2014松江初三数学二模卷
【VIP专享】2014届上海中考数学二模23题

A
B
M E
图9ABD来自D23图 图C
F
F
C
1
3、(奉贤区)已知:如图,点 E 是四边形 ABCD 的对角线 BD 上一点,且∠BAC=∠BDC=∠DAE. A
⑴求证:△ABE∽△ACD;⑵求证: BC AD DE AC ;
4、(虹口区)已知:如图,在平行四边形 ABCD 中,AE 是 BC 边上的高,将 ΔABE 沿 BC 方向平移,使点 E 与点 C 重合,得 ΔGFC。(1)求证:BE=DG;(2)若∠BCD=120°,当 AB 与 BC 满足什么数量关系时,四边形 ABFG 是 菱形?证明你的结论。
E
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
2014年九年级中考二模考试数学试题参考答案及评分建议

2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
上海2014学年初中数学二模答案(15套)

崇明县2014学年第二学期教学调研卷九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a -15.216.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+ ……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+ ………………………………………………………………2分∵6302x tan =-6223=⨯-= ………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ (1)…(2) 解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FAE=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM = 又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485P Q x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=AP —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED356x =……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356.(3)当△PMC 是等腰三角形,存在以下几种情况:1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x =若M 在线段PQ 上时,PM+MQ=PQ∴44855x x x +=- 4013x = ……………………………………………………………………1分若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时 ∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -=8013x = …………………………………………………………………………1分3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH ∵PH ∥BE∴1AP AHBP CH == ∴110xx=- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分)7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9;15.32+; 16.50; 17.2或1; 18.20°.三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分 20. (本题满分10分)解:由①得:2x >- .………………………………………………………………………2分由②得:4x ≤ .………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集. ………………………………………………………………2分所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3 ∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°, sin ∠D =13, BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°, sin ∠D =31=CD CM ∴CM=35.…………………2分即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分 根据题意,得4%)201(1000251000++=-x x . ……………………………………4分 整理,得 0160122=-+x x . ……………………………………………1分解得 20,821-==x x .……………………………………………………2分经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.………… 1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形 ………………………………………………………1分 (2)∵ EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形 ∴ AB ∥CD AB=CD ∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分∴顶点A 的坐标为(2,1). ……………………………………………………………2分 (2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中, AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4 …………………………………………………………1分 ∴OP=524222=+ ……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠ ∴△BPF ∽△POE , ∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6 ∴321===CD DH CH …………………………………………………1分 ∵AD=5 ∴ AH=4 ………………………………………………………………1分 ∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分(2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD= x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-= ……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -== …………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵ BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -= 222NF AN AF -= ∴2222)43(5)4()25(x x -=- ∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b - ; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分)解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5AB ACB AC∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,s i n 56D E A DD A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分)∴点A 坐标为(9,3).…………………………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分)∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分)同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=. 即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分)25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠= .…………………………………………………………………………(1分)在Rt △BDC中,cos 2cos30CD BC BCD =⋅∠=⋅ 1分)在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分)同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CD BC BF =,即CE CDBC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =.…………………………………………………………………………………(1分)∴y =x ≤<.……………………………………………………………(2分)(3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x =.…………………………………………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠= ,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE(1分)2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分x x x x x 121+---=………………………2分 x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.A .O B C DH22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD = ∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC ACEC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =, EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分 ∴12cot -==∠DEADBAE ………………1分 (2)设EM 与边AB 交点为G 由题意可知:︒=∠+∠9021,︒=∠+∠903CBA又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDGBD ED =…………………………………………1分 ∵2==BD BC ,x ED AC == ∴x DG x =2,∴22x DG =…………………………1分 由题意可知:ABBCBG MB ABC ==∠cos 42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去)∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.(M )2014学年金山第二学期期末质量检测 初三数学试卷参考答案2015.4一、选择题:(每小题4分,共24分) 1.A 2.A 3.C4.D 5.C 6.B二、填空题:(每小题4分,共48分)7.0; 8.1; 9.)1)(1(-+x x x ; 10.7≥x ;11.xy 2=; 12.2-=x ; 13.3=x ; 14.53;15.041≠m m 且 ; 16.→→-a b 2132; 17.)1,4(),5,0(-; 18.53三、解答题:19.原式=〔(2)1()1(1---+x x x x x )〕22)1(-+⨯x x x (4分) = 222)1(1---x x x x 22)1(-+⨯x x x (2分) =22)1(1--x x (3分)=11-+x x (1分) 20.由(2)得:22,22-=-=-y x y x (2分)⎩⎨⎧=-=+-2201y x y x ⎩⎨⎧-=-=+-2201y x y x (2分) ⎩⎨⎧-=-=3411y x ⎩⎨⎧==122y x (4分) ∴⎩⎨⎧-=-=3411y x⎩⎨⎧==1022y x (2分) 21.设1小时后甲船在C 处乙船在D 处,联接CD 正北交于点E (1分)由题意得,50=AP ,60=BP , 30=∠APE ,45=∠BPE ,CD PE ⊥ (3分)10=AC 40=-=PC AP PC (1分)在PCD Rt ∆中 32030cos =⨯=PC PE (1分) 在PED Rt ∆中 62045cos ==PEPD (1分) 62060-=-=PD PB BD )(乙62060162060-=-=V 海里/时 (2分) 答乙船的速度是)(62060-海里/时 (1分)22.(1)略 (4分)(2) 162度 (2分) (3)C (2分) (4)11000人 (2分)23.