兴趣小组设计了一种发电装置,如图9所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B 、方向始终与两边的运动方向垂直.线圈的总电阻为r ,外接电阻为R .求:图9(1)线圈切割磁感线时,感应电动势的大小E m ; (2)线圈切割磁感线时,bc 边所受安培力的大小F ; (3)外接电阻上电流的有效值I .答案 (1)2NBl 2ω (2)4N 2B 2l 3ωr +R (3)4NBl 2ω3 r +R解析 (1)bc 、ad 边的运动速度v =ωl2感应电动势E m =4NBlv 解得E m =2NBl 2ω(2)电流I m =E mr +R安培力F =2NBI m l解得F =4N 2B 2l 3ωr +R(3)一个周期内,通电时间t =49TR 上消耗的电能W =I 2m Rt 且W =I 2RT解得I =4NBl 2ω3 r +R .模拟题组3. 如图10,两根足够长光滑平行金属导轨PP ′、QQ ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大,板间有一带电微粒,金属棒ab 水平跨放在导轨上,下滑过程中与导轨接触良好. 图10 现同时由静止释放带电微粒和金属棒ab ,则 ( ) A .金属棒ab 最终可能匀速下滑 B .金属棒ab 一直加速下滑C .金属棒ab 下滑过程中M 板电势高于N 板电势D .带电微粒不可能先向N 板运动后向M 板运动 答案 BC解析 金属棒沿光滑导轨加速下滑,棒中有感应电动势而对金属板M 、N 充电,充电电 流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有 mg sin θ-BIl >0,金属棒将一直加速下滑,A 错,B 对;由右手定则可知,金属棒a 端(即 M 板)电势高,C 对;若微粒带负电,则电场力向上,与重力反向,开始时电场力为0, 微粒向下加速,当电场力增大到大于重力时,微粒的加速度向上,可能向N 板减速运动 到零后再向M 板运动,D 错.4. 如图11所示,足够长的光滑平行金属导轨cd 和ef 水平放置,在其左端连接倾角为θ=37°的光滑金属导轨ge 、hc ,导轨间距均为L =1 m ,在水平导轨和倾斜导轨上,各放一根与导轨垂直的金属杆,金属杆与导轨接触良好.金属杆a 、b 质量均为m =0.1 kg ,电阻R a =2 Ω、R b =3 Ω,其余电阻不计.在水平导轨和斜面导轨区域分别有竖直向上和竖直向下的匀强磁场B 1、B 2,且B 1=B 2=0.5 T .已知从t =0时刻起,杆a 在外力F 1作用下由静止开始水平向右运动,杆b 在水平向右的外力F 2作用下始终保持静止状态,且F 2=0.75+0.2t (N).(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)图11简单物理2014年3月第 PAGE \* MERGEFORMAT 7 页(1)通过计算判断杆a的运动情况;(2)从t=0时刻起,求1 s内通过杆b的电荷量;(3)若t=0时刻起,2 s内作用在杆a上的外力F1做功为13.2 J,则这段时间内杆b上产生的热量为多少?答案(1)以4 m/s2的加速度做匀加速运动(2)0.2 C(3)6 J解析(1)因为杆b静止,所以有F2-B2IL=mg tan 37°而F2=0.75+0.2t(N)解得I=0.4t (A)整个电路中的电动势由杆a运动产生,故E=I(R a+R b)E=B1Lv解得v=4t所以,杆a做加速度为a=4 m/s2的匀加速运动.(2)杆a在1 s内运动的距离d= eq \f(1,2) at2=2 mq= eq \x\to(I) Δteq \x\to(I) = eq \f(E,R a+R b)E= eq \f(ΔΦ,Δt) = eq \f(B1Ld,Δt)q= eq \f(ΔΦ,R a+R b) = eq \f(B1Ld,R a+R b) =0.2 C即1 s内通过杆b的电荷量为0.2 C(3)设整个电路中产生的热量为Q,由能量守恒定律得W1-Q= eq \f(1,2) mv EMBED Equation.3v1=at=8 m/s解得Q=10 J从而Q b= eq \f(R b,R a+R b) Q=6 J。

