中考数学复习“1 1 3”专项训练(12) 苏科版【教案】

合集下载

中考数学复习“113”专项训练(2)苏科版【教案】

中考数学复习“113”专项训练(2)苏科版【教案】

2013 年九年级数学中考复习讲义系列-----每周一练(2)时间: 60 分钟总分:40分姓名得分1.已知⊙O1与⊙O2外切于点A,⊙O1的半径R= 2,⊙O2的半径r= 1,则与⊙O1、⊙O2相切,且半径为 4 的圆有 ( )A.2 个B.4个C.5个D. 6 个2.已知等腰梯形ABCD中, A (-3,0), B (4,0),C(2,2),3一条直线 y=-2x+ b 将梯形 ABCD面积平分,则b=.3. 某玩具由一个圆形地区和一个扇形地区构成,如图,在⊙ O1和扇形O2CD中,⊙O1与O2C、O2D 分别相切于A、B, CO2 D 60 ,E、F事直线 O1O2与⊙ O、扇形O2CD的两个交点,1EF=24cm,设⊙ O 的半径为x cm,1①用含 x 的代数式表示扇形O2CD的半径;C②若和⊙ O1扇形O2CD两个地区的制作成安分别为0.45 元/cm2AO2 EO1和 0.06 元/ cm2F ,当的⊙ O1半径为多少时,该玩具成本最小?BD4. 一家计算机专买店A型计算器每只进价12元,售价20 元,多买优惠:凡是一次买10- 1 -只以上的,每多买一只,所买的所有计算器每只就降低0.10 元,比如,某人买20 只计算器,于是每只降价0.10 ×( 20-10 )= 1(元),所以,所买的所有20 只计算器都按每只19 元的价钱购置.可是最廉价为每只16 元.(1)求一次起码买多少只,才能以最廉价购置?(2)写出专买店当一次销售x(x> 10)只时,所获收益y元)与x(只)之间的函数关系式,并写出自变量 x 的取值范围;(3)一天,甲买了 46 只,乙买了 50 只,店东却发现卖 46 只赚的钱反而比卖 50 只赚的钱多,你能用数学知识解说这一现象吗?为了不出现这类现象,在其余优惠条件不变的状况下,店家应把最廉价每只 16 元起码提升到多少?5.在直角坐标系中,O为坐标原点,点 A 的坐标为( 2,2),点 C 是线段 OA上的一个动点(不运动至 O, A 两点),过点 C 作 CD⊥ x 轴,垂足为 D,以 CD为边在右边作正方形CDEF. 连结AF 并延伸交x 轴的正半轴于点B,连结 OF,设 OD= t.⑴求 tan ∠FOB的值;⑵用含 t 的代数式表示△OAB的面积 S;⑶能否存在点C,使以,,F为极点的三角形与△相像,若存在,恳求出所有满B E OFE足要求的 B 点的坐标;若不存在,请说明原因.yAC FO D E BxyA- 2 -O xyAO x1. A7243.- 3 -4.1x 20 0.1(x 10)16x 50504210 x ≤ 50y[20 0.1(x 10) 12] x 0.1x 29x6 x 50y(20 16) x 4x83 y0.1x 2 9x0.1(x 45)2202.510 x ≤ 45y x45 x ≤ 50yxx 46 y 1=202.4x50y =200102y 1 y 2 4650x 4520 0.1(45 10) 16.51616.5.125(1) A(2,2)AOB=45°CD=OD=DE=EF=tan FOBt 1t2t 2(2)ACFAOB222t t OB2t 2t (0 t 2)22 tS OAB2 OB2 t(3)BEFOFE,FEO= FEB=90°OEEF OEEF:BE2t EB1 t EBEF EF EB2BE2t ,BO 4t ,2t4tt() t3 B(6,0)2 t2EB1t ,2()BE,OB OE EB3t ,2- 4 -∴ 2tt3 t ∴ t0 ( 舍去 ) 或 t2 ∴ B(1,0)2 23(ⅱ)当 B 在 E 的右边时 , OBOE EB5t ,2∴ 2tt5 t ∴ t0 ( 舍去 ) 或 t6 ∴ B(3,0)2 25- 5 -。

中考数学复习“1 1 3”专项训练(11) 苏科版【教案】

中考数学复习“1 1 3”专项训练(11) 苏科版【教案】

2013年九年级数学中考复习讲义系列-----每周一练(11)时间:60分钟 姓名 得分1.正比例函数(1)y a x =+的图象经过第二、四象限,若a 同时满足方程22(12)0x a x a +-+=,则此方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根D.不能确定2.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成600的角,在直线上取一点P ,使∠APB =300,则满足条件的点P 有 个.3.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q (元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本) (2)求图2中表示一件商品的成本Q (元)与时间t (月)之间的函数关系式; (3)你能求出3月份至7月份一件商品的利润W (元)与时间t (月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?MQ4.如图,已知△ABC ,AC =BC =6,∠C =90°.O 是AB 的中点,⊙O 与AC 相切于点D 、与BC相切于点E .设⊙O 交OB 于F ,连DF 并延长交CB 的延长线于G .(1)∠BFG 与∠BGF 是否相等?为什么?(2)求由DG 、GE 和弧ED 围成图形的面积(阴影部分).5.如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.1.22.543. 解:(1)由图象知:一件商品在3月份出售时的利润为5元.(2)由图知,抛物线的顶点为(6,4),故可设抛物线的解析式为4)6(2+-=t a Q . ∵抛物线过(3,1)点,∴14)63(2=+-a . 解得31-=a . 故抛物线的解析式为4)6(312+--=x Q ,即84312-+-=t t Q ,其中t =3,4,5,6,7.(3)设每件商品的售价M (元)与时间t (月)之间的函数关系式为b kt M +=. ∵线段经过(3,6)、(6,8)两点,∴⎩⎨⎧=+=+.8663b k b k , 解得⎪⎩⎪⎨⎧==.432b k ,∴432+=t M ,其中t =3,4,5,6,7. ∴一件商品的利润W (元)与时间t (月)的函数关系式为:Q M W -==)8431()432(2-+--+t t t =12310312+-t t . 即311)5(312+-=t W ,其中t =3,4,5,6,7. 当t =5时,W 有最小值为311元, ∴30000件商品一个月内售完至少获利=⨯31130000110000(元). 答:该公司一个月内至少获利110000元. 4. (1)∠BFG =∠BGF连OD ,∵OD =OF (⊙O 的半径), ∴∠ODF =∠OFD∵⊙O 与AC 相切于点D ,∴OD ⊥AC 又∵∠C =90°,即GC ⊥AC ,OD ∥GC ∴∠BGF =∠ODF又∵∠BFG =∠OFD ,∴∠BFG =∠BGF (2)连OE ,则ODCE 为正方形且边长为3∵∠BFG =∠BGF∴BG =BF =OB -OF =32-3∴阴影部分的面积=△DCG 的面积-(正方形ODCE 的面积-扇形ODE 的面积) =21·3·(3+32)-(32-41π·32)=π49+229-495. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1. 设所求二次函数的关系式为y=a(x-1)2.∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1. (2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E =(x+1)-(x 2-2x+1) =-x 2+3x. 即h=-x 2+3x (0<x <3). (3) 存在.解法1:要使四边形DCEP 是平行四边形,必需有PE=DC. ∵ 点D 在直线y=x+1上,∴ 点D 的坐标为(1,2),∴ -x 2+3x=2 . 即x 2-3x+2=0 .解之,得 x 1=2,x 2=1 (不合题意,舍去) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. 解法2:要使四边形DCEP 是平行四边形,必需有BP ∥CE. 设直线CE 的函数关系式为y=x+b.∵ 直线CE 经过点C(1,0), ∴ 0=1+b,∴ b=-1 .∴ 直线CE 的函数关系式为y=x -1 .∴ ⎩⎨⎧+-=-=1212x x y x y 得x 2-3x+2=0.解之,得 x 1=2,x 2=1 (不合题意,舍去)∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形.。