(1)∵︒=∠90ACB ∴︒=∠=∠90ACB ACD (1分) ∵BC AC = CD CE = (2分)∴ACD BCE ∆≅∆ (1分)(2)∵ACD BCE ∆≅∆ ∴EBC DAC ∠=∠ (1分)∵CEB AEF ∠=∠ ∴︒=∠=∠90BCE AFE ︒=∠90BFG (1分)∵CG //BF ∴︒=∠=∠90AFE CGF (1分) ∵DCG HCE ∠=∠ ∴︒=∠=∠90ACD GCH (1分) ∴四边形FHCG 是矩形 (1分)∵︒=∠=∠90CHE CGD DCG HCE ∠=∠ CD CE = (1分)∴CEH CDG ∆≅∆ ∴CH CG = (1分) ∴四边形FHCG 是正方形 (1分)24. (1)⎩⎨⎧-+=--=841608240b a b a⎩⎨⎧-==21b a (2分) 822--=x x y (1分)9)1(8222--=--=x x x y )9,1(-P (1分)(2) 设对称轴直线1=x 与x 轴交于点D ,过A 作BP AH ⊥垂足为H∵)0,2(-A ,)0,4(B , )9,1(-P∴6=AB 9=PD 103==BP AP (2分) ∵AH PB PD AB ⨯=⨯2121 ∴1059=AH (1分) 在APH Rt ∆中 ∴53AP AH APB sin ==∠ (1分) (3)∵MCN ACO ∠=∠∴MNC ∆与AOC ∆相似时 ①︒=∠=∠90AOC MNCOC NC AO MN = 25=MN ∴)2,25(-M (2分)②︒=∠=∠90AOC NMC 设MN 与x 轴交于点E∵2==OA ON ︒=∠=∠90AOC EON ACO NEO ∠=∠ ∴AOC ENO ∆≅∆ 8==OC OE ∴)0,8(-E∵)0,2(-A ,)0,4(B∴直线MN 的解析式是:241y +=x 直线AB 的解析式是:84y --=x∴)1724,1740(-M (2分) 25.(1)过A 作BC 的高AH 垂足为H∵10==AC AB ∴CH BH = (1分)在ABH Rt ∆中 34tan =∠B 设a AH 4= a BH 3=222AB BH AH =+ 2)4(a 2)3(a +=210 2=a (1分)∴8=AH 6=BH ∴12=BC (1分)(2) 联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I∵D 、E 分别是边AB 、AC 的中点∴DE //BC ∴DOE ∆∽MON ∆ ∴JOIOMN DE = (1分) ∵8=AH ∴4=IJ∴624+=x IO (1分) 124621=⨯⨯=∆ADE S 672624621+=+⨯⨯=∆x x S DEO (1分)∴61441267212++=++=x x x y )120( x (2分) (3)联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I ,过E 作BC EF ⊥垂足为F∵421==AH EF 5=EC ∴3=FC ∴8=MF ①当ON OM =时 ∵IJ //EF ∴MFMJEF OJ = ∵4=EF 8=MF 21=MJ x ∴x OJ 41=∵DE //BC ∴DOE ∆∽MON ∆ ∴MNDEOJ OI = ∴ 10=x 10=MN (2分) ②当MN OM =时 ∵DE //BC ∴OMEOMN DE = ∴EO DE = 在EFM Rt ∆中 5422=+=MF EF ME654-=-=OE ME OM ∴654-=MN (2分)③当ON MN =时 6==DE DO在ABN ∆中,B ∠是一个锐角 5=BD x DN +=6BD DN ∴BND ∠一定是锐角 (1分)过D 作BC DG ⊥垂足为G 4=DG 3=BG 在DGN Rt ∆中 222DN GN DG =+222)6()2(4x x +=-+ 1-=x 不合题意 (1分)综上所述 10=MN 或 654-=MN静安区质量调研九年级数学试卷参考答案及评分标准2015.4.23一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.C ; 3.D ; 4.D ; 5.A ; 6.B .二.填空题:(本大题共12题,满分48分)7.22; 8.2)3(y x -; 9.1; 10.2>x ; 11.2; 12.32; 13.︒45; 14.5:3; 15.4143-; 16.(3,5); 17.10; 18.3≥r .(第18题答3>r , 得2分)三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=)1()1)(1(1)1(1+⎥⎦⎤⎢⎣⎡-+--x x x x x x …………………………………………(3分) =11)1()1)(1(1-=+⋅+-x x x x x x .……………………………………(2+1分)当1333021-=-=x 时,原式=23)23)(23(23231--=+-+=-.…(2+2分)20.解:由①得 3477+<-x x ,103<x ,310<x .…………………………………(3分) 由②得 1264+≥+x x ,52-≥x ,25-≥x .…………………………………(3分)不等式组的解集为:31025<≤-x .……………………………………………(2分)它的整数解为–2,–1,0,1,2,3.………………………………………(1分)21.解:(1)设反比例函数的解析式为xky =.…………………………………………(1分) ∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),…(1分)∴1=3k,∴3=k ,…………………………………………………………(1分) ∴反比例函数的解析式为xy 3=.…………………………………………(1分)(2)设点C (m m,3),则点B (m m ,2+).…………………………………(2分)∴BC =mm 32-+= 4,………………………………………………………(2分) ∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,……………(1分)1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3).……………………………………………………(1分)22.解:设甲乙两人原来每小时各加工零件分别为x 个、y 个,………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=-,123024,13030y x x y …………………………………………………………………(4分)解得⎩⎨⎧==.5,6y x ………………………………………………………………………(4分)经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.………………………(1分)23.证明:(1)∵在梯形ABCD 中,AB //CD ,AD =BC ,∴∠ADE =∠BCE ,………(1分)又∵DE=CE ,∴△ADE ≌△BCE .…………………………………………(1分) ∴AE =BE ,……………………………………………………………………(1分) ∵FG //AB ,∴BEBFAE AG =,…………………………………………………(2分) ∴AG=BF .……………………………………………………………………(1分)(2)∵CF CA AD ⋅=2,∴AD CFCA AD =,…………………………………………(1分) ∵AD =BC ,∴BCCFCA BC =.…………………………………………………(1分) ∵∠BCF =∠ACB ,∴△CAB ∽△CBF .……………………………………(1分)∴BCACBF AB =.…………………………………………………………………(1分) ∵BF=AG ,BC =AD , ∴ADACAG AB =.………………………………………(1分) ∴AC AG AD AB ⋅=⋅.………………………………………………………(1分)24.解:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,……………(1分)∴OC =1,OA=OC +AC = 4,∴点A (4,0).…………………………………(1分) ∵∠OBC =∠OAB ,∴tan ∠OAB= tan ∠OBC ,…………………………………(1分)∴OB OCOA OB =,…………………………………………………………………(1分) ∴OBOB 14=,∴OB =2,∴点B (0,2),……………………………………(1分) ∴⎩⎨⎧+-==,8160,2c a a c ……………………………………………………………(1分)∴⎪⎩⎪⎨⎧=-=.2,41c a ………………………………………………………………………(1分) ∴此抛物线的表达式为221412++-=x x y .…………………………………(1分)(2)由2:3:=∆∆A F G A D G S S 得DG :FG =3:2,DF :FG =5:2,…………………(1分) 设m OF =,得m AF -=4,221412++-=m m DF , 由FG //OB ,得OA AF OB FG =,∴24mFG -=,…………………………………(1分) ∴2:524:)22141(2=-++-m m m ,……………………………………………(1分) ∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45).……………………………………………………(1分) 25.解:(1)在⊙O 中,∵OC ⊥AB ,∴AC =321=AB ,OC =22AC AO -=4.……(1分)∵OD //AB ,∴OD ⊥OC ,∴CD =41542222=+=+OD OC .……(1分)∵35==BC OD CE DE ,……………………………………………………………(1分)∴85=CD DE ,∴DE =4185.…………………………………………………(1分)(2)∵△OCD 是等腰三角形,OD >OC ,∴ ① 当DC =OD =5时,∠DOC =∠DCO ,∵∠DFC +∠DOC =∠DCF +∠DCO =90°,∴∠DFC =∠DCF .…(1分)∴DF =DC =DO =5,OF =10,CF =2124102222=-=-OC OF ,2123+=AF .………(1分) ② 当DC =OC =4时, 作△DOC 的高CH ,2521==OD OH , CH =3921)25(42222=-=-OH OC .……………………(1分) ∴tan ∠FOC=539==OH CH OC CF ,………………………………(1分) 5394=CF .53943+=AF .……………………………………(1分)(3)设OB =OD =r ,BC =x ,则2222x r BC OB OC -=-=,…………(1分)∵OD //AB ,OC ⊥AB ,∴OD ⊥OC ,又∵CD ⊥OB ,∴∠COB =90°-∠DOE =∠ODC ,∴tan ∠COB =tan ∠ODC ,…………(1分)∴OD OCOC BC =,∴r x r xr x 2222-=-,………………………………(1分) ∴22x r xr -=, 022--+r rx x ,∵0≠r ,01)(2≠-+rxrx,251±-=r x (负值舍去) ,…………………(1分) ∴sin ∠ODC =sin ∠COB 215-===r x OB BC .……………………………(1分)闵行区2014学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.C ;3.D ;4.B ;5.D ;6.A .二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.2a ; 9.2(4)x x -; 10.223x ≤<; 11.1m <-; 12.113y x =-; 13.1233a b + ;14.125;15.13;16.12001200302x x -=-;17.tan h α(或cot h α⋅);181.三、解答题:(本大题共7题,满分78分) 19.解:原式13+-………………………………………………(6分)4=. ……………………………………………………………………(4分)20.解:由① 得 122x y =-. ③ ……………………………………(2分) 把③ 代入②,得 22(122)3(122)20y y y y ---+=.整理后,得 27120y y -+=.……………………………………………(2分) 解得 13y =,24y =. ……………………………………………………(2分) 分别代入③,得 16x =,24x =.…………………………………………(2分)所以,原方程组的解是116,3,x y =⎧⎨=⎩ 224,4.x y =⎧⎨=⎩…………………………………(2分)另解:由② 得 ()(2)0x y x y --=.………………………………………………(2分)即得 0x y -=,20x y -=. ………………………………………………(2分) 原方程组化为212,0,x y x y +=⎧⎨-=⎩ 212,20.x y x y +=⎧⎨-=⎩…………………………………………(2分)解得原方程组的解为 114,4,x y =⎧⎨=⎩ 226,3.x y =⎧⎨=⎩……………………………………(4分)21.解:(1)联结AD .∵ AB = AC ,D 为边BC 的中点,∴ AD ⊥BC .…………………(1分)在Rt △ABD 中,由AB =sin B ∠= 得sin 4AD AB B =⋅∠==. ……………………………(1分) ∴22B D ==.∴ 24BC BD ==.……………………………………………………(1分) ∵ CE = BC ,∴ CE = 4.即得 DE = 6.………………………(1分)在Rt △ADE 中,利用勾股定理,得23A E又∵ F 是边AE 的中点,∴12DF AE ==1分)(2)过点C 作CH ⊥AE ,垂足为点H .