极值点偏移问题的两种常见解法之比较

合集下载

极值点偏移的解题思路及比较

极值点偏移的解题思路及比较

用,在解答题中需要证明.
( 五) 思路五( 对称构造)
设 f( x) 的极值点为 m,构造函数 F( x) = f( x) - f( 2m -
x) 或 F( x) = f( m - x) - f( m + x) 并参照零点 x1 ( 或 x2 ) 注明 定义域,然后确定 F( x) 的符号,并依据极值点一侧的单调
( 三) 思路三: 双向型超越不等式
{ 借 助 形 如
lnx

2( x - m) x+m
+ lnx( x > m) ,( m > 0) ,
的双
lnx

2( x - m) x+m
+ lnm( 0 < x < m)
向型超越不等式化超越函数为有理函数,形成关于 x1 + x2 或 x1 x2 的有理不等式后进行证明.
ln1
=
2( x - 1) x +1

0

x

1)


证明略)
可以得到
2lnt
= x2
- x1
+
ln
2 2
- x2 - x1

x2

x1
+
2( x1 - x2 ) 4 - ( x1 + x2 )
=

x2

x1) [2 - ( 4 - ( x1 +
x1 + x2 )
x2)
] ,
∵ x2 - x1 ,4 - ( x1 + x2 ) > 0.
(* )
{lna + 2ln( 1 - x1 ) = x1 + ln( 2 - x1 ) , 两式相减, lna + 2ln( x2 - 1) = x2 + ln( 2 - x2 ) ,

导数中极值点偏移问题

导数中极值点偏移问题

极值点的“偏移”问题一、极值点“偏移”图示(左右对称,无偏移,如二次函数;若f(x1)=f(x2),则x1+x2=2x0)(左陡右缓,极值点向左偏移;若f(x1)=f(x2),则x1+x2>2x0)(左缓右陡,极值点向右偏移;若f(x1)=f(x2),则x1+x2<2x0)二、极值点偏移问题的结论不一定总是x1+x2>(<)2x0,也可能是x1x2>(<)x20.三、解题策略:对称化构造法;双变元不等式问题解法一【例1】已知函数f(x)=x e-x 如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.1.设函数f(x)=(x−2)e x+a(x−1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.2.设函数 f(x)=ln x−ax(a>0),且实数m使得方程f(x)=m有两个不等实根x1,x2,其中x1<x2.求证:(1)0<x1<1a<x2;(2)x1+x22>1a.3.设函数f(x)=ln xx,且实数m使得方程f(x)=m有两个不等实根x1,x2,其中x1<x2.求证:(1)0<x1<e<x2;(2)x1+x22>e;(3)1x1+1x2>2ⅇ.4.已知函数f(x)=e x-ax有两个不同的零点x1,x2,其极值点为x0. (1)求a的取值范围;(2)求证:x1+x2<2x0;(3)求证:x1+x2>2;(4)求证:x1x2<1.5. 设函数f(x)=e x−ax,其中a>e,(1)求证:函数f(x)有且仅有两个零点x1,x2,且0<x1<1<x2;(2)对于(1)中的x1,x2,求证:f′(x1)+f′(x2)>0.6.已知函数f(x)=x ln x-x,两相异正实数x1,x2满足f(x1)=f(x2).求证:x1+x2>2.总结:用对称化构造的方法解决极值点偏移问题分为以下三步:(1)求导,获得f(x)的单调性,极值情况,作出f(x)的图象,由f(x1)=f(x2)得x1,x2的取值范围(数形结合);(2)构造辅助函数,对结论x1+x2>(<)2x00,构造F(x)=f(x)-f(2x0-x);对结论x1x2>(<)x20,构造F(x)=f(x)-f⎝⎛⎭⎫x20x,求导,限定范围(x1或x2的范围),判定符号,获得不等式;(3)代入x1(或x2),利用f(x1)=f(x2)及f(x)的单调性证明最终结论.双变元不等式问题解法二【例2】(2020·重庆调研二)已知函数f(x)=x ln x,g(x)=12mx2+x.设F(x)=f(x)-g(x),已知F(x)在(0,+∞)上存在两个极值点x1,x2,且x1<x2,求证:x1x2>e2(其中e为自然对数的底数).1.设A(x1,y1),B(x2,y2)是函数f(x)=ax2+(1−2a)x−ln x图像 C上不同两点,M为线段AB的中点,过M作x轴的垂线交曲线C于N点.试问:曲线C在点N处的切线是否平行于直线AB?2.设函数f(x)=x2−(a−2)x−a ln x,a>0.若方程f(x)=m有两个不等实根x1,x2,求证:f′(x1+x22)>0.3.设函数f(x)=x ln x,且实数m使得方程f(x)=m有两个不等实根x1,x2,求证:x1x2<1ⅇ2.4.设函数f(x)=ln xx,且实数m使得方程f(x)=m有两个不等实根x1,x2,求证:f′(x1)+f′(x2)>0. 5.设函数f(x)=e x−ax+a有两个零点x1,x2,求证:x1x2<x1+x2.6. 已知函数f(x)=ln x和g(x)=ax,若存在两个实数x1,x2,且x1≠x2,满足f(x1)=g(x1),f(x2)=g(x2),求证:x1x2>e2.。

极值点偏移问题的两种常见解法之比较演示教学

极值点偏移问题的两种常见解法之比较演示教学

极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增 所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x-=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f ==(Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +<令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x e a e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a <11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。

极值点偏移四种解题方法

极值点偏移四种解题方法

极值点偏移四种解题方法极值点偏移是数学中一个重要的概念,它指的是极值点在函数图像上偏移的现象。

本文将介绍四种解决极值点偏移问题的解题方法。

下面是本店铺为大家精心编写的5篇《极值点偏移四种解题方法》,供大家借鉴与参考,希望对大家有所帮助。

《极值点偏移四种解题方法》篇1一、定义法定义法是解决极值点偏移问题的一种基本方法。

该方法的主要思路是利用函数的定义式,通过分析函数在某一点处的导数值,来判断该点是否为极值点。

如果函数在某一点处的导数值等于零,则该点为极值点。

如果函数在某一点处的导数值不存在,则该点也可能是极值点。

二、导数法导数法是解决极值点偏移问题的另一种基本方法。

该方法的主要思路是利用函数的导数,通过分析函数在某一点处的导数值,来判断该点是否为极值点。

如果函数在某一点处的导数值等于零,则该点为极值点。

如果函数在某一点处的导数值不存在,则该点也可能是极值点。

三、极值判定法极值判定法是解决极值点偏移问题的一种重要方法。

该方法的主要思路是利用函数的极值判定条件,通过分析函数在某一点处的极值条件,来判断该点是否为极值点。

如果函数在某一点处满足极值条件,则该点为极值点。

四、图像法图像法是解决极值点偏移问题的一种直观方法。

该方法的主要思路是通过绘制函数的图像,来判断函数的极值点是否偏移。

如果函数的图像在某一点处发生变化,则该点可能是极值点。

如果函数的图像在某一点处出现拐点,则该点可能是极值点。

综上所述,极值点偏移四种解题方法分别为定义法、导数法、极值判定法和图像法。

《极值点偏移四种解题方法》篇2极值点偏移是高中数学中常见的问题之一,通常出现在导数相关的题目中。

极值点偏移指的是,在可导函数的一个区间内,如果存在一个极值点,且该极值点左右两侧的增减速度不同,那么这个极值点可能会偏移到区间的中点,从而造成函数图像的不对称。

解决极值点偏移问题的方法有很多种,以下是四种常见的解题方法: 1. 构造函数法:该方法的本质是构造一个新的函数,使得新函数的导数与原函数的导数之间存在一定的关系。

