2019-3-12 高中 物理 生活中的圆周运动 计算题
人教版物理必修二-圆周运动的规律计算题

圆周运动的计算题练习 一、计算题 1.如图所示,AB 是一段光滑的水平支持面(不计支持面厚度),一个质量为m 的小物体P 在支持面上以速度v 0滑到B 点时水平飞出,落在水平地面的C 点,其轨迹如图中虚线BC 所示.已知P 落地时相对于B 点的水平位移OC =l ,重力加速度为g ,不记空气阻力的作用.(1)现于支持面下方紧贴B 点安装一水平传送带,传送带右端E 与B 点相距l/2,先将驱动轮锁定,传送带处于静止状态.使P 仍以v 0离开B 点在传送带上滑行,然后从传送带右端E 水平飞出,恰好仍落在C 点,其轨迹如图中虚线EC 所示,求小物块P 与传送带之间的动摩擦因数μ;(2)若解除锁定,驱动轮以不同的角度ω顺时针匀速转动,仍使P 以v 0从B 点滑上传送带,最后P 的落地点为D (图中未画出).试写出角速度ω对应的OD 的可能值.2.如图所示,水平传送带的长度L=10m,皮带轮的半径R=0.1m,皮带轮以角速度ω顺时针匀速转动.现有一小物体(视为质点)从A 点无初速度滑上传送带,到B 点时速度刚好达到传送带的速度0v ,越过B 点后做平抛运动,落地时物体速度与水平面之间的夹角为045θ=.已知B 点到地面的高度5h m =.(1)小物体越过B 点后经多长时间落地及平抛的水平位移S.(2)皮带轮的角速度ω(3)物体与传送带间的动摩擦因μ3.如图所示,小球从倾斜轨道上静止释放,下滑到水平轨道,当小球通过水平轨道末端的瞬间,前方的圆筒立即开始匀速转动,圆筒下方有一小孔P,圆筒静止时小孔正对着轨道方向.已知圆筒顶端与水平轨道在同一水平面,水平轨道末端与圆筒顶端圆心的距离为d,P孔距圆筒顶端的高度差为h,圆筒半径为R,现观察到小球从轨道滑下后,恰好钻进P孔,小球可视为质点.求:(1)小球从水平轨道滑出时的初速度V0.(2)圆筒转动的角速度ω.4.如图所示的皮带传动装置中,两轮半径之比为1:2,a为小轮边缘一点,b为大轮边缘一点,两轮顺时针匀速转动,皮带不打滑,求:(1)a、b两点的线速度的大小之比;(2)a、b两点的角速度之比;(3)a、b两点的加速度的大小之比;(4)a、b两点的转动周期之比。
2020-2021高中物理新人教版必修第二册 6.4生活中的圆周运动 课时作业13(含解析)

2m/s2≤a≤10m/s2
A.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上时,物体做匀变速曲线运动,加速度大小可能是5m/s2,故A错误;
C.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,但加速度不可能为1.5m/s2,故C错误;
(1)小球从A点射出时的速度大小v0;
(2)A、B两点间的水平距离x。
17.学校组织趣味运动会,某科技小组为大家提供了一个寓教于乐的游戏.如图所示,磁性小球在铁质圆轨道外侧旋转而不脱落,好像轨道对它施加了魔性一样,小球旋转一周后在C点脱离轨道,投入左边内轨的某点上,已知竖直圆弧轨道由半径为2R的左半圆轨道AB和半径为R的右半圆轨道BC无缝对接,A、B点处于竖直线上,可看成质点、质量为m的小球沿轨道外侧做圆周运动,已知小球受轨道的磁性引力始终指向圆心且大小恒为F,不计摩擦和空气阻力,重力加速度为g。
C.根据v=ωr可知,筒壁上衣服的线速度与角速度之比等于转动半径r,则甩干筒的转速越大,筒壁上衣服的线速度与角速度之比不变,选项C错误;
故选B.
6.B
【详解】
由平衡条件得知,余下力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为8N和12N的两个力后,物体的合力大小范围为
4N≤F合≤20N
得
因为小球在同一平面内做圆周运动,则由题意知,小球圆周运动半径r=htanθ,其中h为运动平面到悬点的距离,向心力
F向=mgtanθ
质量m和θ不同,则向心力不同,故A错误;
B.运动的角速度
角速度与夹角θ无关,故B正确;
C.运动的线速度
知θ不同,则线速度不同,故C错误;
D.向心加速度
专题04 圆周运动(解析版)-高考物理计算题专项突破

专题04 圆周运动一、描述圆周运动的物理量及公式:①平均线速度:t s v ∆∆=;(平均速度)②平均角速度:t∆∆=θω;③转速、周期、频率关系:Tf n 1==;④r v ω=,n f T πππω222===,rn rf Trv πππ222===;二、匀速圆周运动的有关公式:①向心力:r mf r T m r m r v m ma F n n 22222244ππω=====;②向心加速度:ωππωv r f r Tr r v a n =====22222244;在解有关圆周运动的计算题时,首先要审清题目,确定研究对象,同时确定圆周运动的轨道平面,然后对题目中的几何关系、物体的运动情况和物体的受力情况(画示意图)进行分析,从而确定圆周运动的圆心、半径,物体运动的线速度、角速度,以及向心力的来源。
最后根据牛顿运动定律或者圆周运动的相关知识列出方程求解即可。
1.火车转弯问题 在转弯处,若向心力完全由重力G 和支持力N F 的合力F 合来提供,则铁轨不受轮缘的挤压,此时行车最安全。
R 为转弯半径,θ为斜面的倾角, 2=tan v F F mg mRθ==临向合, 所以v 临(1)当v v >临时,即2tan v m mg Rθ>,重力与支持力N F 的合力不足以提供向心力,则外轨对轮缘有侧向压力。
(2)当v v <临时,即2tan v m mg Rθ<,重力与支持力N F 的合力大于所需向心力,则内轨对轮缘有侧向压力。
(3)当v v =临时,2tan v m mg Rθ=,火车转弯时不受内、外轨对轮缘的侧向压力,火车行驶最安全。
2.汽车过拱桥如汽车过拱桥桥顶时向心力完全由重力提供(支持力为零),则据向心力公式2=v F mg m R=向得: v =(R 为圆周半径),故汽车是否受拱桥桥顶作用力的临界条件为:v =临,此时汽车与拱桥桥顶无作用力。
3.圆周运动中常考的临界问题(1)水平面内圆周运动的临界问题,例如圆锥摆、转盘上的物体、火车和汽车转弯等,首先应明确向心力的来源,然后分析临界状态,通过动力学方程r mv ma F 2==,r m ma F 2ω==,r T m ma F 224π==,mr n ma F 224π==来求解。
第六章 圆周运动 自选习题 -2022-2023学年高一下学期物理人教版(2019)必修第二册

第6章圆周运动练习题一、选择题。
1、如图所示的齿轮传动装置中,主动轮的齿数z1=24,从动轮的齿数z2=8,当主动轮以角速度ω顺时针转动时,从动轮的转动情况是()A.顺时针转动,周期为2π3ω B.逆时针转动,周期为2π3ωC.顺时针转动,周期为6πω D.逆时针转动,周期为6πω2、下列关于向心力的说法中正确的是()A.做匀速圆周运动的物体除了受到重力、弹力等力外还受到向心力的作用B.向心力和重力、弹力一样,是性质力C.做匀速圆周运动的物体的向心力即为其所受的合外力D.做圆周运动的物体所受各力的合力一定充当向心力3、如图所示,一个水平大圆盘绕过圆心的竖直轴匀速转动,一个小孩坐在距圆心为r处的P点不动(P未画出),关于小孩的受力,以下说法正确的是()A.小孩在P点不动,因此不受摩擦力的作用B.小孩随圆盘做匀速圆周运动,其重力和支持力的合力充当向心力C.小孩随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D.若使圆盘以较小的转速转动,小孩在P点受到的摩擦力不变4、如图所示,一根轻杆(质量不计)的一端以O点为固定转轴,另一端固定一个小球,小球以O点为圆心在竖直平面内沿顺时针方向做匀速圆周运动。
当小球运动到图中位置时,轻杆对小球作用力的方向可能()A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向5、关于做匀速圆周运动物体的向心加速度的方向,下列说法中正确的是()A.与线速度方向始终相同B.与线速度方向始终相反C.始终指向圆心D.始终保持不变6、(双选)如图所示,光滑水平面上,质量为m的小球在拉力F作用下做匀速圆周运动。
若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法中正确的是()A.若拉力突然变大,小球将沿轨迹Pb做离心运动B.若拉力突然变小,小球将沿轨迹Pb做离心运动C.若拉力突然消失,小球将沿轨迹Pa做离心运动D.若拉力突然变小,小球将沿轨迹Pc做近心运动7、(双选)如图所示,在风力发电机的叶片上有A、B、C三点,其中A、C在叶片的端点,B在叶片的中点。
2019-3-12 高中 物理 宇宙航行 计算题

2019-3-12 高中物理宇宙航行计算题(考试总分:100 分考试时间: 120 分钟)一、计算题(本题共计 10 小题,每题 10 分,共计100分)1、在某质量均匀的星球表面以初速度 v0竖直上抛一个物体,若物体只受该星球引力作用,物体上升的最大高度为 h,已知该星球的半径为 R,万有引力恒量为 G,忽略其它力的影响,试求:(1)该星球表面处的重力加速度 g x(2)该星球的质量 M;(3)如果已知两个质点之间的万有引力势能满足 Ep= (两质点相距无穷远时引力势能为零),其中m1、m2为两质点的质量,r 为两质点之间的距离。
这一规律也满足于两个均匀质量的球体之间,这时 r 为两球心之间的距离。
现在设想从该星球表面发射一个物体,使其脱离该星球的引力范围而逃逸,这个速度至少多大?是否必须沿着该星球的竖直向上方向发射?2、如图,地月拉格朗日点 L1位于地球和月球的连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。
假设地球到点 L1的距离约为月球到点 L1的距离的 6 倍,请估算地球质量与月球质量之比。
(结果保留 2 位有效数字)3、我国已成功发射了探月卫星“嫦娥二号”,未来我国航天员可登月。
若航天员在月球表面附近某处以初速度v0水平抛出一小物块,测得小物块下落高度为h时,水平距离为s。
(1)求月球表面的重力加速度g;(2)设月球半径为R,求月球的第一宇宙速度v1。
4、已知地球半径为R.地球表面的重力加速度为g.求:(1)在距地面高为h的轨道上的人造地球卫星的速度大小;(2)该卫星的周期。
5、一号卫星和二号卫星分别绕地球做匀速圆周运动,它们的质量之比为1:3,它们的轨道半径之比为1:4,则:(1)一号卫星和二号卫星的线速度之比为多少?(2)一号卫星和二号卫星的周期之比为多少?(3)一号卫星和二号卫星的向心加速度之比为多少?6、宇航员在某星球表面附近让一个小球从高度为h处做自由落体运动,经过时间t小球落到星球表面。
2020-2021高中物理新人教版必修第二册 6.4生活中的圆周运动 课时作业8(含解析)

