电磁感应中的“杆导轨”类问题(3大模型)解题技巧
电磁感应中的“杆+导轨”类问题(3大模型)(解析版)
电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
高中物理老师呕心沥血总结的电磁感应“导棒-导轨”模型,太绝了
⾼中物理⽼师呕⼼沥⾎总结的电磁感应“导棒-导轨”模型,太绝了
单杆问题是电磁感应与电路、⼒学、能量综合应⽤的体现,往往成为物理⾼考的出题点,因此
相关问题应从以下⼏个⾓度去分析思考:
(1)电学⾓度:判断产⽣电磁感应现象的那⼀部分导体(电源)→利⽤或求感应动电动势的⼤⼩→利
⽤右⼿定则或楞次定律判断电流⽅向→分析电路结构→画等效电路图。
(2)⼒电⾓度:与“导体单棒”组成的闭合回路中的磁通量发⽣变化→导体棒产⽣感应电动势→感应
电流→导体棒受安培⼒→合外⼒变化→加速度变化→速度变化→感应电动势变化→……,循环结束
时加速度等于零,导体棒达到稳定运动状态。
(3)功能⾓度:电磁感应现象中,当外⼒克服安培⼒做功时,就有其他形式的能转化为电能;当
安培⼒做正功时,就有电能转化为其他形式的能。
(4)功能⾓度:电磁感应现象中,通过动量定理+微元法的视⾓,建⽴⼒、时间、速度三者关系;
从⽜顿第⼆定律+微元法的视⾓建⽴⼒、时间、位移三者关系。
单杆+⽔平导轨基本模型
单杆+导轨模型变形
发电式单杆模型
电容式单杆模型。
4.8专题:电磁感应现象中“杆+导轨”模型
(2)电阻R上产生热量Q=I2Rt=0.075 J
答案:(1)2 T (2)0.075 J
探究三 倾斜轨道
两根足够长的直金属导轨平行放置在倾角为 α 的绝缘斜面上,导轨间距为 L,导轨间连接一电 阻R ,质量为m,电阻为r的金属棒 ab与导轨垂直 并接触良好,其余部分电阻不计,整套装置处 于磁感应强度为 B的匀强磁场中,磁场方向垂直 斜面向下。不计它们之间的摩擦,重力加速度 为g 。
光滑水平放置的金属导轨间距为 L,导轨间连接 一电阻 R,质量为 m,电阻为 r的金属棒ab与导轨 接触良好,其余部分电阻不计。平面内有垂直 纸面向里的匀强磁场,磁感应强度为B
问题3:施加恒定外力 F 后,能量如何变化?能不能 从能量的视角求ab棒的最大速度?
能量角度分析:
v
a
F安
v
E BLv
问题1:施加恒定外力F后,ab棒的加速度 a,速度v 如何变化?
动力学角度分析:
v
a
F安
v
E BLv
E I= Rr
F安 BIL
a
F F安 m
a、v同向
当F安=F时,a=0,速度达到最大vm匀速
解:运动特征:加速度减小的 加速运动,最终匀速。 F=F安=BIL=B2L2Vm/(R+r) 可得:vm=F(R+r)/B2L2
示。(g取10 m/s2)求:
(1)磁感应强度B;
(2)杆在磁场中下落0.1 s的
过程中电阻R产生的热量。
【规范解答】(1)由图像知,杆自由下落0.1 s进入磁场以v= 1.0 m/s做匀速运动产生的电动势E=BLv 杆中的电流I=
E Rr
杆所受安培力F安=BIL 由平衡条件得mg=F安 代入数据得B=2 T
高考物理复习 电磁感应现象中的“杆+导轨”模型问题
电磁感应现象中的“杆+导轨”模型问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零。
变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
一、命题演变“杆+导轨”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.导轨(1)导轨的形状:常见导轨的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)导轨的闭合性:导轨本身可以不闭合,也可闭合; (3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)导轨的放置:水平、竖直、倾斜放置等等.[例1](2003·上海·22)如图1所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表法),R 1= 4Ω、R 2=8Ω(导轨其它部分电阻不计).导轨OAC 的形状满足方程y =2sin (3x )(单位:m ).磁感强度B=0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v=5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率; (3)在滑动过程中通过金属棒的电流I 与时间t 的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值. 又∵E=BLv总R EI =∴F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大值 ∵L max =22sinπ =2(m )38R 2121=+=R R R R 总(Ω)∴总R v L B F 2max 2max = 代入数据得F max =0.3(N )(2)R 1、R 2相并联,由电阻丝R 1上的功率121R E P =,可知当max L L =时P 1有最大功率,即140.522.0 222122max 212max max =⨯⨯===R v L B R E P (W ) (3)金属棒与导轨接触点间的长度随时间变化 L =2sin (3πx )(m )且x=vt ,E=BLv ∴ I=总总R BLv R E == 43sin (35πt )(A ) 2.金属棒(1)金属棒的受力情况:受安培力以外的拉力、阻力或仅受安培力;图1(2)金属棒的初始状态:静止或运动;(3)金属棒的运动状态:匀速、匀变速、非匀变速直线运动,转动; (4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线;(5)金属棒与导轨的连接:金属棒可整体或部分接入电路,即金属棒的有效长度问题. 3.磁场(1)磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化. (2)磁场的分布:有界或无界. 二、模型转换电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS nt nE ∆∆=∆∆Φ=)(,有下列四个模型转换: 1.B 变化,S 不变 (1)B 均匀变化 ①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例2第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例2第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.