极值点偏移的解题方法

极值点偏移的解题方法

极值点偏移的解题方法在数学中,极值点是指函数在某个点上取得最大值或最小值的点。

在解题中,我们常常需要找到函数的极值点,以便求解问题。

然而,有时候函数的极值点会发生偏移,这就给我们的解题带来了困难。

本文将介绍一些解决极值点偏移的方法。

一、极值点的定义在数学中,如果函数f(x)在点x0处取得最大值或最小值,那么x0就是函数f(x)的极值点。

极值点可以分为两种类型,一种是最大值点,另一种是最小值点。

最大值点就是函数在该点上取得了最大值,而最小值点则是函数在该点上取得了最小值。

二、极值点的求解方法在求解函数的极值点时,我们一般采用求导法。

具体步骤如下:1、对函数f(x)求导,得到f'(x)。

2、令f'(x)=0,求出x的值。

3、将x的值代入原函数f(x)中,得到y的值。

4、得到极值点(x,y)。

三、极值点偏移的原因在实际问题中,函数的极值点可能会发生偏移,这是由于函数的性质或者外界因素的影响导致的。

例如,函数的定义域发生改变、函数的参数发生变化、函数的形式发生变化等都可能导致极值点的偏移。

四、极值点偏移的解决方法1、重新求导法当函数的形式发生变化时,我们可以重新对函数求导,得到新的导函数,再按照求解极值点的方法进行求解。

这种方法适用于函数的形式发生变化的情况。

2、参数法当函数的参数发生变化时,我们可以将参数视为变量,将函数看作一个二元函数,然后对该函数进行求导,得到关于参数的导函数。

再按照求解极值点的方法进行求解。

这种方法适用于函数的参数发生变化的情况。

3、图像法当函数的形式和参数都不发生变化时,我们可以通过观察函数的图像来判断极值点的位置。

具体方法是绘制函数的图像,然后根据图像的特点来确定极值点的位置。

这种方法适用于函数的形式和参数都不发生变化的情况。

五、实例分析下面以一个实例来说明极值点偏移的解决方法。

例:求函数f(x)=x^3-3x^2的极值点。

解:对函数f(x)求导,得到f'(x)=3x^2-6x。

极值点偏移问题的两种常见解法之比较(汇编)

极值点偏移问题的两种常见解法之比较(汇编)

极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b-<-,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2l n 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(l n (2f x f a -极大值2(l n (2)4l n (2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-,因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x a x f x a x a x x+-'=-+-= 当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增所以ln 2ln ()2ln 2ln 0aa h x ea e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '<解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0xf x e ax a =-+=,222()0xf x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-0f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。

剖析极值点偏移问题的处理方法

剖析极值点偏移问题的处理方法

剖析极值点偏移问题的处理方法ʏ江苏省盐城市时杨中学 刘长柏极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图像不对称,极值点偏移问题常常出现在高考数学的压轴题中㊂这类题往往对思维要求较高,过程较为烦琐,计算量较大㊂解决极值点偏移问题,常见的有构造对称函数法和比值代换法,二者各有千秋,独具特色㊂一㊁极值点偏移的概念已知函数y =f (x )是连续函数,在区间(a ,b )内只有一个极值点x 0,f (x 1)=f (x 2),且x 0在x 1与x 2之间,由于函数在极值点左右两侧的变化速度不同,使得极值点偏向变化速度快的一侧,常常有x 0ʂx 1+x 22这种情况,称为极值点偏移㊂二㊁极值点偏移问题的处理方法1.对称构造法求极值点偏移问题例1 已知函数f (x )=a x 2+l n (x -1)㊂(1)求函数f (x )的单调区间;(2)若a >2,在x ɪ32,+ɕ内存在不等实数x 1,x 2,使得f (x 1)+f (x 2)=8a ,证明:x 1+x 2<4㊂解析:(1)函数的定义域为(1,+ɕ),并且f '(x )=2a x +1x -1=2a x 2-2a x +1x -1㊂①若a =0,f '(x )=1x -1>0,f (x )的单调递增区间为(1,+ɕ)㊂②若a ʂ0,二次函数φ(x )=2a x 2-2a x +1的对称轴是x =12,φ(0)=φ(1)=1㊂i )若a >0,φ(x )在(1,+ɕ)上大于0,从而f '(x )>0,故函数f (x )的单调递增区间是(1,+ɕ)㊂i i )若a <0,当x ɪ1,a -a 2-2a 2a时,f '(x )>0;当x ɪa -a 2-2a 2a,+ɕ时,f'(x )<0㊂此时函数f (x )的单调递增区间是1,a -a 2-2a 2a,单调递减区间是a -a 2-2a2a,+ɕ㊂(2)由对称性,不妨设x 1<x 2㊂因为f (2)=4a ,所以f (x 1)+f (x 2)=2f (2)㊂若2ɤx 1<x 2,a >0,由(1)得f (x )在(1,+ɕ)上单调递增,则f (2)<f (x 1)<f (x 2),f (x 1)+f (x 2)>2f (2),与已知条件矛盾㊂若x 1<x 2ɤ2,仿上也可推出矛盾㊂故32<x 1<2<x 2,即2<4-x 1㊂要证明x 1+x 2<4,只需证明x 2<4-x 1㊂因为a >0,f (x )在(1,+ɕ)上单调递增,所以只需证明f (x 2)<f (4-x 1)㊂又f (x 1)+f (x 2)=8a ,故只需证明8a -f (x 1)<f (4-x 1)㊂构造函数h (x )=f (4-x )+f (x )-8a ,x ɪ32,2,其中h (2)=2f (2)-8a =0㊂则h '(x )=-f '(4-x )+f'(x )=2a x +1x -1-2a (4-x )-13-x =4a (x -2)+4-2x(x -1)(3-x )=(x -2)4a -2(x -1)(3-x )㊂因32<x <2,故x -2<0,2(x -1)(3-x )<83㊂当a >2时,4a -2(x -1)(3-x )>0㊂故h '(x )<0,h (x )在32,2 上单调递减,h (x )>h (2)=0㊂82 解题篇 经典题突破方法 高二数学 2024年3月当x ɪ32,2时,f (4-x )+f (x )-8a >0,8a -f (x 1)<f (4-x 1)成立,即f (x 2)<f (4-x 1)㊂由f (x )在定义域内单调递增,得x 2<4-x 1,即x 1+x 2<4成立㊂例2已知函数f (x )=x +3x+2l n x -a (a ɪR )有两个不同的零点x 1,x 2,求证:x 1x 2>1㊂解析:由题意,假设0<x 1<1<x 2,构造函数g (x )=f (x )-f1x(x >1)㊂故g (x )=2x-2x +4l n x ,则g '(x )=-2(x -1)2x2,g (x )在(1,+ɕ)上单调递减㊂因g (1)=0,故当x 2>1时,g (x 2)<g (1)=0,即f (x 2)<f1x 2成立㊂而f (x 1)=f (x 2),故f (x 1)<f 1x 2㊂又f '(x )=(x +3)(x -1)x2,故f (x )在(0,1)上单调递减,x 1>1x 2,则x 1x 2>1㊂点评:对称变换求极值点偏移,主要用来解决与两个极值点之和㊁积相关的不等式的证明问题㊂解题的关键在于构造函数,对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x ),判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系,进一步转化为x 与2x 0-x 之间的关系,进而得到所证或所求;对结论x 1㊃x 2>x 20型问题,构造函数F (x )=f (x )-fx 2x,通过研究F (x )的单调性获得不等式证明㊂2.消参减元法求极值点偏移问题(i)比值代换法求极值点偏移问题㊂例3 已知函数f (x )=l n x -a x ,a为常数,若函数f (x )有两个零点x 1,x 2,试证明:x 1x 2>e 2㊂解析:不妨设x 1>x 2>0㊂由题意知l n x 1-a x 1=0,l n x 2-a x 2=0,即l n x 1+l n x 2=a (x 1+x 2),l n x 1-l n x 2=a (x 1-x 2)㊂则l n x 1-l n x 2x 1-x 2=a ㊂欲证明x 1x 2>e 2,即证l n x 1+l n x 2>2㊂而l n x 1+l n x 2=a (x 1+x 2),即证a >2x 1+x 2㊂原命题等价于证明l n x 1-l n x 2x 1-x 2>2x 1+x 2,即证l n x 1x 2>2(x 1-x 2)x 1+x 2㊂令t =x 1x 2,t >1㊂构造g (t )=l n t -2(t -1)t +1,t >1,则g '(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0㊂故g (t )在(1,+ɕ)上单调递增㊂又g (1)=0,故g (t )>g (1)=0,即l n t >2(t -1)t +1,也即x 1x 2>e 2㊂(i i)差值换元法求极值点偏移问题㊂例4 已知函数f (x )=x e -x (x ɪR ),若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2㊂解析:由题意,函数f (x )=x e -x(x ɪR ),可得f '(x )=(1-x )e -x ㊂当x <1时,f '(x )>0;当x >1时,f'(x )<0㊂可知函数f (x )在(-ɕ,1)上单调递增,在(1,+ɕ)上单调递减,且f (0)=0㊂因f (x 1)=f (x 2),故x 1e-x1=x 2e-x2,化简得e x 2-x1=x 2x 1㊂①不妨设x 2>x 1,可得0<x 1<1<x 2㊂令t =x 2-x 1,则t >0,x 2=t +x 1,代入①式,可得e t=t +x 1x 1,解得x 1=t e t -1㊂则x 1+x 2=2x 1+t =2te t -1+t ,故要证x 1+x 2>2,即证2te t -1+t >2㊂92解题篇 经典题突破方法 高二数学 2024年3月又e t-1>0,故等价于证明2t+(t-2)㊃(e t-1)>0㊂②构造函数G(t)=2t+(t-2)(e t-1), t>0,则G'(t)=(t-1)e t+1,Gᵡ(t)=t e t> 0㊂故G'(t)在(0,+ɕ)上单调递增, G'(t)>G'(0)=0㊂从而G(t)也在(0,+ɕ)上单调递增, G(t)>G(0)=0㊂故②式成立,也即原不等式x1+x2>2成立㊂点评:比(差)值换元的目的是消参㊁减元,是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参㊁减元的目的㊂设法用比值(一般用t表示)表示两个极值点关系,即t= x1x2,化为单变量的函数不等式,继而将所求问题转化为关于t的函数问题求解㊂变式训练1.已知函数f(x)=2a l n x-x2+2(a-1)x+a㊂若f(x)有两个不同的零点x1,x2,求a的取值范围,并证明:x1+x2>2a㊂解析:f(x)的定义域为(0,+ɕ)㊂f'(x)=2a x-2x+2(a-1)= -2(x-a)(x+1)x㊂当aɤ0时,f'(x)<0在(0,+ɕ)上恒成立,则f(x)在(0,+ɕ)上单调递减,不符合题意㊂当a>0时,在(0,a)上有f'(x)>0,在(a,+ɕ)上有f'(x)<0,所以f(x)在(0,a)上单调递增,在(a,+ɕ)上单调递减㊂f(a)>0,解得a>1,经检验满足题意㊂不妨设0<x1<a<x2,令F(x)= f(x)-f(2a-x),则F'(x)=f'(x)-f'(2a-x)(2a-x)'=f'(x)+f'(2a-x)=2a x-2x+2(a-1)+2a2a-x-2(2a-x)+2(a-1)=4(a-x)2x(2a-x)㊂当xɪ(0,a)时,F'(x)>0,F(x)在(0,a)上单调递增,故F(x)<F(a)=f(a)-f(2a-a)=0,即f(x)<f(2a-x)㊂因为0<x1<a<x2,所以f(x1)< f(2a-x1)㊂又f(x1)=f(x2),a<2a-x1<2a,故f(x2)<f(2a-x1)㊂又f(x)在(a,+ɕ)上单调递减,故x2>2a-x1,即x1+x2>2a㊂2.已知f(x)=x l n x-12m x2-x,若f(x)有两个极值点x1,x2,且x1<x2,求证: x1x2>e2(e为自然对数的底数)㊂解析:f(x)=x l n x-12m x2-x(x> 0),f'(x)=l n x-m x㊂f(x)在(0,+ɕ)上存在两个极值点x1, x2,且x1<x2,故l n x1-m x1=0,l n x2-m x2=0㊂整理得m=l n x1+l n x2x1+x2㊂并且m= l n x1-l n x2x1-x2,即l n x1+l n x2x1+x2= l n x1-l n x2x1-x2,也即l n x1+l n x2=x1+x2x1-x2㊃l n x1x2=x1x2+1l nx1x2x1x2-1㊂设t=x1x2ɪ(0,1),则l n x1+l n x2= (t+1)l n tt-1㊂要证x1x2>e2,即证l n x1+l n x2>2㊂只需证明(t+1)l n tt-1>2,即证明l n t-2(t-1)t+1<0㊂设h(t)=l n t-2(t-1)t+1,则h'(t)= 1t-4(t+1)2=(t-1)2t(t+1)2>0㊂故h(t)在(0,1)上单调递增,h(t)<h(1)=0,即h(t)=l n t-2(t-1)t+1<0㊂因此,l n x1+l n x2>2,x1x2>e2㊂(责任编辑徐利杰)0 3解题篇经典题突破方法高二数学2024年3月。

