高一数学函数知识总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数知识总结
高一数学方程的根与函数的零点知识点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的
图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象
联系起来,并利用函数的性质找出零点.
4、二次函数的零点:y=a(x-x1)(x-x2)x1
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学函数的概念和图象知识点
重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互
间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及
如何选点作图,映射的概念的理解.
考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;
③了解简单的分段函数,并能简单应用;
经典例题:设函数f(x)的定义域为[0,1],求下列函数的定义域:
(1)H(x)=f(x2+1);
(2)G(x)=f(x+m)+f(x-m)(m>0).