第15章分式
桓台县一中八年级数学上册第十五章分式15.1分式2分式的基本性质教学课件新版新人教版
∠BCA= 90° , ∠A= 30 °
A
AB=4 , 求BC之长。
解 : 由定理知识得 BC= A12 B 而AB=4
∴BC=2
B
C
2、在Rt△ABC 中 , 如果∠BCA= 90° , ∠A= 30 ° , CD 是高 ,
〔1〕BD=1 , 那么BC、AB各等于多少 ;
〔2〕求证 : BD= B1 C= A1 B
A
分析 : ∵ AC是等边△ABD的高
∴ △ABD关于直线AC対称
B
CD
∴BC=CD
∵AB=BD
∴BC=CD=
1 2
AB
在一个直角三角形中 , 如果一个角是30 ° , 那么30 °的角所対的直角边与斜边又有什么关系呢 ?
如下图右 : △ABC 中 , ∠A= 30 ° ,
∠BCA= 90° , 问BC与AB有怎样的关系 ?
在直角三角形中 , 如果一个锐角等30° , 那么 , 它所対的直角边等于斜边的一半。
休息时间到啦
同学们,下课休息十分钟。现在是休息时间 休息一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
样的分式称为最简分式
化简分式时,通常 要使结果成为最简 分式或者整式
考考你
早晨 , 小明遇到一道分式化简题 :
⑴ a 2 bc ⑵ a 2 - 2ab ⑶
ab
ab - 2b 2
x2 -1 x2 - 2x 1
a 改対写于或第⑴题aa2,bb小c明的ab解aba法c如下 : c 分解••你从解:认中⑴为, 你他能的看解出法分准式确化吗简?的一般步骤吗 ? 先提取 -――剔出分子、分母的公因式 ; 再约分 ―-―简化分式 。
八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时
= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x
y x
c x
m y x
c
(2)
m 2abc
n 2bca
d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式
1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4
a
1
2
a2 -4 能分解 :
解:原式
(a
2a 2)(a
2)
(a
a2 2)(a
2)
2a (a 2) (a 2)(a 2)
2a a 2 (a 2)(a 2)
八年级数学上册第十五章《分式》知识点总结(2)
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数C 解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0D解析:D【分析】 若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x +>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 3.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 4.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x -=+ A 解析:A【分析】 设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】 设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A .【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键. 5.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解6.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( )A .1B .12C .0D .4D 解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d ++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.7.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .75D 解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.8.22()-n b a(n 为正整数)的值是( ) A .222+nn b aB .42n n b aC .212+-n n b aD .42-n n b aB 解析:B【分析】根据分式的乘方计算法则解答.【详解】 2422()-=nn n b b a a. 故选:B .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<< D 解析:D【分析】 根据负整数指数幂的运算法则可得110x x-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果.【详解】解:∵1x 0-<<,∴20x 1<<,0x 1=,11x0x-=<, ∴120x x x -<<.故选:D .【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解. 二、填空题11.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 13.211a a a-+=+_________.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解.【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++-故答案为:11a + 【点睛】 本题考查了分式加减运算的法则,熟记法则是解题的关键.14.223(3)a b -=______,22()a b ---=______.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】 本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.15.101()()2π-+-=______,011(3.14)2--++=______.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12=【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可.16.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a-=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可)②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.17.关于x 的方程53244x mx x x++=--无解,则m =________.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得,5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4, ∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.18.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____.【分析】先利用零次幂绝对值负整数次幂化简然后再计算即可【详解】解:故答案为:【点睛】本题主要考查了零次幂绝对值负整数次幂以及实数的运算灵活应用相关知识点成为解答本题的关键解析:1--【分析】先利用零次幂、绝对值、负整数次幂化简,然后再计算即可.【详解】解:201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-.故答案为:1-【点睛】本题主要考查了零次幂、绝对值、负整数次幂以及实数的运算,灵活应用相关知识点成为解答本题的关键.19.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-.本题考查分式的化简求值,属于基础题.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y为非负整数,∴y取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.22.某高速公路有300km的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.解析:(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能,理由【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x -=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =,经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.23.计算:(1)222221538x y y x ⎛⎫⋅ ⎪⎝⎭. (2)2222324424x x x x x x x ⎛⎫-+-÷ ⎪-+--⎝⎭. 解析:(1)256y ;(2)3x - 【分析】(1)先算乘方,再算乘法即可;(2)根据分式混合运算的法则进行计算即可.(1)原式224241598x y y x=⋅256y =; (2)()()()()22322222x x x x x x x ⎡⎤-+=-÷⎢⎥-+--⎢⎥⎣⎦ 31222x x x x ⎛⎫=-÷ ⎪---⎝⎭()3232x x x x -=⨯-=-- 【点睛】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.24.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 解析:(1)5x -;(2)19b ;(3)23x =【分析】 (1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2, 解得:23x =, 经检验23x =是分式方程的解. 【点睛】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.解析:这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 解析:21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------. 解析:(1)111n n -+;(2)20202021;(3)7x =. 【分析】 (1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+.(2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =, 经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.28.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭. 解析:(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷=115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+ =2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +-- =222xy x y +; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅ =67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。
八年级数学上册第十五章分式基础知识点归纳总结(带答案)
八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。
第15章 分式的计算与化简求值 人教版八年级上册数学讲义
第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
八年级上册数学第十五章分式方程
第一节:认识分式方程1.1 分式方程的定义分式方程是指含有分式的方程,其中未知数出现在分式中。
1.2 分式方程的性质分式方程的性质包括有理数的性质、分式的性质、方程的性质。
1.3 分式方程的解分式方程的解是指能满足方程的未知数的数值,求解分式方程的过程就是求方程的解的过程。
第二节:分式方程的基本形式2.1 一元一次分式方程一元一次分式方程的形式是a/x+b=c,其中a、b、c是已知数,x是未知数,x≠0。
2.2 一元一次分式不等式一元一次分式不等式是a/x+b<c,其中a、b、c是已知数,x是未知数,x≠0。
第三节:分式方程的解法3.1 通分法对于分式方程中的分式进行通分,使得方程变得更容易计算。
3.2 消去法通过约去分式中的公因式,使得方程变得更简单,从而更容易求解。
第四节:用分式方程解实际问题4.1 问题拆解将实际问题转化为分式方程,对实际问题进行分析和拆解,得到问题的数学表示形式。
4.2 方程求解将转化得到的分式方程进行求解,得到问题的解。
第五节:应用题5.1 填空题给定一元一次分式方程,要求填写方程的解。
5.2 计算题给定一元一次分式方程,要求解出方程的解并进行计算。
结语:分式方程是数学中常见的一种方程形式,掌握分式方程的基本概念、基本形式、基本解法,能够帮助我们更好地理解数学知识,在实际问题中也能够更加灵活地运用数学知识解决问题。
希望同学们能够认真学习分式方程的知识,掌握分式方程的解题方法,提高自己的数学水平。
在进行进一步的学习中,我们将深入探讨分式方程的解法,包括更复杂的情况和实际问题的应用。
同时也会针对一些常见的困惑和错误进行讲解和解答,以帮助同学们更好地掌握分式方程的知识。
第一节:分式方程的解法1.1 假分式方程假分式方程是指分式方程中含有未知数的分母含有未知数的方程形式。
在解假分式方程时,我们需要通过通分的方法将方程转化为一般的分式方程,然后再按照常规的分式方程解法进行求解。
人教版八年级数学上册第15章 分式1 第2课时 分式的乘方
思考:a 可以取任何实数吗?
a 不可以取 0,±1,-2.
分式 乘除 混合 运算
混合运算
乘除法运算及乘方法则 先算乘方,再算乘除
乘方运算 乘方法则
注意
(1) 乘除运算属于同级运算,应按照 先出现的先算的原则,不能交换运算 顺序
(2) 当除变成乘的形式时,灵活运用 乘法交换律和结合律可以简化运算
分母分解因式,再进行约分化简.
x 2x 4 3x 42 x 2x 4 解:原式 = x 4 x 4 • x 22 • x 33x 4
= 3x 4 . x3
方法总结:进行分式的乘除、乘方混合运算时,要 严格按照运算顺序进行运算,先算乘方,再算乘除. 注意结果一定要化成一个整式或最简分式的形式.