极值点偏移四种题型的解法及例题

极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。

在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。

而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。

本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。

1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。

在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。

但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。

比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。

举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。

解:求导得 $f'(x)=3x^2-6x$。

令导数为零,得到 $x=0$ 或 $x=2$。

根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。

但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。

也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。

这就是极值点偏移的思想。

2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。

当我们遇到优化问题时,常常需要求解函数的极值点。

而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。

举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。

解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。

则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。

问题转化为求 $x+y$ 的最大值。

高中数学:极值点偏移问题的解题方法

高中数学:极值点偏移问题的解题方法

⾼中数学:极值点偏移问题的解题⽅法⼀、极值点偏移的定义
⼆、对数平均定义与证明
对数平均不等式在⾼考中不能直接⽤,在解答题中需要证明
三、⾼考例题
极值点偏移问题在历年考题中反复出现,⽐如2016年全国卷、2013年湖南卷、2011年辽宁卷、
2010年天津卷等。

四、答题模板
第⼀步: 根据f(x1)=f(x1)建⽴等式
第⼆步: 如果等式含有参数,则消参; 有指数的则两边取对数,转化为对数式第三步: 通过恒等变换转化为对数平均问题,利⽤对数平均不等式求解
五、经典例题
解法⼀:齐次构造消参
解法⼆: 利⽤极值点偏移构造函数处理
解法三: 构造函数
解法四: 引⼊变量( ⼀)
解法五: 引⼊变量( ⼆)。

两招解决极值点偏移问题

两招解决极值点偏移问题

两招解决极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点.如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同.故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系:若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3.若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ;4.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明02('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f .【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.题型二利用对数平均不等式两个正数a 和b 的对数平均定义:(),(,)ln ln ().a b a b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a b L a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.只证:当a b ≠(,)2a b L a b +<<.不失一般性,可设a b >.证明如下:(I(,)L a b <……①不等式①1ln ln ln 2ln (1)a a b x x x bx ⇔-<<<-=其中构造函数1()2ln (),(1)f x x x x x =-->,则22211()1(1)f x x x x '=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1,)+∞上单调递减,故()(1)0f x f <=,从而不等式①成立;(II )再证:(,)2a b L a b +<……②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=+++其中构造函数2(1)()ln ,(1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++.因为1x >时,()0g x '>,所以函数()g x 在(1,)+∞上单调递增,故()(1)0g x g <=,从而不等式②成立;综合(I )(II )知,对,a b R +∀∈(,)2a b L a b +≤≤成立,当且仅当a b =时,等号成立.。