∵ CH ⊥AE ,AD ⊥BC ,∴ ∠CHE =∠ADE = 90º. ……………(1分) 又∵ ∠E =∠E ,∴ △CHE ∽△ADE .……………………………(1分)∴ C H E H C EA D D E A E ==,即得46CH EH ==. 解得CH =EH =.…………………………………(1分) ∴13A H A E E H =-=.………………………(1分)∴4tan 7CH CAE AH ∠===.…………………………………(1分)22.解:(1)设所求函数为 y k x b =+.…………………………………………(1分)根据题意,得 150,120.b k b =⎧⎨+=⎩…………………………………………(1分)解得 30,150.k b =-⎧⎨=⎩………………………………………………………(2分)∴ 所求函数的解析式为 30150y x =-+.………………………(1分) (2)设在D 处至少加w 升油.根据题意,得 360460121504303021060w -⨯--⨯+≥⨯⨯+.……(3分) 解得 94w ≥. …………………………………………………………(1分) 答:D 处至少加94升油,才能使货车到达B 处卸货后能顺利返回D 处加油.…………………………………………………………………………………(1分) 说明:利用算术方法分段分析解答正确也给满分.23.证明:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,∴ ∠ADH =∠DHC .……………………………(1分) ∵ DH ⊥BC ,∴ ∠ADH =∠DHC = 90º. 即得 ∠ADH =∠EDC = 90º. ……………………………………(1分)∵ A DE A DH E DH∠=∠-∠, C D H E D C E D H ∠=∠-∠, ∴ ∠ADE =∠CDH .………………………………………………(1分) ∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ AB = DH . ∵ AB = AD ,∴ AD = DH . 又∵ ∠A =∠DHC = 90º,∴ △ADE ≌△DHC .………………(2分) ∴ DE = DC .………………………………………………………(1分) (2)∵ DE = DC ,∠EDF =∠CDF ,∴ DF 垂直平分CE .………(1分)∴ FE = FC .即得 ∠FEC =∠FCE .……………………………(1分)∵ 2B E B F B C =⋅,∴ B E B CB F B E=. 又∵ ∠B =∠B ,∴ △BEC ∽△BEF .…………………………(2分) ∴ ∠BCE =∠BEF .………………………………………………(1分) ∴ ∠BEF =∠CEF .………………………………………………(1分)24.解:(1)抛物线224y ax ax =--经过点A (-3,0),∴ 2(3)2(3)40a a ----=.………………………………………(1分) 解得 415a =.…………………………………………………………(1分) ∴ 所求抛物线的关系式为 24841515y x x =--.…………………(1分)抛物线的对称轴是直线 1x =. ……………………………………(1分) (2)当 0x =,时,4y =-,即得 C (0,-4).又由 A (-3,0),得5AC .…………(1分) ∴ AD = AC = 5.又由 A (-3,0),得 D (2,0).∴CD =1分) 又由直线1x =为抛物线24841515y x x =--的对称轴,得 B (5,0). ∴ BD = 3.设圆C 的半径为r .∵ 圆D 与圆C 外切,∴ CD = BD + r .…………………………(1分) 即得3r =+. 解得3r =.……………………………………………………(1分)∴ 圆C的半径长为3.(3)联结DN .∵ AC = AD ,∴ ∠ACD =∠ADC .………………………………(1分) ∵ 线段MN 被直线CD 垂直平分,∴ MD = ND . 即得 ∠MDC =∠NDC .∴ ∠NDC =∠ACD .∴ ND // AC .∴ B N B D N C D A=.………………………………………………………(1分) 即得 AD = 5.…………………………………………………………(1分) ∴ AB = 8,即得 BD = 3,.∴ 35B N B D C N D A ==.……………………………………………………(1分)25.解:(1)∵ AD // BC ,EF // BC ,∴ EF // AD .……………………………(1分)又∵ ME // DN ,∴ 四边形EFDM 是平行四边形.∴ EF = DM .…………………………………………………………(1分) 同理可证,EF = AM .…………………………………………………(1分) ∴ AM = DM .∵ AD = 4,∴ 122E F A M A D ===.……………………………(1分)(2)∵ 38A D N M E N FS S ∆=四边形,∴ 58A M E D M F A D N S S S ∆∆∆+=. 即得 58A M E D M F A D N A D N S S S S ∆∆∆∆+=.……………………………………………(1分)。
(精品)2014年上海市松江区中考二摸数学试卷--解析版

2014年上海市松江区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】. C D .3.(4分)(2014•松江区二模)不等式组的解集在数轴上表示正确的是( ).CD .4.(4分)(2014•松江区二模)已知一组数据x 1,x 2,x 3的平均数和方差分别为6和2,则数据x 1+1,x 2+1,x 3+16.(4分)(2014•松江区二模)已知在△ABC 中,AB=AC=13,BC=10,如果以A 为圆心r 为半径的⊙A 和以BC 为二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)(2013•济南)分解因式:a 2﹣4= _________ .8.(4分)(2014•松江区二模)方程=1的解为 _________ .9.(4分)(2014•松江区二模)如果一元二次方程x 2+2x+a=0有两个不等实根,则实数a 的取值范围是 _________ .10.(4分)(2014•松江区二模)函数y=中自变量x 的取值范围是 _________ .11.(4分)(2014•松江区二模)将抛物线y=2x 2﹣1向右平移2个单位,再向上平移2个单位所得抛物线的表达式是 _________ .12.(4分)(2014•松江区二模)如果反比例函数y=的图象在每个象限内y 随x 的增大而减小,那么k 的取值范围是 _________ .13.(4分)(2014•松江区二模)在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是_________.14.(4分)(2014•松江区二模)为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图).如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有_________名.15.(4分)(2014•松江区二模)已知在△ABC中,=,=,M是边BC上的一点,BM:CM=1:2,用向量、表示=_________.16.(4分)(2014•松江区二模)一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为_________米(结果保留根号).17.(4分)(2014•松江区二模)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠C=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于_________.18.(4分)(2014•松江区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD 绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_________.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•松江区二模)计算:﹣()﹣1﹣+|﹣2|20.(10分)(2014•松江区二模)解方程:﹣=2.21.(10分)(2014•松江区二模)如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD 上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:(1)⊙O的半径;(2)BE的长.22.(10分)(2014•松江区二模)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA和OB分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数w1(张)和每个无人售票窗口售出的车票数w2(张)关于售票时间t(小时)的函数图象.(1)求w1(张)与t(小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?23.(12分)(2014•松江区二模)如图,在正方形ABCD中,E是边CD上一点,AF⊥AE交CB的延长线于点F,联结DF,分别交AE、AB于点G、P.(1)求证:AE=AF;(2)若∠BAF=∠BFD,求证:四边形APED是矩形.24.(12分)(2014•松江区二模)如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.25.(14分)(2014•松江区二模)在△ABC中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当DF⊥AB时,求AE的长;(2)如图2,当点E、F在边AB上时,求y关于x的函数关系式,并写出函数的定义域;(3)联结CE,当△DEC和△ADF相似时,求x的值.2014年上海市松江区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】.C D.与=3不是同类二次根式,故本选项错误;=3与=与3.(4分)(2014•松江区二模)不等式组的解集在数轴上表示正确的是().C D.4.(4分)(2014•松江区二模)已知一组数据x1,x2,x3的平均数和方差分别为6和2,则数据x1+1,x2+1,x3+1EF=BD6.(4分)(2014•松江区二模)已知在△ABC中,AB=AC=13,BC=10,如果以A为圆心r为半径的⊙A和以BC为二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)(2013•济南)分解因式:a2﹣4=(a+2)(a﹣2).8.(4分)(2014•松江区二模)方程=1的解为x=1.9.(4分)(2014•松江区二模)如果一元二次方程x2+2x+a=0有两个不等实根,则实数a的取值范围是a<1.10.(4分)(2014•松江区二模)函数y=中自变量x的取值范围是x≠3.11.(4分)(2014•松江区二模)将抛物线y=2x2﹣1向右平移2个单位,再向上平移2个单位所得抛物线的表达式是y=2(x﹣2)2+1.12.(4分)(2014•松江区二模)如果反比例函数y=的图象在每个象限内y随x的增大而减小,那么k的取值范围是k>.y=>.y=(13.(4分)(2014•松江区二模)在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是.=.故答案为:14.(4分)(2014•松江区二模)为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图).如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有2400名.15.(4分)(2014•松江区二模)已知在△ABC中,=,=,M是边BC上的一点,BM:CM=1:2,用向量、表示=+.,再表示出,然后根据三角形法则表示出解:∵=,=∴﹣=﹣,∴=(﹣∴+=+(﹣=﹣+.故答案为:+.16.(4分)(2014•松江区二模)一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为10米(结果保留根号).=,x=米..17.(4分)(2014•松江区二模)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠C=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.x=长等于故答案为:18.(4分)(2014•松江区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为.CD=AD=BD=AB=2.5E==故答案为:三、解答题:(本大题共7题,满分78分)19.(10分)(2014•松江区二模)计算:﹣()﹣1﹣+|﹣2|﹣+2,然后合并即可.﹣20.(10分)(2014•松江区二模)解方程:﹣=2.=y=2﹣﹣.21.(10分)(2014•松江区二模)如图,已知在△ABC中,AB=AC,BC=8,tan∠ABC=3,AD⊥BC于D,O是AD 上一点,OD=3,以OB为半径的⊙O分别交AB、AC于E、F.求:(1)⊙O的半径;(2)BE的长.中,∴∴∴∴∴22.(10分)(2014•松江区二模)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA和OB分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数w1(张)和每个无人售票窗口售出的车票数w2(张)关于售票时间t(小时)的函数图象.(1)求w1(张)与t(小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?个,普通售票窗口个,普通售票窗口个,由题意得23.(12分)(2014•松江区二模)如图,在正方形ABCD中,E是边CD上一点,AF⊥AE交CB的延长线于点F,联结DF,分别交AE、AB于点G、P.(1)求证:AE=AF;(2)若∠BAF=∠BFD,求证:四边形APED是矩形.24.(12分)(2014•松江区二模)如图,在直角坐标平面内,直线y=﹣x+5与x轴和y轴分别交于A、B两点,二次函数y=x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.OCA=,则易,OCA=;∴25.(14分)(2014•松江区二模)在△ABC中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当DF⊥AB时,求AE的长;(2)如图2,当点E、F在边AB上时,求y关于x的函数关系式,并写出函数的定义域;(3)联结CE,当△DEC和△ADF相似时,求x的值.tanA=,即可求出时,得出=,=﹣)得出,=,再把代入得出﹣,DE=AE=∴,≤∴,∴,,)∴,∴,,)x=,.。