1.
计算
(ab)2 ab2
的结果为(
B
)
A. b
B. a C. 1
D. 1
b
2.
化简
2b a
2
•
ac 6b2
的结果是
2c 3a
.
3. 计算:
1
3x
2
y
2x2 y
3
;
3
2
x y
y2
x
2
x2 y 2
z
.
解:(1) 原式 3x2 y
8x6 y3
3x2 y y3 8x6
(2) am÷an=am-n;
(3) (am)n=amn;
(4) (ab)n = anbn;
5
a n b
an bn .
例2 下列运算结果不正确的是( D )
√ A.
8a2bx2 6ab2 x
2
4ax 3b
七年级数学上册第十五章《分式》知识点素材
第十五章分式一.知识框架二.知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).1。
人教版八年级数学上册第十五章分式 教材分析
观察题目 特征
分子分母同时 做因式分解
2x 6 2 x2 2x 3 (x 1)
依据分式的基 本性质进行恒
等变形
3、约分:
(1)约分的目的————化为最简分式 (2)约分的关键————寻找公因式 (3)约分的依据————分式的基本性质 (4)分式的分子、分母是单项式时,公因式是 它们系数的最大公约数与公有字母的最低次幂的 积 (5)分式的分子、分母是多项式时,先进行因 式分解,然后再约分
• 本章既是对前面所学知识的巩固,又是在新 情境中学习能力的体现,所以在教学中要注 意知识的衔接.
二、本章主要内容、重点、难点及数学思想
1、重点:本章学习的重点是分式的四则运算, 它是整式四则运算的进一步发展,是代数 式恒等变形的重要内容之一.
(1)分式的基本性质是本章学习的重点 (2)分式的四则运算是本章的重点内容 (3)注意类比学习方法的掌握
(5)含有乘除混合运算时,要注意运算顺序,要先统一为乘 法运算.
五、2019年中考说明中对分式提出的要求
考试要求层次
考试内容
A
B
C
能用分式的基本性质进行约
分和通分会进行简单的分式
分式 了解分式和最简分式 加、减、乘、除运算;会选
用恰当方法解决与分式有关
的问题
Hale Waihona Puke 数与了解整数指数幂的意 能用整数指数的幂性质进行
幂的运算
数与代 式
义和基本性质
相关的运算
数
会求代数式的值;能根据代 运用适当的知识和方
学建模思想。
为解决“最后一公里”的交通接驳问
题,北京市投放了大量公租自行车 供市民使用.到2013年底,全市已 有公租自行车25 000辆,租赁点600 个.预计到2015年底,全市将有公 租自行车50 000辆,并且平均每个 租赁点的公租自行车数量是2013年
八年级数学上册听课记录:第十五章分式《分式:分式的基本性质》
新2024秋季八年级人教版数学上册第十五章分式《分式:分式的基本性质》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解并掌握分式的基本性质,包括分式有意义的条件、分式相等的条件以及分式的约分与通分。
2.过程与方法:通过实例分析和讨论,引导学生探索分式基本性质的规律,培养学生的观察、归纳和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的数学态度和探究精神,以及合作学习的意识。
二、导入教师行为:•教师首先复习上节课关于分式概念的内容,提问学生:“谁能说说什么是分式?分式与分数有什么不同?”•接着,教师展示两个简单的分式,如32x和6x4x2,提问:“这两个分式相等吗?为什么?”引导学生思考分式相等的条件。
•由此引出本节课的主题:“为了更深入地理解分式,我们需要掌握分式的基本性质。
那么,分式有哪些基本性质呢?这就是我们今天要学习的内容。
”学生活动:•学生回忆并回答教师关于分式概念的提问,巩固上节课所学内容。
•认真观察教师给出的分式例子,思考并尝试回答分式相等的条件,为学习分式基本性质做铺垫。
过程点评:•教师通过复习旧知和提出问题,自然过渡到新课内容,激发了学生的学习兴趣和求知欲。
•学生积极参与思考,为学习分式基本性质奠定了良好的基础。
三、教学过程3.1 分式有意义的条件教师行为:•教师明确指出:“分式有意义的条件是分母不能为0。
”•通过具体例子说明,如x−1x,当x=1时,分母为0,分式无意义。
•引导学生思考并总结分式有意义的条件。
学生活动:•认真听讲,理解分式有意义的条件。
•分析教师给出的例子,尝试自己总结分式有意义的条件,并与同学交流讨论。
过程点评:•教师通过具体例子和清晰讲解,使学生明确了分式有意义的条件。
•学生通过思考和讨论,加深了对这一性质的理解。
3.2 分式相等的条件教师行为:•教师给出两个分式相等的例子,如ba=dc(b=0,d=0),并指出:“如果两个分式相等,那么它们的交叉相乘也相等,即ad=bc。
人教版八年级数学上册第十五章 分式知识点总结和题型归纳
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版
- 分式的分子与分母同时乘以或除以同一个数,分式的值也不变。
3. 分式的运算
- 加减法:XXX
- 乘除法:XXX
4. 分式的应用
- 实际问题:XXX
- 解题步骤:XXX
5. 总结
- 分式的概念和性质
- 分式的运算方法
- 分式的应用实例
2. 调整教学方法:采用多种教学方法,如案例教学、小组讨论、实验法等,提高学生的学习兴趣和参与度。
3. 多元化评价:采用多元化评价方式,如过程性评价、学生互评、自我评价等,全面了解学生的学习情况,促进学生的全面发展。
八、板书设计
1. 分式的概念
- 分子:XXX
- 分母:XXX
- 分式:XXX
2. 分式的基本性质
强调分式的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对分式知识的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决分式问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
学生预习:
发放预习材料,引导学生提前了解分式的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习分式内容做好准备。
教师备课:
深入研究教材,明确分式教学目标和分式重难点。
准备教学用具和多媒体资源,确保分式教学过程的顺利进行。
设计课堂互动环节,提高学生学习分式的积极性。
(二)课堂导入(预计用时:3分钟)
(五)拓展延伸(预计用时:3分钟)
人教版数学 八年级上 第十五章 《分式》精品讲义
所以 x2 y2 z2 0. yz zx xy
【解读策略】 条件分式的求值,如需把已知条件或所示条件分式变形,必 须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现 了整体的数学思想和转化的数学思想.
所以 (x
xyz y)( y z)(x
z)
2k k 3k 3k 4k 5k
6k 3 60k 3
1 10
.
例6 已知 x a, z c, 且 abc o ,求 a b c 的值.
yz xy
a 1 b1 c 1
解: 由已知得 1 y z , ax
所以 1 1 y z 1 x y z , 即 a 1 x y z ,
同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分
子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性
质化为最简形式.
专题 2 有关求分式值的问题
【专题解读】对于一个分式,如果给出其中字母的值,可以先将分式进行化
简,然后将字母的值代入,求出分式的值.但对于分式的求值问题,却没有直接给
知识网络结构图
分式的概念
分式的概念 分式的意义、无意义的条件
分式的值为 0 的条件
分式的基本性质
分式的基本性质 分式的约分
分式的通分
分式的乘法规则
分式的除法规则
分式
同分母分式的加减法法则
分式的运算 分式的加减法法则
异分母分式的加减法法则
运算性质
负正数指数幂
科学记数法
公式方程的概念
解分式方程的步骤
分式方程 分式方程中使最简公分母为 0 的解
人教版八年级数学上册第15章 分式 小结与复习
因为 ( 3)2 ( 3)2 3,所以小玲的计算结果也正确.
例4
解析:本题若先求出 a 的值,再代入求值,显
然比较复杂;但是如果将分式
的分子、
分母颠倒过来,即求
的值,
再利用完全平方公式变形求解就简单多了.