浅谈函数的极值点偏移问题

浅谈函数的极值点偏移问题

浅谈函数的极值点偏移问题
发布时间:2021-07-30T11:44:50.200Z 来源:《中国教师》2021年4月第10期作者:曾钰茹[导读] 极值点偏移是近几年高考压轴题中的热点题型,很多学生为之困扰。

浅谈函数的极值点偏移问题
曾钰茹
湖北宣恩县第一中学湖北宣恩 445500
极值点偏移是近几年高考压轴题中的热点题型,很多学生为之困扰,今天,我举一个例子,利用两种方法即构造对称函数和换元法浅谈一下极值点偏移的常见解题方法
一、极值点偏移问题的定义
二、典例讲解
由例1总结:构造对称函数法解决极值点偏移问题的解题步骤:
双变量问题可将双变量通过中间变量构造出两个变量之间的关系,再利用构造函数来解决
方法2:换元法
由方法2总结出换元法解决极值点偏移的解题步骤:
通过以上解决极值点偏移问题的两种方法,我们大致了解了极值点偏移问题的解题方法,当然除了以上两种方法,也还有其他解决办法,这里就不赘述了。

2022年高考压轴大题:极值点的偏移问题解题方法

2022年高考压轴大题:极值点的偏移问题解题方法

2022年高考压轴大题:极值点的偏移问题解题方法极值点偏移问题常作为压轴题出现,题型复杂多变.解决此类问题,先需理解此类问题的实质,例1 已知函数f (x )=x e -x . (1)求函数f (x )的单调区间;(2)若x 1≠x 2且f (x 1)=f (x 2),求证:x 1+x 2>2.(1)解 f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1,∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 方法一 (对称化构造法)构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ),∴当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, ∴F (x )在(1,+∞)上单调递增,∴F (x )>F (1)=0, 故当x >1时,f (x )>f (2-x ),(*)由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2, 将x 2代入(*)式可得f (x 2)>f (2-x 2), 又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增, ∴x 1>2-x 2, ∴x 1+x 2>2.方法二 (比值代换法) 设0<x 1<1<x 2,f (x 1)=f (x 2)即11ex x -=22ex x -,取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=t +1ln t t -1>2∴ln t -2t -1t +1>0,设g (t )=ln t -2t -1t +1(t >1),∴g ′(t )=1t -2t +1-2t -1t +12=t -12t t +12>0,∴当t >1时,g (t )单调递增,∴g (t )>g (1)=0,∴ln t -2t -1t +1>0,故x 1+x 2>2.例2 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.(1)解 f ′(x )=1x -a =1-ax x(x >0),∴若a ≤0,则f ′(x )>0,不符合题意;∴若a >0,令f ′(x )=0,解得x =1a.当x ∴⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∴⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e. 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)证明 因为f (1)=-a <0,所以1<x 1<1a<x 2.构造函数H (x )=f ⎝⎛⎭⎫1a +x -f ⎝⎛⎭⎫1a -x =ln ⎝⎛⎭⎫1a +x -ln ⎝⎛⎭⎫1a -x -2ax ,0<x <1a. H ′(x )=11a +x +11a-x -2a =2a 3x21-a 2x 2>0,所以H (x )在⎝⎛⎭⎫0,1a 上单调递增, 故H (x )>H (0)=0,即f ⎝⎛⎭⎫1a +x >f ⎝⎛⎭⎫1a -x .由1<x 1<1a <x 2,知2a -x 1>1a,故f (x 2)=f (x 1)=f ⎝⎛⎭⎫1a -⎝⎛⎭⎫1a -x 1<f ⎝⎛⎭⎫1a +⎝⎛⎭⎫1a -x 1=f ⎝⎛⎭⎫2a -x 1. 因为f (x )在⎝⎛⎭⎫1a ,+∞上单调递减, 所以x 2>2a -x 1,即x 1+x 2>2a.故ln x 1x 2=ln x 1+ln x 2=a (x 1+x 2)>2, 即x 1·x 2>e 2.例3已知函数f (x )=x 2-2x +1+a e x 有两个极值点x 1,x 2,且x 1<x 2. 证明:x 1+x 2>4.解析 证明:令g (x )=f ′(x )=2x -2+a e x ,则x 1,x 2是函数g (x )的两个零点. 令g (x )=0,得a =-2(x -1)e x .令h (x )=-2(x -1)e x , 则h (x 1)=h (x 2),h ′(x )=2x -4e x ,可得h (x )在区间(-∞,2)上单调递减,在区间(2,+∞)上单调递增, 所以x 1<2<x 2.令H (x )=h (2+x )-h (2-x ),则H ′(x )=h ′(2+x )-h ′(2-x )=2x (e 2-x -e 2+x )e 2+x ·e 2-x ,当0<x <2时,H ′(x )<0,H (x )单调递减,有H (x )<H (0)=0, 所以h (2+x )<h (2-x ).所以h (x 1)=h (x 2)=h (2+(x 2-2))<h (2-(x 2-2))=h (4-x 2). 因为x 1<2,4-x 2<2,h (x )在(-∞,2)上单调递减, 所以x 1>4-x 2,即x 1+x 2>4.例4已知f (x )=x ln x -12mx 2-x ,m ∈R .若f (x )有两个极值点x 1,x 2,且x 1<x 2. 求证:x 1x 2>e 2(e 为自然对数的底数).一题多解解法1思路参考:转化为证明ln x 1+ln x 2>2,根据x 1,x 2是方程f ′(x )=0的根建立等量关系. 令t =x 2x 1将ln x 1+ln x 2变形为关于t 的函数,将ln x 1+ln x 2>2转化为关于t 的不等式进行证明. 证明:欲证x 1x 2>e 2,需证ln x 1+ln x 2>2.若f (x )有两个极值点x 1,x 2,即函数f ′(x )有两个零点.又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不等实根.于是,有⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,解得m =ln x 1+ln x 2x 1+x 2. 另一方面,由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,得ln x 2-ln x 1=m (x 2-x 1), 从而得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2.于是,ln x 1+ln x 2=(ln x 2-ln x 1)(x 2+x 1)x 2-x 1=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.又0<x 1<x 2,设t =x 2x 1,则t >1. 因此,ln x 1+ln x 2=(1+t )ln tt -1,t >1. 要证ln x 1+ln x 2>2,即证(t +1)ln tt -1>2,t >1. 即当t >1时,有ln t >2(t -1)t +1. 设函数h (t )=ln t -2(t -1)t +1,t >1, 则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2≥0, 所以,h (t )为(1,+∞)上的增函数.注意到,h (1)=0,因此,h (t )>h (1)=0. 于是,当t >1时,有ln t >2(t -1)t +1. 所以ln x 1+ln x 2>2成立,即x 1x 2>e 2. 解法2思路参考:将证明x 1x 2>e 2转化为证明x 1>e 2x 2.依据x 1,x 2是方程f ′(x )=0的两个不等实根构造函数g (x )=ln x x ,结合函数g (x )的单调性,只需证明g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.证明:由x 1,x 2是方程f ′(x )=0的两个不等实根,所以mx 1=ln x 1,mx 2=ln x 2. 令g (x )=ln xx ,g (x 1)=g (x 2), 由于g ′(x )=1-ln xx 2,因此,g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 又x 1<x 2,所以0<x 1<e<x 2.令h (x )=g (x )-g ⎝⎛⎭⎫e 2x (x ∈(0,e)),h ′(x )=(1-ln x )(e 2-x 2)x 2e 2>0, 故h (x )在(0,e)上单调递增,故h (x )<h (e)=0,即g (x )<g ⎝⎛⎭⎫e 2x .令x =x 1,则g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.因为x 2,e 2x 1∈(e ,+∞),g (x )在(e ,+∞)上单调递减,所以x 2>e 2x 1,即x 1x 2>e 2. 解法3思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量k =t 1-t 2<0构建函数进行证明. 证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设k =t 1-t 2<0,则t 1=k e k e k -1,t 2=k e k -1. 