故选C.
【名师点睛】
小球在圆锥内做匀速圆周运动,对小球进行受力分析,合外力提供向心力,根据力的合成原则即可求解.
(1)B、C两点间的水平距离;
(2)小球从B点飞出后经多长时间距离直轨道BC最远。
(3)小球在BC过程中距离倾斜直轨道最远的距离是多少?
18.如图甲所示,质量M=3kg的小车静止在水平面上,半径为R=0.8m的 光滑固定圆轨道的下端与小车的右端平滑对接,质量m=1kg的物块(可视为质点)由轨道顶端静止释放,接着物块离开圆轨道滑上小车。从物块滑上小车开始计时,物块运动的速度随时间变化的部分图像如图乙所示。已知小车与水平面间的摩擦因数 =0.01,重力加速度10m/s2,求:
A.地面对C的摩擦力有时不为零
B.C对B的摩擦力有时有可能为零
C.C对地面的压力有时可以等于B、C重力之和
D.C对B的作用力有时竖直向上,有时竖直向下
11.两根长度不同的细线下面分别悬挂着小球,细线上端固定在同一点,若两个小球以相同的角速度,绕共同的竖直轴在水平面内做匀速圆周运动,则两个小球在运动过程中的相对位置关系示意图正确的是( )
(1)当v=1 m/s时;
(2)当v=4 m/s时.
参考答案
1.B
【详解】
当物块B将要滑动时则
解得
故选B。
2.B
【详解】
根据牛顿第二定律得
即
解得
当支持力为零,有
解得
故B正确,ACD错误。
故选B。
《第六章 1 圆周运动》作业设计方案-高中物理人教版2019必修第二册

《圆周运动》作业设计方案(第一课时)一、作业目标本作业旨在帮助学生巩固圆周运动的基本概念和规律,提高学生对圆周运动问题的分析和解决能力。
通过完成作业,学生应能够:1. 熟练掌握圆周运动的线速度、角速度、向心加速度等物理量的概念和计算方法;2. 能够分析圆周运动中的离心现象和向心现象,理解向心力的来源和作用;3. 能够应用圆周运动的基本规律解决一些实际问题。
二、作业内容1. 理论题:(1)请简述圆周运动中的线速度、角速度、向心加速度的概念和计算方法;(2)解释离心现象和向心现象,并说明它们在生活中的应用;(3)请用物理语言描述什么是向心力,并说明向心力的来源和作用。
2. 计算题:(1)一个质量为5kg的物体,在半径为2m的圆周上以3m/s 的速度做匀速圆周运动,求物体所受的向心力大小;(2)一辆质量为2t的汽车在半径为500m的圆形道路上行驶,速度为10m/s,求汽车所受的最大摩擦力(假设摩擦系数为0.5)。
三、作业要求1. 完成作业时,请注意规范书写和公式符号的正确使用;2. 理论题需解释每个问题的答案,计算题需写出必要的公式和计算过程;3. 作业完成后,请上交电子版作业,并附上你的答案解释。
四、作业评价1. 评价标准:作业的正确性、完整性和规范性;2. 反馈方式:教师批改后将给出分数和修改建议,并在课堂上进行反馈。
五、作业反馈请同学们认真听取教师的作业评价和修改建议,反思自己在完成作业过程中的不足之处,并在课后进行改正和完善。
同时,同学们也可以相互交流,学习其他同学的优秀解题方法和思路,共同提高。
通过本次作业,我希望能够帮助学生进一步理解和掌握圆周运动的基本概念和规律,提高分析和解决圆周运动问题的能力。
同时,也希望通过作业评价和反馈环节,帮助同学们发现自己在学习过程中存在的问题和不足,及时进行改进和提高。
作业设计方案(第二课时)一、作业目标通过本次作业,学生应能:1. 熟练掌握圆周运动的基本概念和原理;2. 理解和掌握圆周运动的向心力和向心加速度;3. 能够运用所学知识解决实际问题。
2020-2021高中物理新人教版必修第二册 6.4生活中的圆周运动 课时作业6(含解析)

可知半径大的线速度大,周期大,则A的线速度大于B的线速度,A的周期大于B的周期,故A错误,B正确;
故选B。
11.B
【详解】
AD.小球原来在水平面内做匀速圆周运动,绳b被烧断的同时木架停止转动,此时小球速度垂直平面ABC。若角速度ω较小,小球在图示位置的速度较小,小球在垂直于平面ABC的竖直平面内摆动,若角速度ω较大,小球在图示位置的速度较大,小球可能在垂直于平面ABC的竖直平面内做圆周运动。故A、D错误;
A.小球在最高点时的速度为
B.小球在最高点时对杆的作用力为零
C.若增大小球的初速度,则过最高点时球对杆的作用力一定增大
D.若增大小球的初速度,则在最低点时球对杆的作用力一定增大
8.如图所示,用手握着细绳的一端在水平桌面上做半径为r的匀速圆周运动,圆心为O,角速度为ω。细绳长为L,质量忽略不计,运动过程中细绳始终与小圆相切,在细绳的另外一端系着一个质量为m的小球,小球恰好沿以O为圆心的大圆在桌面上运动,小球和桌面之间存在摩擦力,以下说法正确的是( )
(1)若要小球离开锥面,则小球的角速度ω0至少为多大?
(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?
19.质量为m=lkg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑的圆弧轨道下滑。B、C为圆弧的两端点,其连线水平。已知圆弧对应圆心角θ=106°,A点距水平面的高度,h=0.8m,小物块经过轨道最低点O时的速度v0= m/s,对轨道0点的压力F=43N,小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,g=10m/s2,sin37°=0.6,cos37°=0.8,试求:
高中物理抛体圆周运动计算题专题训练含答案

高中物理抛体圆周运动计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共11题)1、一根原长为20cm的轻质弹簧,劲度系数k=20 N/m,一端拴着一个质量为1 kg的小球,在光滑的水平面上绕另一端做匀速圆周运动,此时弹簧的实际长度为25 cm,如图所示.求:(1)小球运动的线速度为多大?(2)小球运动的周期为多大?2、如图12所示,一个人用一根长1m,只能承受74N拉力的绳子,拴着一个质量为1的小球,在竖直平面内作圆周运动,已知圆心O离地面h=6m。
转动中小球在最底点时绳子断了,(1)绳子断时小球运动的角速度多大?(2)绳断后,小球落地点与抛出点间的水平距离。
3、如图14所示,是双人花样滑冰运动中男运员拉着女运动员做圆锥摆运动的精彩场面,若女运动员做圆锥摆时和竖直方向的夹角约为θ,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求:(1)男运动员对女运动员的拉力大小(2)两人转动的角速度。
(3)如果男、女运动员手拉手均作匀速圆周运动,已知两人质量比为2 : 1,求他们作匀速圆周运动的半径比。
4、 1849年,法国科学家斐索用如图所示的方法在地面上测出了光的速度.他采用的方法是:让光束从高速旋转的齿轮的齿缝正中央穿过,经镜面反射回来,调节齿轮的转速,使反射光束恰好通过相邻的另一个齿缝的正中央,由此可测出光的传播速度.若齿轮每秒转动n周,齿轮半径为r,齿数为P,齿轮与镜子间距离为d.求:(1)齿轮的转动周期;(2)每转动一齿的时间为;(3)光速c的表达式.5、要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.有关数据见表格.取g=10m/s2,设最大静摩擦力等于滑动摩擦力.直道启动加速度a1 4 m/s2直道制动加速度a28 m/s2直道最大速v40m/s弯道半径R80 m弯道路面动摩擦因素μ0.5直道长度s218m求摩托车在直道上行驶所用的最短时间.6、有一个圆盘能够在水平面内绕其圆心O匀速旋转,盘的边缘为粗糙平面(用斜线表示)其余为光滑平面.现用很轻的长L=5 cm的细杆连接A、B两个物体,A、B的质量分别为=0.1 kg和 =0.5 kg.B放在圆盘的粗糙部分,A放在圆盘的光滑部分.并且细杆指向圆心,A离圆心O 为10cm,如图所示,当盘以n=2转/秒的转速转动时,A和B能跟着一起作匀速圆周运动.求(1)B受到的摩擦力.(2)细杆所受的作用力.7、如图9所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触。
人教版高中物理必修二[重点题型巩固练习] 生活中的圆周运动 基础
![人教版高中物理必修二[重点题型巩固练习] 生活中的圆周运动 基础](https://img.taocdn.com/s3/m/4d016ed1102de2bd96058874.png)
人教版高中物理必修二知识点梳理重点题型(常考知识点)巩固练习【巩固练习】一、选择题: 1、(2015 福建期末考)下列实例中,属于防止离心运动造成的危害的是( ) A .离心式水泵抽水 B .洗衣机脱水C .汽车转弯时减速D .运动员投掷链球2、如图所示,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,物块与球壳之间的摩擦因数为μ,则物块在最低点时,下列说法正确的是( )A.受到的向心力是Rmv mg 2+ B.受到的摩擦力为R mv 2μC.受到的摩擦力为mgμD.受到的合力方向为斜向左上方3、如图所示,半径为R 的光滑半圆球固定在水平面上,顶部有一小物体A 。
今给它一个水平初速度v gR 0=,则物体将( )A. 沿球面下滑至M 点B. 沿球面下滑至某一点N ,便离开球面做斜下抛运动C. 按半径大于R 的新的圆弧轨道做圆周运动D. 立即离开半圆球面做平抛运动4、(2015 漳州期末考)如图,洗衣机的脱水筒采用带动衣物旋转的方式脱水,下列说法中正确的是( )A .增大脱水筒转动速度,脱水效果会更好B .脱水过程中,衣物中的水是沿半径方向被甩出去的C .水会从衣物中甩出是因为水受到离心力的缘故D .衣物靠近筒壁的脱水效果比靠近中心的脱水效果好 5、(2015 怀化期末考)如图所示,光滑水平面上,质量为m 的小球在拉力F 作用下做匀速圆周运动,若小球运动到P 点时,拉力F 发生变化,下列关于小球运动情况的说法中正确的是( )A .若拉力突然消失,小球将沿轨迹Pa 做离心运动B .若拉力突然变小,小球将沿轨迹Pa 做离心运动C .若拉力突然变大,小球将沿轨迹Pb 做离心运动D .若拉力突然变小,小球将沿轨迹Pc 做离心运动6、如图所示两个相同材料制成的靠摩擦转动的轮A 和轮B 水平放置。
两轮的半径B A R R 2=。
当主动轮A 匀速转动时,在A 轮的边缘上放置的小木块恰能相对静止在A 轮的边缘上。
匀速圆周运动练习题