初三数学专题复习教案

初三数学专题复习教案

初三数学专题复习教案【篇一:2016年数学中考第一轮复习整套教案(完整版)】中考数学一轮复习资料第一轮复习的目的1、第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

我要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容我还重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮复习的步骤、方法(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义(2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.(3)基本训练反复进行:学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张”题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下”盲棋”一样,只需用脑子默想,即能得到正确答案.这就是我们在常言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,”熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会”粗心”地出错3、数学:过来人谈中考复习数学巧用“两段”法中考数学复习大致分为两个阶段。

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)一、单选题1.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和往常一样的玻璃,你认为她带哪两块去玻璃店了。

()A.带其中的任意两块B.带1,4或3,4就能够了C.带1,4或2,4就能够了D.带1,4或2,4或3,4均可2.使两个直角三角形全等的条件是()A.斜边相等B.一锐角对应相等C.两锐角对应相等 D.两直角边对应相等3.如图,∠ACB=90°,CD⊥AB,则∠1与∠B的关系是()A.互余B.互补C.相等D.不确定4.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2B.3C.4D.55.小明同学画角平分,作法如下:①以O为圆心,适当长为半径作弧,交两边于D、E②分别以C、D为圆心,相同的长度为半径作弧,两弧交于E,③则射线OE确实是∠AOB的平分线.小明如此做的依据是()A.SASB.ASAC.AASD.SSS6.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=DE2 .其中正确的结论有()A.1个B.2个C.3个D.4个7.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,因此测得ED的长确实是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.如图所示,亮亮书上的三角形被墨迹污染了一部分,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASAB.AASC.SASD.SSS9.下面关于直角三角形的全等的判定,不正确的是()A.有一锐角和一边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两角对应相等,且有一条公共边的两个直角三角形全等D.有两角和一边对应相等的两个直角三角形全等二、填空题10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,运算图中阴影部分的面积S是________11.如图,在Rt△ABC中,∠B=90°,CD平分∠ACB,过点D作DE ⊥AC于点E,若AE=4,AB=10,则△ADE的周长为________.12.如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.假如A B=6,BD=5,AD=4,那么BC的长度是________13.判定两个直角三角形全等的方法有________.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD ≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).15.在数学综合实践活动课上,张老师给了各活动小组大直角三角板一个、皮尺一条,测量如图所示小河的宽度(A为河岸边一棵柳树).小颖是如此做的:①在A点的对岸作直线MN;②用三角板作AB⊥MN垂足为B;③在直线MN取两点C、D,使BC=CD;④过D作DE⊥MN交AC的延长线于E,由三角形全等可知DE的长度等于河宽AB.在以上的做法中,△ABC≌△DEC的依照是________16.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是________.17.已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“ASA”为依据,还要添加的条件为________.18.如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:________,并给予证明.三、解答题19.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:PE=PF;20.现有10个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:在图1中用实线画出分割线,并在图2的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.四、综合题21.如图,在△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:AG平分∠BAC;(2)若∠E=40°,求∠AGB的度数.答案解析部分一、单选题1.【答案】D【考点】全等三角形的应用【解析】【解答】由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,因此两块玻璃一样;同理,3,4中有两角夹一边(AAS),同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故答案为:D.【分析】观看图形,可知利用全等三角形的判定方法:ASA,可得出答案。

中考数学复习“1 1 3”专项训练(8) 苏科版【教案】

中考数学复习“1 1 3”专项训练(8) 苏科版【教案】

2013年九年级数学中考复习讲义系列-----每周一练(8)时间:60分钟 总分 :40分 姓名 得分1.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =, 点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60 得到线段OD .要使点D 恰好落在BC 上,则AP 的长为 。

2.如图是一个由正方形ABCD 和半圆O 组成的封闭图形,点O 是圆心.点P 从点A 出发,沿线段AB 、弧BC 和线段CD 匀速运动,到达终点D .运动过程中OP 扫过的面积(s )随时间(t )变化的图象大致是( )3.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:数(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x 的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y (元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x的变化情况满足二次函数y =- 120x 2+bx +c . ,请求出5月份y 与x 的函数关系式 (3)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 14x +1.2,5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =51-x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?4.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.5.如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在,请说明理由.第5题图1.62.C3、(1)通过观察可见四月份周数y 与x 的符合一次函数关系式:y =0.2x +1.8;(2)将(1,2.8)(2,2.4)代入y =- 1 20 x 2+bx +c .可得:12.82012.425b c b c ⎧=-++⎪⎪⎨⎪=-++⎪⎩解之:143.1b c ⎧=-⎪⎨⎪=⎩即y =120-x 2 14-x +3.(1)4月份此种蔬菜利润可表示为: W 1=y -m =(0.2x +1.8)-( 14 x +1.2),即: W 1=-0.05x +0.6 5月份此种蔬菜利润可表示为: W 2=y -m=(120-x 2 14-x +3.1)-( 1 5 x +2.),即: W 2=120-x 2 920-x +1.1由函数解析式可知,四月份的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W =-0.05×1+0.6=0.55(元/千克)由函数解析式可知,五月份的利润随周数变化符合二次函数且对称轴为:x =922b a -=-,即在第1至4周的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W =120-920-+1.1=0.6(元/千克)4.(1)证明: ∵∠BAC =90° AB =AC =6,D 为BC 中点 ∴∠BAD =∠DAC =∠B =∠C =45° ····· 1分 ∴AD =BD =DC ············ 2分. ∵AE =CF ∴△AED ≌△CFD ······· 3分 (2)依题意有:FC =AE =x ········· 4分 ∵△AED ≌△CFD∴ADF CFD ADF AED AEDF S S S S S ∆∆∆∆+=+=四边形 =S △ADC =9∴9321)6(2192+-=--=-=∆∆x x x x S S S AEF AEDF EDF 四边形 ∴93212+-=x x y (3) 依题意有:AF =BE =x -6,AD =DB ,∠ABD =∠DAC =45° ∴∠DAF =∠DBE =135° ········· 8分 ∴△ADF ≌△BDE ············ 9分 ∴ADF BDES S ∆∆=··········· 10分第26题图1∴EDF EAF ADBS S S ∆∆∆=+········ 11分 211(6)93922x x x x =-+=-+ ∴93212+-=x x y5 答:(1)设抛物线的解析式为c bx ax y ++=2,由题意知点A (0,-12),所以12-=c , 又18a+c=0,32=a , ∵AB ∥CD,且AB=6, ∴抛物线的对称轴是32=-=abx . ∴4-=b .所以抛物线的解析式为124322--=x x y . (2)①9)3(6)6(22122+--=+-=-⋅⋅=t t t t t S ,()60≤≤t . ②当3=t 时,S 取最大值为9。