归纳总结 利用 A 和 1 互为倒数的关系,构造已知
A
条件与所求式子的关系,并运用整体代换,可使一 些分式求值问题的思路豁然开朗,简化解题过程.
第十五章 分 式
小结与复习
一、分式 1. 分式的概念:
一般地,如果 A、B 都表示整式,且 B 中含有
字母,那么称 为分式. 其中 A 叫做分式的分子,
B 叫做分式的分母. 2. 分式有意义的条件:
对于分式 :当__B_≠__0__时分式有意义; 当__B__=_0__时分式无意义.
3. 分式值为零的条件: 当 A = 0 且 B≠0 时,分式
的值为零.
4. 分式的基本性质:
A A C , A A C(C 0). B BC B BC
5. 分式的约分: 约分的定义
根据分式的基本性质,把一个分式的分子与分母
的公因式约去,叫做分式的约分.
最简分式的定义 分子与分母没有公因式的分式,叫做最简分式.
注意:分式的约分,一般要约去分子和分母所有 的公因式,使所得的结果成为最简分式或整式.
此方法是在众多未知元之中选取某一元为主元, 其余视为辅元,并将辅元用含有主元的式子表示,从 而达到减元的目的,最终实现化繁为简,化难为易.
针对训练
9.
已知
x y
2 3
,求
x2
x2 y2 2xy
y2
xy 2x2
y2 2xy
第15章《分式》(1--10课时)
课题15.1.1从分数到分式第 1 课时总第 61 课时主备人杜小艳授课人授课班级目标(教学/学习) 1. 分式的概念;2.掌握分式有意义、无意义的条件;3.分式的值为0的条件.教学重点分式的概念和分式有意义的条件。
教学难点分式的特点和分式有意义的条件。
教学方法或思路自主预习展示交流巩固应用合作探究达标检测教具准备课件导学设计导学流程知识(技能)及教法、学法设计二次备课修订自主预习展示交流一、自主预习(请大家阅读P127-128页,完成下列问题)1、思考:课本问题的答案有有什么相同点?不同点?2、思考: 分式中的分母应满足什么条件?二、展示交流,解读探究1、一般地,如果A、B表示两个整式,并且B中含有,那么式子BA叫做分式.2、由于除数不能为0,故分式的分母不能为0,即当时,分式BA才有意义.当时,分式BA的值为03、下列分式中的字母满足什么条件时分式有意义?(1)x32解:∵≠ 0,∴(2)1-xx解:∵≠ 0,∴(3)b351-解:∵≠ 0,∴(4)yxyx-+解:∵≠ 0,∴导学设计导学流程知识(技能)及教法、学法设计二次备课修订巩固应用1、完成课本P128页的1题2、下列各式x1,3x,aπ,5342+b,352-a,22yxx-,11x+,nmnm-+,15x+y,22a ba b--,121222+-++xxxx,)(3bac-,23x-,0中,是分式的有;是整式的有;3、下列分式,当x取何值时有意义.⑴a2;⑵2323xx+-⑶2132xx++⑷11-+xx⑸yx-1⑹122-x达标检测四、合作探究1、当x为何值时,(1)分式无意义?(2)值为零?(1)xx1-(2)325-+aa五、达标检测(课本P133页的1、2、3、8题)作业习题15.12题 3题预习作业性质---约分教学反思审批教研组长审批意见包组领导审批意见课题15.1.2分式的基本性质---约分第 2 课时总第 62 课时主备人杜小艳授课人授课班级目标(教学/学习) 1、了解分式基本性质2、会用分式的基本性质熟练地进行分式的约分教学重点分式的约分教学难点利用分式的基本性质把分式化成最简分式。
人教版八年级数学上册第15章《分式》教学设计(共12课时)
人教版八年级数学上册第15章《分式》教学设计(共12课时)一. 教材分析人教版八年级数学上册第15章《分式》是学生在学习了实数、代数式、方程等知识后,进一步拓展数学知识的一个章节。
分式作为数学中的一个重要概念,不仅在初中数学中占有重要地位,而且在高中乃至大学的数学学习中也会经常用到。
本章主要内容有分式的概念、分式的运算、分式的性质等。
通过本章的学习,使学生能理解分式的概念,掌握分式的运算方法,了解分式的性质,为后续学习函数、不等式等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等知识有了初步的认识。
但是,学生对分式的理解还比较模糊,分式的运算和性质对于他们来说是一个新的挑战。
因此,在教学过程中,需要引导学生从实际问题中抽象出分式的概念,通过对比、归纳等方法,让学生自己发现并总结分式的性质,从而提高他们的学习兴趣和自主学习能力。
三. 教学目标1.知识与技能:使学生理解分式的概念,掌握分式的基本运算方法,了解分式的性质。
2.过程与方法:通过自主学习、合作交流等方法,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习分式的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:分式的概念、分式的运算、分式的性质。
2.难点:分式的运算规律、分式的性质的推导和应用。
五. 教学方法1.启发式教学:通过提问、引导、讨论等方式,激发学生的思维,培养他们的抽象思维能力。
2.自主学习:鼓励学生自主探究,发现问题、解决问题,提高他们的自主学习能力。
3.合作交流:引导学生进行小组讨论,分享学习心得,互相帮助,共同提高。
六. 教学准备1.教学PPT:制作清晰、简洁的教学PPT,便于学生理解和记忆。
2.教学素材:准备一些与分式相关的实际问题,用于引导学生从实际问题中抽象出分式的概念。
3.练习题:准备一些分式的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生从实际问题中抽象出分式的概念。
人教版八年级数学上册第15章:分式方程及其解法
这个程是我们以前学过的方程吗?它与一元一次方程有什 么区别?
新课讲解
1 分式方程的概念
观察前面所列方程:
90 60 30+v 30 v
此方程的分母中含有未知数v,像这样分母中含未知数的方 程叫做分式方程.
新课讲解
下列方程中,哪些是分式方程?哪些是整式方程?
(1) x 2 x 23
真相揭秘:分式两边同乘了等于0的式子,所得整 式方程的解使分母为0,这个整式方程的解就不是 原分式方程的解.
新课讲解
★分式方程解的检验——必不可少的步骤
解分式方程时,去分母后所得整式方程的解有可能 使原方程的分母为0,所以分式方程的解必须检验.
检验方法: 将整式方程的解代入最简公分母,如果最简公分母的值不
新课讲解
下面我们再讨论一个分式方程:
x
1 5
10 x2 25
解:方程两边同乘(x+5)(x-5),得
x+5=10, 解得x=5.
x=5是原分式 方程的解吗?
检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,
相应的分式无意义.因此x=5虽是整式方程x+5=10的解,
但不是原分式方程
x
1
RJ八(上) 教学课件
第十五章 分 式
15.3 分式方程
第1课时 分式方程及其解法
学习目标
1.理解分式方程的概念. 1.掌握解分式方程的基本思路和方法.(重点) 2.理解分式方程时可能无解的原因.(难点)
情境导入
一艘轮船在静水中的最大航速为30千米/时,它沿江以最大 航速顺流航行90千米所用时间,与以最大航速逆流航行60千 米所用时间相等.江水的流速为多少? 设江水的流速为v千米/时,根据题意可列出怎样的方程?