[例2](2000·上海·23)如图2所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大?(3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?解析:将加速度的定义式和电磁感应定律的表达式类比,弄清k 的物理意义,写出可与at v v t +=0相对照的B 的表达式kt B B +=0;第(3)问中B 、S 均在变化,要能抓住产生感应电流的条件(①回路闭合;②回路中有磁通量的变化)解题.(1)磁感强度均匀增加,每秒增量为k ,得k tB=∆∆ ∵感应电动势2S kl tBt E =∆∆=∆∆Φ=∴感应电流rkl r E I 2==由楞次定律可判定感应电流方向为逆时针,棒ab 上的电流方向为b →a . (2)t=t 1时,B=B 0+kt 1 又∵F=BIl∴rkl kt B F 310)(+=(3)∵棒中不产生感应电流 ∴回路中总磁通量不变 ∴Bl (l+vt )=B 0l 2 得vtl lB B +=02.B 不变,S 变化(1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为BLv E =,此类题型较常见,如例3.[例3](2002·上海·22)如图3所示,两条互相平行的光滑金属导轨位于水平面内,d图2距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg 的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:杆在水平外力F 和安培力的共同作用下做匀变速直线运动,加速度a 方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动;外力F 方向的判断方法:先假设,再根据结果的正负号判断.(1)感应电动势E=Blv ,感应电流I=RBlvR E =∴I=0时v=0∴x =av 2 2=1(m )(2)当杆的速度取最大速度v 0时,杆上有最大电流I m =RBlv 0RBlv I I m 22'0==安培力F 安=BI ’l=Rv l B 2022=0.02(N )向右运动时F+F 安=ma ,得F=ma- F 安=0.18(N ),方向与x 轴相反 向左运动时F- F 安=ma ,得F=ma+F 安=0.22(N ),方向与x 轴相反(3)开始时v=v 0,F 安=BI m l=R v l B 022F+F 安=ma ,F=ma- F 安=ma- Rv l B 022∴当v 0<22l B maR=10m/s 时,F >0,方向与x 轴相反当v 0>22l B maR=10m/s 时,F <0,方向与x 轴相同 (2)导轨变形导致S 变化常常根据法拉第电磁感应定律解题,如例4.[例4] (2001·上海·22)如图4所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆t B (T/s ),求L 1的功率. 解析:(1)当棒滑过圆环直径OO ’的瞬时,棒的有效长度为2a ,灯L 1、L 2是并联的. E 1=B 2av =0.2×0.8×5 =0.8(V )4.028.011===R E I (A ) (2)将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º后,圆环的有效面积为半圆.其中B 随时间是均匀变化的,注意此时灯L 1、L 2是串联的.32.0222=⨯∆∆=∆∆Φ=a t B t E π (V )RE P 221)2(==1.28×102(W ) 另外还可在S 不规则变化上做文章,如金属棒旋转、导轨呈三角形等等. 3. “双杆+导轨”模型[例5]足够长的光滑金属导轨E F ,P Q 水平放置,质量为m 电阻为R 的相同金属棒ab ,cd 与导轨垂直且接触良好,磁感强度为B 的匀强磁场垂直导轨平面向里如图5所示。
电磁感应中的“杆 导轨”类问题(3大模型)解题技巧
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【内化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。
完整版电磁感应定律单杆导轨模型含思路分析
单杆+导轨”模型1.单杆水平式(导轨光滑)注:加速度a的推导,a=F合/m (牛顿第二定律),F合=F-F安,F安=BIL ,匸E/R 整合一下即可得到答案。
v变大之后,根据上面得到的a的表达式,就能推出a变小这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1, 2s末是5, 3s末是6, 4s末是6.1,每秒钟速度的增加量都是在变小的)2.单杆倾斜式(导轨光滑)BLv T【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L二1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m= 0.1 kg,空间存在磁感应强度B= 0.5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R= 3.0約金属杆的电阻r 二1.0約其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F, 金属杆P由静止开始运动,图乙是金属杆P运动过程的v—t图象,导轨与金属杆间的动摩擦因数尸0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3 : 5。
g取10 m/s2。
求:(1)水平恒力F的大小;⑵前4 s内电阻R上产生的热量。
【答案】(1)0.75 N (2)1.8 J【解析】(1)由图乙可知金属杆P先做加速度减小的加速运动,2 s后做匀速直线运动当t= 2 s时,v= 4 m/s,此时感应电动势E= BLv感应电流1=吕R+ rB2I2v安培力F = BIL =R+ r根据牛顿运动定律有F —F '―卩m= 0解得 F = 0.75 N o过金JI杆p的电荷量厂"二磊^甘十);△型BLx所以尸驚qa为尸的位移)设第一个2 s內金属杆P的位移为Xi ;第二个肚内P的位移为助则二号g,又由于如:血=3 : 5麻立解得«=8mj IL=<8m前4 s内由能量守恒定律得其中 Q r : Q R = r : R = 1 : 3解得 Q R = 1.8 J o注:第二问的思路分析,要求 R 上产生的热量,就是焦耳热,首先想到的是公式Q=l2Rt ,但是在这里,前2s 的运动过程中,I 是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样), 所以这个思路行不通。