匀速圆周运动练习题匀速圆周运动是物理学中非常重要的一个概念,它在日常生活和工程应用中都有广泛的应用。
了解和掌握匀速圆周运动的相关知识和应用是非常重要的,这里我们将提供一些匀速圆周运动的练习题,帮助大家巩固相关知识。
1. 一个物体以半径为3米的圆周运动,它每分钟绕圆运动一周。
求该物体的线速度和角速度。
解答:线速度(v)是物体在圆周运动中沿圆周运动的速度。
对于匀速圆周运动,线速度等于物体沿圆周所走过的弧长除以所用时间。
该物体每分钟绕圆运动一周,即走过2π的弧长(周长),所需时间为1分钟。
半径为3米的圆的周长为2π×3=6π米。
所以,线速度 = 周长 / 时间 = 6π / 1 = 6π米/分钟。
角速度(ω)是物体在圆周运动中单位时间内所转过的角度。
对于匀速圆周运动,角速度等于360度除以所用时间。
该物体每分钟绕圆运动一周,所用时间为1分钟。
所以,角速度 = 360度 / 1 = 360度/分钟。
2. 一个物体以角速度为5度/秒的匀速圆周运动,它的半径为2米。
求该物体的线速度和周移动的弧长。
解答:角速度(ω)是物体在圆周运动中单位时间内所转过的角度。
角速度为5度/秒,所以单位时间内转过的角度为5度。
线速度(v)是物体在圆周运动中沿圆周运动的速度。
对于匀速圆周运动,线速度等于物体沿圆周所走过的弧长除以所用时间。
周长=2πr,半径为2米,所以周长=2π×2=4π米。
转过5度所对应的弧长 = 周长×角度 / 360度 = 4π× 5 / 360 = π/9米。
所以,线速度 = 转过角度所对应的弧长 / 单位时间 = π/9 / 1 = π/9米/秒。
3. 一个物体以线速度为10米/秒的匀速圆周运动,它的半径为5米。
求该物体的角速度和周移动的时间。
高中物理圆周运动及天体运动试题及答案解析

圆周运动试题一、单选题1、关于匀速圆周运动下列说法正确的是A、线速度方向永远与加速度方向垂直,且速率不变B、它是速度不变的运动C、它是匀变速运动D、它是受力恒定的运动2、汽车以10m/s速度在平直公路上行驶,对地面的压力为20000N,当该汽车以同样速率驶过半径为20m的凸形桥顶时,汽车对桥的压力为A、10000N B、1000N C、20000N D、2000N3、如图,光滑水平圆盘中心O有一小孔,用细线穿过小孔,两端各系A,B两小球,已知B球的质量为2Kg,并做匀速圆周运动,其半径为20cm,线速度为5m/s,则A的重力为A、250NB、C、125ND、4、如图O1 ,O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C 点到轴心的距离为O2半径的1/2则A、VA:VB=2:1B、aA:aB=1:2C、VA:VC=1:2D、aA:aC=2:15、关于匀速圆周运动的向心加速度下列说法正确的是A.大小不变,方向变化 B.大小变化,方向不变C.大小、方向都变化D.大小、方向都不变6、如图所示,一人骑自行车以速度V 通过一半圆形的拱桥顶端时,关于人和自行车受力的说法正确的是:A 、人和自行车的向心力就是它们受的重力B 、人和自行车的向心力是它们所受重力和支持力的合力,方向指向圆心C 、人和自行车受到重力、支持力、牵引力、摩擦力和向心力的作用D 、人和自行车受到重力、支持力、牵引力、摩擦力和离心力的作用 7、假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是 A 、地球的万有引力 B 、自转所需向心力 C 、地面的支持力 D 、重力 8、在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽 车拐弯时的安全速度是 9、小球做匀速圆周运动,半径为R ,向心加速度为 a ,则下列说法错误..的是 A 、 小球的角速度Ra=ω B 、小球运动的周期aRT π2=C 、t 时间内小球通过的路程aR t S =D 、t 时间内小球转过的角度aRt=ϕ 10、某人在一星球上以速度v 0竖直上抛一物体,经t 秒钟后物体落回手中,已知星球半径为R,那么使物体不再落回星球表面,物体抛出时的速度至少为11、假如一人造地球卫星做圆周运动的轨道半径增大到原来的2倍,仍做圆周运动;则A.根据公式V=r ω可知卫星的线速度将增大到原来的2倍B.根据公式r v m F 2=,可知卫星所受的向心力将变为原来的21C.根据公式2r MmGF =,可知地球提供的向心力将减少到原来的41D.根据上述B 和C 给出的公式,可知卫星运动的线速度将减少到原来的2倍 12、我们在推导第一宇宙速度时,需要做一些假设;例如:1卫星做匀速圆周运动;2卫星的运转周期等于地球自转周期;3卫星的轨道半径等于地球半径;4卫星需要的向心力等于它在地面上的地球引力;上面的四种假设正确的是 A 、123 B 、234 C 、134 D 、12413、如图所示,在固定的圆锥形漏斗的光滑内壁上,有两个质量相等的小物块A 和B,它们分别紧贴漏斗的内 壁.在不同的水平面上做匀速圆周运动,则以下叙述正确的是 A.物块A 的线速度小于物块B 的线速度 B.物块A 的角速度大于物块B 的角速度C.物块A 对漏斗内壁的压力小于物块B 对漏斗内壁的压力D.物块A 的周期大于物块B 的周期14、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆;已知火卫一的周期为7小时39分;火卫二的周期为30小时18分,则两颗卫星相比较,下列说法正确的是:A 、火卫一距火星表面较远;B 、火卫二的角速度较大C 、火卫一的运动速度较大;D 、火卫二的向心加速度较大; 15、如图所示,质量为m 的物体,随水平传送带一起匀速运动,A 为传送带的终端皮带轮,皮带轮半径为r,则要使物体通过终端时能水平抛出,皮带轮每秒钟转动的圈数至少为A 、rg π21 B 、rg C 、gr D 、π2gr16、如图所示,碗质量为M,静止在地面上,质量为m 的滑块滑到圆弧形碗的底端时速率为v,已知碗的半径为R,当滑块滑过碗底时,地面受到碗的压力为:A 、M+mgB 、M+mg +R mv 2C 、Mg +R mv 2D 、Mg +mg -m Rv 217、1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km;若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同;已知地球半径R=6400km,地球表面重力加速度为g;这个小行星表面的重力加速度为 A 、g 400 B 、g 4001 C 、g 20 D 、g 20118、银河系的恒星中大约四分之一是双星;某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动;由天文观察测得其运动周期为T 1,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G;由此可求出S 2的质量为A 、2122)(4GTr r r -π B 、23124GT r π C 、2224GT r π D 、21224GT r r π 19、2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6—30—15;由于黑洞的强大引力,使得太阳绕银河系中心运转;假定银河系中心仅此一个黑洞,且太阳绕银河系中心做的是匀速圆周运动;则下列哪一组数据可估算该黑洞的质量A.、地球绕太阳公转的周期和速度 B 、太阳的质量和运动速度C 、太阳质量和到该黑洞的距离D 、太阳运行速度和到该黑洞的距离20、质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内作半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为A 、m ω2RB 、242R g m ω-C 、242R g m ω+D 、不能确定21、已知万有引力恒量G,要计算地球的质量,还必须知道某些数据,现给出下列各组数据,算不出地球质量的有哪组:A 、地球绕太阳运行的周期T 和地球离太阳中心的距离R ;B 、月球绕地球运行的周期T 和月球离地球中心的距离R ;C 、人造卫星在近地表面运行的线速度v 和运动周期T ;D 、地球半径R 和同步卫星离地面的高度;第二卷二、计算题共37分22、如图所示,一质量为m=1kg 的滑块沿着粗糙的圆弧轨道滑行,当经过最高点时速度V=2m/s,已知圆弧半经R=2m,滑块与轨道间的摩擦系数μ=,则滑块经过最高点时的摩擦力大小为多少12分23.一个人用一根长L=1m,只能承受T=46N绳子,拴着一个质量为m=1kg 的小球,已知圆心O离地的距离H=6m,如图所示,速度转动小球方能使小球到达最低点时绳子被拉断,绳子拉断后,小球的水平射程是多大 13分24、经天文学观察,太阳在绕银河系中心的圆形轨道上运行,这个轨道半径约为3×104光年约等于×1020m,转动周期约为2亿年约等于×1015s 太阳作圆周运动的向心力是来自于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看作集中在银河系中心来处理问题;根据以上数据计算太阳轨道内侧这些星体的总质量M 以及太阳作圆周运动的加速度a;G =×10-11Nm 2/kg 212分答案22、12分 解:由 所以 N = mg – m v 2/R =8 N 6分再由 f = μN 得 f = 4 N 6分23、13分 设小球经过最低点的角速度为ω,速度为v 时,绳子刚好被拉断,则T – m g = m ω2L∴ s rad mLmgT /6=-=ω v = ωL = 6 m/s 7分 小球脱离绳子的束缚后,将做平抛运动,其飞行时间为s gL H gh t 1)(22=-==3分 所以,小球的水平射程为 s = v t = 6 m 3分班级_____________ 姓名_________________________ 座号______________24、12分 M =×1041kg a=×10-10m /s 2若算出其中一问得8分 两问都算出的12分高中物理复习六 天体运动一、关于重力加速度1. 地球半径为R 0,地面处重力加速度为g 0,那么在离地面高h 处的重力加速度是A. R h R h g 022020++()B. R R h g 02020()+ C. h R h g 2020()+D.R hR h g 0020()+二、求中心天体的质量2.已知引力常数G 和下列各组数据,能计算出地球质量的是 A .地球绕太阳运行的周期及地球离太阳的距离 B .月球绕地球运行的周期及月球离地球的距离C. 人造地球卫星在地面附近绕行的速度及运行周期 D .若不考虑地球自转,己知地球的半径及重力加速度 三、求中心天体的密度3.中子星是恒星演化过程的一种可能结果,它的密度很大,,现有一中子星,观测到它的自转周期为T,问:该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解;计算时星体可视为均匀球体; 6π/GT 2四、卫星中的超失重求卫星的高度4. m = 9kg 的物体在以a = 5m/s 2 加速上升的火箭中视重为85N, ,则火箭此时离地面的高度是地球半径的_________倍地面物体的重力加速度取10m/s 25.地球同步卫星到地心的距离可由r 3 = a 2b 2c / 4π2求出,已知a 的单位是m, b的单位是s, c 的单位是m/ s2,请确定a、b、c 的意义地球半径地球自转周期重力加速度五、求卫星的运行速度、周期、角速度、加速度等物理量6.两颗人造地球卫星的质量之比为1:2,轨道半径之比为3:1,求其运行的周期之比为;线速度之比为 ,角速度之比为;向心加速度之比为;向心力之比为 ;331/2:1 31/2:3 31/2:9 1:3 1:97.地球的第一宇宙速度为v1,若某行星质量是地球质量的4倍,半径是地球半径的1/2倍,求该行星的第一宇宙速度;221/2v18.同步卫星离地心距离r,运行速率为V1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,线速度为V2,第一宇宙速度为V3,以第一宇宙速度运行的卫星向星加速度为a3,地球半径为R,则a2=r/R >a1>a2V2=R/r D. V3>V1>V2六、双星问题9.两个星球组成双星;设双星间距为L,在相互间万有引力的作用下,绕它们连线上某点O 转动,转动的角速度为ω,不考虑其它星体的影响,则求双星的质量之和;L3ω2/G七、变轨问题年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 ABCA.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 八、追击问题11. 如图,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则A .经过时间 t=T 1+T 2两行星再次相距最近B .经过时间 t=T 1T 2/T 2-T 1,两行星再次相距最近C .经过时间 t=T 1+T 2 /2,两行星相距最远D .经过时间 t=T 1T 2/2T 2-T 1 ,两行星相距最远 课堂练习1.宇宙飞船在半径为R 1的轨道上运行,变轨后的半径为R 2,R 1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的A .线速度变小B .角速度变小C .周期变大D .向心加速度变大2.两个质量均为M 的星体,其连线的垂直平分线为HN,O 为其连线的中点,如图所示,一个质量为m 的物体从O 沿OH 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. “嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时、v 都将略为减小 、v 都将保持不变将略为减小,v将略为增大 D. r将略为增大,v将略为减小4. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”;假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2;火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G;仅利用以上数据,可算出A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力5.设地球半径为R,在离地面H 高度处与离地面h 高度处的重力加速度之比为A. H 2/h 2 / h C.R+ h/R+ H D. R+ h2/R+ H26.如图所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A、B、C某时刻在同一条直线上,则A.卫星C的速度最小 B.卫星C受到的向心力最小C.卫星B的周期比C小 D.卫星A的加速度最大7. 气象卫星是用来拍摄云层照片,观测气象资料和测量气象数据的;我国先后自行成功研制和发射了“风云Ⅰ号”和“风云Ⅱ号”两颗气象卫星,“风云Ⅰ号”卫星轨道与赤道平面垂直并且通过两极,称为“极地圆轨道”,每12h巡视地球一周;“风云Ⅱ号”气象卫星轨道平面在赤道平面内,称为“地球同步轨道”,每24h巡视地球一周,则“风云Ⅰ号”卫星比“风云Ⅱ号”卫星A.发射速度小 B.线速度大 C.覆盖地面区域大 D.向心加A B速度小8. 我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B处对接,已知空间站绕月轨道半径为r,周期为T,引力常量为G,下列说法中正确的是A.图中航天飞机正加速飞向B处B.根据题中条件可以算出月球质量C.航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速D.根据题中条件可以算出空间站受到月球引力的大小9. 物体在一行星表面自由落下,第1s内下落了,若该行星的半径为地球半径的一半,那么它的质量是地球的倍. 110.已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为R的均匀球体. 不计火星大气阻力,则一物体在火星表面自由下落H高度时的速度为_____________. 8π2r3H/T2R21/211.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球的角速度应为原来的倍g+a/a1/212.一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭.下图是从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.不考虑探测器总质量的变化.求:(1)探测器在行星表面上升达到的最大高度 H;(2)该行星表面附近的重力加速度g;3发动机正常工作时的推力F. 1800m24m/s2317000N。
2020-2021高中物理新人教版必修第二册 6.4生活中的圆周运动 课时作业19(含解析)