人教版八年级上册第15章《分式》全章教案(21页,含反思)
第十五章分式15.1分式15. 1.1从分数到分式1.以描绘实质问题中的数目关系为背景抽象出分式的观点,成立数学模型,并理解分式的观点.2.能够经过分式的定义理解和掌握分式存心义的条件.要点理解分式存心义的条件及分式的值为零的条件.难点能娴熟地求出分式存心义的条件及分式的值为零的条件.一、复习引入1. 什么是整式?什么是单项式?什么是多项式?2. 判断以下各式中 ,哪些是整式?哪些不是整式?① 8m + n ;② 1+ x + y 2;③ a 2 b +ab 2a +b 2;⑥3;⑦3x 2- 43 ;④ ;⑤ a 2+ b 2 .32x 2+ 2x +12x二、研究新知1. 分式的定义(1) 学生看教材的问题:一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行 90 千米所用时间 ,与以最大航速逆流航行 60 千米所用的时间相等 ,江水的流速为多少?剖析:设江水的流速为 v 千米 / 时.轮船顺流航行 90 千米所用的时间为90小时 ,逆流航行 60 千米所用时间为60小时,30+ v 30- v所以 90 = 60.30+ v 30- v(2) 学生达成教材第 127 页“思虑”中的题.察看:以上的式子 9060S V30+ v ,30-v , a , s ,有什么共同点?它们与分数有什么相同点和不同点?能够发现 ,这些式子都像分数相同都是AB (即 A ÷B) 的形式.分数的分子 A 与分母 B 都是整数 ,而这些式子中的 A , B 都是整式 ,并且 B 中都含有字母.A归纳:一般地 ,假如 A ,B 表示两个整式 ,并且 B 中含有字母 ,那么式子 B 叫做分式. 稳固练习:教材第 129 页练习第 2 题.2. 自学教材第 128 页思虑:要使分式存心义 ,分式中的分母应知足什么条件?分式的分母表示除数 ,因为除数不可以为 0,所以分式的分母不可以为 0,即当 B ≠ 0 时,分 式 A才存心义.B学生自学例 1.例 1以下分式中的字母知足什么条件时分式存心义?2 ;(2) x; (3) 1 ; (4)x +y (1) 3xx - 1 5- 3bx - y.解: (1)要使分式 3x 2存心义 ,则分母 3x ≠ 0,即 x ≠ 0;(2) 要使分式x存心义 ,则分母x - 11(3) 要使分式存心义 ,则分母 5- 3bx + y(4) 要使分式 x - y 存心义 ,则分母x - 1≠ 0,即 x ≠ 1;55- 3b ≠ 0,即 b ≠ ;x - y ≠ 0,即 x ≠ y.思虑:假如题目为:当x 为何值时 ,分式无心义.你知道怎么解题吗?稳固练习:教材第 129 页练习第 3 题. 3. 增补例题:当 m 为何值时 ,分式的值为 0?m ;(2) m - 2; (3) m 2- 1(1) m - 1 m + 3 m + 1 .思虑:当分式为 0 时,分式的分子、分母各知足什么条件?剖析:分式的值为 0 时,一定同时知足两个条件: (1) 分母不可以为零;(2)分子为零.答案: (1)m = 0; (2)m = 2; (3)m = 1. 三、归纳总结 1. 分式的观点.2. 分式的分母不为 0 时,分式存心义;分式的分母为 0 时,分式无心义.3. 分式的值为零的条件: (1)分母不可以为零; (2) 分子为零.四、部署作业教材第 133 页习题 15.1 第 2, 3 题.在引入分式这个观点从前先复习分数的观点,经过类比来自主研究分式的观点 ,分式有意义的条件 ,分式值为零的条件 ,从而更好更快地掌握这些知识点,同时也培育学生利用类比转变的数学思想方法解决问题的能力.15. 1.2 分式的基天性质 (2 课时 )第 1 课时分式的基天性质1.认识分式的基天性质,灵巧运用分式的基天性质进行分式的变形.2.会用分式的基天性质求分式变形中的符号法例.要点理解并掌握分式的基天性质.难点灵巧运用分式的基天性质进行分式变形.一、类比引新 1. 计算:(1) 5 2 4 8× 15 ; (2) ÷ .6 5 15 思虑:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基天性质. 2. 你能说出分数的基天性质吗?分数的分子与分母都乘 (或除以 )同一个不为零的数 ,分数的值不变.3. 试试用字母表示分数的基天性质:小组议论沟通如何用字母表示分数的基天性质,而后写出分数的基天性质的字母表达式.a = a ·c a = a ÷cb b ·c , b b ÷c .( 此中 a , b ,c 是实数 ,且 c ≠ 0) 二、研究新知1. 分式与分数也有近似的性质 ,你能说出分式的基天性质吗?分式的基天性质:分式的分子与分母乘 (或除以 )同一个不为零的整式 ,分式的值不变. 你能用式子表示这个性质吗? AA ·C A A ÷CB = B ·C , B = B ÷C .(此中 A , B ,C 是整式 ,且 C ≠ 0)如 x = 1, b =ab2,你还可以举几个例子吗?2x 2 a a回首分数的基天性质 ,让学生类比写出分式的基天性质 ,这是从详细到抽象的过程.学生试试着用式子表示分式的性质 ,增强对学生的抽象表达能力的培育.2. 想想以下等式成立吗?为何?- a a ; - a a a= = =- . - b b b - b b教师出示问题.学生小组议论、沟通、总结.例 1 不改变分式的值 ,使以下分式的分子与分母都不含“-”号:- 2a- 3x- x 2(1) - 3a ; (2) 2y ; (3)- y.例 2不改变分式的值 ,使以下分式的分子与分母的最高次项的系数都化为正数:x + 1 2- x - x - 1(1) - 2x - 1; (2)- x 2+ 3;(3) x + 1 .指引学生在达成习题的基础长进行归纳 ,使学生掌握分式的变号法例.例 3填空:x 3( ) 3x 2+ 3xy=x + y;= y,( )(1) xy6x 2(),2a -2 ( ) .(b ≠ 0)(2)1=2b = 2aba b a a bx 3解: (1)因为 xy 的分母 xy 除以 x 才能化为 y ,为保证分式的值不变 ,依据分式的基天性 质,分子也需除以 x ,即x 3= x 3 ÷x =x 2. xy xy ÷ x y相同地 ,因为 3x 2+ 3xy的分子 3x 2+3xy 除以 3x 才能化为 x + y ,所以分母也需除以 3x ,6x 2即3x 2+ 3xy(3x 2+ 3xy ) ÷( 3x ) x + y6x 2=6x 2 ÷( =2x.3x )所以 ,括号中应分别填入 x 2和 2x.(2) 因为 ab1的分母 ab 乘 a 才能化为 a 2b ,为保证分式的值不变 ,依据分式的基天性质 ,分子也需乘 a ,即1 = 1·a = a2 . ab ab ·a a b2a - b相同地 ,因为a2 的分母 a 2乘 b 才能化为 a 2b ,所以分子也需乘 b ,即2a - b ( 2a -b ) ·b 2ab -b 22 == 2.a a 2 ·b a b所以 ,括号中应分别填 a 和 2ab - b 2.在解决例题 1, 2 的第 (2)小题时 ,教师能够指引学生察看等式两边的分母发生的变化,再思虑分式的分子如何变化;在解决例2 的第 (1)小题时 ,教师指引学生察看等式两边的分子发生的变化 ,再思虑分式的分母随之应当如何变化.三、讲堂小结1. 分式的基天性质是什么? 2. 分式的变号法例是什么?3. 如何利用分式的基天性质进行分式的变形? 学生在教师的指引下整理知识、理顺思想. 四、部署作业教材第 133 页习题 15.1 第 4, 5 题.经过算数中分数的基天性质,用类比的方法给出分式的基天性质,学生接受起来其实不感觉困难,但要要点重申分子分母同乘 (或除 )的整式不可以为零,让学生养成谨慎的态度和习惯.第 2 课时分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的观点.2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.要点运用分式的基天性质正确地进行分式的约分与通分.难点通分时最简分分母确实定;运用通分法例将分式进行变形.一、类比引新1.在计算56×152时,我们采纳了“约分”的方法,分数的约分约去的是什么?分式a+ b相等吗?为何?aba2+ab利用分式的基天性质,分式a2b约去分子与分母的公因式a,其实不改变分式的值a+ b获得. a2+ ab a2b,,能够教师点拨:分式a2+ ab能够化为a+ b__分式的约分 __.a2b ab ,我们把这样的分式变形叫做4 64 62. 如何计算 5+ 7?如何把 5,7通分?