2014届上海中考数学二模23题

23题图FED CBA上海各区、县中考数学二模23题1、(宝山区)如图9,在直角梯形ABCD 中,AD ∥BC ,︒=∠=∠90ABC DAB , E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证EF BE =. (2)联结BD 交AE 于M ,当1=AD ,2=AB ,EM AM =时,求CD 的长.2、(长宁区)如图,在Rt △ABC 中,∠B =90°,∠C =30°,点D 、E 、F 分别在边BC 、AB 、AC 上,联结DE 、EF 、FD ,若BE =21ED ,且FD ⊥BC .(1) 求证:四边形AEDF 是平行四边形; (2) 若AE AC 3=,求证:四边形AEDF 是菱形.3、(奉贤区)已知:如图,点E 是四边形ABCD 的对角线BD 上一点,且∠BAC =∠BDC =∠DAE .⑴求证:△ABE ∽△ACD ;⑵求证:AC DE AD BC ⋅=⋅;A B CD F EM 图9 E第23题DCBA4、(虹口区)已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ΔABE 沿BC 方向平移,使点E 与点C 重合,得ΔGFC 。
(1)求证:BE=DG ;(2)若∠BCD=120°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论。
5、(黄浦区) 如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .6、(金山区) 已知:如图7,线段,AB ∥CD ,AC ⊥CD ,AC 、BD 相交于点P ,E 、F 分别是线段BP 和DP 的中点. (1) 求证:AE // CF ;(2) 如果AE 和DC 的延长线相交于点Q ,M 、N 分别是线段AP 和DQ 的中点,求证:MN = CE .F E DC B A 图8 EF P DCBA7、(静安、青浦区、崇明县)已知:如图,在△ABC 中,AB =AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2;(2)联结CG ,求证:∠ECB =∠DCG .8、(闵行区)已知:如图,四边形ABCD 是平行四边形,分别以AB 、AD 为腰作等腰三角形△ABF 和等腰三角形△ADE ,且顶角∠BAF =∠DAE ,联结BD 、EF 相交于点G ,BD 与AF 相交于点H . (1)求证:BD =EF ;(2)当线段FG 、GH 和GB 满足怎样的数量关系时,四边形ABCD 是菱形,并加以证明.9、(浦东新区)已知,如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.(第23题图) AB CDE GFABD CEF (第23题图)G H(第23题图)10、(普陀区) 抛物线2y ax bx =+经过点A (4,0)、B (2,2),联结OB 、AB . (1) 求此抛物线的解析式;(5分) (2) 求证:△ABO 是等腰直角三角形;(4分)(3) 将△ABO 绕点O 按顺时针方向旋转135°得到△O 11A B ,写出边11A B 中点P 的坐标,并判断点P 是否在此抛物线上,说明理由. (3分)11、(松江区) 如图,在正方形ABCD 中,E 是边CD 上一点,AF AE ⊥交CB 的延长线于点F ,联结DF ,分别交AE 、AB 于点G 、P . (1)求证:AE=AF ;(2)若∠BAF =∠BFD ,求证:四边形APED 是矩形.12、(徐汇区) 已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC .(3) 求证:AO OF OC OE ⋅=⋅;(4) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形. (第23题图)BACFE DPG13、(杨浦区)如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F 。
2014上海二模第24题函数大题汇总

2014上海各区二模试卷第24题函数汇总及答案24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)在平面直角坐标系xOy 中,已知顶点为P (0, 2)的二次函数图像与x 轴交于A 、B 两点, A 点坐标为(2, 0).(1)求该二次函数的解析式,并写出点B 坐标;(2)点C 在该二次函数的图像上,且在第四象限,当△ABC 的面积为12时,求点C 坐标; (3)在(2)的条件下,点D 在y 轴上,且△APD 与△ABC 相似,求点D 坐标.24.(本题满分12分,第(1)小题4分,第(2)小题5分,第(3)小题3分)已知:如图,在平面直角坐标系xOy 中,直线243y mx m =-与x 轴、y 轴分别交于点A 、B ,点C 在线段AB 上,且2AOBAOCSS=.(1)求点C 的坐标(用含有m 的代数式表示);(2)将△AOC 沿x 轴翻折,当点C 的对应点C ′恰好落在抛物线223y x mx m =++上时,求该抛物线的表达式;(3)设点M 为(2)中所求抛物线上一点,当以A 、O 、C 、M 为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M 的坐标.24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=241与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC .(1)求这条抛物线的表达式及顶点M 的坐标; (2)求M AC ∠tan 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD =45º,求点D 的坐标.第24题图(第24题24. (本题满分12分)如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G .(1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,联结PC ,若△PCF 和△AEM 相似,求m 的值.24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)直线6y kx =-过点A (1,-4),与x 轴交于点B ,与y 轴交于点D ,以点A 为顶点的抛物线经过点B ,且交y 轴于点C 。
2014.4上海松江中考数学二模试卷及答案(word版)

2014年松江区初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟) 2014.4一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列各根式中与3是同类二次根式的是……………………………………………( ) (A )9;(B )31; (C(D )30.2.下列运算中,正确的是…………………………………………………………………( ) (A )325x x x +=;(B )32x x x -=; (C )326x x x ⋅=; (D )32x x x ÷=.3.不等式组⎩⎨⎧≤>+103x x 的解集在数轴上表示正确的是…………………………………( )4.已知一组数据123,,x x x 的平均数和方差分别为6和2,则数据1231,1,1x x x +++的平均数和方差分别是……………………………………………………………………………( ) (A )6和2;(B )6和3;(C )7和2;(D )7和3.5.顺次连结等腰梯形的各边中点所得到的四边形是……………………………………( ) (A )平行四边形;(B )菱形; (C )矩形;(D )正方形.6.已知在△ABC 中,AB =AC =13,BC =10,如果以A 为圆心r 为半径的⊙A 和以BC 为直径的⊙D 相交,那么r 的取值范围……………………………………………………………( ) (A )313r <<;(B )517r <<;(C )713r <<;(D )717r <<.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:24a -= . 81=的解为 .(A)(B)(C )(D )9.如果一元二次方程220x x a ++=有两个不相等的实数根,那么a 的取值范围是 . 10.函数y =23x-中自变量x 的取值范围是_______. 11.将抛物线221y x =-向右平移2个单位,再向上平移2个单位所得抛物线的表达式是 . 12.如果反比例函数21k y x-=的图像在每个象限内y 随x 的增大而减小,那么k 的取值范围是 .13.在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是 .14.为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图所示). 如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有 名. 15.已知在△ABC 中,AB a AC b ==,,M 是边BC 上的一点,:1:2BM CM =,用向量a、b 表示AM = .16.一公路大桥引桥长100米,已知引桥的坡度3:1=i ,那么引桥的铅直高度为 米(结果保留根号).17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于 .18.如图,在Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3,点D 为AB 的中点,将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A '处,点D 落在点D '处,则D B '长为 .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)11()24--32%其他16%音乐12%美术%体育(第14题图)CABD (第18题图)20.(本题满分10分) 解方程:213221x xx x +-=+.21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知在△ABC 中,AB =AC ,8BC =,tan 3ABC ∠=,AD ⊥BC 于D ,O 是AD 上一点,OD =3,以OB 为半径的⊙O 分别交AB 、AC 于E 、F .求:(1)⊙O 的半径; (2)BE 的长.22.(本题满分10分,第(1)小题4分,第(2)小题6分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA 和OB 分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数1w (张)和每个无人售票窗口售出的车票数2w (张)关于售票时间t (小时)的函数图象. (1)求1w (张)与t (小时)的函数解析式; (2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?23.(本题满分12分,每小题6分)如图,在正方形ABCD 中,E 是边CD 上一点,AF AE ⊥交CB 的延长线于点F ,联结DF ,分别交AE 、AB 于点G 、P . (1)求证:AE=AF ;(2)若∠BAF =∠BFD ,求证:四边形APED 是矩形.BOA CFED(第21题图)小时)w (张)240 w2w1 BA 1(第22题图) 180(第23题图)A CD PG(第24题图)OABC24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B ,且顶点为C (1)求这个二次函数的解析式; (2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下 方的一点,且∆ABP 的面积为10,求点P(第25题图1)DABFCE(第25题图2)DABFCED B(第25题备用图)25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)在ABC ∆中,AC =25,35AB =,4tan 3A =,点D 为边AC 上一点,且AD =5,点E 、F 分别为边AB 上的动点(点F 在点E 的左边),且EDF A ∠=∠.设y AF x AE ==,.(1)如图1,当DF AB ⊥ 时,求AE 的长;(2)如图2,当点E 、F 在边AB 上时,求函数的定义域;的函数关系式,并写出关于x y (3)联结CE ,当相似时,和ADF DEC ∆∆求x 的值.。