苏科版七年级数学上册专题复习一 第一 三章 教案

苏科版七年级数学上册专题复习一 第一 三章 教案

专题复习(一)(第一-----三章)姓名-----------------------------------____________ 班级__________________相关知识点:一、有理数的概念(正数、负数)二、相反数、数轴、绝对值、倒数的应用 三、有理数的大小比较 四、有理数的运算法则 五、科学计数法的表示 六、列代数式七、整式的概念(单项式、多项式) 八、求代数式的值 九、合并同类项十、整式的加减运算法则一、填空题:1、5-的相反数是______,5-的倒数是______,5-的绝对值是______;2、数轴上,3和5.2-所对应的点之间的距离是 ___.3、一个数平方等于它本身,则这个数是________;一个数的立方等于它本身,则这个数是_________;4、若a 、b 互为倒数, 则4ab= .5、(1)若==x x x 那么,1______; (2)若=-=m m m 那么,______;6、(1)若7=x ,则x =______;(2)若aa a 那,=_____0; (3)小于3的正整数有______;7、找规律,在( )内填上适当的数. 2, 7, 12, 17,( ), ( ) 8、看看前面的数,在后面的, , 处可以填写什么数358129、若|a-1|+|b+2|=0,则a=________,b=_______10、某工厂计划每月生产机床300台,1月份实际生产350台,记作+50台,那么2月份实际生产280台,记作_____________ 11、比较大小:32-- ______ 43- (填“<”、“=”或“>”) 12、按照“神舟”六号飞船环境控制与生命保障系统的设计指标,“神舟”六号飞船返回舱的温度为21℃±4℃,则该返回舱的最低温度为 ℃.13、____________)1()1(20032002=-+- 14、你的“24点游戏”玩得怎么样了?请你将“2,-3,4,6”这四个数添加“+、―、×、÷”和括号进行运算,使其计算结果为24,这个算式是 。

中考数学 二次函数复习教案1 苏科版-苏科版初中九年级全册数学教案

中考数学 二次函数复习教案1 苏科版-苏科版初中九年级全册数学教案

二次函数2、抛物线y=(x -2)2+3的对称轴是( )A 、直线x=-3B 、直线x=3C 、直线x=-2D 、直线x=2 3.抛物线y=5(x-7)2-2的顶点坐标是( )A.(-7,-2)B.(7,2)C.(-7,2)D.(7,-2) 4、抛物线y=x 2-4x -4的顶点坐标为;5.若抛物线y=ax 2+bx+c 经过(-3,5),(7,5),则此抛物线的对称轴是.6.抛物线 的顶点坐标是( ).(A)(-1,-3) (B)(1,3) (C)(-1,8) (D)(1,-8) 7.对于函数y=-x 2,下列结论中不正确的是( ) A.图象开口方向向下;B.整个函数图象在x 轴下方; C.当x=0时,函数有最大值y=0;D.图象关于y 轴对称. 请你找出下列抛物线的有关结论:1、请你写出函数y=(x+1)2与y=x 2+1具有的一个共同性质。

2.二次函数y=2x 2-8x+c 的最小值是0,那么c 的值等于 . 3.抛物线y=ax 2+bx+c 的图象如图,当x 时,y 随着x 的增大而减小.4、如图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值X 围是() A 、x >3 B 、x <3 C 、x >1 D 、x <1()()312-+=x x y ()235y x =-++()()314y x x =-+-223y x x=-+5.分别在下列各X围上求函数 y=x2+2x-3的最值(1) x为全体实数(2) 1≤x≤2(3) -2≤x≤26.二次函数y=2(x+1)2+1, -2≤x≤1,那么函数y的值( )A.最小是1,最大是5;B.最小是1,无最大值;C.最小是3,最大是9;D.最小是1,最大是9.三、议一议:1、已知抛物线y=ax2+bx+c与X轴交点的横坐标为-1,则a+c=;2、若代数式2x m+4y与x2y n-2是同类项,则抛物线y=x2+mx+n的顶点坐标为。

2019苏科版中考数学总复习教案

2019苏科版中考数学总复习教案

初三数学中考总复习 解题方法总结: 一、选择题(1)代入法:有的题目可以不用具体算出来,可通过直接带入选项答案进行验算即可。

(2)排除法:有的难题算不出答案,可通过排除其他错误选项得出相应答案。

此处输入文本 (3)工具法:几何题求长度、比值、角度,草稿纸化标准图,用直尺或量角器直接度量。

二、规律探索题(1)几何探索题:多利用角度、高、平分线等去找相应的变化关系,总结规律。

(2)函数探索题:先利用函数关系式算出几个特殊点的坐标,总结变化规律 (3)实数探索题:写3--5项,找规律!1、与n 有关(前后两项相差一样)(5、7、9、11、13.....)2、与n 平方有关(前后两次相差一样)(2、5、10、17、26....)3、与2的n 次方有关系(作差与2、4、8、16等有关系)(3、5、9、17..........)三、辅助线法:(1)解三角函数类题目要会添加辅助线构造直角三角形,以构造后含有特殊角最佳。

(2)正方形、矩形、菱形:对角线。

梯形:作高、腰的平行线。

(3)等腰三角形:必做高,出现三线合一。

等腰直角三角形高是底的一半。

(4)圆:连切线半径,直径所对圆周角,作弦的垂线(5)反比例函数:过点作x 轴、y 轴垂线。

二次函数:作对称轴,作点x 轴垂线四、相似法(1)圆中告诉你两条线段长,求另外线段长,找相等角证相似。

(2)函数图象中相似,找两角相等,或找特殊角,再找夹这个角的两条边对应成比例,一般会有两种情况。

(3)直角中会存在“K ”型相似五、函数与方程:1、一次函数:注意发现特殊角2、一元二次方程的常用解法:① 因式分解法(优先考虑) ② 配方法(二次项系数先化为1) ③ 直接开方法 ④ 公式法242b b acx a-±-=3、一元二次方程根与系数的关系(韦达定理): 12,b x x a +=-12c x x a⋅=。

(注意:使用韦达定理一定要保证根的存在,所以需检验Δ)4、分式方程一定要注意检验是否有增根。

苏科版初三数学中考复习小专题系列1:最值问题 (精讲精练及参考答案)

苏科版初三数学中考复习小专题系列1:最值问题  (精讲精练及参考答案)

xyBOMAxy CEO'BOMAD系列一:最值问题(1)—两线段之和的最值一、 【背景分析】 几何问题中的线段之和最值问题是中考复习问题常见情形,除了要运用最基本的“将军饮马”的原理之外,它最明显的特征:紧紧围绕“将军饮马”原理可以包含多种初中阶段的常用知识点,在不同的背景中,如直角坐标系中,各种特殊平行四边形,或圆中,可以全方位的考察必考知识点和常用方法,能有效考察学生对知识方法的分析能力,作图能力,计算能力等,故需要进行相应程度的训练与巩固。

二、 基本原理呈现:问题:已知在直线l 外有两定点A ,B ,试在l 上寻找点O ,使得AO +OB 的长度最短。

作法: ①从点A 作关于直线l 的对称点A',连接A'B 与直线l 相交于点O ;②此时AO =A'O ,即AO +OB =A'O +OB =A'B ,根据“两点之间线段最短”可知此时AO +OB 的长度最短。

③点O 即为所求。

步骤简述:作对称点,连接产生交点。

三、课堂例题精讲例1则BO+BA 的最小值是 。

(图1) (图2)结合知识点:全等构造,勾股定理,一次函数直线思路与解析:如图2,过点B 作BC 垂直y 轴与点C ,构造“K 型”△BC M ≌△表示出点B (m,m+8),得出B 点运动路径为一次函数直线y=x +8,根据上ACAG述原理,作点O 关于直线y=x +8的对称点,再构建Rt △O ,EA 求出BO+BA 的最小值= O ,A=5816822=+。

【点评】:本题的难点之处是需分析出点B 的运动轨迹例2、已知如图3,在菱形ABCD 中,∠DAB=60°,AD=3,点E 、F 分别是AB ,AC 上的动点,且满足AE=CF ,则DE+DF 的最小值为(图3) (图考察点:全等构造,最值,对称,勾股定理思路与解析:如图4,因AE=CF 和30° ,在AC 上取点G ,使AG=AD=DC ,连GE ,易证:△DFC ≌△GEA ,通过构造全等形成转换,DF=EG ,因G 为定点,作点G 关于的对称点,连接DG ,,故DE+DF 的最小值转为熟悉的“将军饮马”ED+EG 的最小值=DG ,=233322=+。