(含答案)应用动力学和能量观点解决电磁感应中的“导轨杆”模型问题.docx
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题一、基础知识1、模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题1=1的综合性强,物理情景变化空间人,是我们复习屮的难点.“导轨+杆” 模型乂分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2、常见模型二、练习解析 ⑴设卬在磁场区域"cd 内运动时间为d 乙从开始运动到〃位置的时间为/2, 则由运动学公式得1 21 八2 L =〒2gsin 〃・斤,L=㊁gsin 0・£解得旷pi 爲’/2=需£(i 分)因为“勺2,所以甲离开磁场时,乙还没有进入磁场.(1分)设乙进入磁场时的速度为可,乙屮产牛的感应电动势为E ],回路屮的电流为厶,贝IJ 如嶄=mgLsin 0(]分)E\=BdsQ 分) Zi=Ei/2R (l 分) mgsin O=BJ {d (\ 分)解得2鬱需9分)(2)从释放金属杆开始计时,设经过时间/,甲的速度为“,甲中产牛的感应电动势为E,回路中的电流为/,外力为F,则1、如图弄示,两根足够长、电阻• * • % I•• »«^ZW«I4 I ・♦ Jtf-rr-W •- V ,I与水平面夹角为趴导轨平面内的矩形区域血cd• • • • • • ••••■• • • •• ••• ••••・M • ••••••• • •••垂首干斜面向卜•血与cd ・间相原为・令爆杆• • • • • • ■ 9■•■•••• • • • •明确电路结构,挖掘隐含梅抿荐族状杰犒牢税图6・甲、乙的阻值相同,质址均为九甲杆锂雹场区域的上边界血处,乙杆上方与甲相更[处,甲、乙两杆都与导轨垂直II 接触KI 好•由静止样放两杆的同 时,在甲杆上施加一个垂直于杆平行丁•导轨的外力F,使甲杆在冇磁场的矩形区域 内向下做匀期速直线运动,加速度大小炉2gsin0,甲离开磁场时撤去化乙杆 进人磁场后恰好做匀速运动,然后离开磁场・(1)求毎根金属杆的电E/?fl 多大?(2)从释放金居杆开始计时,求外力F 随时间t 的变化关系式,并说明F 的方向.(3)若整个过程中,乙金届杆共产生热昴Q,求外力F 对甲金届杆做的功W 是多少?⑤岀于甲、乙秀杆串联,产生的史 只有甲杆在磁场中运动的过程,刑 功和重力做功使两杆的内能和甲*• • • • • • • • • • ■ • • • • ■■■增加.甲杆离开磁场后,乙杆;切 勞能转化为两杆的内能.②说明乙杆受力平衡「应远期断i 磁场时甲杆是否离开磁场.③先分析两杆在导轨上各自运动」时间,可輛用乙杆在磁场中的匀殳析求解电阻R. ④用牛顿第二定律、法拉第电磁总X.・• • •• ..合电路知识求解.①可如甲般外为卩平行寻編卸 变力.v=at(\分)E=Bdv(\分)I=E/2R(]分)F+wgsin O~BId=nia (\ 分) <7=2gsin 6联立以上各式解得方向垂直于杆平行于导轨向下.(1分)(3)甲在磁场运动过程中,乙没冇进入磁场,设甲离开磁场时速度为%,甲、乙产生的热量相同,均设为0,则vl=2aL(\ 分)W+〃?g 厶sin 0=2Q]+苏就(2 分)解得 W=20x+mgLsmO乙在磁场运动过程中,甲、乙产生相同的热量,均设为g ,贝IJ 2@=吨厶sin 0(2分) 根据题意有0=01+0(1分) 解得"=20(1分)gsin 0(2) F=〃7gsin&+〃gsin0、^^^2(OW/W 寸瓷 命 方向垂直于杆平行于导轨向下 (3) 202、如图甲所示,足够长的光滑平行金属导轨MM P0竖直放置,其宽度厶=1 m, 一匀强 磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为/?=0.40 Q 的电阻,质量 为加=0.01 kg 、电阻为厂=0.30 Q 的金属棒ah 紧贴在导轨上•现使金属林ab [Il 静止开 始下滑,下滑过程中弘始终保持水平,且与导轨接触良好,其下滑距离x 与时间/的 关系如图乙所示,图彖中的04段为曲线,M 段为直线,导轨电阻不计,g=10m/s 1 2 3(忽 略〃棒运动过程中对原磁场的影响),求:解析(1)金属棒在段匀速运动,山题中图象乙得:1 磁感应强度B 的大小;2 金属棒ab 在开始运动的1.5 s 内,通过电阻尺的电荷量;3 金属棒〃在开始运动的1.5 s 内,电阻上产牛的热量. 答案(1)0.1 T (2)0.67 C (3)0.26 JF=wgsin 0+加gsin 0怦.gw0=石=7 m/sBLumg=BIL解得3 = 0.1 T⑵q="F △/— A01 ={R+r)\t\S△°F解得:g = 0.67 C1 2 (3)Q=〃?gx_ 尹矿解得 2=0.455 J 从而0?=专屈=0.26 J3、如图所示,足够长的光滑平行金属导轨cd 和前水平放置,在其左端连接倾角为〃=37。
电磁感应现象中的“杆+导轨”模型问题(较全)
电磁感应现象中的“杆+导轨”模型问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零。
变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
一、命题演变“杆+导轨”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.导轨(1)导轨的形状:常见导轨的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)导轨的闭合性:导轨本身可以不闭合,也可闭合; (3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)导轨的放置:水平、竖直、倾斜放置等等.[例1](2003·上海·22)如图1所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表法),R 1= 4Ω、R 2=8Ω(导轨其它部分电阻不计).导轨OAC 的形状满足方程y =2sin (3x )(单位:m ).磁感强度B=0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v=5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率; (3)在滑动过程中通过金属棒的电流I 与时间t 的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值. 