近似的 ,你能把分式 a, c变为同分母的分式吗?b d利用分式的基天性质 ,把几个异分母的分式分别化成与本来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分 __.二、研究新知- 25a 2bc 3;(2) x 2- 9; 1. 约分: (1) 15ab 2c x 2+ 6x +9 6x 2- 12xy + 6y 2 (3) 3x -3y .剖析:为约分 ,要先找出分子和分母的公因式.2322解: (1) - 25a bc =- 5abc ·5ac =-5ac ;15ab 2c5abc · 3b 3bx 2- 9 ( x + 3)( x - 3) x - 3(2)x2+= (x + 3) 2 =;6x +9x + 36x 2- 12xy + 6y 2 6( x - y )2(3)3x -3y==2(x - y).3(x - y )若分子和分母都是多项式 ,则常常需要把分子、分母分解因式(即化成乘积的形式 ) ,然后才能进行约分. 约分后 ,分子与分母没有公因式 ,我们把这样的分式称为 __最简分式 __.( 不 能再化简的分式 )2. 练习:约分:2ax 2y ; - 2a ( a +b ) ( a - x ) 2 2- 4 ; m 2- 3m 2-13b ( a +b ) ; ; x ; 99.3axy 2 ( x -a ) 3 xy + 2y9- m 298学生先独立达成 ,再小组沟通 ,集体校正.3. 议论:分式1 , 114的最简公分母是什么?3 22 3, 6xy2x y z 4x y提出最简公分母观点.一般取各分母的所有因式的最高次幂的积作公分母 ,它叫做最简公分母.学生议论、小组沟通、总结得出求最简公分母的步骤:(1) 系数取各分式的分母中系数最小公倍数; (2) 各分式的分母中所有字母或因式都要取到; (3) 相同字母 (或因式 )的幂取指数最大的;(4) 所得的系数的最小公倍数与各字母 (或因式 )的最高次幂的积 (此中系数都取正数 ) 即为最简公分母.4. 通分: (1) 32 与a -2 b; (2) 2x 与 3x .2a b ab c x - 5 x + 5 剖析:为通分 ,要先确立各分式的公分母.解: (1)最简公分母是 2a 2b 2c.33·bc 3bc2a 2b = 2a 2b · bc =2a 2b 2 c , a - b ( a -b ) ·2a 2a 2 -2abab 2c =ab 2c · 2a = 2a 2b 2c .(2) 最简公分母是 (x - 5)(x + 5) .2x=2x( x+ 5)=2x2+ 10xx- 5 ( x- 5)( x+ 5)x2- 25,3x =3x( x- 5)= 3x2- 15x x+ 5 ( x+ 5)( x- 5)x2- 25. 5.练习:通分: (1) 12与 5 ; (2) 21与 2 1 ; (3) 12与2x.3x 12xy x + x x - x (2- x)x - 4教师指引:通分的要点是先确立最简公分母;假如分式的分母是多项式则应先将分母分解因式,再按上述的方法确立分式的最简公分母.学生板演并互批实时纠错.6.思虑:分数和分式在约分和通分的做法上有什么共同点?这些做法的依据是什么?教师让学生议论、沟通,师生共同作以小结.三、讲堂小结1.什么是分式的约分?如何进行分式的约分?什么是最简分式?2.什么是分式的通分?如何进行分式的通分?什么是最简公分母?3.本节课你还有哪些迷惑?四、部署作业教材第 133 页习题 15.1 第 6, 7 题.本节课是在学习了分式的基天性质后学的,要点是运用分式的基天性质正确的约分和通分,约分时要注意必定要约成最简分式,娴熟运用因式分解;通分时要将分式变形后再确立最简公分母.15. 2分式的运算15. 2.1分式的乘除(2课时)第 1 课时分式的乘除法1.理解并掌握分式的乘除法例.2.运用法例进行运算,能解决一些与分式相关的实质问题.要点掌握分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1. 分数的乘除法的法例是什么?2. 计算: 3 × 15 ; 3 155 12 ÷ .5 2由分数的运算法例知3 15 = 3× 15 315 3 × 2 = 3× 2× 12 5× 12 ; ÷ = 15 .5 5 2 5 5× 153. 什么是倒数? 我们在小学学习了分数的乘除法 ,关于分式如何进行计算呢?这就是我们这节要学习的内容.二、研究新知问题 1:一个水平搁置的长方体容器 ,其容积为 V ,底面的长为 a ,宽为 b 时,当容器的水占容积的 m时,水面的高度是多少?n问题 2:大拖沓机 m 天耕地 a hm 2,小拖沓机 n 天耕地 b hm 2,大拖沓机的工作效率是小拖沓机的工作效率的多少倍?问题 1 求容积的高 V m,问题 2 求大拖沓机的工作效率是小拖沓机的工作效率的 a b ·÷ 倍.ab nm n依据上边的计算 ,请同学们总结一下对分式的乘除法的法例是什么?分式的乘法法例:分式乘分式 ,用分子的积作为积的分子 ,分母的积作为积的分母. 分式的除法法例:分式除以分式 ,把除式的分子、分母颠倒地点后,与被除式相乘.a ca ·c a c a d a ·d·=; ÷ = ·=.b d b ·d b d bc b ·c 三、举例剖析例 1 计算:4x y ab 3 - 5a 2b 2(1) 3y ·2x 3; (2)2c 2÷4cd.剖析:这道例题就是直策应用分式的乘除法法例进行运算.应当注意的是运算结果应约分到最简 ,还应注意在计算时跟整式运算相同 ,先判断运算符号 ,再计算结果.解: (1)4xy = 4xy = 2 ;3y ·36x 3y 3x 22x(2) ab 3- 5a 2b 2 ab 34cd 4ab 3cd 2bd2c 2÷ = 2· 2 2=- 2 2 2=- .4cd 2c - 5a b 10a b c 5ac 例 2 计算:a 2- 4a +4 a - 1(1) a 2- 2a +1·a 2- 4;1 1(2) 49-m 2÷ m 2- 7m . 剖析:这两题是分子与分母是多项式的状况 ,第一要因式分解 ,而后运用法例.( a -2) 2 a - 1 a - 2解: (1)原式 ( a -1) 2· ( a + 2)( a - 2)= ( a -1)( a + 2) ;(2) 原式 1 1÷( 7- m )( 7+ m ) m ( m - 7)= 1 m ( m - 7) =- m7+m ) · 1 .( 7- m )( m + 7例 3 “丰产 1 号”小麦试验田边长为 a 米 (a > 1)的正方形去掉一个边长为 1 米的正方形蓄水池后余下的部分 ,“丰产 2 号”小麦的试验田是边长为 (a - 1)米的正方形 ,两块试验田的小麦都收获了 500 千克.(1) 哪一种小麦的单位面积产量高?(2) 高的单位面积产量是低的单位面积产量的多少倍?剖析:此题的实质是分式的乘除法的运用.解: (1)略.500500 500 a 2- 1 a + 1 (2) ( a -1) 2÷ a 2- 1=( a - 1) 2· 500 =a - 1.“丰产 2 号”小麦的单位面积产量是“丰产1 号”小麦的单位面积产量的a + 1倍.a - 1四、随堂练习1. 计算: (1) c 2 · a 2b 2 (2)- n 2 · 4m 2 y 2; 2m 5n 3;(3) ÷(- );ab c 7x x 2ya 2- 4 a 2- 1 (4) - 8xy ÷ ; (5)- 2 ·2 4a + 4 ;5x a -2a + 1 a +y 2- 6y + 9(6)÷(3- y).y + 2答案: (1)abc ; (2)- 2m; (3)- y; (4)- 20x 2;(5) ( a + 1)( a - 2) ;(6) 3- y 5n 14-( a - 1)( a + 2) y + 2 . 2. 教材第 137 页练习 1, 2,3 题.五、讲堂小结(1) 分式的乘除法法例; (2) 运用法例时注意符号的变化;(3) 因式分解在分式乘除法中的应用;(4) 步骤要完好 ,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也能够写成一个多项式 ,如 ( a - 1) 2 a 2- 2a + 1或 a .a六、部署作业教材第 146 页习题 15.2 第 1, 2 题.本节课从两个拥有实质背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实质需要产生的,从而激发他们学习的兴趣,接着,从分数的乘除法例的角度指引学生经过察看、研究、归纳总结出分式的乘法法例.有益于学生接受新知识,并且能表现由数到式的发展过程.第 2课时分式的乘方及乘方与乘除的混淆运算1.进一步娴熟分式的乘除法法例,会进行分式的乘、除法的混淆运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.