7.小明同学在学习中勤于思考,并且善于动手,在学习了圆周运动知识后,他自制了一个玩具,如图所示,用长为r的细杆粘住一个质量为m的小球,使之绕另一端O在竖直平面内做圆周运动,小球运动到最高点时的速度v= ,在这点时( )
A.小球对细杆的拉力是
B.小球对细杆的压力是
C.小球对细杆的拉力是 mg
A.战斗机起落架受到重力、支持力、向心力的作用
B.战斗机处于超重状态
C.战斗机起落架对地面的压力等于轰炸机的重力
D.R越小,v越小,飞机起落架受的作用力越小
10.如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()
A.车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来
A.小物体的速度随时间的变化关系满足
B.细线的拉力大小为
C.细线拉力的瞬时功率满足
D.在 内,细线拉力对小物体做的功为
12.A、B两物体都做匀速圆周运动, , ,经过1秒钟,A转过 圆心角,B转过了 圆心角,则A物体的向心力与B的向心力之比为( )
A.1:4B.2:3C.4:9D.9:16
13.如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法正确的是()
C.A球运动的周期必大于B球运动的周期
D.A球对筒壁的压力必大于B球对筒壁的压力
2.冰面对滑冰运动员的最大摩擦力为其重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若仅依靠摩擦力来提供向心力而不冲出圆形滑道,其运动的速度应满足( )
A.
B.
C.
D.
3.如图所示,在光滑杆上穿着两个小球,其质量关系是m1=2m2,用细线把两小球连起来,当盘架匀速转动时两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离之比r1:r2为()
15 圆周运动的基本规律及应用:精选试题(高考复习必备)

备考2020年高考物理复习:15 圆周运动的基本规律及应用一、单选题(共12题;共24分)1.如图所示,质量为m的小球(可看作质点)在竖直放置的半径为R的固定光滑圆环轨道内运动.若小球通过最高点时的速率为v0=,下列说法中正确的是( )A. 小球在最高点时只受到重力作用B. 小球在最高点对圆环的压力大小为2mgC. 小球绕圆环一周的时间等于2πR/v0D. 小球经过任一直径两端位置时的动能之和是一个恒定值2.一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,如图所示,则下列说法正确的是()A. 小球过最高点的最小速度是B. 小球过最高点时,杆所受到的弹力可以等于零C. 小球过最高点时,杆对球的作用力一定随速度增大而增大D. 小球过最高点时,杆对球的作用力一定随速度增大而减小3.水平转台上有质量相等的A、B两小物块,两小物块间用沿半径方向的细线相连,两物块始终相对转台静止,其位置如图所示(俯视图),两小物块与转台间的最大静摩擦力均为,则两小物块所受摩擦力、随转台角速度的平方( )的变化关系正确的是()A. B. C. D.4.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内。
套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。
重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A. (M+2m)gB. (M+3m)gC. (M+4m)gD. (M+5m)g5.在高速公路的拐弯处,通常路面都是外高内低。
如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看作是做半径为R的圆周运动。
设内、外路面高度差为h,路基的水平宽度为d,路面的宽度为L。
已知重力加速度为g,要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A. ℎB. ℎC.ℎ D.ℎ6.如图,铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为,弯道处的圆弧半径为R,若质量为m的火车以速度v通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是()A.B. 若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内C. 若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外D. 无论火车以何种速度行驶,对内侧轨道都有压力7.如图所示,长为L的轻杆一端固定质量为m的小球,另一端固定在转轴O,现使小球在竖直平面内做圆周运动,P为圆周的最高点,若小球通过圆周最低点时的速度大小为,忽略摩擦阻力和空气阻力,则以下判断正确的是()A. 小球不能到达P点B. 小球到达P点时的速度大于C. 小球能到达P点,且在P点受到轻杆向下的弹力大小为D. 小球能到达P点,且在P点受到轻杆向上的弹力大小为8.如图所示的圆锥摆中,摆球在水平面上作匀速圆周运动,这时摆球受到的力是()A. 重力、拉力和向心力B. 拉力和向心力C. 拉力和重力D. 重力9.如图所示,自行车的大齿轮与小齿轮通过链条相连,而后轮与小齿轮是绕共同的轴转动的。
6.4 生活中的圆周运动 同步练习-2023学年高一物理人教版(2019)必修第二册