又∵E=BLv总R EI =∴F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大值 ∵L max =22sinπ =2(m )38R 2121=+=R R R R 总(Ω)∴总R v L B F 2max 2max = 代入数据得F max =0.3(N )(2)R 1、R 2相并联,由电阻丝R 1上的功率121R E P =,可知当max L L =时P 1有最大功率,即140.522.0 222122max 212max max =⨯⨯===R v L B R E P (W ) (3)金属棒与导轨接触点间的长度随时间变化 L =2sin (3πx )(m )且x=vt ,E=BLv ∴ I=总总R BLv R E == 43sin (35πt )(A ) 2.金属棒图1(1)金属棒的受力情况:受安培力以外的拉力、阻力或仅受安培力; (2)金属棒的初始状态:静止或运动;(3)金属棒的运动状态:匀速、匀变速、非匀变速直线运动,转动; (4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线;(5)金属棒与导轨的连接:金属棒可整体或部分接入电路,即金属棒的有效长度问题. 3.磁场(1)磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化. (2)磁场的分布:有界或无界. 二、模型转换电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS nt nE ∆∆=∆∆Φ=)(,有下列四个模型转换: 1.B 变化,S 不变 (1)B 均匀变化 ①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例2第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例2第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.[例2](2000·上海·23)如图2所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大?(3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?解析:将加速度的定义式和电磁感应定律的表达式类比,弄清k 的物理意义,写出可与at v v t +=0相对照的B 的表达式kt B B +=0;第(3)问中B 、S 均在变化,要能抓住产生感应电流的条件(①回路闭合;②回路中有磁通量的变化)解题.(1)磁感强度均匀增加,每秒增量为k ,得k tB=∆∆ ∵感应电动势2S kl tBt E =∆∆=∆∆Φ=∴感应电流rkl r E I 2==由楞次定律可判定感应电流方向为逆时针,棒ab 上的电流方向为b →a . (2)t=t 1时,B=B 0+kt 1 又∵F=BIl∴rkl kt B F 310)(+=(3)∵棒中不产生感应电流 ∴回路中总磁通量不变 ∴Bl (l+vt )=B 0l 2 得vtl lB B +=02.B 不变,S 变化(1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为d图2BLv E =,此类题型较常见,如例3.[例3](2002·上海·22)如图3所示,两条互相平行的光滑金属导轨位于水平面内,距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg 的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:杆在水平外力F 和安培力的共同作用下做匀变速直线运动,加速度a 方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动;外力F 方向的判断方法:先假设,再根据结果的正负号判断.(1)感应电动势E=Blv ,感应电流I=RBlvR E =∴I=0时v=0∴x =av 2 2=1(m )(2)当杆的速度取最大速度v 0时,杆上有最大电流I m =RBlv 0RBlv I I m 22'0==安培力F 安=BI ’l=Rv l B 2022=0.02(N )向右运动时F+F 安=ma ,得F=ma- F 安=0.18(N ),方向与x 轴相反 向左运动时F- F 安=ma ,得F=ma+F 安=0.22(N ),方向与x 轴相反(3)开始时v=v 0,F 安=BI m l=Rv l B 022F+F 安=ma ,F=ma- F 安=ma- Rv l B 022∴当v 0<22l B maR=10m/s 时,F >0,方向与x 轴相反 当v 0> 22lB maR=10m/s 时,F <0,方向与x 轴相同(2)导轨变形导致S 变化常常根据法拉第电磁感应定律解题,如例4.[例4] (2001·上海·22)如图4所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆t B (T/s ),求L 1的功率. 解析:(1)当棒滑过圆环直径OO ’的瞬时,棒的有效长度为2a ,灯L 1、L 2是并联的. E 1=B 2av =0.2×0.8×5 =0.8(V )4.028.011===R E I (A ) (2)将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º后,圆环的有效面积为半圆.其中B 随时间是均匀变化的,注意此时灯L 1、L 2是串联的.32.0222=⨯∆∆=∆∆Φ=a t B t E π (V )RE P 221)2(==1.28×102(W ) 图4另外还可在S 不规则变化上做文章,如金属棒旋转、导轨呈三角形等等. 3. “双杆+导轨”模型[例5]足够长的光滑金属导轨E F ,P Q 水平放置,质量为m 电阻为R 的相同金属棒ab ,cd 与导轨垂直且接触良好,磁感强度为B 的匀强磁场垂直导轨平面向里如图5所示。
电磁感应中的“杆+导轨”模型
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
(完整版)电磁感应导棒-导轨模型
电磁感应“导棒-导轨”问题专题一、“单棒”模型【破解策略】单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t∆Φ=∆或E BLv =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