要点分式的乘方运算,分式的乘除法、乘方混淆运算.难点分式的乘除法、乘方混淆运算,以及分式乘法、除法、乘方运算中符号确实定.一、复习引入1.分式的乘除法法例.分式的乘法法例:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母.分式的除法法例:分式除以分式,把除式的分子、分母颠倒地点后,与被除式相乘.2.乘方的意义:a n= a·a·a· ·a(n 为正整数 ).二、研究新知例 1(教材例 4) 计算2x 3 x÷·.5x- 3 25x 2- 9 5x + 3解:2x 3·x÷+ 3 5x-3 25x 2- 9 5x25x 2- 9x (先把除法一致成乘法运算 )= 2x ·3 · 5x - 3 5x+3 2x 2 =3 .( 约分到最简公式 ) 分式乘除运算的一般步骤:(1) 先把除法一致成乘法运算;(2) 分子、分母中能分解因式的多项式分解因式; (3) 确立分式的符号 ,而后约分;(4) 结果应是最简分式.1. 由整式的乘方引出分式的乘方,并由特别到一般地指引学生进行归纳.2(1)( a )2=a a= a2;bb ·b b↑↑由乘方的意义 由分式的乘法法例(2) 同理:a 3 a a aa 3( )= ··= 3;b b b b ba n a a aa · a · · an 个a n( ) = ·· ·n个== n .b b b bb · b · · bn 个 b2. 分式乘方法例:n分式: (a b )n = ab n .(n 为正整数 )文字表达:分式乘方是把分子、分母分别乘方. 3. 当前为止 ,正整数指数幂的运算法例都有什么?(1)a n · a n = a m +n ; (2)a m ÷ a n = a m -n ;(3)(a m ) n =a mn ;(4)(ab) n = a n b n ;a a n(5)( b )n= b n . 三、举例剖析 例2计算:- 2a 2b(1)( 3c )2;2a b3÷2a· (c2(3)( - x 2 y 2 )3÷ y )4;y )2· (- x (-x a 2- b 2 a - b(4) 22÷ () 2.a + ba + b22 4 2(- 2a b )=4a b 2 ;解: (1)原式= ( 3c ) 29ca 6b 3 d 3c 2a 3b 3 (2) 原式= -c 3d 9· 2a ·4a 2=- 8cd 6;46 4(3) 原式=x · (- y x =- x 5; y 2x 3)·4y(4) 原式= ( a + b )( a - b ) ( a + b ) 2 ( a + b ) 32 2· ( a - b ) 2=22 .a +b ( a - b )( a + b )学生板演、 纠错并实时总结做题方法及应注意的地方: ①关于乘、 除和乘方的混淆运算 ,应注意运算次序 ,但在做乘方运算的同时 ,可将除变乘;②做乘方运算要先确立符号.例3 计算:b3n -1c2a2n -1(1) a 2n+1·b 3n-2;x 2-2xy + y 2x - y(2)(xy - x 2) ÷ · x 2 ;xy (3)( a 2- b 2 a -b )2.ab )2÷ (a解: (1)原式= b 3n -2· b · c 2 a 2n - 1bc 2 a2n -1· a 2·b 3n -2=a 2;x ( x - y ) xy2· x - y(2) 原式=-1 ·x 2 =- y ;( x - y )( a + b )2( a - b ) 2 a 2 a 2+ 2ab +b 2 (3) 原式= a 2b 2· (a -b ) 2=b 2. 本例题是本节课运算题目的拓展,关于 (1)指数为字母 ,可是方法不变; (2)(3) 是较复杂的 乘除乘方混淆运算 ,要进一步让学生熟习运算次序,注意做题步骤.四、稳固练习教材第 139 页练习第 1, 2 题. 五、讲堂小结 1. 分式的乘方法例. 2. 运算中的注意事项. 六、部署作业教材第 146 页习题 15.2 第 3 题.分式的乘方运算这一课的教课先让学生回想从前学过的分数的乘方的运算方法用类比的方法让学生得出分式的乘方法例.在解说例题和练习时充分调换学生的踊跃性大家都参加进来 ,提升学习效率.,而后采,使15. 2.2分式的加减(2 课时)第 1 课时分式的加减理解并掌握分式的加减法例,并会运用它们进行分式的加减运算.要点运用分式的加减运算法例进行运算.难点异分母分式的加减运算.一、复习发问 1. 什么叫通分? 2. 通分的要点是什么? 3. 什么叫最简公分母?4. 通分的作用是什么? (引出新课 ) 二、研究新知1. 出示教材第 139 页问题 3 和问题 4. 教材第 140 页“思虑”.1 分式的加减法与分数的加减法近似,它们的实质相同. 察看以下分数加减运算的式子:5+2=31- 2=- 11+1= 3+2=5 1- 1= 3- 2=1,得出分式的加减法5 5,5 55, 2 3666, 2 3 6 6 6.你能将它们推行 法例吗?教师提出问题 ,让学生列出算式 ,获得分式的加减法法例. 学生议论:组内沟通 ,教师点拨. 2. 同分母的分式加减法.a b a ±b公式: ±=c .c c文字表达:同分母的分式相加减 ,分母不变 ,把分子相加减.3. 异分母的分式加减法.分式: a c ad bc ad ±bc± = ± = bd .b d bd bd文字表达:异分母的分式相加减 ,先通分 ,变为同分母的分式 ,而后再加减.三、典型例题 例 1(教材例 6) 计算:5x +3y- 2x2; (2)1 + 1(1) 2- y 2 2.xx - y2p + 3q 2p - 3q解: (1)5x + 3y - 2xx 2- y2 x 2- y 25x + 3y - 2x 3x + 3y 3 = 2 2 = 2 - y 2 = ;x - y x x -y(2) 1 + 12p +3q2p - 3q=2p - 3q +2p + 3q ( 2p + 3q )( 2p - 3q ) ( 2p + 3q )( 2p - 3q )= 2p - 3q + 2p + 3q=4p( 2p + 3q )( 2p - 3q ) 4p 2- 9q 2.小结:(1) 注意分数线有括号的作用 ,分子相加减时 ,要注意添括号.(2) 把分子相加减后 ,假如所得结果不是最简分式 ,要约分.例2 计算:m + 2n + n - 2m . n - m m - n n - m剖析: (1)分母能否相同? (2)如何把分母化为相同的?(3)注意符号问题.解:原式= m + 2n - n - 2mn - m n -m n - m= m + 2n - n - 2mn -m=n - mn - m= 1. 四、讲堂练习1. 教材第 141 页练习 1, 2 题.5232.计算: (1)-+ ;12 2(2) m 2- 9+3- m ;(3)a + 2- 4;2- aa 2-b 2 ab - b 2(4) ab -ab -ab 2.五、讲堂小结1. 同分母分式相加减 ,分母不变 ,只要将分子作加减运算 ,但注意每个分子是个整体 ,要合时添上括号.2.关于整式和分式之间的加减运算 ,则把整式当作一个整体 ,即当作是分母为 1 的分式 ,以便通分.3.异分母分式的加减运算 ,第一察看每个公式能否为最简分式 ,能约分的先约分 ,使分式简化 ,而后再通分 ,这样可使运算简化.4. 作为最后结果 ,假如是分式则应当是最简分式. 六、部署作业教材第 146 页习题 15.2 第 4, 5 题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的详细方法,经过类比的思想方法,由数的运算引出式的运算规律,表现了数学知识间详细与抽象、从特别到一般的内在联系.尔后,利用相同的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,切合学生认知的发展规律,有助于知识的层层落实与掌握.第 2 课时分式的混淆运算1.明确分式混淆运算的次序,娴熟地进行分式的混淆运算.2.能灵巧运用运算律简易运算.要点娴熟地进行分式的混淆运算.难点娴熟地进行分式的混淆运算.一、复习引入回想:我们已经学习了分式的哪些运算?1.分式的乘除运算主假如经过( )进行的,分式的加减运算主假如经过( ) 进行的.2.分数的混淆运算法例是再算 (),最后算 ( ( ) ,近似的,分式的混淆运算法例是先算 ) ,有括号的先算 ( )里面的.( ),二、研究新知1.典型例题例1计算:( x+2 + 4 ) ÷x .x-2 x2- 4x+ 4 x- 2 剖析:应先算括号里的.例 2计算:4y 24x 2yx + 2y + x - 2y - x 2- 4y2. 