苏科版初中数学复习教学案

苏科版初中数学复习教学案
第一章
例8:如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF、BD. AF与BD是否相等?为什么? 如果点C在线段AB的延长线上,⑴中的结论是否成立?请作图,并说明理由.
反 思
正方形有哪些性质?如何判别一个平行四边形是正方形?
添加标题
01
单击此处添加小标题
例5:已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=2:1,对角线AC、BD相交于点O,求AC的长及菱形的面积.
例6:如图,在四边形ABCD中,AD∥BC,对角线AC的垂直平分线与边AD、BC分别相交于点E、F.四边形AFCE是菱形吗?为什么?
例7:如图,在⊿ABC中,∠C=90°,∠BAC、∠ABC的角平分线交于点D,DE⊥BC于E,DF⊥AC于F.问四边形CFDE是正方形吗?请说明理由.
O
D
C
B
A
练一练Βιβλιοθήκη O CBA
D
E
例2:如图,在矩形ABCD中,CE⊥BD,E为垂足,∠DCE:∠ECB=3:1.求∠ACE的度数.
例3:如图,在矩形ABCD中,点E在AD上,EC平分∠BED.
△BEC是否为等腰三角形?为什么? 若AB=1,∠ABE=45°,求BC的长
例4:如图,平行四边形ABCD中,4个内角平分线围成的四边形PQRS是矩形吗?说说你的理由.
02
正 方 形
03
矩形
01
学案作业
课堂作业
The End
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
从边上来谈;
03
单击此处添加小标题
从角上来谈;
02
单击此处添加小标题