<1> 单棒基本型00≠v 00=v示 意 图(阻尼式)单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L(电动式)轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L (发电式)轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定 力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力R vL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLEa =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力 ↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E= 开始时mFa =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由 a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m = 图 像 观 点能 量 观 点 动能全部转化为内能:2021mv Q =电能转化为动能W 电212mmv = F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 运动 状态变减速运动,最终静止变加速运动,最终匀直变加速运动,最终匀直<2> 单棒模型变形类型“发电式”有摩擦“发电式”斜轨变形示意图已知量棒ab长L,质量m,电阻R;导轨不光滑且水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析导体棒相当于电源,当速度为v时,电动势E=Blv;安培力为阻力,并随速度增大而增大22BB l vF BIl vR==∝加速度随速度增大而减小22--==--BF F mg F B l va gm m mRμμ(1) v=0时,有最大加速度mF mgamμ-=(2) a=0时,有最大速度22-=()mF mg RvB lμ棒ab释放后下滑,此时加速度a=singα,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=sinmgα时,a=0,v最大,最后匀速运动能量转化212E mFs Q mgS mvμ=++克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动22-=()mF mg RvB lμ匀速运动22vmmgRsinB Lα=二、“双棒”模型类型等间距水平光滑导轨无水平外力不等间距水平光滑导轨无水平外力等间距水平光滑导轨受水平外力竖直导轨示意图终态分析两导体棒以相同的速度做匀速运动若两杆m,r,L全相同,末速度为02v两导体棒以不同的速度做匀速运动若两杆m,r全相同,122l l=末速度为212v v=两导体棒以不同的速度做加速度相同的匀加速运动两导体棒以相同的速度做加速度相同的匀加速运动速度图象解题策略动量守恒定律,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识变形等间距水平不光滑导轨;受水平外力示意图速度图象F>2f2F f≤三、“电容”式单棒模型类型电容放电型电容无外力充电型电容有外力充电型示意图力学观点电容器放电,相当于电源;导体棒受安培力而运动。
高二物理:电磁感应中的“杆+导轨”模型
转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型
(完整版)高分策略之电磁感应中的杆+导轨模型
电磁感应现象中的杆4导轨模型一、单棒问题、含容式单棒问题三、无外力双棒问题竇力愣况分析动力学观点 *动量现点 运动情况伽能冒观点 牛輛定律 平衡羞件动能定理〕 幡■守恒无外力等距式1¥杆1做a渐小的加速运动杆2做a渐小的减速运动V1=V2I = 0无外力不等距式» 1杆1做a渐小的减速运动杆2做a渐小的加速运动a= 0I = 0L1V1 = L2V2四、有外力双棒问题题型一阻尼式单棒模型如图。
1 •电路特点:导体棒相当于电源。
4.运动特点:速度如图所示。
a减小的减速运动基本模型运动特点有外力等距式i厂F12杆1做a渐大的加速运动杆2做a渐小的加速运动有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动最终特征a i=a2, A v 恒定I恒定a i M a2, a i、a2恒定I恒定2•安培力的特点:安培力为阻力,并随速度减小而减小。
F B=BII= B+r3.加速度特点:加速度随速度减小而减小,a==5 •最终状态:静止 6.三个规律(1)能量关系:「'• ■ , -0 = Q ,=【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为 L 的区域内,那么(【答案】B由上述二式可得' ,- •,即B 选项正确。
【典例2】如图所示,AB 杆受一冲量作用后以初速度 V 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止. AB 的质量为m=5g 导轨宽为L=0.4m ,电阻为R=2Q ,其余的电阻不计,磁 感强度B=0.5T ,棒和导轨间的动摩擦因数为卩=0.4 ,测得杆从运动到停止的过程中通过导线的(2)动量关系:BII t 0 mv 0(3)瞬时加速度: a ==-有一个边长为a ( a<L )的正方形闭合线圈以初速V 0垂直磁场边界滑过磁场后速度变为V ( V<V 0)A. 完全进入磁场中时线圈的速度大于( v o +v ) /2B. 安全进入磁场中时线圈的速度等于( V o +V ) /2C. 完全进入磁场中时线圈的速度小于(V o +V ) /2D. 以上情况A B 均有可能,而C 是不可能的【解析】设线圈完全进入磁场中时的速度为对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:V x 。
电磁感应中的杆和导轨问题
电磁感应中的杆+导轨问题“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。
导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。
下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。
需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。