剖析: (1)此题应采纳逐渐通分的方法挨次进行; (2)x + 2y 能够看作 x + 2y.1 例 31 -2x 计算:1x + yx + y ·( 2x -x -y).剖析:此题可用分派律简易计算.例 4 [ 1 2-1 2] ÷( 1 - 1 ).( a + b ) ( a - b ) a +b a - b 剖析:可先把被除式利用平方差公式分解因式后再约分.例 5(教材例 7)2a 21a b计算 ()·- ÷ .b a - b b 4解: 2a1- ab( )2· b ÷b a -b 4= 4a 2 1 - a 4 b 2 · ·a -b b b4a 24a4a 2 4a ( a -b ) = b 2( a - b ) - b 2= b 2( a - b )- b 2( a - b )4a 2- 4a 2+ 4ab 4ab= b 2( a - b ) =b 2( a - b ) = 4a ab - b 2.点拨:式与数有相同的混淆运算次序:先乘方 ,再乘除 ,而后加减. 例 6(教材例 8)计算: (1)(m + 2+ 52m - 4) · ;2- m 3- mx + 2 - x - 1x -4 (2)( x 2- 2x x 2- 4x + 4) ÷ x .解: (1)(m + 2+ 5 2m - 4) ·2- m 3- m = ( m + 2)( 2- m )+ 5 2m - 42-m ·3- m= 9- m 2 2( m - 2) 2- m · 3- m= ( 3- m )( 3+ m ) - 2( 2- m ) 2- m · 3- m=- 2(m + 3);(2)( x + 2- x - 1x -4x 2 x 2) ÷ x - 2x - 4x + 4= [ x + 2 -x - 1 x ( x - 2) 2] ·x ( x - 2)x - 4=( x + 2)( x - 2)-( x -1) x ·x x ( x - 2) 2x - 4 = x 2- 4- x 2+ x( x - 2) 2( x - 4)1= ( x - 2) 2. 分式的加、减、乘、除混淆运算要注意以下几点:(1) 一般按分式的运算次序法例进行计算,但合适地使用运算律会使运算简易.(2) 要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用 ,可防止运算烦 琐.(3) 注意括号的“添”或“去”、“变大”与“变小”.(4) 结果要化为最简分式.增强练习 ,指引学生实时纠正在例题中出现的错误 ,进一步提升运算能力.三、稳固练习x 21. (1)x - 1- x - 1;(2)(1 - 2)2÷x - 1;x +1 x + 12ab2bc(3)( a -b )( a - c ) + ( a - b )( c - a );(4)( 1 + 1 ) ÷2 xy2 .x - y x + y x - y 2. 教材第 142 页第 1, 2 题. 四、讲堂小结1.分式的混淆运算法例是先算 ( ),再算 () ,最后算 (),有括号先算 ()里的.2. 一些题应用运算律、公式能简易运算. 五、部署作业1. 教材第 146 页习题 15.2 第 6 题.1 - 1 x 2- 2x + 1,此中 x = 2-1.2. 先化简再求值 x + 1 x 2- 1· x + 1分式的混淆运算是分式这一章的要点和难点,波及到因式分解和通分这两个较难的知识点,可依据学生的详细状况,合适增添例题、习题,让学生娴熟掌握分式的运算法例并提升运算能力.15. 2.3整数指数幂1.知道负整数指数幂a-n=1n.(a≠ 0, n 是正整数 ) a2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于 1 的数.要点掌握整数指数幂的运算性质 ,会有科学记数法表示绝对值小于1 的数.难点负整数指数幂的性质的理解和应用.一、复习引入1. 回想正整数指数幂的运算性质:(1) 同底数的幂的乘法: a m · a n = a m +n (m , n 是正整数 ) ;(2) 幂的乘方: (a m )n = a mn (m , n 是正整数 ); (3) 积的乘方: (ab)n = a n b n (n 是正整数 );(4) 同底数的幂的除法: a m ÷ a n =a m -n (a ≠ 0, m , n 是正整数 , m >n) ;a n a n(5) 分式的乘方: ( ) =n (n 是正整数 ).bb2. 回想 0 指数幂的规定 ,即当 a ≠ 0 时, a 0= 1. 二、研究新知3 312,再假定正整数指数幂的运算性质am÷ a n( 一)1.计算当 a ≠ 0 时, a 3÷ a 5= a5=a =aa 3· a 2 a-- -2.于是= a m n (a ≠ 0, m , n 是正整数 , m > n)中的 m > n 这个条件去掉 ,那么 a 3÷ a 5= a 3 5= a - 2 1获得 a =2(a ≠ 0).a总结:负整数指数幂的运算性质:一般的 ,我们规定:当 n 是正整数时 ,a -n= 1n (a ≠ 0).a 2. 练习稳固: 填空:(1) - 22= ________, (2)( - 2)2= ________, (3)( - 2)0= ________,(4)20= ________,-3-3 =________. (5)2 = ________, (5)( - 2) 3.例 1 (教材例 9) 计算:-2 5 b 3- 2; (1)a÷ a ; (2)( 2)a(3)(a -1 b 2 )3; (4)a - 2b 2· (a 2b - 2)-3.解: (1)a -2÷ a 5= a -2- 5=a -7= a 17;b 3-6a 4 -b -(2)( 2) 2= - 4= a 4b 6 = 6; a ab 6(3)(a -1 b2 )3= a -3b6=ba 3;- - - - - -b 8 (4)a 2b 2· (a 2b 2) 3= a 2b 2· a 6 b 6= a 8b 8= 8.a[剖析 ] 本例题是应用推行后的整数指数幂的运算性质进行计算 ,与用正整数指数幂的 运算性质进行计算相同 ,但计算结果有负指数幂时 ,要写成分式形式.4. 练习:计算: (1)(x 3y - 2)2; (2)x 2y - 2· (x -2y)3;(3)(3x 2y -2 2 - 23) ÷ (x y) . 5.例 2 判断以下等式能否正确?(1)a m÷ a n= a m·a -n; (2)(ab)n = a n b -n .[ 剖析 ] 类比负数的引入使减法转变为加法 ,获得负指数幂的引入能够使除法转变为幂的乘法这个结论 ,从而使分式的运算与整式的运算一致同来 ,而后再判断等式能否正确.( 二)1.用科学记数法表示值较小的数因为 0.1= 1 = 10 - 110 ; 0.01=________= ________;0. 001= ________=________所以 0.000 025= 2.5× 0.000 01= 2.5×10-5.我们能够利用 10 的负整数次幂 ,用科学记数法表示一些绝对值较小的数,马上它们表示成 a ×10-n 的形式 ,此中 n 是正整数 ,1≤ |a|< 10.2. 例 3(教材例 10) 纳米是特别小的长度单位 , 1 纳米= 10-9米,把 1 纳米的物体放到 乒乓球上 ,就好像把乒乓球放到地球上 .1 立方毫米的空间能够放多少个1 立方纳米的物体?(物体之间的空隙忽视不计 )[ 剖析 ]这是一个介绍纳米的应用题,是应用科学记数法表示小于 1 的数.3.用科学记数法表示以下各数:0. 00 04,- 0.034,0.000 000 45, 0.003 009.4.计算:-8 3 -3 2 -3 3.(1)(3 × 10 )× (4× 10 ); (2)(2 ×10 ) ÷(10 )三、讲堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍旧成立.2.科学记数法不单能够表示一个值大于10 的数,也能够表示一些绝对值较小的数,在应用中,要注意 a 一定知足1≤ |a|< 10,此中 n 是正整数.四、部署作业教材第 147 页习题 15.2 第 7, 8, 9 题.本节课教课的主要内容是整数指数幂学设计上,教师要点发掘学生的潜伏能力,将从前所学的相关知识进行了扩大.在本节的教,让学生在讲堂上经过察看、考证、研究等活动,加深对新知识的理解.15.3分式方程(2课时)第 1 课时分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原由,并掌握解分式方程的验根方法.要点解分式方程的基本思路和解法.难点理解解分式方程时可能无解的原由.