欲证x 1x 2>e 2, 需证ln x 1+ln x 2>2.即只需证明t 1+t 2>2,即k (1+e k )e k -1>2⇔k (1+e k )<2(e k -1)⇔k (1+e k )-2(e k -1)<0. 设g (k )=k (1+e k )-2(e k -1)(k <0),g ′(k )=k e k -e k +1, g ″(k )=k e k <0,故g ′(k )在(-∞,0)上单调递减, 故g ′(k )>g ′(0)=0,故g (k )在(-∞,0)上单调递增, 因此g (k )<g (0)=0,命题得证. 解法4思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量t 1t 2=k ∈(0,1)构建函数进行证明.证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设t 1t 2=k ∈(0,1),则t 1=k ln k k -1,t 2=ln k k -1.欲证x 1x 2>e 2,需证ln x 1+ln x 2>2,即只需证明t 1+t 2>2,即(k +1)ln kk -1>2⇔ln k <2(k -1)k +1⇔ln k -2(k -1)k +1<0. 设g (k )=ln k -2(k -1)k +1(k ∈(0,1)),g ′(k )=(k -1)2k (k +1)2>0, 故g (k )在(0,1)上单调递增,因此g (k )<g (1)=0,命题得证.思维升华1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要熟练掌握转化与化归能力、运算求解能力、逻辑思维能力,体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.多维训练1.已知函数f (x )=e x (e x -ax +a )有两个极值点x 1,x2. (1)求a 的取值范围; (2)求证:2x 1x 2<x 1+x 2.(1)解:因为f (x )=e x (e x -ax +a ),所以f ′(x )=e x (e x -ax +a )+e x (e x -a )=e x (2e x -ax ). 令f ′(x )=0,则2e x =ax . 当a =0时,不成立; 当a ≠0时,2a =xe x .令g (x )=xe x ,所以g ′(x )=1-x e x .当x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 又因为g (1)=1e ,当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→0,因此,当0<2a <1e 时,f (x )有2个极值点,即a 的取值范围为(2e ,+∞).(2)证明:由(1)不妨设0<x 1<1<x 2,且⎩⎨⎧2e x 1=ax 1,2e x 2=ax 2,所以⎩⎪⎨⎪⎧ln 2+x 1=ln a +ln x 1,ln 2+x 2=ln a +ln x 2, 所以x 2-x 1=ln x 2-ln x 1. 要证明2x 1x 2<x 1+x 2,只要证明2x 1x 2(ln x 2-ln x 1)<x 22-x 21,即证明2ln ⎝⎛⎭⎫x 2x 1<x 2x 1-x 1x 2.设x 2x 1=t (t >1),即要证明2ln t -t +1t <0在t ∈(1,+∞)上恒成立. 记h (t )=2ln t -t +1t (t >1),h ′(t )=2t -1-1t 2=-t 2+2t -1t 2=-(t -1)2t 2<0, 所以h (t )在区间(1,+∞)上单调递减,所以h (t )<h (1)=0,即2ln t -t +1t <0,即2x 1x 2<x 1+x 2. 2.已知函数f (x )=x ln x -2ax 2+x ,a ∈R .(1)若f (x )在(0,+∞)内单调递减,求实数a 的取值范围; (2)若函数f (x )有两个极值点分别为x 1,x 2,证明x 1+x 2>12a . (1)解:f ′(x )=ln x +2-4ax . 因为f (x )在(0,+∞)内单调递减,所以 f ′(x )=ln x +2-4ax ≤0在(0,+∞)内恒成立, 即4a ≥ln x x +2x 在(0,+∞)内恒成立. 令g (x )=ln x x +2x ,则g ′(x )=-1-ln x x 2. 所以,当0<x <1e 时,g ′(x )>0,即g (x )在⎝⎛⎭⎫0,1e 内单调递增; 当x >1e 时,g ′(x )<0,即g (x )在⎝⎛⎭⎫1e ,+∞内单调递减.所以g (x )的最大值为g ⎝⎛⎭⎫1e =e , 所以实数a 的取值范围是⎣⎡⎭⎫e 4,+∞.(2)证明:若函数f (x )有两个极值点分别为x 1,x 2,则f ′(x )=ln x +2-4ax =0在(0,+∞)内有两个不等根x 1,x 2. 由(1),知0<a <e4.由⎩⎪⎨⎪⎧ln x 1+2-4ax 1=0,ln x 2+2-4ax 2=0,两式相减, 得ln x 1-ln x 2=4a (x 1-x 2). 不妨设0<x 1<x 2, 所以要证明x 1+x 2>12a ,只需证明x 1+x 24a (x 1-x 2)<12a (ln x 1-ln x 2). 即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,亦即证明2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2.令函数h (x )=2(x -1)x +1-ln x,0<x <1. 所以h ′(x )=-(x -1)2x (x +1)2<0, 即函数h (x )在(0,1)内单调递减. 所以当x ∈(0,1)时,有h (x )>h (1)=0, 所以2(x -1)x +1>ln x .即不等式2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2成立.综上,x 1+x 2>12a ,命题得证.3.已知函数f (x )=ln x -ax (a ∴R ).(1)讨论函数f (x )在(0,+∞)上的单调性; (2)证明:e x -e 2ln x >0恒成立. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x,当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增,当a >0时,令f ′(x )=0,得x =1a,∴x ∴()0,1a 时,f ′(x )>0;x ∴()1a ,+∞时,f ′(x )<0,∴f (x )在()0,1a 上单调递增,在()1a ,+∞上单调递减.(2)证明 方法一 要证e x -e 2ln x >0,即证e x -2>ln x , 令φ(x )=e x -x -1,∴φ′(x )=e x -1.令φ′(x )=0,得x =0,∴x ∴(-∞,0)时,φ′(x )<0; x ∴(0,+∞)时,φ′(x )>0,∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0,即e x -x -1≥0,即e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1(当且仅当x =0时取“=”),可得e x -2≥x -1(当且仅当x =2时取“=”),又ln x ≤x -1,即x -1≥ln x ,当且仅当x =1时取“=”,所以e x -2≥x -1≥ln x 且两等号不能同时成立,故e x -2>ln x .即证原不等式成立.方法二 令φ(x )=e x -e 2ln x ,φ(x )的定义域为(0,+∞),φ′(x )=e x -e 2x ,令h (x )=e x-e 2x,∴h ′(x )=e x+e 2x2>0,∴φ′(x )在(0,+∞)上单调递增.又φ′(1)=e -e 2<0,φ′(2)=e 2-12e 2=12e 2>0,故∴x 0∴(1,2),使φ′(x 0)=0,即0e x -e 2x 0=0,即0e x =e 2x 0,∴当x ∴(0,x 0)时,φ′(x )<0; 当x ∴(x 0,+∞)时,φ′(x 0)>0,∴φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )min =φ(x 0)=0ex -e 2ln x 0=e 2x 0-e 2ln x 0=e 2x 0-022e e ln e x =e 2x 0-e 2(2-x 0)=e 2()1x 0+x 0-2=e 2·x 0-12x 0>0,故φ(x )>0,即e x -e 2ln x >0,即证原不等式成立.4.(2018·全国∴)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.∴若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ∴若a >2,令f ′(x )=0,得 x =a -a 2-42或x =a +a 2-42.当x ∴⎝⎛⎭⎫0,a -a 2-42∴⎝⎛⎭⎫a +a 2-42,+∞时, f ′(x )<0;当x ∴⎝⎛⎭⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝⎛⎭⎫0,a -a 2-42,⎝⎛⎭⎫a +a 2-42,+∞上单调递减,在⎝⎛⎭⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f x 1-f x 2x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f x 1-f x 2x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∴(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f x 1-f x 2x 1-x 2<a -2.。