1.单杆水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a=Fm -=B2L2vmR,a、v同向,随速度的增加,棒的加速度a减小,当a=0时,v最大,电流I=BLv mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化2.单杆倾斜式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F =BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,速度达到最大v m=mgR sin αB2L2收运动形式匀速直线运动尾状态力学特征 受力平衡,a =0电学特征I 不再变化3、有初速度的单杆物理模型杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L动态分析杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLv R ,安培力F =BIL =B 2L 2vR.杆做减速运动:v ↓?F ↓?a ↓,当v =0时,a =0,杆保持静止能量转化情况动能全部转化为内能:Q =12mv 24、含有电容器的单杆物理模型轨道水平光滑,单杆ab 质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定动态分析开始时a=Fm,杆ab速度v?感应电动势E=BLv,经过时间Δt速度为v+Δv,此时感应电动势E′=BL(v+Δv),Δt时间内流入电容器的电荷量Δq=CE′-C E=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa (所以电流的大小恒定)安培力F安=BLI=CB2L2a(所以安培力的大小恒定)F-F安=ma,a=Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量转化情况F做的功使其它形式的能E其它一部分转化为动能,一部分转化为电场能E电场能:W F=E其它=12mv2+E电场能5、含有电源时的单杆物理模型轨道水平光滑,单杆ab质量为m,电阻不计,两导轨间距为L。
电磁感应中杆-导轨模型专题
电磁感应中杆-导轨模型专题对杆在导轨上运动组成的系统,杆在运动中切割磁感线产生感应电动势,并受到安培力的作用改变运动状态最终达到稳定的运动状态,该系统称为“杆+导轨”模型.“杆+导轨”模型中杆有单杆和双杆之分,导轨可分为水平、竖直、倾斜导轨.求解此类问题的关键有三点:1.电路结构分析分析电路结构找出电源;用电器及其参数2.动力学分析(1)受力分析:杆一般会受到重力、支持力、摩擦力、拉力、安培力,确定哪些力为变力,哪些力为恒力,按效果把力分为动力和阻力(必要时使用力的合成与分解)(2)动态分析:由牛顿第二定律确定加速度的表达式,结合初速度判断杆是加速还是减速,按照下面模式分析:直至确定收尾状态(3)常见收尾状态:①静止;②匀速直线运动;③匀加速直线运动.●3.能量分析●①动能定理Ek′-Ek=W安+W其他力;●②棒的动能、电路中的电能、其他能的转化与守恒.一.单杆--导轨模型1、导轨(1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等;(2)导轨的闭合性:导轨本身可以不闭合,也可闭合;(3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻;(4)导轨的放置:水平、竖直、倾斜放置等等.幻灯片5[例1] 如图1所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中粗线表法),R1= 4Ω、R2=8Ω(导轨其它部分电阻不计).导轨OAC的形状满足方程)(3sin2mxyπ=(单位:m).磁感强度B=0.2T的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻.求:(1)外力F的最大值;(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率;(3)在滑动过程中通过金属棒的电流I与时间t的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值.∵E=BLv , 总R E I = , F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大 Lmax=2m22sin=π Ω382121R R R R ==+总R代入数据得Fmax=0.3(N )(2)R1、R2相并联,由电阻丝R1上的功率121R E P =,可知当max L L =时P1有最大功率,即121R E P =m 22sin =π总R v L B 22(W )图1图1(3)金属棒与导轨接触点间的长度随时间变化)(sin 23m x L π=且x=vt ,E=BLv)(35sin 43B A t R lV R E I π==总总=∴A .随着ab 运动速度的增大,其加速度也增大B .外力F 对ab 做的功等于电路中产生的电能C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能设ab 的速度为v ,运动的加速度a =F -B 2l 2v R m ,随着v 的增大,ab 由静止先做加速度逐渐减小的加速运动,当a =0后做匀速运动,则A 选项错误;由能量守恒知,外力F 对ab 做的功等于电路中产生的电能和ab 增加的动能之和,ab 克服安培力做的功一定等于电路中产生的电能,则B 选项错误,D 选项正确;答案CD2. 如图2所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他电阻均不计,磁感应强度为B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一 水平恒力F 作用下由静止开始向右运动.则 ( )。
电磁感应中“滑轨”问题归类例析
电磁感应中“滑轨”问题归类例析导体杆切割磁感线的四类问题:1、运动性质问题分析:稳定运动的性质(可能为静止、匀速运动、匀加速运动)、求出稳定的速度或加速度、求达到稳定的过程中发生的位移或相对位移等2、感应电动势、电流、电势差问题:3、能量转化的问题:如产生的电热、机械功率等4、求通过回路的电量问题:q nR rφ∆=+ 解题的方法思路:(1)首先受力分析和运动分析。
(2)然后运用动能定理、或动量定理、动量守恒以及能量守恒建立方程。
情景模型分三类:单杆滑、双杆滑、轨道滑以及绳连的“双杆滑动”问题。