生活中的圆周运动同步练习一、选择题1.在铁路转弯处,往往使外轨略高于内轨,这是为了()A.增加火车轮子对外轨的挤压B.增加火车轮子对内轨的挤压C.使火车车身倾斜,利用重力和支持力的合力提供转弯所需的向心力D.以上都不正确2.洗衣机的甩干筒在匀速旋转时有衣服附在筒壁上,则此时()A.衣服受重力,筒壁的弹力和摩擦力,及离心力作用B.筒壁对衣服的摩擦力随转速的增大而增大C.衣服随筒壁做圆周运动的向心力由筒壁的弹力提供D.筒壁对衣服的弹力随着衣服含水量的减少而保持不变3.小朋友在荡秋千的过程中,若空气阻力忽略不计,下列说法正确的是()A.小朋友运动到最高点时所受合外力为零B.小朋友所受合外力始终指向其做圆周运动的圆心C.小朋友从最高点到最低点的过程中做匀速圆周运动D.小朋友运动过最低点时秋千对小朋友的作用力大于其所受重力4.如图所示,有一个水平大圆盘绕过圆心的竖直轴匀速转动,小强站在距圆心为r处的P点相对大圆盘不动,关于小强的受力,下列说法正确的是()A.小强在P点不动,因此不受摩擦力作用,处于平衡状态B.小强随圆盘做匀速圆周运动,圈盘对他的摩擦力充当向心力C.小强随圆盘做匀速圆周运动,其重力和支持力充当向心力D.若使圆盘的转速均匀减小时,小强在P点受到的摩擦力保持不变5.如图所示,一轻杆一端固定在O点,杆长10cm,另一端固定一小球,小球质量是0.2kg,在竖直面内做圆周运动,到达最高点时,杆与小球间弹力大小为N,小球在最高点的速度大小为v, g取10m/s2 下列说法正确的是()A .当v 为3m/s 时,杆对小球弹力N 方向向上B .当 v 为1m/s 时,杆对小球弹力N 为10NC .当 v 为1m/s 时,杆对小球弹力方向向上D .当 v 为1m/s 时,杆对小球弹力N 为0N6.如图所示,内部为竖直光滑圆轨道的铁块静置在粗糙的水平地面上,其质量为M ,有一质量为m 的小球以水平速度v 0从圆轨道最低点A 开始向左运动,小球沿圆轨道运动且始终不脱离圆轨道,在此过程中,铁块始终保持静止,重力加速度为g ,则下列说法正确的是( )A .地面受到的压力始终大于MgB .小球在圆轨道左侧运动的过程中,地面受到的摩擦力可能向右C .小球经过最低点A 时地面受到的压力可能等于Mg +mgD .小球在圆轨道最高点C 时,地面受到的压力可能为07.公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该转弯处( )A .当路面结冰时,v 0的值减小B .当路面结冰时,v 0的值增大C .车速低于v 0,车辆便会向内侧滑动D .车速低于v 0,车辆不一定向内侧滑动8.如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
高中物理【生活中的圆周运动】考题精选(附答案)

【生活中的圆周运动】一、多选题(共3 题)1.如图所示,长为L 的悬线固定在O 点,在O 点正下方有一钉子C ,OC 距离为2L ,把悬线另一端悬挂的小球m 拉到跟悬点在同一水平面上无初速度释放,小球运动到3悬点正下方时悬线碰到钉子,则小球的( )A.角速度突然增大为原来的3 倍B.线速度突然增大为原来的3 倍C.悬线拉力突然增大为原来的3 倍D.向心加速度突然增大为原来3 倍2.杂技演员表演“水流星”,在长为1.6 m 的细绳的一端,系一个与水的质量为m = 0.8 kg 的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点的速度为5 m/s ,则下列说法中正确的是(g =10 m/s2)( )A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点,绳子的弹力为零C.“水流星”通过最高点时,容器底部受到水的压力作用D.“水流星”通过最高点时,绳子的弹力大小为4.5 N3.设计师设计了一个非常有创意的募捐箱,如图甲所示,把硬币从投币口放入,从出币口滚出,接着在募捐箱上类似于漏斗形的部位(如图丙所示,O 点为漏斗形口的圆心)滚动很多圈之后从中间的小孔掉入募捐箱。
如果把硬币在不同位置的运动都可以看成匀速圆周运动,摩擦阻力忽略不计,则关于某一枚硬币在a 、b 两处的说法正确的是( )A.在a 、b 两处做圆周运动的圆心都为O 点B.向心力的大小F a =F bC.角速度的大小ωa <ωbD.周期的大小T a>T b二、实验题(共1 题)4.某实验小组为了测量当地的重力加速度g 设计了如下实验,将一根长为L 的轻绳,一端固定在过O 点的水平转轴上,另一端固定一质量为m 的小球,使整个装置绕O 点在竖直面内转动。
在小球转动过程中的最高点处放置一光电门,在绳子上适当位置安装一个力的传感器,如图甲,实验中记录小球通过光电门的时间以确定小球在最高点的速度v ,同时记录传感器上绳子的拉力大小F ,即可做出小球在最高点处绳子对小球的拉力与其速度平方的关系图如图乙:(1)根据实验所给信息,写出小球在最高点处F 与v 的关系式;(2)请根据作出的F-v2图象的信息可以求出当地的重力加速度g=;(用b 、L表示)(3)如果实验中保持绳长不变,而减小小球的质量m ,则图象中b 的位置;(变化/不变),图象斜率;(不变/变小/变大)。
高中物理【圆周运动】章末综合测试题

高中物理【圆周运动】章末综合测试题(时间:90分钟)一、选择题(本题共10小题。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求)1.如图所示事例利用了离心现象的是()解析:自行车赛道倾斜,应用了地面对自行车的力与自行车和人的重力的合力提,所以速度越快所需的供向心力,防止产生离心运动,故A错误;因为F n=m v2r向心力就越大,汽车转弯时要限制速度,来减小汽车所需的向心力,防止产生(发生)离心运动,故B错误;汽车上坡前加速,与离心运动无关,故C错误;拖把利用旋转脱水,利用了离心运动,故D正确。
答案:D2.2022年2月5日,短道速滑混合接力队夺得中国在本次冬奥会的首枚金牌。
如图所示,若将某运动员在弯道转弯的过程看成在水平冰面上的一段匀速圆周运动(不考虑冰刀嵌入冰内部分),已知该运动员质量为m,转弯时冰刀平面与冰面间夹角为θ,冰刀与冰面间的动摩擦因数为μ,弯道半径为R,重力加速度为g,最大静摩擦力等于滑动摩擦力,则该运动员在弯道转弯时不发生侧滑的最大速度为()A.μgR(1+tan θ)B.μgR cos θC.μgR(1+cos θ)D.μgR解析:最大静摩擦力等于滑动摩擦力,运动员在弯道转弯时不发生侧滑的最大速度满足μmg=m v2R,则v=μgR,故D正确。
答案:D3.如图所示,竖直薄壁圆筒内壁光滑、半径为R,上部侧面A处开有小口,在小口A的正下方h处亦开有与A大小相同的小口B,小球从小口A沿切线方向水平射入筒内,使小球紧贴筒内壁运动,要使小球从B口处飞出,小球进入A口的最小速率v0为()A.πR g2h B.πR2ghC.πR 2hg D.πRgh解析:小球在竖直方向做自由落体运动,所以小球在筒内的运动时间为t=2h g ,在水平方向,以圆周运动的规律来研究,得到t=n2πR v(n=1,2,3,…),所以v0=2nπRt =2nπR gh(n=1,2,3,…),当n=1时,v0取最小值,所以最小速率v0为πR 2gh,故选B。
2019新人教版物理必修第二册 6-4 生活中的圆周运动(车辆转弯问题) 习题集