松江初中数学二模试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:D2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 2答案:A3. 已知一元二次方程x^2 - 5x + 6 = 0,则x的值为()A. 2,3B. 3,2C. 1,6D. 6,1答案:A4. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是()A. (2,-3)B. (-2,3)C. (2,3)答案:B5. 下列函数中,反比例函数是()A. y = x + 1B. y = 2xC. y = 2/xD. y = x^2答案:C6. 若等腰三角形底边长为8cm,腰长为10cm,则该三角形的周长为()A. 26cmB. 24cmC. 22cmD. 20cm答案:A7. 在梯形ABCD中,AD平行于BC,若AD = 6cm,BC = 10cm,AB = CD = 8cm,则梯形的高为()A. 5cmB. 6cmC. 7cmD. 8cm答案:A8. 已知正方形的对角线长为10cm,则该正方形的面积为()A. 50cm^2B. 100cm^2D. 20cm^2答案:B9. 若x^2 - 4x + 3 = 0,则x^3 - 4x^2 + 3x的值为()A. 0B. 1C. 2D. 3答案:A10. 下列各数中,有理数是()A. √3B. πC. √16D. √25答案:C二、填空题(每题3分,共30分)11. 若a = 2,b = -3,则a + b = _______。
12. 若x = 3,则x^2 - 2x + 1 = _______。
13. 若等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积为_______cm^2。
14. 在平面直角坐标系中,点A(2,3)关于x轴的对称点是 _______。
2014上海初三数学图形的运动—翻折(一模二模汇编)

学科教师辅导讲义学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师: 授课 类型C 翻折产生的边相等 C 翻折产生的角相等 C 翻折产生的基本图形授课日期时段教学内容一、专题精讲例1、如图,在矩形ABCD 中,点F 是CD 上的一点,沿AF 折叠,点D 恰好落在BC 边上的E 点,若3AB =,5BC =.则tan EFC ∠的值为 .【答案】43法一:根据一线三角,3tan =tan 4AB EFCAEB AEB BE ∠==∠ 法二:在RT △EFC 中,勾股定理解出FC=34,3tan =4EC EFC FC ∠= 例题2、如图所示,将边长为2的正方形纸片折叠,折痕为EF ,顶点A 恰好落在CD 边上的中点PFED CBA3-x 53-x x 1453F E D CBA1221x 2-xx122-x1x 2-x1b-x axx DCB A【答案】415在RT △EDH 中,勾股解出BD=x=415三、学法提炼1、专题特点:翻折后的对应边相等,若题中有边的数据或求边的值,且翻折后的边长和翻折前的相邻线段在一个直角三角形中(如右下图“旗帜”),通常可考虑勾股定理。
2、 解题方法:① 标记翻折后相等的线段,用数字或未知数表示线段长度、角度; ② 若已知条件和要求线段跟翻折的线段有关,找小“旗帜”,有直角三角形,利用勾股定理;如果没有直角构造直角。
注:如右图,在RT △BCD 中,通过勾股定理可以解出x 的值(a 、b 为已知数)3、注意事项:①若相关边长没有已知数据,可以设未知数,且相邻线段用未知数表示出来; ②若翻折后,可找到形如右上图的“旗帜”,可考虑勾股定理。
CBA90,B ∠,D cot EDB ∠ 40°40°45°50°x x=90,A∠,BC⊥,那么线段AD ED90,将△。
2014届中考二模数学试题含答案

2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年上海各区二模数学考试第24题汇编

4224681012510C BA24.(本题满分12分,每小题满分各4分)在平面直角坐标系xOy 中(图10),抛物线n mx mx y +-=2(m 、n 为常数)和y 轴交于)32,0(A 、和x 轴交于B 、C 两点(点C 在点B 的左侧),且tan ∠ABC=3,如果将抛物线n mx mx y +-=2沿x 轴向右平移四个单位,点B 的对应点记为E .(1)求抛物线n mx mx y +-=2的对称轴及其解析式; (2)联结AE ,记平移后的抛物线的对称轴与AE 的 交点为D ,求点D 的坐标;(3)如果点F 在x 轴上,且△ABD 与△EFD 相似, 求EF 的长.图1024题图CBAyxO24.(本题满分12分)如图,在直角坐标平面内,四边形OABC 是等腰梯形,其中OA=AB=BC =4,tan∠BCO =3. (1) 求经过O 、B 、C 三点的二次函数解析式;(2) 若点P 在第四象限,且△POC ∽△AOB 相似,求满足条件的所有点P 的坐标; (3) 在(2)的条件下,若⊙P 与以OC 为直径的⊙D 相切,请直接写出⊙P 的半径.24.(本题满分12分,每小题6分)24.已知:如图,在平面直角坐标系xOy 中,抛物线234y x bx c =-++交x 轴于A (4 , 0)、B (-1 , 0)两点,交y 轴于点C .(1)求抛物线的表达式和它的对称轴;(2)若点P 是线段OA 上一点(点P 不与点O 和点A 重合),点Q 是射线AC 上一点,且PQ PA =,在x 轴上是否存在一点D ,使得△ACD 与△APQ 相似,如果存在,请求出点D 的坐标;如果不存在,请说明理由.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)在平面直角坐标系xOy中,已知顶点为P(0,2)的二次函数图像与x轴交于A、B两点,A点坐标为(2,0).(1)求该二次函数的解析式,并写出点B坐标;(2)点C在该二次函数的图像上,且在第四象限,当△ABC的面积为12时,求点C坐标;(3)在(2)的条件下,点D在y轴上,且△APD与△ABC相似,求点D坐标.24. (本题满分12分)如图,在直角坐标系中,直线2y x =+与x 轴交于点A ,B 是这条直线在第一象限上的一点,过点B 、作x 轴的垂线,垂足为点D ,已知△ABD 的面积为18. (1)求点B 的坐标; (2)如果抛物线212y x mx n =-++的图像经过点A 和点B ,求抛物线的解析式; (3)已知(2)中的抛物线与y 轴相交于点C ,该抛物线对称轴与x 轴交于点H ,P 是抛物线对称轴上一点,过点P 作PQ // AC 交x 轴交于点Q ,如果点Q 在线段AH 上,并且AQ = CP ,求点P 的坐标.BAO D x y25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)如图,反比例函数的图像经过点A (–2,5)和点B (–5,p ),□ABCD 的顶点C 、D 分别在y 轴的负半轴、x 轴的正半轴上,二次函数的图像经过点A 、C 、D . (1)求直线AB 的表达式; (2)求点C 、D 的坐标;(3)如果点E 在第四象限的二次函数图像上,且DCE BDO ∠=∠,求点E 的坐标.(第25题图)ACBO yD Ex24.(本题共2题,每小题6,满分12分)已知:如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x 轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线2y ax bx c=++经过O、A、C三点.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)点P为线段OC上一个动点,过点P 作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(第24题图)24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线214y x bx c =++与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且2OA OC =.(1)求这条抛物线的表达式及顶点M 的坐标;(2)求tan MAC ∠的值; (3)如果点D 在这条抛物线的对称轴上,且45CAD ∠=,求点D 的坐标.(第24题图)xyOABC24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B ,且顶点为C . (1)求这个二次函数的解析式; (2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下 方的一点,且∆ABP 的面积为10,求点P 的坐标.24. (本题满分12分)如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G .(1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,联结PC ,若△PCF 和△AEM 相似,求m 的值.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分,)已知抛物线422--=ax ax y 与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C ,△ABC 的面积为12.(1)求抛物线的对称轴及表达式;(2)若点P 在x 轴上方的抛物线上,且tan ∠PAB =21,求点P 的坐标; (3)在(2)的条件下,过C 作射线交线段AP 于点E ,使得tan ∠BCE =21,联结BE ,试问BE 与BC 是否垂直?请通过计算说明。
上海各区2014学年初中数学二模试卷(共15套-附答案)

1崇明县2014学年第二学期教学质量调研测试卷九年级数学(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=± (B)3273-= (C)030-=()(D)2139-= 2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 ……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =2二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ .8.2=,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨. 14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b 表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .318.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩421.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长; (2)求sin DAE ∠的值.522.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?(第22题图)10y (km )x (h )O0.5 1623.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.A BDHG FEC(第23题图)7(第24题图)B AC O xy (备用图) B A C O xy 24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.825.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)AP D C E Q B (备用图1) B AC(备用图2) B AC92014学年奉贤区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+;B . 633a a a =⋅ ;C . 033=÷a a ; D .633)(a a =.2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限; C .图像是轴对称图形; D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10. 6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°; B .∠BAC =90°; C .BD =AC ; D .AB =AC .