极值点偏移问题的三种解法

极值点偏移问题的三种解法

极值点偏移问题的三种解法在高考和模考中,极值点偏移问题都是一个热点问题.这类试题设问新颖多变,难度较大,综合性强,能较好考查学生的逻辑推理能力、数据处理能力、转化与化归思想、函数与方程思想等,往往作为压轴题出现.对于这类问题,学生通常会望而却步,甚至不敢解、不想解.笔者通过对极值点偏移问题的探究,总结出解决这类问题三种方法,希望可以帮助学生克服畏难心理,迎难而上.下面通过典型试题介绍这类问题的三种求解策略.一、构造法构造法是解决极值点偏移问题最基本的方法.对函数y=f(x),要考虑它在极值点x附近偏移问题,可以通过构造并判断函数F(x)=f(x0+x)-f(x-x)在x>0时的符号,确定x>0时f(x0+x)与f(x-x)的大小关系;再将x=x0-x1>0代入上式,结合f(x1)=f(x2),得到f(2x-x1)与f(x2)的大小关系;最后结合函数f(x)的单调性解决问题.例1设函数f(x)=e x-ax+a(a∈R),其图象与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f'(x1x槡2)<0.分析对问题(2),要证f'(x1x槡2)<0,只要证e x1x槡2<a,因为x1x槡2<x1+x22,所以只要证e x1+x22<a.解(1)a>e2(过程略).(2)令f'(x)=e x-a=0,可得极值点x0 =ln a,且f(x)在(-ɕ,ln a)单调减,在(ln a,+ɕ)单调增,从而x1<ln a<x2.构造F(x)=f(ln a+x)-f(ln a-x),x >0,则F'(x)=a e x+1e()x-2a≥0,F(x)在(0,+ɕ)单调增,所以F(x)>F(0)=0,即f(ln a+x)>f(ln a-x)(x>0).令x=ln a-x1>0,则f(2ln a-x1)>f(x1);又f(x1)=f(x2),所以f(2ln a-x1)>f(x2).而x2、2ln a-x1都位于x=ln a的右侧,且f(x)在(ln a,+ɕ)单调增,故x2<2ln a-x1,即ex1+x22<a,因此e x1x槡2<a,即f'(x1x槡2)<0.得证.二、利用对称性例2(2010年天津高考题)已知函数f(x)=x e-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)已知y=g(x)的图象与y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.解(1)f(x)在(-ɕ,1)内单调增,在=e t2t-e t2+e-t()2e t-1,其中e t-1>0,e t2>0.令h(t)=t-e t2+e-t2,则h'(t)=1-12e t2+e-t()2≤0,h(t)在(0,+ɕ)单调减,且h(0)=0,所以h(t)<0在(0,+ɕ)内恒成立,得f'x1+x2()2<0.得证.解决极值点偏移的方法有很多,以上三种方法各有优劣,不同题目使用三种方法的繁简程度不一样,我们应该根据题目的实际情况,择优选择.(1,+ɕ)内单调减;极大值f(1)=1e(过程略).(2)略.(3)由(1)可知,f(x)在(-ɕ,1)单调增,在(1,+ɕ)单调减,极值点为x=1,极大值f(1)=1e.不妨设0<x1<1<x2.记图1中虚线部分的解析式为g(x)=f(2-x),由(2)可知在(1,+ɕ)内f(x)>g(x)恒成立,故f(x2)>g(x2).又f(x1)=f(x2),则f(x1)>g(x2)=f(2-x2),此时x1和2-x2都在x=1的左侧,结合f(x)在(-ɕ,1)单调增,得2-x2<x1,即x 1+x2>2,即证.评注作单极值点函数位于极值点左边(或右边)的图象关于极值点所在直线x=x的对称图形,利用所得对称图形(如图1中虚线部分)完全在原图象同侧的下方(或上方).由此可以直观地发现原图象在x左右两侧的增减速度不同,这正是函数极值点发生偏移的原因.因此,对本题第(3)问,通过构作对称图形,利用第(2)问的结论,并结合f(x1)=f(x2)得到了f(x1)与f(2-x2)的大小关系,最后由单调性解决问题.三、增量法增量法是根据题设中f(x1)=f(x2)的条件列出两个方程,然后从这两个方程出发消去参数,同时将所证不等式转化为只含有x1、x 2的不等式,再通过令x2x1=t(比值增量法)或x 2-x1=t(差值增量法)的代换方法,将含二元变量x1、x2的不等式问题转化为一元变量t的不等式问题,最后构造关于t的函数,以导数为工具证明.1.构造比值增量函数例3(2011年辽宁高考题)已知函数f(x)=ln x-ax2+(2-a)x.设y=f(x)的图象与x轴交于A、B两点,线段AB的中点横坐标为x0,证明f'(x)<0.证明设A(x1,0)、B(x2,0),不妨设0<x1<x2,则x=x1+x22.由f'(x)=1x-2ax+2-a,得f'(x)=f'x1+x2()2=2x1+x2-a(x1+x2)+2-a.由点A、B在函数y=f(x)的图象上,所以ln x1-ax21+(2-a)x1=0,ln x2-ax22+(2-a)x2=0,两式相减,得ln x2-ln x1x2-x1-a(x2+x1)+(2-a)=0.将结果代入f'(x)表达式,得f'(x)=2x1+x2-ln x2-ln x1x2-x1.令x2x1=t(t>1),则f'(x)=2x1+tx1-ln ttx1-x1=1x1(t-1)2(t-1)t+1-ln[]t,其中1x1(t-1)>0.令h(t)=2(t-1)t+1-ln t(t>1),则h'(t)=-(t-1)2t(t+1)2<0,h(x)在(1,+ɕ)单调减,故h(t)<h(1)=0,即h(t)<0在(1,+ɕ)内恒成立,所以f'(x)<0.得证.2.构造差值增量函数例4已知函数f(x)=a e x(-x+b a、b∈R)有两个不同的零点x1、x2,对任意a∈(0,+ɕ),b∈R,证明:f'x1+x2()2<0.证明不妨设x1<x2.因为x1、x2是f(x)的两个不同的零点,所以a e x1-x1+b=0,a e x2-x2+b=0,两式相减,得a=x2-x1e x2-e x1.因为f'(x)=a e x-1,所以f'x1+x2()2=x2-x1e x2-e x1ex2+x12-1.令x2-x1=t>0,则f'x1+x2()2=te x1+t-e x1e2x1+t2-1。

专题23 极值点偏移问题概述(解析版)

专题23 极值点偏移问题概述(解析版)