6-4 生活中的圆周运动(车辆拐弯问题)习题集1、如图所示,质量相等的汽车甲和汽车乙,以相等的速率沿同一水平弯道做匀速圆周运动,汽车甲在汽车乙的外侧.两车沿半径方向受到的摩擦力分别为f甲和f乙.以下说法正确的是()A.f甲小于f乙B.f甲等于f乙C.f甲大于f乙D.f甲和f乙的大小均与汽车速率无关2、在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是半径为R的圆周运动.设内、外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhL B.gRhdC.gRLh D.gRdh3、铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度等于gR tan θ,重力加速度为g,则()A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.这时铁轨对火车的支持力等于mgcos θD.这时铁轨对火车的支持力大于mgcos θ4、(公路弯道)如图所示,运动员以速度v 在倾角为θ的倾斜赛道上做匀速圆周运动.已知运动员及自行车的总质量为m ,做圆周运动的半径为R ,重力加速度为g ,将运动员和自行车看作一个整体,则该整体在运动中( )A .处于平衡状态B .做匀变速曲线运动C .受到的各个力的合力大小为m v 2RD .受重力、支持力、摩擦力、向心力作用5、(公路弯道)(多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高、内侧低B .车速只要低于v 0,车辆便会向内侧滑动C .车速虽然高于v 0,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v 0的值变小6、汽车在水平地面上转弯时,与地面间的摩擦力已达到最大,当汽车速率增为原来的2倍时,若要不发生险情,则汽车转弯的轨道半径必须( )A .减为原来的12B .减为原来的14C .增为原来的2倍D .增为原来的4倍7、为了行驶安全和减少对铁轨的磨损,火车转弯处轨道平面与水平面会有一个夹角.若火车以规定的速度行驶,则转弯时轮缘与铁轨无挤压.已知某转弯处轨道平面与水平面间夹角为α,转弯半径为R ,规定行驶速率为v ,重力加速度为g ,则( )A .v =gR tan αB .v =gR sin αC .v =gR sin αD .v =gR tan α8、(火车转弯问题)当火车以速率v 通过某弯道时,内、外轨道均不受侧向压力作用,此速率称为安全速率.下列说法正确的是( )A .弯道半径R =v 2gB .若火车以大于v 的速率通过该弯道时,则外轨将受到侧向压力作用C .若火车以小于v 的速率通过该弯道时,则外轨将受到侧向压力作用D .当火车质量改变时,安全速率也将改变9、(多选)(2020·浙江宁波九校期末)一质量为2.0×103 kg 的汽车在水平公路上行驶,路面对轮胎的最大静摩擦力为1.6×104 N ,当汽车经过半径为100 m 的弯道时,下列判断正确的是( )A .汽车转弯时所受的力有重力、弹力、摩擦力和向心力B .汽车转弯的速度为30 m/s 时所需的向心力为1.6×104 NC .汽车转弯的速度为30 m/s 时汽车会发生侧滑D .汽车能安全转弯的向心加速度不超过8.0 m/s 210、(铁路弯道)(2019·青阳一中高一月考)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越小11、冰面对溜冰运动员的最大静摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,其安全速度的最大值是(重力加速度为g )( )A .k gR B.kgR C.2kgR D.gRk12、(2020·安徽宣城期末)在室内自行车比赛中,运动员以速度v 在倾角为θ的赛道上做匀速圆周运动.已知运动员的质量为m ,做圆周运动的半径为R ,重力加速度为g ,则下列说法正确的是( )A .运动员做圆周运动的角速度为vRB .如果运动员减速,运动员将做离心运动C .运动员做匀速圆周运动的向心力大小是m v 2RD .将运动员和自行车看作一个整体,则整体受重力、支持力、摩擦力和向心力的作用13、(多选)(2019·合肥市联考)如图所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R 的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M ,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g .下列说法正确的是( )A .车受到地面的支持力方向与车所在平面平行B .转弯时车不发生侧滑的最大速度为μgRC .转弯时车与地面间的静摩擦力一定为μMgD .转弯速度越大,车所在平面与地面的夹角越小14、(2020·河北石家庄期末)铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ15、(多选)铁路在弯道处的内外轨道高低是不同的,已知内外轨道连线与水平面夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内、外轨道均不受侧压力作用,重力加速度为g ,下面分析正确的是( )A .轨道半径R =v 2gB .v =gR tan θC.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内D.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外16、(多选)火车以一定的速率在半径一定的轨道上转弯时,内、外轨道恰好对火车没有侧向作用力,不考虑摩擦和其他阻力,如果火车以原来速率的两倍转弯,则()A.外侧轨道受到挤压B.内侧轨道受到挤压C.为了保证轨道没有侧向作用力,内、外轨道的高度差应变为原来的两倍D.轨道的作用力和重力的合力变为原来的4倍17、(多选)全国铁路大面积提速,给人们的生活带来便利.火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车高速转弯时外轨受损这一难题,以下措施可行的是() A.适当减小内外轨的高度差B.适当增加内外轨的高度差C.适当减小弯道半径D.适当增大弯道半径18、(2020·北京石景山区期末)如图所示为火车车轮在转弯处的截面示意图,轨道的外轨高于内轨,在此转弯处规定火车的行驶速度为v,则()A.若火车通过此弯道时速度大于v,则火车的轮缘会挤压外轨B.若火车通过此弯道时速度小于v,则火车的轮缘会挤压外轨C.若火车通过此弯道时行驶速度等于v,则火车的轮缘会挤压外轨D.若火车通过此弯道时行驶速度等于v,则火车对轨道的压力小于火车的重力19、摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图所示.当列车转弯时,在电脑控制下,车厢会自动倾斜;行驶在直轨上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一摆式列车在水平面内行驶,以360 km/h的速度转弯,转弯半径为1 km,则质量为50 kg的乘客,在转弯过程中所受到的火车对他的作用力大小为(g取10 m/s2)()A .500 NB .1 000 NC .500 2 ND .020、在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的35.(g 取10 m/s 2)(1)如果汽车在这种高速公路的弯道上转弯,假设弯道的路面是水平的,其弯道的最小半径是多少? (2)如果高速公路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?21、如图所示为汽车在水平路面做半径为R 的大转弯的后视图,悬吊在车顶的灯左偏了θ角,则:(重力加速度为g )(1)车正向左转弯还是向右转弯? (2)车速是多少?(3)若(2)中求出的速度正是汽车转弯时不打滑允许的最大速度,则车轮与路面间的动摩擦因数μ是多少?(最大静摩擦力等于滑动摩擦力)22、(2020·山东菏泽高一检测)有一列重为100 t的火车,以72 km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400 m.(g取10 m/s2)(1)试计算铁轨受到的侧压力大小;(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,我们可以适当倾斜路基,试计算路基倾斜角度θ的正切值.23、(2020·河南南阳期末)在公路转弯处,常采用外高内低的斜面式弯道,这样可以使车辆经过弯道时不必大幅减速,从而提高通行能力且节约燃料.若某处有这样的弯道,其半径为r=100 m,路面倾角为θ,且tan θ=0.4,g取10 m/s2.(1)求汽车的最佳通过速度,即不出现侧向摩擦力时的速度;(2)若弯道处侧向动摩擦因数μ=0.5,且最大静摩擦力等于滑动摩擦力,求汽车的最大速度.24、(2020·河南驻马店期末)中国已经成功拥有世界最先进的高铁集成技术、施工技术、装备制造技术和运营管理技术.中国高速列车保有量世界最多、种类最全.高速列车转弯时可认为是在水平面做圆周运动.为了让列车顺利转弯,同时避免车轮和铁轨受损,在修建铁路时会让外轨高于内轨,选择合适的内外轨高度差,以使列车以规定速度转弯时所需要的向心力完全由重力和支持力的合力来提供,如图所示,已知某段弯道内外轨道的倾角为θ,弯道的半径为R,重力加速度为g.(1)若质量为m的一高速列车以规定速度通过上述弯道时,求该列车对轨道的压力大小.(2)若列车在弯道上行驶的速度大于规定速度,将会出现什么现象或造成什么后果(请写出三条)?25、质量为m的火车以恒定的速率在轨道上沿一段半径为R的圆形轨道转弯,如图所示,已知轨道有一定的倾角.当火车以速率v0在此弯道上转弯时,车轮对轨道的侧压力恰好为0.如果火车以实际速率v(v>v0)在此弯道上转弯时,车轮将施于铁轨一个与枕木平行的侧压力F,试求侧压力F的大小.6-4 生活中的圆周运动(车辆拐弯问题) 习题集1、如图所示,质量相等的汽车甲和汽车乙,以相等的速率沿同一水平弯道做匀速圆周运动,汽车甲在汽车乙的外侧.两车沿半径方向受到的摩擦力分别为f 甲和f 乙.以下说法正确的是( )A .f 甲小于f 乙B .f 甲等于f 乙C .f 甲大于f 乙D .f 甲和f 乙的大小均与汽车速率无关 [答案] A[解析] 汽车在水平面内做匀速圆周运动,摩擦力提供做匀速圆周运动的向心力,即f =F 向=m v 2r ,由于m 甲=m 乙,v 甲=v 乙,r 甲>r 乙,则f 甲<f 乙,A 正确.2、在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是半径为R 的圆周运动.设内、外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A.gRhL B.gRhd C.gRLhD.gRdh[答案] B[解析] 设路面的倾角为θ,根据牛顿第二定律得mg tan θ=m v 2R ,又由数学知识可知tan θ=hd ,联立解得v =gRhd,选项B 正确.3、铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,重力加速度为g ,则( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ[答案] C[解析] 由牛顿第二定律F 合=m v 2R ,解得F 合=mg tan θ,此时重力和支持力的合力提供向心力,内、外轨道对火车均无侧压力,如图所示,F N cos θ=mg ,则F N =mgcos θ,故C 正确,A 、B 、D 错误.4、(公路弯道)如图所示,运动员以速度v 在倾角为θ的倾斜赛道上做匀速圆周运动.已知运动员及自行车的总质量为m ,做圆周运动的半径为R ,重力加速度为g ,将运动员和自行车看作一个整体,则该整体在运动中( )A .处于平衡状态B .做匀变速曲线运动C .受到的各个力的合力大小为m v 2RD .受重力、支持力、摩擦力、向心力作用 [答案] C[解析] 合力提供向心力,合力方向始终指向圆心,整体做变加速曲线运动,故A 、B 错误;合力F =mv 2R ,故C 正确;运动员和自行车组成的整体受重力、支持力,可能受到摩擦力作用,合力提供向心力,故D 错误.5、(公路弯道)(多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高、内侧低B .车速只要低于v 0,车辆便会向内侧滑动C .车速虽然高于v 0,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v 0的值变小 [答案] AC[解析] 当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受沿公路内外两侧的静摩擦力,此时仅由其重力和路面对其支持力的合力提供向心力,所以路面外侧高、内侧低,选项A 正确;当车速低于v 0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不一定会向内侧滑动,选项B 错误;当车速高于v 0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C 正确;由mg tan θ=m v 02r 可知,v 0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.6、汽车在水平地面上转弯时,与地面间的摩擦力已达到最大,当汽车速率增为原来的2倍时,若要不发生险情,则汽车转弯的轨道半径必须( )A .减为原来的12B .减为原来的14C .增为原来的2倍D .增为原来的4倍[答案] D[解析] 汽车在水平地面上转弯,向心力由静摩擦力提供.设汽车质量为m ,汽车与地面间的动摩擦因数为μ,汽车的转弯半径为r ,则μmg =m v 2r ,故r ∝v 2,故速率增大到原来的2倍时,转弯半径增大到原来的4倍,D 正确.7、为了行驶安全和减少对铁轨的磨损,火车转弯处轨道平面与水平面会有一个夹角.若火车以规定的速度行驶,则转弯时轮缘与铁轨无挤压.已知某转弯处轨道平面与水平面间夹角为α,转弯半径为R ,规定行驶速率为v ,重力加速度为g ,则( )A .v =gR tan αB .v =gR sin αC .v =gR sin αD .v =gR tan α[答案]D. [解析]火车受力如图所示,在转弯处火车按规定速度行驶时,火车所需要的向心力由重力和支持力的合力提供,有:F 合=mg tan α,根据牛顿第二定律有:mg tan α=m v 2R ,解得火车规定行驶速度为:v =gR tan α,故D 正确.8、(火车转弯问题)当火车以速率v 通过某弯道时,内、外轨道均不受侧向压力作用,此速率称为安全速率.下列说法正确的是( )A .弯道半径R =v 2gB .若火车以大于v 的速率通过该弯道时,则外轨将受到侧向压力作用C .若火车以小于v 的速率通过该弯道时,则外轨将受到侧向压力作用D .当火车质量改变时,安全速率也将改变 [答案] B [解析]当火车以规定速度通过弯道时,火车的重力和支持力的合力提供向心力,如图所示:即F n =mg tan θ,而F n =m v 2R ,故gR tan θ=v 2,即R =v 2g tan θ,则A 错;若火车以大于v 的速率过弯时,重力和支持力的合力不足以提供所需向心力,则外轨对车轮的侧向压力来补充不足,故B 对,C 错;由mg tan θ=m v 2R 可知质量与速率无关,故D 错.9、(多选)(2020·浙江宁波九校期末)一质量为2.0×103 kg 的汽车在水平公路上行驶,路面对轮胎的最大静摩擦力为1.6×104 N ,当汽车经过半径为100 m 的弯道时,下列判断正确的是( )A .汽车转弯时所受的力有重力、弹力、摩擦力和向心力B .汽车转弯的速度为30 m/s 时所需的向心力为1.6×104 NC .汽车转弯的速度为30 m/s 时汽车会发生侧滑D .汽车能安全转弯的向心加速度不超过8.0 m/s 2 [答案]CD.[解析]汽车在水平面转弯时,做圆周运动,重力与支持力平衡,侧向静摩擦力提供向心力,不能说受到向心力,故A 错误;如果车速达到30 m/s ,需要的向心力F =m v 2r =2.0×103×302100 N =1.8×104 N ,故B 错误;最大静摩擦力f =1.6×104 N ,则F >f ,所以汽车会发生侧滑,故C 正确;最大加速度为:a =f m =1.6×1042×103m/s 2=8.0 m/s 2,故D 正确.10、(铁路弯道)(2019·青阳一中高一月考)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越小 [答案] A[解析] 设内外轨的水平距离为d ,根据火车转弯时,重力与支持力的合力提供向心力得: mg tan θ=mg h d =mv 2r,r 一定时,v =ghr d ,v 越小则要求h 越小,v 越大则要求h 越大;v 一定时,r =dv 2gh,r 越大则要求h 越小,r 越小则要求h 越大,故A 正确,B 、C 、D 错误.11、冰面对溜冰运动员的最大静摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,其安全速度的最大值是(重力加速度为g )( )A .k gR B.kgR C.2kgR D.gR k[答案] B[解析] 由题意可知,最大静摩擦力为运动员重力的k 倍,所以最大静摩擦力等于kmg .设运动员的最大速度为v ,则:kmg =m v 2R,解得:v =kgR ,故B 正确.12、(2020·安徽宣城期末)在室内自行车比赛中,运动员以速度v 在倾角为θ的赛道上做匀速圆周运动.已知运动员的质量为m ,做圆周运动的半径为R ,重力加速度为g ,则下列说法正确的是( )A .运动员做圆周运动的角速度为vRB .如果运动员减速,运动员将做离心运动C .运动员做匀速圆周运动的向心力大小是m v 2RD .将运动员和自行车看作一个整体,则整体受重力、支持力、摩擦力和向心力的作用 [答案]C.[解析]运动员做圆周运动的角速度为ω=vR ,A 错误;如果运动员减速,运动员将做近心运动,B 错误;运动员做匀速圆周运动的向心力大小是m v 2R ,C 正确;将运动员和自行车看作一个整体,则整体受重力、支持力、摩擦力的作用,三个力的合力充当向心力,D 错误.13、(多选)(2019·合肥市联考)如图所示为运动员在水平道路上转弯的情景,转弯轨迹可看成一段半径为R 的圆弧,运动员始终与自行车在同一平面内.转弯时,只有当地面对车的作用力通过车(包括人)的重心时,车才不会倾倒.设自行车和人的总质量为M ,轮胎与路面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g .下列说法正确的是( )A .车受到地面的支持力方向与车所在平面平行B .转弯时车不发生侧滑的最大速度为μgRC .转弯时车与地面间的静摩擦力一定为μMgD .转弯速度越大,车所在平面与地面的夹角越小 [答案] BD[解析] 车受到地面的支持力方向与地面垂直,选项A 错误;由μMg =M v 2R ,解得转弯时车不发生侧滑的最大速度为v =μgR ,选项B 正确;转弯时车与地面间的静摩擦力一定小于或等于最大静摩擦力μMg ,选项C 错误;地面对车的作用力,即地面对车的摩擦力和支持力的合力,过车的重心时,车才不会倾倒.设车与地面的夹角为θ,tan θ=F N f =F N RMv2,速度v 越大,θ越小,D 正确.14、(2020·河北石家庄期末)铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ[答案]C.[解析]火车在水平面内做圆周运动,当重力与铁轨的支持力恰好提供火车转弯所需的向心力时,由力的合成可得mg tan θ=mv 2R ,有v =gR tan θ,可见此时轮缘与内外轨之间无挤压,A 、B 错误.由图可知此时铁轨对火车的支持力F N =mgcos θ,C 正确,D 错误.15、(多选)铁路在弯道处的内外轨道高低是不同的,已知内外轨道连线与水平面夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内、外轨道均不受侧压力作用,重力加速度为g ,下面分析正确的是( )A .轨道半径R =v 2gB .v =gR tan θC .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内D .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外 [答案] BD[解析] 火车转弯时受力如图所示,火车转弯的向心力由重力和支持力的合力提供,则mg tan θ=m v 2R ,故转弯半径R =v 2g tan θ;转弯时的速度v =gR tan θ,A 错误,B 正确;若火车速度小于v 时,需要的向心力减小,此时内轨对车轮产生一个平行轨道平面向外的作用力,即车轮挤压内轨;若火车速度大于v 时,需要的向心力变大,外轨对车轮产生一个平行轨道平面向里的作用力,即车轮挤压外轨,由牛顿第三定律知C 错误,D 正确.16、(多选)火车以一定的速率在半径一定的轨道上转弯时,内、外轨道恰好对火车没有侧向作用力,不考虑摩擦和其他阻力,如果火车以原来速率的两倍转弯,则( )A .外侧轨道受到挤压B .内侧轨道受到挤压C .为了保证轨道没有侧向作用力,内、外轨道的高度差应变为原来的两倍D .轨道的作用力和重力的合力变为原来的4倍 [答案] AD[解析] 火车以一定的速率转弯时,内、外轨与车轮之间没有侧压力,此时火车拐弯的向心力由重力和铁轨的支持力的合力提供,火车速度加倍后,速度大于规定速度,重力和支持力的合力不能够提供圆周运动所需的向心力,所以此时外轨对火车有侧压力以补充拐弯所需的向心力,故A 正确,B 错误;火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,受力分析如图所示,由图可以得出F 合=mg tan θ,故mg tan θ=m v 2R ,此时tan θ≈sin θ=h L ,联立解得轨道高度差为h =Lv 2gR ,当速度变为2v 后,若内、外轨道均不受侧压力作用,所需的向心力为F =m2v2R ,联立解得F =4mg tan θ,根据牛顿第二定律得mg tan θ′=m2v 2R,此时tan θ′≈sin θ′=h ′L ,联立可得h ′=4Lv 2gR,即h ′=4h ,故C 错误,D 正确.17、(多选)全国铁路大面积提速,给人们的生活带来便利.火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车高速转弯时外轨受损这一难题,以下措施可行的是( )A .适当减小内外轨的高度差B .适当增加内外轨的高度差C .适当减小弯道半径D .适当增大弯道半径 [答案] BD[解析] 设铁路弯道处轨道平面的倾角为α时,轮缘与内外轨间均无挤压作用,根据牛顿第二定律有。
高中物理第一章《运动的描述》计算题专题训练 (21)(含答案解析)