2020年中考数学必考经典题讲练案-四边形的几何综合问题(解析版)【苏科版】

2020年中考数学必考经典题讲练案-四边形的几何综合问题(解析版)【苏科版】

2020年中考数学必考经典题讲练案【苏科版】专题12四边形的几何综合问题【方法指导】1.平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.2.菱形的性质与判定:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.菱形的四条边都相等,菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.3.矩形的性质与判定:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.4.正方形:①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.【题型剖析】【类型1】平行四边形的计算与证明【例1】(2019•宿豫区模拟)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交BC、AD于点E、F,G、H分别是OB、OD的中点.求证:(1)OE=OF;(2)四边形GEHF是平行四边形.【分析】(1)由“AAS”证明△AOE≌△COF,可得OE=OF;(2)由对角线互相平分的四边形是平行四边形可证四边形GEHF是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,OA=OC,OB=OD∴∠DAC=∠BCA,且OA=OC,∠AOE=∠COF∴△AOE≌△COF(ASA)∴OE=OF(2)∵OB=OD,G、H分别是OB、OD的中点∴GO=OH,且OE=OF∴四边形GEHF是平行四边形.【点评】本题考查了平行四边形的判定与性质,全等三角形的判定和性质,灵活运用平行四边形的判定和性质是本题的关键.【变式1-1】(2019•亭湖区二模)已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,求▱AECF的周长.【分析】(1)根据平行四边形的判定和性质即可得到结论;(2)根据直角三角形的性质得到AE=CE BC=5,推出四边形AECF是菱形,于是得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD的边BC、AD的中点,∴AF AD,CE BC,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形;(2)解:∵BC=10,∠BAC=90°,E是BC的中点.∴AE=CE BC=5,∴四边形AECF是菱形,∴▱AECF的周长=4×5=20.【变式1-2】(2019•海门市一模)如图,▱ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC.求证:四边形DECF是平行四边形.【分析】由平行四边形的性质可得AD∥BC,可得∠ADE=∠DEC,可证DE∥CF,可得结论.【解析】∵四边形ABCD是平行四边形∴AD∥BC∴∠ADE=∠DEC,且∠DFC=∠DEC∴∠ADE=∠DFC∴DE∥CF,且DF∥BC∴四边形DECF是平行四边形.【变式1-3】(2019•建邺区一模)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE 和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.【分析】由平行四边形的性质可得AB=CD,AD=BC,∠ABC=∠ADC,由等边三角形的性质可得BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°,由“SAS”可证△ADF≌△CBE,可得EC=AF,由两组对边相等的四边形是平行四边形可证四边形AECF为平行四边形.【解答】证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ABC=∠ADC∵△ABE和△CDF是等边三角形∴BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°∴∠ADF=∠EBC,且AD=BC,BE=DF∴△ADF≌△CBE(SAS)∴EC=AF,且AE=CF∴四边形AECF为平行四边形【类型2】菱形的计算与证明【例2】(2019•海门市二模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.【分析】(1)由“AAS”可证△AED≌△CEF,可得DE=EF;(2)由直角三角形的性质可得CD=AD,由对角线互相平分的四边形是平行四边形可证四边形ADCF 是平行四边形,即可证四边形ADCF是菱形.【解答】(1)证明:∵CF∥AB,∴∠DAC=∠ACF,又∵AE=EC,∠AED=∠CEF,∴△AED≌△CEF(AAS),∴DE=EF.(2)∵∠ACB=90°,D是AB的中点,∴CD=AD∵DE=EF,AE=EC∴四边形ADCF是平行四边形又∵AD=CD∴四边形ADCF是菱形.【点评】本题考查了菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.【变式2-1】(2019•兴化市二模)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO AE=3,BO=FO BF=4,AE⊥BF,∴BE5,∵S菱形ABEF AE•BF6×8=24,∴BE•AH=24,∴AH,∴S平行四边形ABCD=AD×AH=36,∴AD.【变式2-2】(2019•江都区二模)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=5,AC=12,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示∵∠BAC=90°,AB=5,AC=12,∴BC13,∵△ABC的面积BC×AH AB×AC,∴AH,∵点E是BC的中点,四边形AECD是菱形,∴CD=CE,∵S▱AECD=CE•AH=CD•EF,∴EF=AH.【变式2-3】(2019•宿迁模拟)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AB.OE=2,求线段CE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,根据相似三角形的性质即可得出结论.【解析】(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC=2,∴OB1,∵∠AOB=∠AEC=90°,∠OAB=∠EAC,∴△AOB∽△AEC,∴,∴,∴CE.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,角平分线的定义,勾股定理,判断出OE=OA=OC是解本题的关键.【类型3】矩形的计算与证明【例3】(2019•丹阳市一模)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.【分析】(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;(2)证明△ABC是等边三角形,得出OA=1,由勾股定理得出OB,由菱形的性质得出OD=OB,即可求出四边形AODE的面积.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°﹣120°=60°,∵AB=BC=2,∴△ABC是等边三角形,∴OA2=1,∵在菱形ABCD中,AC⊥BD∴由勾股定理OB,∵四边形ABCD是菱形,∴OD=OB,∴四边形AODE的面积=OA•OD.【变式3-1】(2019•建湖县二模)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD 交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【分析】(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积•EC•OF=1.【变式3-2】(2019•延边州二模)如图,在平行四边形ABCD中,过点D做DE⊥AB于E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形ABCD的面积.【分析】(1)先求出四边形BFDE是平行四边形,再根据矩形的判定推出即可;(2)根据勾股定理求出DE长,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∵DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵AF平分∠DAB,∴∠DAF=∠F AB,∵平行四边形ABCD,∴AB∥CD,∴∠F AB=∠DF A,∴∠DF A=∠DAF,∴AD=DF=5,在Rt△ADE中,DE,∴平行四边形ABCD的面积=AB•DE=4×8=32,【类型4】四边形综合问题【例4】.(2019•桓台县二模)已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【分析】(1)如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,想办法证明△EAG≌△EAF(SAS).(2)结论:EF2=BE2+DF2,将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)证明过程跟(1)类似,证得△EAH≌△EAF,把EF转化到EH,然后利用BN=DM证明四边形BMDN为平行四边形得∠ABE=∠FDM,得∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=90°,由EH2=BE2+BH2得EF2=BE2+DF2.(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).想办法证明EF=FC,即可推出封门村吗,证明EN=CM即可.【解析】(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG,∴AF=AG,DF=BG,∠DAF=∠BAG,∵正方形ABCD,∴∠D=∠BAD=∠ABE=90°,AB=AD,∴∠ABG=∠D=90°,即G、B、C在同一直线上,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,即∠EAG=∠EAF,∴△EAG≌△EAF(SAS),∴EG=EF,∵BE+DF=BE+BG=EG,∴EF=BE+DF.(2)结论:EF2=BE2+DF2,理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH,∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,即∠EAH=∠EAF,∴△EAH≌△EAF(SAS),∴EH=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴∠ABE=∠MDN,∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,∴EH2=BE2+BH2,∴EF2=BE2+DF2,(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=2,∴CM CF=1,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形∴EN=CM=1,∵∠EBN=45°,∴BE EN.故答案为:【点评】本题考查了正方形的性质,旋转,全等三角形的判定和性质,平行四边形的判定和性质,勾股定理,圆周角定理,等腰三角形性质,其中(1)(2)里运用转化思想是解题关键,为半角模型的常规题型.第(3)问作为填空题可用特殊位置得到答案,证明过程关键条件是正方形对角线,利用两个45°角联想到四点共圆,再利用圆周角定理得到△AEF为等腰直角三角形.【变式4-1】(2019•灌南县二模)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边BA的延长线于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判断四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2﹣1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解析】(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2﹣1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=OC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)如备用图,∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO S△OBG,∴()2,∴OP=1,∴S△POG OG•OP1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b,∴S△OBG ab a,∴当a2=2时,△OBG有最大值1,此时S△PKO S△OBG,∴四边形PKBG的最大面积为1+1.∴当BO为时,四边形PKBG的面积最大,最大面积为.【达标检测】1.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【解析】矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.2.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【解析】如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE BC=6x,∴AD=CE BE=6x,AB=AE+BE=x+6x x+6,(6x)x2+3x+18∴梯形ABCD面积S(CD+AB)•CE(x x+6)•(x﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.3.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【解析】∵四边形ABCD是菱形,∴AC⊥BD,AO=OC AC=2,OB=OD BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'10;故选:C.4.(2019•淮安)若一个多边形的内角和是540°,则该多边形的边数是.【解析】设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.5.(2019•南通)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB PD 的最小值等于3.【解析】如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP∴EP PD∴PB PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A∴BE=3故答案为36.(2019•徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.【解析】连接OB、OC,多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠AOB,∴∠AOD=40°×3=120°.∴∠OAD.故答案为:30°7.(2019•徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.【解析】∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.8.(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=.【解析】分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:则∠PFM=∠PFN=90°,∵四边形ABCD是矩形,∴AB=CD,BC=AD=3AB=3,∠A=∠C=90°,∴AB=CD,BD10,∵点P是AD的中点,∴PD AD,∵∠PDF=∠BDA,∴△PDF∽△BDA,∴,即,解得:PF,∵CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,∴MF=NF,∠PNF=∠DEC,∵∠PFN=∠C=90°,∴△PNF∽△DEC,∴2,∴MF=NF=2PF=3,∴MN=2NF=6;②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:由①得:PF,MF=3,设MN=PN=x,则FN=3﹣x,在Rt△PNF中,()2+(3﹣x)2=x2,解得:x,即MN;综上所述,MN的长为6或;故答案为:6或.9.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为.【解析】过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴BM=CM=2,易证△AMB∽△CGB,∴,即∴GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG(AAS),∴EH=DG=8﹣x,∴S△BDE,当x=4时,△BDE面积的最大值为8.故答案为8.10.(2019•扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.【解析】连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴13.∵M、N分别是DC、DF的中点,∴MN.故答案为:.11.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE AD,BF BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.12.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF,∴CF=AE=4,∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF,FH=AD=2,∴EH1,∴EF.13.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB=,AD=BC,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA∴AD=DE=10,∴BC=10,AB=CD=DE+CE=16,∵CE2+BE2=62+82=100=BC2,∴△BCE是直角三角形,∠BEC=90°;(2)解:∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE8,∴cos∠DAE=cos∠EAB.14.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.15.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.【解析】(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=P A,∴∠APD=∠CPD=45°,∴△AEP≌△CEP(SAS);(2)CF⊥AB,理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠FCP+∠CMP=90°,∠AMF=∠CMP,∴∠AMF+∠P AB=90°,∴∠AFM=90°,∴CF⊥AB;(3)过点C作CN⊥PB.∵CF⊥AB,BG⊥AB,∴FC∥BN,∴∠CPN=∠PCF=∠EAP=∠P AB,又AP=CP,∴△PCN≌△APB(AAS),∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.16.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG,请直接写出FH的长.【解答】问题情境:解:线段DN、MB、EC之间的数量关系为:DN+MB=EC;理由如下:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC=CD,AB∥CD,过点B作BF∥MN分别交AE、CD于点G、F,如图1所示:∴四边形MBFN为平行四边形,∴NF=MB,∴BF⊥AE,∴∠BGE=90°,∴∠CBF+∠AEB=90°,∵∠BAE+∠AEB=90°,∴∠CBF=∠BAE,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵DN+NF+CF=BE+EC,∴DN+MB=EC;问题探究:解:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,如图2所示:∵四边形ABCD是正方形,∴四边形ABIH为矩形,∴HI⊥AD,HI⊥BC,HI=AB=AD,∵BD是正方形ABCD的对角线,∴∠BDA=45°,∴△DHQ是等腰直角三角形,HD=HQ,AH=QI,∵MN是AE的垂直平分线,∴AQ=QE,在Rt△AHQ和Rt△QIE中,,∴Rt△AHQ≌Rt△QIE(HL),∴∠AQH=∠QEI,∴∠AQH+∠EQI=90°,∴∠AQE=90°,∴△AQE是等腰直角三角形,∴∠EAQ=∠AEQ=45°,即∠AEF=45°;(2)连接AC交BD于点O,如图3所示:则△APN的直角顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,∵AO=OD,∠AOD=90°,∴∠ODA=∠ADO′=45°,当点P在线段BO上运动时,过点P作PG⊥CD于点G,过点P′作P′H⊥CD交CD延长线于点H,连接PC,∵点P在BD上,∴AP=PC,在△APB和△CPB中,,∴△APB≌△CPB(SSS),∴∠BAP=∠BCP,∵∠BCD=∠MP A=90°,∴∠PCN=∠AMP,∵AB∥CD,∴∠AMP=∠PNC,∴∠PCN=∠PNC,∴PC=PN,∴AP=PN,∴∠PNA=45°,∴∠PNP′=90°,∴∠P′NH+PNG=90°,∵∠P′NH+∠NP′H=90°,∠PNG+∠NPG=90°,∴∠NPG=∠P′NH,∠PNG=∠NP′H,由翻折性质得:PN=P′N,在△PGN和△NHP'中,,∴△PGN≌△NHP'(ASA),∴PG=NH,GN=P'H,∵BD是正方形ABCD的对角线,∴∠PDG=45°,易得PG=GD,∴GN=DH,∴DH=P'H,∴∠P'DH=45°,故∠P'DA=45°,∴点P'在线段DO'上运动;过点S作SK⊥DO',垂足为K,∵点S为AD的中点,∴DS=2,则P'S的最小值为;问题拓展:解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:则EG=AG,PH=FH,∴AE=5,在Rt△ABE中,BE3,∴CE=BC﹣BE=1,∵∠B=∠ECQ=90°,∠AEB=∠QEC,∴△ABE∽△QCE,∴3,∴QE AE,∴AQ=AE+QE,∵AG⊥MN,∴∠AGM=90°=∠B,∵∠MAG=∠EAB,∴△AGM∽△ABE,∴,即,解得:AM,由折叠的性质得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,∴B'M,AC'=1,∵∠BAD=90°,∴∠B'AM=∠C'F A,∴△AFC'∽△MAB',∴,解得:AF,∴DF=4,∵AG⊥MN,FH⊥MN,∴AG∥FH,∴AQ∥FP,∴△DFP∽△DAQ,∴,即,解得:FP,∴FH FP.17.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.【解析】(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴,∴,∴PB′=24.∴t=PB=24.②如图2﹣1中,当∠PCB’=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′,∴CB′=CD﹣DB′,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB’=90°时,在Rt△ADB′中,DB′,∴CB′=3在Rt△PCB’中则有:,解得t=6.如图2﹣3中,当∠CPB’=90°时,易证四边形ABP’为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB’M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB’=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B’AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB’=90°﹣x,∴∠DAB’=∠P AB’﹣∠DAP=90°﹣2x,∴∠DAM∠DAB’=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。