电磁感应中“滑轨”问题归类例析

电磁感应中“滑轨”问题归类例析

电磁感应中“滑轨”问题归类例析导体杆切割磁感线的四类问题:1、运动性质问题分析:稳定运动的性质(可能为静止、匀速运动、匀加速运动)、求出稳定的速度或加速度、求达到稳定的过程中发生的位移或相对位移等2、感应电动势、电流、电势差问题:3、能量转化的问题:如产生的电热、机械功率等4、求通过回路的电量问题:q nR rφ∆=+ 解题的方法思路:(1)首先受力分析和运动分析。

(2)然后运用动能定理、或动量定理、动量守恒以及能量守恒建立方程。

情景模型分三类:单杆滑、双杆滑、轨道滑以及绳连的“双杆滑动”问题。

一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

解析:(1)ab 运动切割磁感线产生感应电动势E ,所以ab 相当于电源,与外电阻R 构成回路。

∴U ab =232R BLv BLvRR =+(2)若无外力作用则ab 在安培力作用下做减速运动,最终静止。

动能全部转化为电热,221mv Q =。

由动量定理得:mv Ft =即mv BILt =,It q =∴BLmv q =。

3322BLx mv q BL R R φ∆===,得 2223L B mvRx =。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.解析:该题是一道考察电磁感应、安培力、闭合电路欧姆定律及力学有关知识的综合题,解题的关键是要正确分析金属杆的运动及受力的变化情况。

电磁感应中地双杆双动导轨滑轨能量动量问题大综合

电磁感应中地双杆双动导轨滑轨能量动量问题大综合

问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0。

2014年河南宏力学校《电磁感应中的导轨问题》

2014年河南宏力学校《电磁感应中的导轨问题》
(1) v=0时,有最大加速度:
F mg am m
(2) a=0时,有最大速度: F B 2 l 2v F FB mg g 0 a m m( R r ) m
( F mg )( R r ) vm 2 2 Bl
发电式单棒
7.稳定后的能量转化规律
Blv U C I R
v0
I感渐小
t
电容无外力充电式
5.最终速度 电容器充电量:
v0
q CU
最终导体棒的感应电动 势等于电容两端电压:
U Blv
对杆应用动量定理:
mv0 mv BIl t Blq 2 2 BlC v v0 m
无外力等距双棒
1.电路特点 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 2.电流特点
( BLvm )2 Fvm mgvm Rr 8.起动过程中的三个规律
F
1 2 (1)能量关系: Fs QE mgS mvm 2 F FB mg F B 2 l 2v g 0 (2)瞬时加速度: a m m( R r ) m
电容放电式:
电容无外力充电式
1.电路特点 导体棒相当于电源;电容器被充电. 2.电流的特点 导体棒相当于电源; F安为阻力, 棒减速, E减小 有I感 电容器被充电。 UC渐大,阻碍电流 当Blv=UC时,I=0, F安=0,棒匀速运动。 v 3.运动特点 v0 a渐小的加速运动,最终做匀 速运动。 4.最终特征 匀速运动 v O 但此时电容器带电量不为零
1.电路特点 电容器放电,相当于电源;导 体棒受安培力而运动。 2.电流的特点 电容器放电时,导体棒在安培力作用下开始运 动,同时产生阻碍放电的反电动势,导致电流 减小,直至电流为零,此时UC=Blv v 3.运动特点 a渐小的加速运动,最终做匀 速运动。 4.最终特征 匀速运动 但此时电容器带电量不为零 vm