高中物理第一章《运动的描述》计算题专题训练 (21)一、计算题(本大题共30小题,共300.0分)1.物体以5m/s的初速度沿光滑斜槽向上做直线运动,经过4s滑回原处时速度大小仍是5m/s,物体在斜槽上的运动为匀变速直线运动,求:(1)物体在整个往返过程中速度变化量的大小和方向.(2)物体在整个往返过程中加速度的大小和方向.2.A、B两球沿同一直线发生正碰,如图所示的x−t图象记录了两球碰撞前、后的运动情况。
图中a、b分别为A、B碰前的位移−时间图象,c为碰撞后它们的位移−时间图象。
若A球的质量为m A=2kg,则:(1)从图象上读出A、B碰前的速度及碰后的共同速度;(2)B球的质量m B为多少千克?3.如图所示为测定气垫导轨上滑块的加速度的装置,滑块上安装了宽度为3.0cm的遮光板,滑块在牵引力作用下先后通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间Δt1=0.30s,通过第二个光电门的时间为Δt2=0.10s,遮光板从通过第一个光电门到开始遮住第二个光电门所用时间为Δt=3.80s,求滑块的加速度。
4.如图(a),一个小球在固定的轨道AB上往复运动,其位移一时间(x−t)图象如图(b)所示。
试问:(1)轨道AB的长度是多少?(2)小球在t=0到t=6s内的平均速度大小是多少?5.一辆轿车以30m/s的速率沿半径为60m的圆形跑道行驶.当轿车从A点运动到B点时,轿车和圆心的连线转过的角度为90°,求:(1)此过程中轿车的位移大小;(2)此过程中轿车运动的路程;(3)轿车运动的向心加速度大小.6.平直高速公路的同一车道内有两辆汽车,甲车在前,乙车在后。
开始时两车速度都是30m/s,间距为150m。
某时刻,甲车匀减速刹车,速度减小到10m/s历时2s,并立即做匀速运动。
乙车司机的反应时间为0.5s(从发现危险到做出刹车动作的时间),才做出刹车动作,并做匀减速运动。
求:(1)乙车在反应时间内经过的位移;(2)甲车在匀减速刹车过程经过的位移;(3)要使两车不相碰,乙车刹车时加速度的大小至少是多少?7.一篮球以60m/s的水平速度垂直于篮板与篮板发生碰撞,碰撞后以碰撞前速度大小的4/5水平反弹,碰撞时间为0.5s,求碰撞过程中篮球的加速度.8.一颗子弹以600m/s的初速度击中一静止在光滑水平面上的木块,经过0.05s穿出木块时子弹的速度变为200m/s.(1)若子弹穿过木块的过程中加速度恒定,求子弹穿过木块时加速度的为多少;(2)若木块在此过程中产生了恒为200m/s2的加速度,则子弹穿出木块时,木块获得的速度的大小为多少?9.在某一段平直的铁路上,一列以324km/ℎ高速行驶的列车某时刻开始匀减速行驶,5min后恰好停在某车站,并在该车站停留4min;随后匀加速驶离车站,以8.1km后恢复到原速324km/ℎ.(1)求列车减速时的加速度大小;(2)若该列车总质量为8.0×105kg,所受阻力恒为车重的0.1倍,求列车驶离车站加速过程中牵引力的大小;(3)求列车从开始减速到恢复这段时间内的平均速度大小.10.为了在校运会上取得好成绩,小壮在半径为R的圆形跑道上进行长跑训练。
高中物理人教A版(2019)必修二第六章 圆周运动单元训练卷