(第4题图) 次数环数3 2 1 07 8 9 10 D C B A(第6题图)10二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而 ▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ; 15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设ABa ,b BC =,那么AD →等于▲ (结果用a 、b 表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为 ▲ 米; 17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ;18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.20.(本题满分10分)CBOA (第18题图)11解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最.小整数解.....1221.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值;(2)求点C 到直线DE 的距离.CBA(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.131423.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD 中,AB //CD ,点E 是对角线AC 上一点,∠DEC =∠ABC ,且CA CE CD ⋅=2.(1)求证:四边形ABCD 是平行四边形;(2)分别过点E 、B 作AB 和AC 的平行线交于点F ,联结CF ,若∠FCE= ∠DCE ,求证:四边形EFCD 是菱形.F DCBA(第23题图)AE1524.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.Oy (第24题图)Ax1625.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB(第25题图)AB(备用图)A172014学年虹口区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.计算23()a 的结果是( )A .5a ; B .6a ; C .8a ; D .9a .21的一个有理化因式是( )ABC1+; D1.3.不等式组21010x x +≥⎧⎨-<⎩的解集是( )A .12x ≥-;B .1x <;C .112x -≤<;D .112x -<<. 4.下列事件中,是确定事件的是( )A .上海明天会下雨;B .将要过马路时恰好遇到红灯;C .有人把石头孵成了小鸭;D .冬天,盆里的水结成了冰. 5.下列多边形中,中心角等于内角的是( ) A .正三角形; B .正四边形; C .正六边形; D .正八边形.6.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等;B .有两边和第三边上的高对应相等的两个三角形全等;C .有两边和其中一边上的高对应相等的两个三角形全等;D .有两边和第三边上的中线对应相等的两个三角形全等. 二、填空题:(本大题共12题,每题4分,满分48分)7.据报道,截止2015年3月某市网名规模达5180000人.请将数据5180000用科学记数法表示为 .18(第题图)(第题图)(第题图)8.分解因式:228x x -= .9.如果关于x 的方程230x x a +-=有两个相等的实数根,那么a = .102x x -=的根是 .11.函数1y x +的定义域是 .12.在反比例函数23k y x-=的图像所在的每个象限中,如果函数值y 随自变量x 的值的增大而增大,那么常数k 的取值范围是 .13.为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学”.14.在Rt ABC ∆中,90C ∠=︒,点G 是Rt ABC ∆的重心,如果6CG =,那么斜边AB 的长等于 .15.如图,在ABC ∆中,点E 、F 分别在边AC 、BC 上,EF ∥AB ,12CE AE =,若AC a =, BC b =,则EF = .16.如图,A 、B 的半径分别为1cm 、2cm ,圆心距AB 为5cm .将A 由图示位置沿直线AB 向右平移,当该圆与B 内切时,A 平移的距离是 .17.定义[],,a b c 为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-“特征数”是[]1,3,2-,函数4y x =-+“特征数”是[]0,1,4-.如果将“特征数”是[]2,0,4的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是 .18.在Rt ABC ∆中,90C ∠=︒,2AC BC ==,若将ABC ∆绕点A 顺时针方向旋转60︒到''AB C ∆的位置,联结'C B ,则'C B 的长为 .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:2211()933x xx x x+-÷-+-,其中3x=.20.(本题满分10分)解方程组:2269130x xy yx y⎧++=⎪⎨--=⎪⎩①②.1920(第题图)21.(本题满分10分) 如图,等腰ABC ∆内接于半径为5的O ,AB AC =,1tan 3ABC ∠=.求BC 的长.22.(本题满分12分,第1小题5分,第2小题5分)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y(件)是每件销售价格x (元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖40件.(1)试求y关于x的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定位多少元?(不考虑其他因素)2122(第题图)23.(本题满分12分,第1小题6分,第2小题6分)如图,四边形ABCD 是平行四边形,点E 为DC 延长线上一点,联结AE ,交边BC 于点F ,联结BE .(1)求证:AB AD BF ED ⋅=⋅;(2)若CD CA =,且90DAE ∠=︒,求证:四边形ABEC 是菱形.23(第题图)24.(本题满分14分,第1小题4分,第2小题5分,第3小题3分) 如图,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -、(3,0)B 、(2,3)C 三点,且与y 轴交于点D .(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD 、DC 、CB ,直线4y x m =+与线段DC 交于点E ,当此直线将四边形ABCD 的面积平分时,求m 的值.(3)设点F 为抛物线对称轴上的一点,当以点A 、B 、C 、F 为顶点的四边形是梯形时,请直接写出所有满足条件的点F 的坐标.24(第题图)25.(本题满分14分,第1小题4分,第2小题5分,第3小题5分)如图,在Rt ABC ∆中,90ACB ∠=︒,13AB =,CD ∥AB .点E 为射线CD 上一动点(不与点C 重合),联结AE ,交边BC 于点F ,BAE ∠的平分线交BC 于点G . (1)当3CE =时,求:CEF CAF S S ∆∆的值;(2)设CE x =,AE y =,当2CG GB =时,求y 与x 之间的函数关系式; (3)当5AC =时,联结EG ,若AEG ∆为直角三角形,求BG 的长.25黄浦区2015年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2015.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列分数中,可以化为有限小数的是 (A )115; (B )118; (C )315; (D )318. 2. 下列二次根式中最简根式是(A; (B )8; (C; (D3.C )这七天最低气温的众数和中位数分别是(A )4,4; (B )4,5; (C )6,5; (D )6,6.4. 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是 (A )2(1)2y x =-+; (B )2(2)1y x =-+; (C )2(1)2y x =+-; (D )2(2)1y x =+-.5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是 (A )内含; (B )内切; (C )外切; (D )相交.6. 下列命题中真命题是(A )对角线互相垂直的四边形是矩形; (B )对角线相等的四边形是矩形; (C )四条边都相等的四边形是矩形; (D )四个内角都相等的四边形是矩形.26二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7. 计算:22()a = ▲ . 8. 因式分解:2288x x -+= ▲ . 9. 计算:111x x x +=+- ▲ . 10. 方程71x x -=-的根是 ▲ .11. 如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ▲ .12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图1所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为 ▲ .13. 将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是 ▲ . 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ▲ .15. 已知AB 是⊙O 的弦,如果⊙O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是 ▲ .16. 如图2,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且12CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ▲ .图2 图3 图4-1 图4-217. 如图3,⊙ABC 是等边三角形,若点A 绕点C 顺时针旋转30︒至点'A ,联结'A B ,则'ABA ∠度数是 ▲ . 18. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt ⊙ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是▲ .MD CABNCABOPP'BOA图1一班 二班 三班 四班人数(人) 1282010三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:)11034811-+-+.20. (本题满分10分)解方程组:2222,1.x yx y⎧-=-⎨-=⎩①②2721. (本题满分10分,第(1)满分7分,(2)小题满分3分)温度通常有两种表示方法:华氏度(单位:F)与摄氏度(单位:C).已知华氏度数y与摄C)F)(1)选用表格中给出的数据,求y关于x的函数解析式(不需要写出该函数的定义域);(2)已知某天的最低气温是5C,求与之对应的华氏度数.282922. (本题满分10分,第(1)、(2)小题满分各5分)如图5,在梯形ABCD 中,AD //BC ,AB ⊥BC ,已知AD =2, 4cot 3ACB ∠=,梯形ABCD 的面积是9.(1)求AB 的长;(2)求tan ACD ∠的值.DAB C图53023. (本题满分12分,第(1),(2)小题满分各6分)如图6,在正方形ABCD 中,点E 在对角线AC 上,点F 在边B C 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE =DG .(1)求证:AE =CG ; (2)求证:BE //DF .图6 G FE C3124. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图7,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 横坐标为6,求直线AO 的表达式; (2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP SS ∆∆的值;如果变化,请说明理由.图7 C B A P O xy (备用图)Oxy3225. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分)如图8,Rt⊙ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.DC BA (备用图)图8GD C A E332015年宝山嘉定联合模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,属无理数的是(▲)(A)722; (B) 010010001.1; (C) 27; (D)︒60cos .2.如果b a >,那么下列不等式一定成立的是(▲)(A) 0<-b a ; (B) b a ->-; (C)b a 2121<; (D) b a 22>. 3.数据6,7,5,7,6,13,5,6,8的众数是(▲)(A)5; (B)6; (C)7; (D)5或6或7. 4.抛物线3)2(2-+-=x y 向右平移了3个单位,那么平移后抛物线的顶点坐标是(▲)(A) ),35(--; (B) )31(-,; (C) )31(--,; (D) )02(,-. 5.下列命题中,真命题是(▲)(A)菱形的对角线互相平分且相等; (B)矩形的对角线互相垂直平分;(C)对角线相等且垂直的四边形是正方形; (D) 对角线互相平分的四边形是平行四边形. 