2023年苏科版中考数学一轮复习专题讲义与练习-一次函数

2023年苏科版中考数学一轮复习专题讲义与练习-一次函数

2023年中考数学一轮复习专题讲义与练习一次函数[课标要求]1. 了解常量. 变量的意义,函数的概念和三种表示方法.2. 结合图象对简单实际问题的函数关系进行分析.3. 确定简单函数式中和简单实际问题中的函数的自变量的取值范围,并会求出函数值.4. 用适当的函数表示法刻画某些实际问题中变量之间的关系,分析函数关系. 预测变量的变化规律.5. 结合具体情境体会一次函数和正比例函数意义,根据已知条件确定一次函数关系式6. 会画一次函数的图像,能根据一次函数的图像或关系式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图像的变化情况)[要点梳理]1. 函数的定义:__________2. 确定自变量的取值范围:一般需从两个方面考虑①自变量的取值必须使其所在代数式有意义;②使实际问题有意义3. 函数的三种表示方法:(1)_____;(2)_____;(3)______4. 一次函数的定义:__________那么y叫做x的一次函数,当____时,一次函数y=kx+b就成为y=kx(k是常数,k≠0)这时y叫做x 的正比例函数(或者说y与x成正比例)5. 一次函数的图象是_____,其性质是:(1)k>0,b>0时,图象过第______象限;(2)k>0,b<0时,图象过第______象限;(3)k<0,b>0时,图象过第______象限;(4)k<0,b<0时,图象过第______象限;6. 画正比例函数y=kx的图象,一般取(). ()两点,画一次函数的图象,一般取直线与坐标轴的两交点.7. 求函数解析式的一般方法是待定系数法.[规律总结]1. 在用解析式表示函数时,要考虑自变量的取值范围,必须使解析式有意义,一般地,当解析式是整式时,自变量的取值范围是一切实数;解析式是分式时,自变量的取值范围是分母不为0的一切实数,解析式含有二次根式时,自变量的取值范围是被开方数≥0;2. 通过待定系数法的复习,了解方程思想在解题中的应用;3. 本单元的主要考点为:①正比例函数和一次函数的概念;②实际问题中函数自变量的取值范围;③函数的增减性,图像位置与k. b的关系;④图像与坐标轴(或有关直线)围成的图形面积;⑤待定系数法和方程思想.[强化训练]一、选择题1. 已知一次函数2y kx m x=--的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.2,0k m<>B.2,0k m<< C. 2,0k m>>D.0,0k m<< 2. 下列函数中,自变量x的取值范围为x<1的是()A.11yx=-B.11yx=-C.1y x=-D.1yx=-3. 一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限4. 若一次函数y kx b=+的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是()A.0,0k b>>B.0,0k b><C.0,0k b<>D.0,0k b<< 5. 把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2xD.y=2x+26.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A .B .C .D . 7. 如图,直线y=x+4与x 轴. y 轴分别交于点A 和点B ,点C. D 分别为线段AB. OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )A .(﹣3,0)B .(﹣6,0)C .(﹣,0)D .(﹣,0)8.已知函数y =(m +3)+4是关于x 的一次函数,则m 的值是( ) A .m =±3 B .m ≠﹣3C .m =﹣3D .m =3 二、填空题9. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是____ __.10. 直线y =kx+b 经过A (3,1)和B (6,0)两点,则不等式0<kx +b <x 31的解集为__________.11. 如果正比例函数y kx 的图象经过点(1,-2),那么k 的值等于______.12. 小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离(单位:米)与时间(单位:分钟)的对应关系如图所示,则小张骑车的速度为 米/分钟.13. 张琪和爸爸到英雄山广场运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家.张琪和爸爸在整个运动过程中离家的路程y 1(米). y 2(米)与运动时间x (分)之间的函数关系如图所示,求张琪开始返回时与爸爸相距米.第12题第13题14. 过点(-1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横. 纵坐标都是整数的点的坐标是____.三、解答题15. 如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x. y轴于点A. B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.16.如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象相交于点A(﹣1,m). B(n,﹣1)两点.(1)求一次函数表达式;(2)求△AOB的面积.17.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,点B(5,n)在直线y=x+2上,点C是线段AB上的一个动点,过点C作CP⊥x轴交直线点P,设点C的横坐标为m.(1)n的值为;(2)用含有m的式子表示线段CP的长;(3)若△APB的面积为S,求S与m之间的函数表达式,并求出当S最大时点P的坐标;(4)在(3)的条件下,把直线AB沿着y轴向下平移,交y轴于点M,交线段BP于点N,若点D的坐标为,在平移的过程中,当∠DMN=90°时,请直接写出点N的坐标.18.如图,在平面直角坐标系中,直线l1:y=x+4分别与x轴. y轴交于点B. C,且与直线l2:y=x交于点A.(1)分别求出点A. B. C的坐标;(2)若D是线段OA上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O. C. P. Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.。

数学初三复习教案苏科版

数学初三复习教案苏科版

数学初三复习教案苏科版一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这个事实.(二)水平训练点逐步培养学生会观察、比较、分析、概括等逻辑思维水平.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这个事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这个点,相关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.水准较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.绝大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手水平的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.所以教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,能够把其顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴形中,∠A的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生水平,实行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这个设计同时起到培养学生思维水平的作用.练习题为作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维水平又有所提升,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学能够提前预习一下.通过这种扩展,不但对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,所以课后应要求学生预习正余弦概念.。