高二物理培优电磁感应滑轨类问题

高二物理培优电磁感应滑轨类问题

高二物理培优——导体棒在磁场中运动练习(一)单棒1、如图所示,一足够长的“n”形导体框架,宽度为L ,其所在平面与水平面垂直,电阻可以忽略不计.设匀强磁场与导体框架的平面垂直,磁感应强度为B .有一根导体棒ab 跨放在框架上,由静止释放导体棒沿框架竖直滑下,且始终保持水平,它与框架间摩擦力为f ,如图所示,导体棒质量为m ,有效电阻R ,则ab 中感应电流的方向是:( ) A. b a → B. a b →C. 不存在D. 无法确定2.上题中ab 下滑过程中,加速度大小的变化是:( ) A .由小变大 B .由大变小 C .时大时小 D .不变3.上题中ab 下滑的最大速度等于:( )A. 22)(L B R f mg -B. 22L B mgRC. 22)(L B Rf mg + D. 22L B fR2、如图甲所示,一对足够长的平行粗糙导轨固定在水平面上,两导轨间距l =1m ,左端之间用R =3Ω的电阻连接,导轨的电阻忽略不计。

一根质量m =0.5kg 、电阻r =1Ω的导体杆静止置于两导轨上,并一两导轨垂直。

整个装置处于磁感应强度B =2T 的匀强磁场中,磁场方向垂直于导轨平面向上。

现用水平向右的拉力F 拉导体杆,拉力F 与时间t 的关系如图乙所示,导体杆恰好做匀加速直线运动。

在0~2s 内拉力F 所做的功为W,重力加速度g =10m/s 2。

求:(1)导体杆与导轨间的动摩擦因数μ; (2)在0~2s 内通过电阻R 的电量q ;(3) 在0~2s 内电阻R 上产生的热电量Q 。

bN3、如图,光滑斜面的倾角α=30°,一个矩形导体线框abcd 放在斜面内,ab 边水平,长度l 1=1m ,bc 边的长度l 2=0.6 m ,线框的质量m =1kg ,总电阻R =0.1Ω,线框通过细线与质量为m =2kg 的重物相连,细线绕过定滑轮,不计定滑轮对细线的摩擦,斜面上水平线ef 的右侧有垂直斜面向上的匀强磁场,磁感应强度B =0.5T ,如果线框从静止开始运动, 进入磁场最初一段时间是匀速的,ef 线和斜面最高处gh (gh 是水平的)的距离s =11.4m ,取g =10m /s 2,求(1)线框进入磁场时匀速运动的速度v : (2)ab 边运动到gh 线时的速度大小(二)双棒4. 如图所示,固定于水平桌面上足够长的两平行导轨PQ 、MN ,间距为d = 0.5m ,P 、M 两端接有一只理想电压表○V ,整个装置处于竖直向下的磁感强度B = 0.2T 的匀强磁场中,电阻均为 r = 0.1Ω,质量分别为m 1 = 300g 和m 2 = 500g 的两金属棒L 1,L 2平行地搁在光滑导轨上,现固定棒L 1,使棒L 2在水平恒力F = 0.8N 的作用下,由静止开始作加速运动。

电磁感应现象中的导轨问题(平衡与动力学)优质课

电磁感应现象中的导轨问题(平衡与动力学)优质课

电磁感应现象中的力学问题(平衡与动力学方程)导学者——桐庐中学郭金华学习目标:(一)知识与技能:1、熟知法拉第电磁感应定律、右手定则,安培力公式、左手定则,牛顿第二定律2、能解决电磁感应现象中导轨上的力电综合问题(平衡与动力学方程应用)。