一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
解析:(1)ab 运动切割磁感线产生感应电动势E ,所以ab 相当于电源,与外电阻R 构成回路。
∴U ab =232R BLv BLvRR =+(2)若无外力作用则ab 在安培力作用下做减速运动,最终静止。
动能全部转化为电热,221mv Q =。
由动量定理得:mv Ft =即mv BILt =,It q =∴BLmv q =。
3322BLx mv q BL R R φ∆===,得 2223L B mvRx =。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.解析:该题是一道考察电磁感应、安培力、闭合电路欧姆定律及力学有关知识的综合题,解题的关键是要正确分析金属杆的运动及受力的变化情况。
电磁感应中导轨+杆模型
电磁感应中导轨+杆模型摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
关键词:安培力,稳定速度,安培力做的功和热量解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。
电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。
下面我就具体给大家总结一下此类问题。
一模型特点1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。
2导体棒在导轨上切割磁感线运动,发生电磁感应现象3导体棒受到的安培力为变力,在安培力的作用下做变加速运动4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度二解题思路1涉及瞬时速度问题,用牛顿第二定律求解2求解导体棒稳定速度,用平衡条件求解3涉及能量问题,用动能定理或者功能关系求解.其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做的功:Q=W三两类常见的模型例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。
质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。
初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。
整个运动过程中导体棒始终与导轨垂直并保持良好接触。
已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行。
⑴求初始时刻通过电阻R 的电流I 的大小和方向;⑵当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;⑶导体棒最终静止时弹簧的弹性势能为Ep ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q 。
热点专题系列6 电磁感应中的“杆和导轨、导线框”
热点专题系列(六) 电磁感应中的“杆和导轨、导线框”模型对应学生用书P313 热点概述:电磁感应中的“杆和导轨、导线框”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。
[热点透析]单杆模型v0≠0v0=0示意图质量为m、电阻不计的导体杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定力学观点导体杆以速度v切割磁感线产生感应电动势E=BL v,电流I=ER=BL vR,安培力F=BIL=B2L2vR,做减速运动:vS闭合,杆ab受安培力F=BLEr,此时a=BLEmr,杆ab速度v⇒感应电动势BL v⇒I⇒安开始时a=Fm,杆ab速度v⇒感应电动势E=BL v⇒I⇒安培力F安=BIL,由F-F安=ma知a,当a开始时a=Fm,杆ab速度v⇒感应电动势E=BL v,经过Δt速度为v+Δv,此时感应电动势E′=BL(v+Δv),⇒F⇒a,当v=0时,F =0,a=0,杆保持静止培力F=BIL⇒加速度a,当E感=E时,v最大,且v m=EBL=0时,v最大,v m=FRB2L2Δt时间内流入电容器的电荷量Δq=CΔU=C(E′-E)=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2aF-F安=ma,a=Fm+B2L2C,所以杆以恒定的加速度匀加速运动运动图像能量观点动能全部转化为内能:Q=12m v20电源输出的电能转化为动能:W电=12m v2mF做的功一部分转化为杆的动能,一部分产生电热:W F=Q+12m v2mF做的功一部分转化为动能,一部分转化为电场能:W F=12m v2+E C注:(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
【答案】:见解析【解析】:分析金属杆运动时的受力情况可知,金属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有:F -mg sin θ-F 安-f =ma又F 安=BIL ,I =ER +R =BLv R +R ,所以F 安=BIL =B 2L 2v R +Rf =μN =μmg cos θ 故F -mg sin θ-B 2L 2vR +R-μmg cos θ=ma当速度v =0时,杆的加速度最大,最大加速度a m =Fm -g sin θ-μg cos θ,方向沿导轨平面向上当杆的加速度a =0时,速度最大,v m =222)cos sin (L B Rmg mg F ⋅--θμθ。
类型二:单杆+电容器(或电源)+导轨模型类【初建模型】【例题2】(2017·模拟)如图所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面,相距为L 。
一质量为m 的导体棒cd 垂直于MN 、PQ 放在轨道而上,与轨道接触良好。
轨道和导体棒的电阻均不计。
(1)如图1所示,若轨道左端M 、P 间接一阻值为R 的电阻,导体棒在拉力F 的作用下以速度v 沿轨道做匀速运动。
请通过公式推导证明:在任意一段时间Δt ,拉力F 所做的功与电路获得的电能相等。
(2)如图2所示,若轨道左端接一电动势为E、阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度v m,求此时电源的输出功率。
(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。
电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。