中考数学复习“113”专项训练(7)苏科版【教案】

中考数学复习“113”专项训练(7)苏科版【教案】

2013 九年级数学中考复习讲义系列-----每周一练(7)时间: 60 分钟总分:40分姓名得分1. Rt △ABC中, AB=AC,点 D为 BC中点. ∠MDN=90°,∠ MDN绕点 D 旋转,DM、DN分别与边 AB、AC交于 E、F 两点 . 以下结论①(BE+CF)=2BC ②S≤1③ S=AD·EF 2MA△ ABC△ AEF四边形 AEDFEN④ AD≥ EF⑤ AD与EF可能相互均分,此中正确结论的个数是( C )FB DCA.1 个B.2个C.3个D.4个2.水管的外面需要包扎 , 包扎时用带子环绕在管道外面. 若要使带子所有包住管道且不重叠(不考虑管道两头的状况) , 需计算带子的环绕角度(指环绕中将部分带子拉成图中所示的平面ABCD时的∠ ABC,其中 AB为管道侧面母线的一部分).若带子宽度为1,水管直径为 4 ,则的余弦值为.3.在锐角△ ABC 中,AB=4,BC=5,∠ACB=45°,将△ ABC绕点 B 按逆时针方向旋转,获得△A1BC1.(1)如图 1,当点 C1在线段 CA的延伸线上时,求∠ CC 1A1的度数;(2)如图 2,连结 AA1, CC1.若△ ABA1的面积为 4,求△ CBC1的面积;(3)如图 3,点 E 为线段 AB中点,点 P 是线段 AC上的动点,在△ ABC 绕点 B 按逆时针方向旋转过程中,点 P 的对应点是点 P1,求线段 EP1长度的最大值与最小值.4.如图,已知半径为 2 的⊙O与直线l相切于点A,点P是直径AB左边半圆上的动点,过点P 作直线 l 的垂线,垂足为 C,PC与⊙ O交于点 D,连结 PA、PB,设 PC的长为.B- 1 -PO⑴当时,求弦 PA、 PB的长度;⑵当 x 为什么值时,的值最大?最大值是多少?5.如图,在平面直角坐标系中,二次函数y x2bx c的图象与 x 轴交于 A、B 两点, A点在原点的左边,B 点的坐标为( 3,0),与y轴交于( 0,- 3)点,点P是直线下方的C BC抛物线上一动点.( 1)求这个二次函数的表达式./( 2)连结PO、PC,并把△POC沿CO翻折,获得四边形POP C,那么能否存在点P,使四/边形 POP C为菱形?若存在,恳求出此时点P的坐标;若不存在,请说明原因.( 3)当点P运动到什么地点时,四边形ABPC的面积最大并求出此时P 点的坐标和四边形ABPC的最大面积.1.C2.1 4- 2 -3.解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°, BC=BC1,1111111∴∠ CC B=∠C CB=45°,∴∠ CC A =∠CCB+∠A C B=45°+45°=90°.11111( 2)∵△ ABC≌△A1BC,∴BA=BA, BC=BC,∠ ABC=∠A BC,∴111111,∠ ABC+∠ABC =∠A BC+∠ABC,∴∠ ABA =∠CBC,∴△ ABA1∽△ CBC1.∴,∵S△ABA1=4,∴S△CBC1=;( 3)过点 B 作 BD⊥AC, D为垂足,∵△A BC为锐角三角形,∴点 D 在线段 AC上,在 Rt△BCD中,BD=BC×sin45 °=,①如图 1,当 P 在 AC上运动至垂足点D,△ABC绕点B 旋转,使点 P 的对应点P1在线段 AB上时, EP1最小,最小值为: EP1=BP1﹣ BE=BD﹣ BE=﹣2;( 9 分)②当 P 在 AC上运动至点 C,△ ABC绕点 B 旋转,使点 P 的对应点 P1在线段 AB的延伸线上时,EP1最大,最大值为: EP1=BC+AE=2+5=7.( 10 分)4.解:⑴∵⊙ O与直线 l 相切于点 A, AB为⊙ O的直径,∴ AB⊥ l .又∵ PC⊥ l ,∴ AB∥ PC.∴∠ CPA=∠ PAB.∵AB 为⊙ O的直径,∴∠ APB=90°.∴∠ PCA=∠APB.∴△ PCA∽△ APB.∴.∵ PC=,AB=4,∴.∴在 Rt△APB中,由勾股定理得:.- 3 -⑵过 O 作 OE ⊥ PD ,垂足为 E .∵ PD 是⊙ O 的弦, OF ⊥ PD ,∴ PF =FD . 在矩形 OECA 中, CE =OA =2,∴ PE =ED =x - 2.∴.∴.∵,∴当时,有最大值,最大值是2.3bc 0 5.答案 : 解:( 1)将 、 两点的坐标代入得c3B Cb 2 解得:c3因此二次函数的表达式为:y x 2 2x 3( 2)存在点 P ,使四边形 POP / C 为菱形.设 P 点坐标为( x , x22x 3 ), PP / 交 CO 于 E 若四边形 POP / C 是菱形,则有= . 连结PP /则⊥ 于 ,PC POPE CO E∴ == 3∴ y =3.OEEC 22 ∴ x22 x3 =32解得 x 1 = 210, x 2 = 22 10(不合题意, 舍去)2∴ P 点的坐标为( 2 210, 2)( 3)过点 P 作 y 轴的平行线与 BC 交于点 Q ,与 OB 交于点 F ,3设 P ( x , x 22x 3 ),易得,直线 BC 的分析式为 y x 3则 Q 点的坐标为( x , x - 3) .- 4 -S 四边形 ABPCS ABCSBPQSCPQ1AB OC1QP OF1QP FB112224 3 ( x 2 3x) 32 23 3 275=2x82当 x3时,四边形 ABPC 的面积最大2此时 P 点的坐标为3 , 15 ,四边形 ABPC 的面积 的最大值为 75248- 5 -。

中考数学复习“113”专项训练(12)苏科版【教案】

中考数学复习“113”专项训练(12)苏科版【教案】

2013 年九年级数学中考复习讲义系列 ----- 每周一练( 12)时间: 60 分钟姓名得分1.如图,将三角形纸片ABC 沿 DE 折叠,使点 A 落在 BC 边上的点 F 处,且 DE ∥ BC ,以下结论中,必定正确的个数是 ( )① BDF 是等腰三角形② DE1BC ③四边形 ADFE 是菱形 ④ BDFFEC 2 A2A .1个B .2个C.3个D.4个2.如图, 甲,乙,丙,丁四个长方形拼成正方形 EFGH ,中间暗影为正方形 , 已知,甲、乙、 丙、丁四个长方形面积的和是 32cm 2,四边形 ABCD 的面积是 20cm 2。

问 甲、乙、丙、丁四个长方形周长的总和是:.AD EBFC第1题图第 2题图3. 如图 1,若△ ABC 和△ ADE 为等边三角形, M ,N 分别为 EB ,CD 的中点,易证: CD =BE , △ AMN是等边三角形:( 1)当把△ ADE 绕点 A 旋转到图 2 的地点时, CD =BE 吗?若相等请证明,若不等于请说明原因;( 2)当把△ ADE 绕点 A 旋转到图 3 的地点时,△ AMN 仍是等边三角形吗?假如请证明,若不是,请说明原因(可用第一问结论).CCCNNNDDDEEMAMAEMBBAB图 1图 2 图 3第3题图- 1 -4.操作:如图,在正方形ABCD中, P 是 CD上一动点(与C、 D不重合),使三角板的直角极点与点 P 重合,而且一条直角边一直经过点B,另向来角边与正方形的某一边所在直线交于点E.研究:①察看操作结果,哪一个三角形与△BPC相像,写出你的结论,(找出两对即可);并选择此中一组说明原因;②当点 P 位于 CD的中点时,直接写出①中找到的两对相像三角形的相像比和面积比.第 4题图5.如图 1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l 1.( 1)平移抛物线l 1,使平移后的抛物线过点A,但可是点B,写出平移后的一个抛物线的函数表达式(任写一个即可);( 2)平移抛物线l 1,使平移后的抛物线过A, B两点,记为抛物线l 2,如图2,求抛物线l 2的函数表达式;( 3)设抛物线l 2的极点为 C, K 为 y 轴上一点.若S△ABK=S△ABC,求点 K的坐标;( 4)请在图 3 上用尺规作图的方式研究抛物线l 2上能否存在点P,使△ ABP为等腰三角形.若存在,请判断点P共有几个可能的地点(保存作图印迹);若不存在,请说明原因.第5题图1、C- 2 -2、 483.解:( 1)CD=BE.原因以下 :∵△ ABC和△ ADE为等边三角形∴AB=AC, AE=AD,∠ BAC=∠ EAD=60o∵∠ BAE=∠ BAC-∠ EAC=60 o-∠ EAC,∠DAC=∠ DAE-∠ EAC=60 o-∠ EAC,∴∠ BAE=∠ DAC,∴△ ABE ≌△ ACD∴CD=BE( 2)△AMN是等边三角形.原因以下:∵△ ABE ≌ △ ACD,∴∠ ABE=∠ ACD.∵M、 N分别是 BE、 CD的中点,∴ BM=CN∵AB=AC,∠ ABE=∠ ACD,∴△ ABM≌ △ ACN.∴ AM=AN,∠MAB=∠NAC.∴∠ NAM=∠ NAC+∠ CAM=∠ MAB+∠CAM=∠ BAC=60°∴△ AMN是等边三角形.4、解:分两种状况:①如图( 1),∵∠ BPE=90°,∴∠ BPC+∠ DPE=90°,又∠ BPC+∠ PBC=90°,∴∠ PBC=∠ DPE,又∠ C=∠ D=90°,∴△ BPC∽△ PED.如图( 2),同理可证△BPC∽△ BEP∽△ PCE.②如图( 1),∵△BPC∽△PED,∴△ PED与△ BPC的周长比等于对应边的比,即PD与 BC的比,∵点 P位于 CD的中点,∴ PD与 BC的比为1:2,∴△ PED与△ BPC的周长比1:2,△PED与△ BPC的面积比1:4如图( 2),∵△BPC∽△BEP,∴△ BEP与△ BPC的周长比等于对应边的比,即BP与 BC的比,- 3 -∵点 P 位于 CD 的中点,设 BC =2k ,则 PC =k , BP = 5 k ,∴ BP 与 BC 的比为 5 :2,△ BEP 与△ BPC 的周长比为 5 : 2,△ BEP 与△ BPC 的面积比为 5: 4.同理:△ PCE ∽△ BPC ,周长比 1: 2,面积比 1: 4.5.(1)yx 2 1(答案不独一)( 2) yx 2- 9x 112 2(3) 0,25 55, 0,1616(4)3 个- 4 -。