专题23 极值点偏移问题概述一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.深层理解1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)>f '(x 0)=0.(2)极值点右偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)<f '(x 0)=0.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0; (4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0. 三、极值点偏移问题的一般解法 1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而极值点左偏得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bL a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bL a b +≤≤成立,当且仅当a b =时,等号成立.[例1] (2010天津)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.解析 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)分析法 欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 综合法 构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0,∴F (x )在(1,+∞)上为增函数,∴F (x )>F (1)=0,故当x >1时,f (x )>f (2-x ),(*) 由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2,将x 2代入(*)式可得f (x 2)>f (2-x 2),又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增,∴x 1>2-x 2,∴x 1+x 2>2. 总结提升 本题(2)证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x 1,2-x 2,其取值范围都为(0,1),若将所证不等式化为x 1>2-x 2,则x 2,2-x 1的取值范围都为(1,+∞),此时就必须利用函数h (x )在(1,+∞)上的单调性来求解.对于x 1+x 2型不等式的证明常用对称化构造法去解决,书写过程可用分析法或用综合法.方法二 (比值代换法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.总结提升 对于(2)的证明,也经常用比值代换法证明.比值代换的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2, 可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.总结提升 对于(2)的证明,也可用对数均值不等式法证明,用此法往往可秒证.但必须用前给出证明. [例2] 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.思维引导(2) 证明x 1x 2>e 2,想到把双变量x 1,x 2转化为只含有一个变量的不等式证明. 解析 (1)f ′(x )=1x -a =1-ax x (x >0),①若a ≤0,则f ′(x )>0,不符合题意;②若a >0,令f ′(x )=0,解得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e . 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)法一:对称化构造法1由x 1,x 2是方程f (x )=0的两个不同实根得a =ln x x ,令g (x )=ln xx ,g (x 1)=g (x 2),由于g ′(x )=1-ln xx 2,因此,g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,设1<x 1<e<x 2,需证明x 1x 2>e 2,只需证明x 1>e 2x 2∈(1,e),只需证明f (x 1) > f (e 2x 2), 即f (x 2)>f (e 2x 2),即f (x 2)-f (e 2x 2)>0.令h (x )=f (x )-f (e 2x )(x ∈(1,e)),h ′(x )=(1-ln x )( e 2-x 2)x 2e 2>0.故h (x )在(1,e)上单调递增,故h (x ) <h (0)=0.即f (x )<f (e 2x ),令x =x 1,则f (x 2)=f (x 1) <f (e 2x 1)因为x 2,e 2x 1∈(e ,+∞) ,f (x )在(e ,+∞)上单调递减,所以x 1>e 2x 2,即x 1x 2>e 2.对称化构造法2由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根. 令t 1=ln x 1,t 2=ln x 2.设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.g ′(x )=(1-x )e -x ,易得g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g (x )在x =1处取得极大值g (1)=1e.当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→0且g (x )>0.由g (t 1)=g (t 2),t 1≠t 2,不妨设t 1<t 2,作出函数g (x )的图象如图所示,由图知必有0<t 1<1<t 2, 令F (x )=g (1+x )-g (1-x ),x ∈(0,1],则F ′(x )=g ′(1+x )-g ′(1-x )=xe x +1(e 2x -1)>0,所以F (x )在(0,1]上单调递增,所以F (x )>F (0)=0对任意的x ∈(0,1]恒成立, 即g (1+x )>g (1-x )对任意的x ∈(0,1]恒成立.由0<t 1<1<t 2,得1-t 1∈(0,1],所以g [1+(1-t 1)]=g (2-t 1)>g [1-(1-t 1)]=g (t 1)=g (t 2), 即g (2-t 1)>g (t 2),又2-t 1∈(1,+∞),t 2∈(1,+∞),且g (x )在(1,+∞)上单调递减, 所以2-t 1<t 2,即t 1+t 2>2.总结提升 上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点: (1)求函数g (x )的极值点x 0;(2)构造函数F (x )=g (x 0+x )-g (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F (0)=0,确定g (x 0+x )与g (x 0-x )的大小关系.其口诀为:极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随. 法二:比值换元法1不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令t =x 1x 2(t >1),则不等式变为ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.总结提升 用比值换元法求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示出来,这是解决问题的基础,若只用一个极值点表示参数,如得到a =ln x 1x 1之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数a 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于x 1x 2的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a . (2)抓商构元:令t =x 1x 2,消掉变量x 1,x 2,构造关于t 的函数h (t ).(3)用导求解:利用导数求解函数h (t )的最小值,从而可证得结论. 比值换元法2由题知a =ln x 1x 1=ln x 2x 2,则ln x 2ln x 1=x 2x 1,设x 1<x 2,t =x 2x 1(t >1),则x 2=tx 1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t ,解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln tt -1.由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2,所以ln t -2(t -1)t +1>0,令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.法三:差值换元法由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t 1=ln x 1,t 2=ln x 2,设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.由g (t 1)=g (t 2),得t 11e t -=t 22e t -,化简得21e t t -=t 2t 1,①不妨设t 2>t 1,由法二知,0<t 1<1<t 2.令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1,解得t 1=s e s -1.则t 1+t 2=2t 1+s =2s e s -1+s ,故要证t 1+t 2>2,即证2s e s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0,②令G (s )=2s +(s -2)(e s -1)(s >0),则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0,从而G (s )在(0,+∞)上单调递增, 所以G (s )>G (0)=0,所以②式成立,故t 1+t 2>2.总结提升 该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1. (3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论.函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商.[例3] 已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.解析 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:构造差函数法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a <x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1, 而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值代换法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,所以g (t )在(1,+∞)上单调递减,所以当t >1时,g (t )<g (1)=0,所以f ′⎝⎛⎭⎫x 1+x 22<0.。

极值点偏移题目

极值点偏移题目

极值点偏移题目摘要:1.极值点偏移题目的概念及意义2.极值点偏移题目的类型与解题方法3.解题步骤与技巧4.实战案例分析5.总结与建议正文:一、极值点偏移题目的概念及意义极值点偏移题目是数学分析中的一类问题,主要涉及函数的极值、最值及其偏移现象。