6.Rt △ABC 中,已知︒=∠90C ,4==BC AC ,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于2,那么下列结论正确的是(▲) (A) 圆A 与圆B 外离; (B) 圆B 与圆C 外离; (C) 圆A 与圆C 外离; (D) 圆A 与圆B 相交.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=-2)21( ▲ . 8.计算:=--)2(2x x ▲ .9.方程31=-x 的解是 ▲ .10.函数xx y 241-+=的定义域是 ▲ .11.如果正比例函数k kx y (=是常数,)0≠k 的图像经过点)2,1(-,那么这个函数的解析式是▲ .3412.抛物线222-++-=m x x y 与y 轴的交点为)4,0(-,那么=m ▲ .13.某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是 ▲ 元.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 ▲ . 15.如图2,在△ABC 中,点M 在边BC 上,BM MC 2=,设向量a AB =,b AM =, 那么向量=BC ▲ (结果用a 、b 表示).16.如图3,在平行四边形ADBO 中,圆O 经过点A 、D 、B ,如果圆O 的半径4=OA ,那么弦=AB ▲ .17. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD 中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 ▲ . 18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE ▲ .元 5 人数 10 15 20 25 4 6 8 10 12 图1 A BC M 图2 图3 A B CD 图4 A D B C GE F图535三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x ②①3621.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离;(2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.A .O B C D 图7 图622.(本题满分10分,每小题满分各5分)已知一水池的容积V(公升)与注入水的时间t(分钟)之间开始是一次函数关系,表中记(1;(2)从t为25分钟开始,每分钟注入的水量发生变化了,到t为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.373823.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.A B C E DF 图83924.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (图9),双曲线)0(≠=k xky 与直线2+=x y 都经过点),2(m A .(1)求k 与m 的值;(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.图9O11 xy4025.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.AC B (M ) ED 图10 A C B MED 图11412014学年金山第二学期期中质量检测初三数学试卷 2015.4(时间100分钟,满分150分)一、选择题(本题共6小题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列各数中与2是同类二次根式的是( )(A )2; (B )32; (C )4; (D )12. 2.下列代数式中是二次二项式的是( ) (A )1-xy ;(B )112+x ; (C )22xy x +; (D )14+x .3.若直线1+=x y 向下平移2个单位,那么所得新直线的解析式是( ) (A )3+=x y ;(B )3-=x y ;(C )1-=x y(D )1+-=x y .4.一次数学单元测试中,初三(1)班第一小组的10个学生的成绩分别是:58分、72分、76分、82分、82分、89分、91分、91分、91分、98分,那么这次测试第一小组10个学生成绩的众数和平均数分别是( )(A )82分、83分; (B )83分、89分; (C )91分、72分; (D )91分、83分.5.如图,AB ∥CD , 13=∠D ,28=∠B ,那么E ∠等于( ) (A )13;(B )14;(C ) 15; (D )16.6.在ABC Rt ∆中,︒=∠90C ,BC AC =,若以点C 为圆心,以cm 2长为半径的圆与斜边AB 相切,那么BC 的长等于( )(A )cm 2; (B )cm 22; (C )cm 32; (D )cm 4.二、填空题(本题共12题,每小题4分,满分48分) 7.计算:∣3-∣=-3 ▲8.已知函数12)(-=x x f ,那么=)3(f ▲ 9.因式分解:=-x x 3▲BCEDA第5题图4210.已知不等式321≥-x ,那么这个不等式的解集是 ▲ 11.已知反比例函数xky =)0(≠k 的图像经过点)2,1(,那么反比例函数的解析式是 ▲ 12.方程11211=---xx x 的解是 ▲ 13.方程x x =+32的解是 ▲14.有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是 ▲15.已知关于x 的一元二次方程012=++x mx 有两个不相等的实数根,那么m 的取值范围是▲16.在ABC ∆中,点E D 、分别在边AC AB 、上,BD AD =,EC AE 2=.设=AB a →,=AC b →,那么=DE ▲ (用 a →、b →的 式子表示)17.在平面直角坐标系中,我们把半径相等且外切、连心线与直线 x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为 ▲18.在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 ▲BCDM NA第18题图43三、(本题共有7题,满分78分) 19.(本题满分10分)化简:(12122+---+x x x x x x )22)1(1-+÷x x x20.(本题满分10分)解方程组⎩⎨⎧=-+-=+-04440122y xy x y x21.(本题满分10分)如图,点P表示某港口的位置,甲船在港口北偏西30方向距港口50海里的A处,乙船在港口北偏东45方向距港口60海里的B处,两船同时出发分别沿AP、BP方向匀速驶向港口P,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.ABP北东第21题图444522.(本题满分10分)为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中抽查了部分学生的视力,分成以下四类进行统计视力类型人数 视力在4.2及以下 A 10 视力在4.3—4.5之间 B 20视力在4.6—4.9之间 C视力在5.0及以上D注:(4.3—4.5之间表示包括4.3及4.5)根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是 度; (3) 本次调查数据的中位数落在 类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人 .10 80100 80 6040 20 0ABCD视力 类型人数图一C40% DB10% A图二 第22题图。
上海松江区初三数学二模试卷及答案

2015年松江区初中毕业生学业模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列根式中,与24是同类根式的是( ) (A )2;(B )3;(C )5;(D )6.2.如果关于x 的一元二次方程042=+-k x x 有两个不相等的实数根,那么k 的取值范围是( )(A )4<k ; (B )4>k ;(C )0<k ;(D )0>k .3.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图像经过( ) (A )第一、二、三象限;(B )第一、三、四象限; (C )第一、二、四象限;(D )第二、三、四象限.4.一组数据:-1,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( ) (A )1;(B )2;(C )3;(D )4.5.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )(A )AD =BC ; (B )AC =BD ; (C )∠A =∠C ; (D )∠A =∠B . 6.如图,在Rt△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AB =c ,∠A =α,则CD 长为( ) (A )α2sin ⋅c ;(B )α2cos ⋅c ;ACBD(C )ααtan sin ⋅⋅c ; (D )ααcos sin ⋅⋅c . 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:1-2=________.8.分解因式:224b a -=______________________. 9.已知1)(-=x xx f ,那么)3(f =___________. 10.已知正比例函数的图像经过点(-1,3),那么这个函数的解析式为________. 11.不等式组⎩⎨⎧><+6251x x 的解集是___________.12.用换元法解方程221201x x x x -++=-时,可设21x y x-=,则原方程可化为关于y 的整式方程为 .13.任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是_______.14.将抛物线221y x =-向上平移4个单位后,所得抛物线的解析式是___________. 15.在△ABC 中,AD 是BC 边上的中线,如果=,=,那么 .(用、表示) 16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB 为直角,若AB =8,BC =10,则EF的长为 .17.如图,当小明沿坡度3:1=i 的坡面由A 到B 行走了100米,那么小明行走的水平距离=AC 米.(结果可以用根号表示) 18.如图,在△ABC 中,AB =AC =5cm ,BC =6cm ,BD 平分∠ABC ,BD 交AC 于点D .如果将△ABD沿BD 翻折,点A 落在点A ′处,那么△D A ′C 的面积为_______________cm 2.BA EFCD (第16题图)ABD(第18题图)ABC (第17题图)三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 计算:323112---÷-+x x x x )(20.(本题满分10分) 解方程组:⎩⎨⎧=--=+0548322y xy x y x21.(本题满分10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?22.(本题满分10分,每小题各5分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,且CD =24,点M 在⊙O 上,MD 经过圆心O ,联结MB .(1)若BE =8,求⊙O 的半径; (2)若∠DMB=∠D ,求线段OE 的长.23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG . (1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF .A(第23题图)EGDFCB(第22题图)24.(本题满分12分,每小题各4分)如图,二次函数bx x y +-=2的图像与x 轴的正半轴交于点A (4,0),过A 点的直线与y 轴的正半轴交于点B ,与二次函数的图像交于另一点C ,过点C 作CH ⊥x 轴,垂足为H .设二次函数图像的顶点为D ,其对称轴与直线AB 及x 轴分别交于点E 和点F . (1)求这个二次函数的解析式; (2)如果CE =3BC ,求点B 的坐标;(3)如果△DHE 是以DH 为底边的等腰三角形,求点E 的坐标.(第24题图)x25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.ABCHPD (第25题图1)ABCHPD EF(第25题图2)2015年松江区初中毕业生学业模拟考试数学参考答案及评分标准一、选择题1、D ;2、A ;3、B ;4、C ;5、C ;6、D . 二、填空题7、21; 8、()()b a b a 22-+; 9、23; 10、x y 3-=; 11、43<<x ;12、0122=++y y ; 13、32; 14、322+=x y ; 15、-2; 16、1; 17、1030; 18、1112. 三、解答题19.解: 原式=()()31232-+-÷--x x x x x ………………………………………………………6分 =()()12332+--⨯--x x x x x …………………………………………………………2分 =11+x ……………………………………………………………………………2分 20.