(二)过程与方法:通过自主学习,合作交流等行为获得一条解决电磁感应现象中力学问题的方法。

(三)情感态度与价值观:提高自主学习的能力,合作交流的热情,养成在学习过程中注重寻找方法的意识。

学习重点:解决电磁感应现象中力学问题的方法得出。

学习难点:综合问题的分析能力,灵活的思维能力,方法意识的提高。

课堂学习:[自主学习-合作交流]例1:如图:水平面上有两根相距为L=0.5m 的足够长的平行光滑金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0Ω的定值电阻,导体棒ab的电阻为r=1.0Ω质量m=0.5kg,与导轨接触良好.整个装置处于方向竖直向下的匀强磁场中,磁感应器强度B=2T,问:(1)若导体棒在水平拉力作用下以8m/s的速度向右匀速直线运动,求该水平拉力多大?(2)第(1)题中若某时刻,该水平拉力突然变成3N,导体棒接下去将做什么运动?求出该导体棒的最终速度?当该导体棒速度达到最大速度10m/s时,求此时导体棒的加速度。

不平衡情况下的动态分析:(3)写出导体棒最终速度v m 与所加水平外力F 的关系式,画出v m -F 拉图像(4)若要该导体棒由静止开始做a=2m/s 2的匀加速直线运动,写出所需水平拉力F 拉与时间的关系式方法总结:[条件变式-自主学习-合作交流] 例2:如图水平面上两根足够长平行金属导轨,间距为L=0.5m ,一端接电阻R=0.5Ω;导轨上静止放置一质量m=0.5kg 的金属杆(电阻不计),匀强磁场竖直向下,B=1T 。

若金属杆在水平恒力作用下最终做8m/s 的匀速直线运动,已知动摩擦因数 =0.4,重力加速度g=10m/s 2,求:(1)该水平恒力F 大小(2)当金属杆速度为4m/s 时的加速度a (3)写出导体棒最终速度v 与水平恒力F 的关系式,作出v-F 关系图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当两杆分别沿相同方向运动时,相当于两个电池反向串联
[例3] 两根足够长的固定的平行金属导轨位于同一水平面内,两 导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩 形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回 路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上 的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地 滑行。开始时,棒cd静止,棒ab有指向棒cd的初速度v0。若两 导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?
三、电磁感应中的一个重要推论——安培力的 冲量公式
[例4] 如图所示,在光滑的水平面上,有一垂直 向下的匀强磁场分布在宽为L的区域内,有一个 边长为a(a<L)的正方形闭合线圈以初速v0垂 直磁场边界滑过磁场后速度变为v(v<v0)那么 ( ) A. 完全进入磁场中时线圈的速度大于(v0+v)/2 B. 安全进入磁场中时线圈的速度等于(v0+v)/2 C. 完全进入磁场中时线圈的速度小于(v0+v)/2 D. 以上情况A、B均有可能,而C是不可能的
匀速 I=0 (或恒定)
动-电动
v0
F
电-动-式
二、无外力双棒问题
基本模型
运动特点
杆1做a渐小 的减速运动
最终特征
a=0
无外力 不等距式
1
v0 2
I=0
杆2做a渐小 的加速运动
L1v1=L2v2
“双杆”向相反方向做匀速运动 [例2] 两根相距d=0.20m的平行金属长导轨固定在同一 水平面内,并处于竖直方向的匀强磁场中,磁场的磁 感应强度B=0.2T,导轨上面横放着两条金属细杆,构 成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中 其余部分的电阻可不计。已知两金属细杆在平行于导 轨的拉力的作用下沿导轨朝相反方向匀速平移,速度 大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共 产,足够长,其上放一质 量为m的金属棒ab,左端连接有一电容为C的电容器, 现给棒一个初速v0,使棒始终垂直框架并沿框架运 动,如图所示。求导体棒的最终速度。
电磁感应中的 导轨类问题
电 磁 感 应 受力情况分析 动力学观点 中 的 动量观点 导 运动情况分析 能量观点 轨 问 题
牛顿定律 平衡条件 动量定理
动量守恒
动能定理 能量守恒
一、单棒问题 基本模型 运动特点
a逐渐减小 的减速运动 a逐渐减小 的加速运动 a逐渐减小 的加速运动
最终特征
静止 I=0 匀速 I 恒定
相关文档
最新文档