这类题目在各类数学竞赛、高考及研究生入学考试中都有所体现,对于培养学生的分析思维和解决问题的能力具有重要意义。

二、极值点偏移题目的类型与解题方法1.类型一:已知函数的极值点,求函数在极值点附近的性质。

解题方法:首先根据已知条件,分析函数的极值点;然后利用导数、微分等工具研究函数在极值点附近的性质。

2.类型二:已知函数的极值点偏移,求函数的性质。

解题方法:先根据已知条件,求出函数的极值点;然后分析极值点偏移的原因,进一步研究函数的性质。

3.类型三:求函数在特定区间上的最值问题。

解题方法:通过求导、分析函数的单调性、判断极值点等手段,确定函数在特定区间上的最值。

三、解题步骤与技巧1.仔细阅读题目,理解题意,提取关键信息。

2.根据题目类型,选择合适的解题方法。

3.利用已知条件,求出函数的极值点或极值点偏移。

4.分析函数在极值点附近的性质,或根据极值点偏移的原因,研究函数的性质。

5.在解题过程中,注意运用数学工具,如导数、微分等。

6.总结解题思路,提高解题效率。

四、实战案例分析例题:已知函数f(x)=x^3-6x^2+9x-1,求函数在区间[-2,2]上的极值点。

解:首先求导数f"(x)=3x^2-12x+9,令f"(x)=0,解得x=1。

然后分析f(x)在区间[-2,2]上的单调性:当x<1时,f"(x)>0,f(x)单调递增;当1<x<2时,f"(x)<0,f(x)单调递减。

所以,函数f(x)在区间[-2,2]上的极大值点为x=1。

五、总结与建议极值点偏移题目是数学分析中的重要内容,掌握解题方法和技巧对于提高学生的数学素养具有积极作用。

导数压轴题之极值点偏移归纳总结

导数压轴题之极值点偏移归纳总结

极值点偏移问题一、问题指引极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: 若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏. 以函数函数2x y =为例,极值点为0,如果直线1=y 与它的图像相交,交点的横坐标为1-和1,我们简单计算:0211=+-.也就是说极值点刚好位于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.二、极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、方法详解(一)基本解法之对称化构造例1是这样一个极值点偏移问题:对于函数()e xf x x -=,已知()()12f x f x =,12x x ≠,证明122x x +>.再次审视解题过程,发现以下三个关键点: (1)1x ,2x 的范围()1201x x <<<; (2)不等式()()()21f x f x x >->;(3)将2x 代入(2)中不等式,结合()f x 的单调性获证结论. 小结:用对称化构造的方法解极佳点偏移问题大致分为以下三步:step1:求导,获得()f x 的单调性,极值情况,作出()f x 的图像,由()()12f x f x =得1x ,2x 的取值范围(数形结合);step2:构造辅助函数(对结论()1202x x x +><,构造()()()02F x f x f x x =--;对结论()2120x x x ><,构造()()20x F x f x f x ⎛⎫=- ⎪⎝⎭),求导,限定范围(1x 或2x 的范围),判定符号,获得不等式;step3:代入1x (或2x ),利用()()12f x f x =及()f x 的单调性证明最终结论. 下面给出第(3)问的不同解法【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示.由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<, 构造函数()(1)(1),(0,1]F x f x f x x =+--∈, 则21()(1)(1)(1)0x x xF x f x f x e e+'''=++-=->,所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=,也即(1)(1)f x f x +>-对(0,1]x ∈恒成立.由1201x x <<<,则11(0,1]x -∈,所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +-=->--==, 即12(2)()f x f x ->,又因为122,(1,)x x -∈+∞,且()f x 在(1,)+∞上单调递减, 所以122x x -<,即证12 2.x x +>法二:欲证122x x +>,即证212x x >-,由法一知1201x x <<<,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =,故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立. 由221()()(2)(1)0x x x H x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法三:由12()()f x f x =,得1212x xx e x e --=,化简得2121x x x ex -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221t tt e +>-,又因为10t e ->,等价于证明:2(2)(1)0t t t e +-->…②,构造函数()2(2)(1),(0)tG t t t e t =+-->,则()(1)1,()0ttG t t e G t te '''=-+=>,故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.法四:由法三中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x xx x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证 式成立,也即原不等式122x x +>成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.【类题展示】已知函数2)1()2()(-+-=x a e x x f x 有两个零点21,x x .证明:122x x +<.法二:参变分离再构造差量函数,由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211xx x e x e a x x ---==--,设()()()221xx e g x x -=-,则()()12g x g x =那么()()()2321'1xx g x e x -+=-,当1x <时,()'0g x <,()g x 递减;当1x >时,()'0g x >,()g x 递增. 设0m >,构造代数式:()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111mm h m e m -=++,0m >则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=. 因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x <<令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦,而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔->整理得:122x x +<. 法三:参变分离再构造对称函数由法二得()()()221x x e g x x -=-,构造()()(2),((,1))G x g x g x x =--∈-∞,利用单调性可证,此处略.法五:利用“对数平均”不等式参变分离得:222211)1()2()1()2(21--=--=x e x x e x a x x ,由0>a 得,2121<<<x x ,将上述等式两边取以e 为底的对数,得22221211)1()2(ln )1()2(lnx x x x x x +--=+--,化简得:21212221)]2ln()2[ln(])1ln()1[ln(x x x x x x -=-------,故2121212221)]2ln()2[ln(])1ln()1[ln(1x x x x x x x x ---------=)2()2()]2ln()2[ln()1()1(])1ln()1[ln()]1()1[(21212221222121x x x x x x x x x x ------+-------+-= 由对数平均不等式得:221222221212[ln(-1)-ln(-1)]2(1)(1)(1)(1)x x x x x x >----+-,121212[ln(2-)-ln(2-)]22222x x x x x x >----+-()()()(),从而122212122(2)21(1)(1)22x x x x x x +->+-+--+-()()1212122212122(2)[4()]2(1)(1)4()x x x x x x x x x x +--+++-=+-+--+12122212122(2)21(1)(1)4()x x x x x x x x +-+-=++-+--+等价于:12122212122(2)20(1)(1)4()x x x x x x x x +-+->+-+--+1222121221(2)[](1)(1)4()x x x x x x =+-+-+--+ 由221212(1)(1)0,4()0x x x x -+->-+>,故122x x +<,证毕.(二) 含参函数问题可考虑先消去参数【例2】已知函数()ln f x x ax =-,a 为常数,若函数()f x 有两个零点12,x x ,试证明:212.x x e ⋅>【解析】法一:消参转化成无参数问题:ln ()0ln ln x f x x ax x ae =⇔=⇔=,12,x x 是方程()0f x =的两根,也是方程ln ln x x ae =的两根,则12ln ,ln x x 是x x ae =,设1122ln ,ln u x u x ==,()xg x xe -=,则12()()g u g u =,从而2121212ln ln 22x x e x x u u >⇔+>⇔+>,此问题等价转化成为例1,下略.法二:利用参数a 作为媒介,换元后构造新函数: 不妨设12x x >,∵1122ln 0,ln 0x ax x ax -=-=,∴12121212ln ln (),ln ln ()x x a x x x x a x x +=+-=-,∴1212ln ln x x a x x -=-,欲证明212x x e >,即证12ln ln 2x x +>.∵1212ln ln ()x x a x x +=+,∴即证122a x x >+,∴原命题等价于证明121212ln ln 2x x x x x x ->-+,即证:1122122()ln x x x x x x ->+,令12,(1)x t t x =>,构造2(1)ln ,1)1(t t g t t t -=->+,此问题等价转化成为例2中思路二的解答,下略. 法三:直接换元构造新函数:12221211ln ln ln ,ln x x x x a x x x x ==⇔=设2121,,(1)x x x t t x <=>,则112111ln ln ln ,ln ln tx t x x tx t t x x +==⇔=, 反解出:1211ln ln ln ln ,ln ln ln ln ln 111t t t tx x tx t x t t t t ===+=+=---, 故212121ln ln 2ln 21t x x e x x t t +>⇔+>⇔>-,转化成法二,下同,略. 【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。

极值点偏移问题的三种常见解法

极值点偏移问题的三种常见解法

极值点偏移问题的三种常见解法极值点偏移问题的三种常见解法包括:1.梯度下降法:使用梯度下降法来找到损失函数的最小值。

2.牛顿法:使用牛顿法来找到损失函数的最小值。

3.拟牛顿法:使用拟牛顿法来找到损失函数的最小值。

4.L-BFGS:Limited-memory BFGS算法是一种拟牛顿算法,它具有高效率和稳定性。

它通过限制记忆来减小计算复杂度。

5.Adam: Adam算法是一种基于梯度下降法的优化算法,它在梯度下降法的基础上使用了动量和RMSProp算法。

6.Adagrad: Adagrad算法是一种自适应学习率的优化算法,它根据每个参数的梯度大小来调整学习率。

7.RMSProp:RMSProp算法是一种基于梯度下降法的优化算法,它通过指数加权平均来调整学习率。

8.Adadelta : Adadelta算法是一种自适应学习率的优化算法,它在Adagrad的基础上进行了改进。

9.共轭梯度法(Conjugate gradient method):是一种迭代算法,用于求解无约束优化问题的最优解。

该算法在每一步都是选择一个共轭方向来更新当前的近似解。

10.共轭牛顿法(Conjugate Newton Method):基于牛顿法的优化算法,在每一步都是选择一个共轭方向来更新当前的近似解。

它比牛顿法的收敛速度更快.11.B royden-Fletcher-Goldfarb-Shanno(BFGS) 算法: 是一种拟牛顿算法,通过逼近Hessian矩阵来更新近似解。

12.线性共轭梯度(Linear conjugate gradient):是一种特殊的共轭梯度算法,用于求解线性方程组的最优解。

这些算法均可用于求解优化问题中的极值点,每个算法都有自己的优缺点和适用范围,取决于问题的具体情况和需求来选择合适的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”.极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立ii )当0a b ≠>时,不妨设0a b >>,ln ln a b a b --,ln ln a ba b -<-,只须证:ln a b <1x =>,只须证:12ln ,1x x x x ≤->设1()2ln ,1f x x x x x =-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --②再证:ln ln 2a b a ba b -+<-要证:ln ln 2a b a ba b -+<-,只须证:1ln21a a b b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112xx x -<>+, 设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112x x -<+, 故ln ln 2a b a b a b -+<-综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]xf x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x <<由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点 综上述,0a >(Ⅱ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xex -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e -->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增 所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-, 因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------ 所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾;当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-= 当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a +>令2()()()h x f x f x a=--=21ln ln()22,0x x ax x aa ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a 内单调递增所以1()()0h x h a <=,即2()()f x f x a <-因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x--+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0x H x x x e x x x =-+-+>则22()2[(2)(1)],0x H x x x e x x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+-> 由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),x f x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln x xe a e ax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增 所以ln 2ln ()2ln 2ln 0a a h x e a e a a a a -<--+=,即()(2ln )f x f a x <- 所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0x f x e ax a =-+=,222()0x f x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x --所以1212ln(1)(1)x x x x +---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。

相关文档
最新文档