高中物理人教A版(2019)必修二第六章圆周运动单元训练卷物理考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅰ卷客观题第Ⅰ卷的注释(共6题;共24分)1.(4分)下列关于向心力的说法中正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力会改变做圆周运动物体的速度大小C.做匀速圆周运动的物体其向心力即为其所受的合力D.做匀速圆周运动的物体其向心力是不变的2.(4分)“旋转纽扣”是一种传统游戏。
如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。
拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.(4分)某教室内墙壁上挂有一只走时准确的石英钟,盘有时针、分针和秒针,如图所示。
关于它们的转动情况描述正确的是()A.时针与分针转动的角速度之比为1∶60B.时针与秒针转动的角速度之比为1∶3600C.分针与秒针转动的角速度之比为1∶60D.分针与秒针转动的周期之比为1∶124.(4分)如图所示,一半径为R的圆筒可绕其轴心OO′在水平面内匀速转动。
一质量为m可视为质点的物块紧贴在圆筒的内壁随圆筒一起转动而不滑下,物块与圆筒内壁之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g。
下列说法正确的是()A.小球受重力、弹力、摩擦力和向心力B.由重力、弹力和摩擦力的合力提供物块运动的向心力C.圆筒转动的角速度越大时,物块所受的摩擦力越大D.圆筒转动的周期不能低于2π√μRg5.(4分)如图所示,一球体绕轴O1O2以角速度ω匀速旋转,A,B为球体上两点,下列几种说法中正确的是()A.A,B两点具有相同的角速度B.A,B两点具有相同的线速度C.A,B两点的向心加速度的方向都指向球心D.A,B两点的向心加速度之比为2:16.(4分)如图所示,长为L不可伸长的轻绳,一端拴着小球,另一端系在竖直细杆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-3-12 高中 物理 生活中的圆周运动 计算题(考试总分:100 分 考试时间: 120 分钟)一、 计算题 (本题共计 10 小题,每题 10 分,共计100分) 1、如图所示,水平转盘上放一小木块。
转速为60r/min 时,木块离轴8cm 恰好与转盘无相对滑动,当转速增加到120r/min 时,为使小木块刚好与转盘保持相对静止,那么木块应放在离轴多远的地方?2、如图所示,竖直光滑直轨道OA高度为2R ,连接半径为R 的半圆形光滑环形管道ABC (B 为最低点),其后连接圆弧环形粗糙管道CD ,半径也为R .一个质量为m 的小球从O 点由静止释放,自由下落至A 点进入环形轨道,从D 点水平飞出,下落高度刚好为R 时,垂直落在倾角为30°的斜面上P 点,不计空气阻力,重力加速度为g .求:(1)小球运动到B 点时对轨道的压力大小; (2)小球运动到D 点时的速度大小;(3)小球在环形轨道中运动时,摩擦力对小球做了多少功?3、转动装置如图所示,四根轻杆OA 、OC 、AB 和CB 与两小球以及一小环通过铰链连接,轻杆长均为l ,球的质量均为m ,环质量为2m ,O 端固定在竖直的轻质转轴上,套在转轴上的轻质弹簧连接在O 与小环之间,原长为L ,装置静止时,弹簧长为,转动该装置并缓慢增大转速,小环缓慢上升。
弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g ,求:弹簧的劲度系数k ;杆中弹簧长度为时,装置转动的角速度。
4、如图所示,质量为m 的小球用长为L 的细绳悬于光滑的斜面上的O 点,小球在这个倾角为θ的斜面上做圆周运动,若小球在圆周的最高点和最低点的速率分别为v 1和v 2,则绳子在这两个位置时的张力的大小分别是多少?5、如图所示,可视为质点的木块A 、B 叠放在一起,放在水平转台上随转台一起绕固定转轴OO′匀速转动,木块A 、B 与转轴OO ′的距离为1m ,A 的质量为5kg ,B 的质量为10kg ,已知A 与B 间的动摩擦因数为,B 与转台间的动摩擦因数为,如木块A 、B 与转台始终保持相对静止,则转台角速度的最大值是多少?最大静摩擦力等于滑动摩擦力,取6、如图所示,长度为L 的细绳上端固定在天花板上O 点,下端拴着质量为m 的小球。
当把细绳拉直时,细绳与竖直线的夹角为θ=60°,此时小球静止于光滑的水平面上。
(1) 当球以角速度做圆锥摆运动时,细绳的张力T 为多大?水平面受到的压力F N 是多大? (2) 当球以角速度做圆锥摆运动时,细绳的张力T′及水平面受到的压力F N ′各是多大?7、如图所示,电荷量为+q ,质量为m 的小球用一根长为L 的绝缘细绳悬挂于O 点,所在的整个空间存在水平向右的匀强电场,已知重力加速度为g 。
现将悬线拉直使小球从与O 点等高的A 点静止释放,当小球运动到O 点正下方的B 点时速度的大小为v=。
求:(1)该电场的场强E的大小;(2)小球刚到达B点时绳的拉力;(3)若到达B点后绳子突然断裂,断裂时小球以原速度抛出,则小球再次经过O点正下方时与O点的距离是多少?8、如图所示,半径R=0.45m的光滑圆弧轨道固定在竖直平面内,B为轨道的最低点,B点右侧的光滑的水平面上紧挨B点有一静止的小平板车,平板车质量M=2.0 kg,长度l=0.5 m,小车的上表面与B点等高,距地面高度h=0.2m。
质量m=1.0 kg的物块(可视为质点)从圆弧最高点A由静止释放。
重力加速度g 取10 m/s2。
(1)求物块滑到轨道上的B点时对轨道的压力;(2)若将平板车锁定并且在上表面铺上一种特殊材料,其与物块之间的动摩擦因数μ从左向右随距离均匀变化,如图乙所示,求物块滑离平板车时的速度。
9、在用高级沥青铺设的高速公路上,汽车的设计时速是108km/h。
汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍。
(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?(取g=10m/s2)10、目前我国高速公路已经四通八达,高速公路也越来越成为人们驾车出行的首选道路。
在某高速公路上,汽车的设计时速是108 km/h。
(1)假设该高速公路弯道的路面是水平的,汽车轮胎与路面的最大静摩擦力等于车重的0.6倍;则汽车在该高速公路的水平弯道上转弯时,其弯道半径最小是多少?(2)如果在该高速路上设计了圆弧拱桥做立交桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?(取g=10 m/s2)一、计算题(本题共计 10 小题,每题 10 分,共计100分)1、【答案】2cm【解析】当转速为:时,角速度为:此时木块圆周运动所需要的向心力等于最大静摩擦力,由牛顿第二定律得:当转速时,角速度为:小木块刚好与转盘保持相对静止,有:联立可得:。
【点睛】本题应用牛顿第二定律处理圆周运动的临界问题,关键分析临界条件:当物体刚要滑动时,静摩擦力达到最大值,并且由静摩擦力提供向心力。
2、【答案】(1)7mg;(2);(3)【解析】(1)O→B:3mgR=mυB2B点:N– mg=mN ˊ=" N" =7mg(2)D→P:υy =gt R=gt2在P 点:=tan60°υD =(3)O→D:mgR+W f=mυD2 W f=-mgR3、【答案】。
【解析】装置静止时,设OA、AB 杆中的弹力分别为、,OA 杆与转轴的夹角为。
小环受到弹簧的弹力为:,小环受力平衡,则有:,小球受力平衡,则竖直方向有:,水平方向有:,解得:;弹簧长度为时,设OA、AB杆中的弹力分别为、,OA杆与转轴的夹角为。
小环受到的弹力为:,小环受力平衡,有:,且,对小球,竖直方向有:,水平方向有:,解得:.【点睛】本题综合考查了牛顿第二定律、共点力平衡和胡克定律的运用,当装置转动时,抓住小环平衡,小球在竖直方向上平衡,水平方向上的合力提供向心力进行求解.4、【答案】,【解析】在最高点,分解重力沿斜面的分力为mgsinθ,这个重力的分力与绳子拉力的合力充当向心力,向心力沿斜面向下指心圆心则有:得:同理,在最低点:得:【点睛】本意主要考查了圆周运动向心力公式的直接应用,要求同学们能正确对物体进行受力分析,找出向心力的来源.5、【答案】rad/s【解析】由于A、AB整体受到的静摩擦力均提供向心力,故对A,有:μ1m A g≥m Aω2r对AB整体,有:(m A+m B)ω2r≤μ2(m A+m B)g代入数据解得:ω≤rad/s【点睛】本题关键是对A、AB整体受力分析,根据静摩擦力提供向心力以及最大静摩擦力等于滑动摩擦力列式分析。
6、【答案】(1),(2),【解析】当小球与水平面恰无挤压时,对小球受力分析如图:则、解得:(1)当时,小球受重力、拉力、水平面的支持力,则、解得:、据牛顿第三定律,压力为(2)当时,小球离开水平面,水平面不受压力,即;小球受重力、拉力,设拉力与竖直方向夹角变成,则:,解得:7、【答案】(1)(2)2mg;(3)9L【解析】(1)由A到B 根据动能定理:,解得(2)在B 点,由牛顿第二定律:解得T=2mg(3)绳子断裂后,小球水平方向向左先做减速运动,后反向加速;竖直方向做自由落体运动,回到B点正下方,则:解得h=9L【点睛】此题关键是第3问的解答,要知道小球参与水平方向的匀变速运动和竖直方向的自由落体运动,两个运动的时间相等.8、【答案】(1)30N(2)【解析】(1)物块从圆弧轨道顶端滑到B点的过程中,机械能守恒,则mgR =,得v B=3 m/s在B点由牛顿第二定律的N-mg=m,计算得出N=mg+m=30 N即N′=N=30 N,方向竖直向下(2)物块在小车上滑行的摩擦力做功,W f =-l=-2 J从物块开始运动到滑离平板车过程之中,由动能定理得mgR+W f =mv2计算得出v =m/s【点睛】此题关键是分清物块运动的物理过程;根据机械能守恒定律,牛顿第二定律以及动能定理求解;注意因动摩擦力随距离均匀变化,则求解摩擦力功时可以取平均摩擦力.9、【答案】(1)150 m. (2)R≥90 m.【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力是车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m=0.6mg≥由速度v=30m/s,得弯道半径 r≥150m;(2)汽车过拱桥,看作在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg-F N =为了保证安全,车对路面间的弹力F N必须大于等于零。
有mg ≥则R≥90m。
10、【答案】150m,90m【解析】(1)汽车在水平路面上转弯时,可视为匀速圆周运动,其向心力由汽车与路面间的静摩擦力提供,当静摩擦力达到最大值时,对应的半径最小r,有f m =0.6mg=m,又 v=30m/s解得:r=150m,故弯道的最小半径为150m.(2)在拱桥的最高点,当汽车队拱桥的压力为零时,则:mg=m,解得【点睛】解决本题的关键知道汽车在水平路面上拐弯靠静摩擦力提供圆周运动的向心力,在拱形桥面上有最大速度时,只有重力提供向心力。