中考数学《用方程组解决问题》复习教案 苏科版 (12)

中考数学《用方程组解决问题》复习教案 苏科版 (12)

江苏省连云港市岗埠中学2013届中考数学《二元一次方程组》章末总结复习教案苏科版(一)知识框架设未知数,列方程组实际问题答案检验数学问题的解(二元一次方程组的解)代入法加减法(消元)解方程组数学问题(二元一次方程组)实际问题(二)重点难点突破回顾与思考1.什么叫二元一次方程?什么叫二元一次方程组?它们在生活中有哪些应用?2.解二元一次方程组有哪些方法?3.利用二元一次方程组解决生活实际问题的关键是什么?重点点拨(一)二元一次方程(组)及其解的概念含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.使一个二元一次方程左右两边的值相等的未知数的值,叫做二元一次方程的解.二元一次方程的解有无数组.含有两个未知数的两个一次方程合在一起,就组成了一个二元一次方程组.我们把二元一次方程组中两个方程的公共解,叫做二元一次方程组的解.(二)二元一次方程组的解法1.将方程组的一个方程中的某个未知数用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法,称为代入消元法,简称代入法。

2.把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(elimination by addition or subtraction),简称加减法。

(三)利用二元一次方程组解决生活实际问题利用二元一次方程组解决生活实际问题就是将生活中的实际问题转化为数学问题,即列出二元一次方程组解决实际问题.难点突破 (一)解二元一次方程组的基本思想方法了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,从而体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。

(二)利用二元一次方程组解决生活实际问题能将生活中的实际问题转化为数学问题,即能列出二元一次方程组解决实际问题,其关键是 找出题目中蕴涵的相等关系,并建立方程组求解.学习要求(1)要善于挖掘隐含条件,要具有方程的思想意识,在平时的学习中,应该不断积累用方程思想解题的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年九年级数学中考复习讲义系列-----每周一练(12)
时间:60分钟 姓名 得分
1.如图,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处,且DE ∥BC , 下列结论中,一定正确的个数是( ) ①BDF ∆是等腰三角形 ②BC DE 2
1
=
③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠ A .1个 B .2个 C .3个 D .4个
2.如图,甲,乙,丙,丁四个长方形拼成正方形EFGH ,中间阴影为正方形,已知,甲、乙、 丙、丁四个长方形面积的和是32cm ²,四边形ABCD 的面积是20cm ²。

问甲、乙、丙、丁四个长方形周长的总和是: .
第2题图
3.如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别为EB ,CD 的中点,易证:CD =BE ,△AMN 是等边三角形:
(1)当把△ADE 绕点A 旋转到图2的位置时,CD =BE 吗?若相等请证明,若不等于请说明理由;
(2)当把△ADE 绕点A 旋转到图3的位置时,△AMN 还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论). A
B C
D
E
F
第1题图
图1
图2 图3
第3题图
4.操作:如图,在正方形ABCD 中,P 是CD 上一动点(与C 、D 不重合),使三角板的直角
顶点与点P 重合,并且一条直角边始终经过点B ,另一直角边与正方形的某一边所在直线交于点E .
探究:①观察操作结果,哪一个三角形与△BPC 相似,写出你的结 论,(找出两对即可);
并选择其中一组说明理由;
②当点P 位于CD 的中点时,直接写出① 中找到的两对相似三角形的相似比和面积比.
5.如图1,在平面直角坐标系中,点A 的坐标为(1,2),点B 的坐标为(3,1),二次函数y =x 2
的图象记为抛物线l 1.
(1)平移抛物线l 1,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式(任写一个即可);
(2)平移抛物线l 1,使平移后的抛物线过A ,B 两点,记为抛物线l 2,如图2,求抛物线
l 2的函数表达式;
(3)设抛物线l 2的顶点为C ,
K 为y 轴上一点.若S △ABK =S △ABC ,求点K 的坐标; (4)请在图3上用尺规作图的方式探究抛物线l 2上是否存在点P ,使△ABP 为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.
1、C
第5题图
第4题图
2、48
3.解:(1)CD=BE.理由如下:
∵△ABC和△ADE为等边三角形
∴AB=AC,AE=AD,∠BAC=∠EAD=60o
∵∠BAE=∠BAC-∠EAC =60o-∠EAC,
∠DAC=∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC,∴△ABE≌ △ACD
∴CD=BE
(2)△AMN是等边三角形.理由如下:
∵△ABE≌ △ACD,∴∠ABE=∠ACD.
∵M、N分别是BE、CD的中点,∴BM=CN
∵AB=AC,∠ABE=∠ACD,∴△ABM≌ △ACN.∴AM=AN,
∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN是等边三角形.
4、解:分两种情况:
①如图(1),
∵∠BPE=90°,
∴∠BPC+∠DPE=90°,又∠BPC+∠PBC=90°,
∴∠PBC=∠DPE,又∠C=∠D=90°,
∴△BPC∽△PED.
如图(2),同理可证△BPC∽△BEP∽△PCE.
②如图(1),∵△BPC∽△PED,
∴△PED与△BPC的周长比等于对应边的比,即PD与BC的比,∵点P位于CD的中点,
∴PD与BC的比为1:2,
∴△PED与△BPC的周长比1:2,
△PED与△BPC的面积比1:4
如图(2),∵△BPC∽△BEP,
∴△BEP与△BPC的周长比等于对应边的比,即BP与BC的比,
∵点P 位于CD 的中点, 设BC =2k ,则PC =k ,BP =5k , ∴BP 与BC 的比为5:2,
△BEP 与△BPC 的周长比为5:2,△BEP 与△BPC 的面积比为5:4. 同理:△PCE ∽△BPC ,周长比1:2,面积比1:4. 5.(1) 12
+=x y (答案不唯一) (2)2
1129-2+=x x y (3)⎪⎭⎫ ⎝⎛1625,0,⎪⎭
⎫ ⎝⎛1655,0 (4)3个。

相关文档
最新文档