一、复习引入问题: 一艘轮船在静水中的最大航速为 30 km/h ,它以最大航速沿江顺流航行 90 km 所用时间 ,与以最大航速逆流航行 60 km 所用的时间相等 ,江水的流速为多少?90=60[ 剖析 ] 设江水的流速为 x 千米 /时,依据题意 ,得 30+ v 30- v .①方程①有何特色?[ 归纳 ] 方程①中含有分式 ,并且分母中含有未知数 ,像这样的方程叫做分式方程. 发问:你还可以举出一个分式方程的例子吗? 辨析:判断以下各式哪个是分式方程.x + 2= 2y - z ; (3)1; (4)y=0; (5)1+ 2x = 5.(1)x + y = 5; (2) 5 3 x x + 5 x依据定义可得: (1)(2) 是整式方程 , (3) 是分式 , (4)(5) 是分式方程.二、研究新知1. 思虑:如何解分式方程呢?为认识决本问题 ,请同学们先思虑并回答以下问题:(1) 回首一下解一元一次方程时是怎么去分母的,从中可否获得一点启迪?(2) 有没有方法能够去掉分式方程的分母把它转变为整式方程呢? [ 可先松手让学生自主研究 ,合作学习并进行总结]方程①能够解答以下:方程两边同乘以 (30+ v)(30 -v),约去分母 ,得 90(30- v)= 60(30 + v). 解这个整式方程 ,得 v = 6. 所以江水的流度为 6 千米 /时.[ 归纳 ]上述解分式方程的过程 ,实质上是将方程的两边乘以同一个整式 ,约去分母 ,把分式方程转变为整式方程来解.所乘的整式往常取方程中出现的各分式的最简公分母.2. 例 1 解方程:1 = 210.②x - 5 x - 25解:方程两边同乘 (x 2- 25),约去分母 ,得 x + 5= 10.解这个整式方程 ,得 x = 5.事实上 ,当 x = 5 时,原分式方程左侧和右侧的分母 (x - 5)与 (x 2- 25)都是 0,方程中出现的两个分式都没存心义 ,所以 ,x = 5 不是分式方程的根 ,应当舍去 ,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不合适原分式方程的解 (或根 ) ,这类根往常称为增根.所以,在解分式方程时一定进行查验.3.那么,可能产生“增根”的原由在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母 ).方程①两边乘 (30+ v)(30 - v),获得整式方程,它的解 v=6.当 v= 6 时, (30+ v)(30 - v)≠ 0,这就是说,去分母时,①两边乘了同一个不为 0 的式子,所以所得整式方程的解与①的解相同.方程②两边乘(x- 5)(x + 5),获得整式方程,它的解 x= 5.当 x= 5 时,(x -5)(x + 5)= 0,这就是说,去分母时,②两边乘了同一个等于0 的式子,这时所得整式方程的解使②出现分母为 0 的现象,所以这样的解不是②的解.4.验根的方法:解分式方程进行查验的要点是看所求得的整式方程的根能否使原分式方程中的分式的分母为零.有时为了简易起见,也可将它代入所乘的整式 (即最简公分母 ),看它的值能否为零.假如为零,即为增根.如例 1 中的 x= 5,代入 x2- 25=0,可知 x= 5 是原分式方程的增根.三、举例剖析例 2(教材例 1) 解方程 2 =3.x- 3 x解:方程两边乘x(x -3) ,得 2x = 3x- 9.解得 x= 9.查验:当x= 9 时, x(x - 3)≠ 0.所以,原分式方程的解为x=9.例 3(教材例 2) 解方程x - 1= 3.x- 1 (x- 1)( x+ 2)解:方程两边乘 (x- 1)(x +2),得x(x + 2)- (x- 1)(x + 2)= 3.解得 x= 1.查验:当x= 1 时, (x-1)(x + 2)= 0,所以 x= 1 不是原分式方程的解.所以,原分式方程无解.四、讲堂小结1.分式方程:分母中含有未知数的方程.2.解分式方程的一般步骤以下:。
第15章 分式
【例 7】⑴甲乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,然 后改骑自行车,共用了 2 小时到达乙地,已知这个人骑自行车的速度是步 行速度的 4 倍,求步行的速度和骑自行车的速度。
⑵甲乙两人分别加工 1500 个零件,由于乙采用新技术,在同一时间内,乙 加工的零件数是甲加工零件数的 3 倍,因此,乙比甲少用 20 小时加工完, 问他们每小时各加工多少个零件?
② x 6 x2 5x 6
③ x2 16 x2 3x 4
④ 8x x2 8
⑤ 25 x2
x 52
2.分式的基本性质,约分,通分
①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于 0 的整
式,分式的值不变。
A B
A×M B× M
A B
M M
M
≠ 0
②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值, 这样的分式变形叫做分式的约分。分子分母中没有公因式的分式叫做最 简分式。
②分式有意义(或分式存在)的条件: 分式的分母不等于零即 B≠0 。
③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式 的分子为零。 即当 A=0 且 B≠0 时, A 0。 B
【例 1】
⑴若分式 2 有意义,则 x 的取值范围是(
)
x5
⑵分式 x2 1 的值为 0,则 x 的值为(
② xy ③ x y x y x2 y2
⑶不改变分式的值,把分式的分子和分母各项系数都化为整数:
1x2 y
①
2 1
x
3 1
y
________
34
② 0.2a 0.03b _______ 0.04a b
【例 5】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年度八年级上册单元测试
第十五章《分式》
班级:________ _姓名:_________________分数:________________
一、选择题(每小题5分,共25分)
1.若分式
25
x - 有意义,则x 的取值范围是( ) A .5x ≠ B .5x ≠- C .5x > D .5x >-
2.下列各分式中,最简分式是( ) A .()()y x y x +-73 B .n m n m +-22 C .2222ab b a b a +- D .222
22y
xy x y x +-- 3.若把分式xy
y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小一半 D .缩小4倍
4.把分式2
121--+x x 化简的正确结果为( ) A .412-x B .4
42--x C .422--x x D .422+x x
5. 某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前
4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )
A .448020480=--x x
B .204
480480=+-x x C .420480480=+-x x D .204804480=--x
x 二、填空题(每小题5分,共25分) 6.xyz
x y xy 61,4,13-的最简公分母是_____________. 7. 计算2223-•ab b a = .
8. 化简:(2x x+2 - x x-2)÷x x 2-4
的结果为 9. 在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-
131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为 .
10.已知4
32z y x ==,则=+--+z y x z y x 232__________. 三、解答题(每小题10分,共50分)
11.化简:(1)b c
c ab 310562•
(2) )
103()102(33--⨯⨯⨯
12.解方程:
(1) (2)13132=-+--x x x
1
4
1-22-=x x
13.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时搬运多少化工原料?
14.先化简,再求值:2
4)2122(+-÷+--x x x x ,其中x=-3.
15.甲、乙两个施工队共同完成某居民校区绿化改造工程,乙先单独做2天后,再由两队合作10天就能完成全部工程。
已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的54,求甲、乙两个施工队单独完成此项工程各需多少天?
四、附加题(10分) 若分式.(1
2323942的值、为常数),求、B A B A x B x A x x x --+=---。