求导体棒运动过程中受到的水平拉力大小。
【思路点拨】:(1)导体棒匀速运动→受力平衡→求出拉力做的功。
导体棒切割磁感线产生感应电动势→产生感应电流→求出回路的电能。
(2)闭合开关S→导体棒变加速运动→产生的感应电动势不断增大→达到电源的路端电压→棒中没有电流→由此可求出电源与电阻所在回路的电流→电源的输出功率。
(3)导体棒在外力作用下运动→回路中形成充电电流→导体棒还受安培力的作用→由牛顿第二定律列式分析。
【答案】:见解析【解析】:(1)导体棒切割磁感线,E=BLv导体棒做匀速运动,F=F安,又F安=BIL,其中I=ER在任意一段时间Δt,拉力F所做的功W=FvΔt=F安vΔt=B2L2v2 RΔt电路获得的电能ΔE=qE=EIΔt=B2L2v2 RΔt可见,在任意一段时间Δt,拉力F所做的功与电路获得的电能相等。
(2)导体棒达到最大速度v m时,棒中没有电流,电源的路端电压U=BLv m电源与电阻所在回路的电流I=E-U r电源的输出功率P=UI=EBLv m-B2L2v m2r。
(3)感应电动势与电容器两极板间的电势差相等BLv=U由电容器的U-t图可知U=U1 t1 t导体棒的速度随时间变化的关系为v=U1 BLt1t可知导体棒做匀加速直线运动,其加速度a=U1 BLt1由C=QU和I=Qt,得I=CUt=CU1t1由牛顿第二定律有F-BIL=ma可得F=BLCU1t1+mU1BLt1。
【化模型】单杆+电容器(或电源)+导轨模型四种题型剖析【变式】:例题2第(3)问变成,图3中导体棒在恒定水平外力F作用下,从静止开始运动,导轨与棒间的动摩擦因数为μ,写出导体棒的速度大小随时间变化的关系式。
【答案】:v=F-μmgm+CB2L2t【解析】:导体棒由静止开始做加速运动,电容器所带电荷量不断增加,电路中将形成充电电流,设某时刻棒的速度为v,则感应电动势为:E=BLv电容器所带电荷量为:Q=CE=CBLv再经过很短一段时间Δt,电容器两端电压的增量和电荷量的增量分别为ΔU=ΔE=BLΔv ΔQ=CΔU=CBLΔv流过导体棒的电流:I=ΔQΔt=CBLΔvΔt=CBLa导体棒受到的安培力:f1=BIL=CB2L2a 导体棒所受到的摩擦力:f2=μmg由牛顿第二定律得:F-f1-f2=ma联立以上各式解得:a=F-μmg m+CB2L2显然导体棒做匀加速直线运动,所以导体棒的速度大小随时间变化的关系式为:v=F-μmgm+CB2L2t。
类型三:双杆+导轨模型类【初建模型】【例题3】(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。
(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab和cd,构成矩形回路。
在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd的初速度。
若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。
【思路点拨】:(1)金属杆甲运动产生感应电动势→回路中有感应电流→乙受安培力的作用做加速运动→可求出某时刻回路中的总感应电动势→由牛顿第二定律列式判断。
(2)导体棒ab运动,回路中有感应电流→分析两导体棒的受力情况→分析导体棒的运动情况,即可得出结论。
【答案】:见解析【解析】:(1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a2,受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2) ①感应电流为:I=E2R②对甲和乙分别由牛顿第二定律得:F-F1=ma1,F1=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得a1=a2=F2m⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大。
(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流。
ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速。
两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动。
【化模型】三大观点透彻解读双杆模型示意图力学观点图像观点能量观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动棒1动能的减少量=棒2动能的增加量+焦耳热两棒以相同的加速度做匀加速直线运动外力做的功=棒1的动能+棒2的动能+焦耳热【变式】:若例题3(1)中甲、乙两金属杆受恒力作用情况如图所示,两杆分别在方向相反的恒力作用下运动(两杆不会相撞),试分析这种情况下甲、乙金属杆的收尾运动情况。
【答案】:见解析【解析】:设某时刻甲和乙的速度分别为v1和v2,加速度分别为a1和a2,甲、乙受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2) ①感应电流为:I=E2R②对甲和乙分别应用牛顿第二定律得:F1-BIl=ma1,BIl-F2=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得:a1=a2=F1-F22m⑤可见甲、乙两金属杆最终做加速度相同的匀加速运动,速度一直增大。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧训练题1.如图所示,一对光滑的平行金属导轨固定在同一水平面,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻。
一质量m=0.1kg、电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T。
棒在水平向右的外力作用下由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1。
导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。
求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F。
2.(2017·检测)如图所示,水平面有两根足够长的平行导轨L1、L2,其间距d=0.5m,左端接有容量C=2000μF的电容。
质量m=20g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。