解:由②得0,05=+=-y x y x …………………………………………………………4分原方程组化为⎩⎨⎧=-=+0583y x y x ,⎩⎨⎧=+=+083y x y x …………………………………………2分解得⎩⎨⎧=-=⎩⎨⎧==44152211y x y x …………………………………………………………4分 21.解:(1)设一月份每辆电动车的售价是x 元.…………………………………………1分 根据题意得:()()12200100-80%101100=-+x x …………………………………………5分 解得2100=x …………………………………………………………………………………2分 答:一月份每辆电动车的售价是2100元.……………………………………………………2分22.解:(1)设⊙O 的半径为r ,则OD =OB =r∵BE =8,∴OE =r -8………………………………………………………………………………1分 ∵OB ⊥CD ,OB 是半径,∴ED =CD 21…………………………………………………………1分∵CD =24,∴ED =12 ……………………………………………………………………………1分 在Rt△OED 中,222OD ED OE =+∴222128r r =+-)( …………………………………………………………………………1分解得13=r ………………………………………………………………………………………1分 ∴⊙O 的半径为13.(2)∵OM =OB ,∴∠OMB =∠B ……………………………………………………………1分 ∵∠DOE =∠OMB +∠B ,∴∠DOE =2∠OMB ………………………………………………1分 ∵∠DMB=∠D ,∴∠DOE =2∠D ,∵∠DOE +∠D =90°,∴∠D =30°………………………1分 在Rt △OED 中,EDOED =∠tan ………………………………………………………………1分 ∵ED =12,∠D =30°∴OE =34………………………………………………………………………………………1分 23.证明:(1)∵四边形ABCD 是正方形∴AD =DC ,∠ADC =90°…………………………………………………………………………2分 ∵GD ⊥DF ,∴∠GDF =90°∴∠ADG =∠CDF ………………………………………………………………………………1分 ∵CF ⊥AF ,∴∠AFC =90°,∴∠CFD =90°+∠DFG …………………………………………1分 ∵∠AGD =∠GDF +∠DFG =90°+∠DFG∴∠AGD =∠CFD ………………………………………………………………………………1分 ∴△ADG ≌△CDF ………………………………………………………………………………1分 (2)∵∠ADE =∠EFC ,∠DEA =∠FEC ,∴△ADE ∽△CFE ,∴FCEFAD DE =……………1分 ∵E 为CD 的中点,∴21=DC DE ,∴21=AD DE ,∴21=FC EF ∵△ADG ≌△CDF ,∴FC =AG ,∴21=AG EF ,∵21=AB EC ,∴ABECAG EF = ……………1分 ∵AB ∥EC ,∴∠FEC=∠GAB …………………………………………………………………1分∴△EFC ∽△AGB ………………………………………………………………………………1分 ∴∠EFC =∠AGB =90° …………………………………………………………………………1分 ∴BG ⊥AF ………………………………………………………………………………………1分24.解:(1)∵抛物线bx x y +-=2经过点A (4,0)∴b 416-0+=…………………………………………………………………………………1分 ∴4=b …………………………………………………………………………………………1分 ∴ 4x 2+-=x y ………………………………………………………………………………1分 ∴抛物线的解析式为x x y 42+-=……………………………………………………………1分(2)∵422+--=)(x y ,顶点D 的坐标是(2,4)……………………………………1分 由抛物线的对称性可得OF =AF =2∵BO ∥CH ∥EF ,∴OF OHBE BC =∵CE =3BC ,∴41=BE BC ,∴OH =21…………………………………………………………1分∴CH =y =47∵AO AH OB CH =,∴421447-=OB ………………………………………………………………1分 ∴OB =2,∴B (0,2) …………………………………………………………………………1分 (3)设点C 的坐标为(x ,-x 2+4x ),∵AH AF CH EF =,∴xx x EF -=+424-2 ∴EF =2x …………………………………………………………………………………………1分∵EH =DE ,∴x x x 242222-=+-)()(…………………………………………………1分∴3461+-=x ,3462--=x (舍)…………………………………………………1分∴38122+-==x EF ,∴),(38122+-E …………………………………………1分25.解:(1)过点D 作DG ⊥BC ,垂足为G∵在Rt △ABD 中,∠ABC =90º,AB =4,AD=3,∴BD=5……………………………………1分 在Rt △DCG 中,∠DGC =90º,552sin =∠BCD =DC DG…………………………………1分 ∵AD ∥BC ,∴AB =DG =4,AD =BG =3,∴DC=52,∴CG=2∴BC=3+2=5……………………………………………………………………………………1分 ∴BD=BC ,∴∠BCD =∠BDC …………………………………………………………………1分 (2)设DP=x ,则R P =PB=5-x ………………………………………………………………1分 ∵∠BCD =∠BDC ,∴552sin sin =∠=∠BDC BCD ……………………………………1分在Rt △PDH 中,∠PHD =90º,552sin =∠BDC =x PHPD PH = ∴PH =x 552,∴DH =x 55,∴R H =HD=x 55……………………………………………1分∵⊙P 与⊙H 外切,∴PH R R H P =+ ………………………………………………………1分 ∴x x x 552555=+-,∴45525-=x …………………………………………………1分 即45525-=DP (3)过点P 作PM ∥BC 交DC 于点M ,∴∠DMP =∠DCB∵∠BDC =∠DCB ,∴∠DMP =∠BDC ,∴PD =PM ,∵PH ⊥CD ,∴DH =HM ……………1分 ∵PM ∥BC ,∴CEPMFC MF =,∵DP =CE ,∴PM =CE ,∴MF =CF ∴521==DC HF ,∴x HF DH CD CF 555-=--=…………………………1分 ∵AD ∥CE ,∴∠ADH=∠FCE …………………………………………………………………1分 (ⅰ)若CFDHCE AD =,则△ADH ∽△ECF ∴xxx 555553-=,解得2693+-=x (负值已舍)……………………………………1分(ⅱ)若CEDHCF AD =,则△ADH ∽△FCE ∴xx x 555553=-,解得10-=x (舍)………………………………………………1分 综上所述,2693+-=DP .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年松江区初中毕业生学业模拟考试
数学试卷
(满分150分,完卷时间100分钟) 2014.4
考生注意:
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.下列各根式中与3是同类二次根式的是……………………………………………( ) (A )9;
(B )
3
1
; (C
(D )30.
2.下列运算中,正确的是…………………………………………………………………( ) (A )325x x x +=;
(B )3
2
x x x -=; (C )3
2
6
x x x ⋅=; (D )3
2
x x x ÷=.
3.不等式组⎩
⎨⎧≤>+103x x 的解集在数轴上表示正确的是…………………………………( )
4.已知一组数据123,,x x x 的平均数和方差分别为6和2,则数据1231,1,1x x x +++的平均数和方差分别是……………………………………………………………………………( ) (A )6和2;
(B )6和3;
(C )7和2;
(D )7和3.
5.顺次连结等腰梯形的各边中点所得到的四边形是……………………………………( ) (A )平行四边形;
(B )菱形; (C )矩形;
(D )正方形.
6.已知在△ABC 中,AB =AC =13,BC =10,如果以A 为圆心r 为半径的⊙A 和以BC 为直径的⊙D 相交,那么r 的取值范围……………………………………………………………( ) (A )313r <<;
(B )517r <<; (C )713r <<; (D )717r <<.
(A
)
(B
)
(C )
(D )
二、填空题:(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置上】 7.因式分解:24a -= . 8
1=的解为 .
9.如果一元二次方程2
20x x a ++=有两个不相等的实数根,那么a 的取值范围是 . 10.函数y =
2
3x
-中自变量x 的取值范围是_______. 11.将抛物线221y x =-向右平移2个单位,再向上平移2个单位所得抛物线的表达式
是 . 12.如果反比例函数21
k y x
-=
的图像在每个象限内y 随x 的增大而减小,那么k 的取值范围是 .
13.在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是
中心对称图形的概率是 .
14.为了解某区初三学生的课余生活情况,调查小组在全区范围内随机
抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图所示). 如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有 名.
15.已知在△ABC 中,AB a AC b == ,,M 是边BC 上的一点,:1:2BM CM =,用向量a
、
b 表示AM
= .
16.一公路大桥引桥长100米,已知引桥的坡度3:1=i ,那么引桥的铅直高度为 米
(结果保留根号).
17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,
这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于 .
18.如图,在Rt △ABC 中,90ACB ∠=︒,AC =4,BC =3,
点D 为AB 的中点,将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A '处,点D 落在点D '处,则
D B '长为 .
32%
其他
16%
音乐12%美术%
体育
(第14题图)
C
A
B
D (第18题图)
三、解答题:(本大题共7题,满分78分)19.(本题满分10分)
1
1
()2
4
-
20.(本题满分10分)
解方程:
213
2
21
x x
x x
+
-=
+
.
21.(本题满分10分,第(1)小题4分,第(2)小题6分)
如图,已知在△ABC中,AB=AC,8
BC=,tan3
ABC
∠=,AD
⊥BC于D,O是AD上一点,OD=3,以OB为半径的⊙O分别交AB、
AC于E、F.
求:(1)⊙O的半径;
(2)BE的长.
22.(本题满分10分,第(1)小题4分,第(2)小题6分)
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA和OB分别表示某日从上午8点到上午11点,
每个普通售票窗口售出的车票数
1
w(张)和每个无人售
票窗口售出的车票数
2
w(张)关于售票时间t(小时)
的函数图象.
(1)求
1
w(张)与t(小时)的函数解析式;
(2)若当天开放无人售票窗口个数是普通售票窗口
个数的2倍,从上午8点到上午11点,两种窗口共售出
的车票数为2400张,求当天开放无人售票窗口的个数?
23.(本题满分12分,每小题6分)
如图,在正方形ABCD中,E是边CD上一点,AF AE
⊥交CB的延长线于点F,联结DF,分别交AE、AB于点G、P.
(1)求证:AE=AF;
(2)若∠BAF=∠BFD,求证:四边形APED是矩形.
(第21题图)
小时)
(第22题图)
(第23题图)
(第24题图)
(第25题图1)
D
A
B
F
C
E
(第25题图2)
D
A
B
F
C
E
B
(第25题备用图)
24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)
如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B ,且顶点为(1)求这个二次函数的解析式; (2)求OCA ∠sin 的值;
(3)若P 是这个二次函数图象上位于x 轴下 方的一点,且∆ABP 的面积为10,求点P
25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)
在ABC ∆中,AC =25,35AB =,4
tan 3
A =,点D 为边AC 上一点,且AD =5,点E 、F 分别为边A
B 上的动点(点F 在点E 的左边),且EDF A ∠=∠.设y AF x AE ==,.
(1)如图1,当DF AB ⊥ 时,求AE 的长;
(2)如图2,当点E 、F 在边AB 上时,求函数的定义域;的函数关系式,并写出关于x y (3)联结CE ,当相似时,和ADF DEC ∆∆求x 的值.。