极值点偏移(2020年10月整理).pdf
01极值点偏移概念
专题01极值点便宜的概念一、极值点偏移的含义众所周知,函数()f x 满足定义域内任意自变量x 都有()(2)f x f m x =-,则函数()f x 关于直线x m =对称;可以理解为函数()f x 在对称轴两侧,函数值变化快慢相同,且若()f x 为单峰函数,则x m =必为()f x 的极值点.如二次函数()f x 的顶点就是极值点0x ,若()f x c =的两根的中点为122x x +,则刚好有1202x x x +=,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数()f x 的极值点为m ,且函数()f x 满足定义域内x m =左侧的任意自变量x 都有()(2)f x f m x >-或()(2)f x f m x <-,则函数()f x 极值点m 左右侧变化快慢不同.故单峰函数)(x f 定义域内任意不同的实数1x ,2x 满足12()()f x f x =,则122x x +与极值点m 必有确定的大小关系:若122x x m +<,则称为极值点左偏;若122x x m +>,则称为极值点右偏. 如函数()x x g x e =的极值点01x =刚好在方程()g x c =的两根中点122x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数()f x 存在两个零点1x ,2x 且12x x ≠,求证:1202x x x +>(0x 为函数()f x 的极值点); 2.若函数()f x 中存在1x ,2x 且12x x ≠满足12()()f x f x =,求证:1202x x x +>(0x 为函数()f x 的极值点);3.若函数()f x 存在两个零点1x ,2x 且12x x ≠,令1202x x x +=,求证:0()0f x '>; 4.若函数()f x 中存在1x ,2x 且12x x ≠满足12()()f x f x =,令1202x x x +=,求证:0()0f x '>.三、问题初现,形神合聚★函数2()21xf x x x ae =-++有两极值点1x ,2x ,且12x x <. 证明:124x x +>.【解析】令()()22xg x x x a f e ='=-+,则1x ,2x 是函数()g x 的两个零点. 令()0g x =,得2(1)xx a e-=-, 令2(1)()xx h x e -=-,则()()12h x h x =, 24()xx h x e -'=,可得()h x 在区间(,2)-∞单调递减,在区间(2,)+∞单调递增, 所以122x x <<,令()(2)(2)H x h x h x '=+--,则()22222()(2)(2)x x x xx e e H x h x h x e e -++--'''=+--=⋅,当02x <<时,()0H x '<,()H x 单调递减,有()(0)0H x H <=, 所以(2)(2)h x h x +<-,所以12222()()[2(2)][2(2)](4)h x h x h x h x h x ==+-<--=-, 因为12x <,242x -<,()h x 在(,2)-∞上单调递减 所以124x x >-,即124x x +>.★已知函数()ln f x x =的图象1C 与函数21()(0)2g x ax bx a =+≠的图象2C 交于P ,Q ,PQ 过的中点R 作x 轴的垂线分别交1C ,2C 于点M ,N ,问是否存在点R ,使1C 在M 处的切线与2C 在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.【分析】设()11,P x y ,()22,Q x y ,()12x x ≠,则1212,22x x y y R ++⎛⎫⎪⎝⎭, 点M ,N 的横坐标122M N x x x x +==, 1x ,2x 是函数()()()F x f x g x =-的两个零点,原问题即探究122x f x +⎛'⎫⎪⎝⎭,122x x g +⎛⎫' ⎪⎝⎭的大小关系,即121212222f x x x x x x F g +++⎛⎫⎛⎫⎛⎫''=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭'的符号,实质也是探究()F x 的极值点是否偏移中点.四、招式演练1.已知函数 f (x ) = x e −x (x ∈R) (Ⅰ)求函数 f (x )的单调区间和极值; (Ⅰ)若x ∈ (0, 1), 求证: f (2 − x ) > f (x );(Ⅰ)若x 1 ∈ (0, 1), x 2∈(1, +∞), 且 f (x 1) = f (x 2), 求证: x 1 + x 2 > 2.【答案】(1)在(,1-∞)内是增函数, 在(1,+∞)内是减函数.在1x =处取得极大值(1)f 且1(1)f e=(2)见解析(3)见解析 【解析】解:()'f x =(1﹣x )e ﹣x 令()'0f x =,则x =1当x 变化时,()'f x ,f (x )的变化情况如下表:★f (x )在(﹣∞,1)上是增函数,在(1,+∞)上是减函数 ★f (x )在x =1处取得极大值1e; (★)证明:令g (x )=f (x )﹣f (2﹣x ) 则g (x )=x e ﹣x ﹣(2﹣x )e x ﹣2 ★g '(x )=(x ﹣1)(e 2x ﹣2﹣1)e ﹣x★当01x <<时, 220x -<,从而2210x e --< 0x e ->又所以()'0g x >,从而函数()g x 在()0,1是增函数.★e ﹣x >0,★g '(x )>0,★g (x )在[1,+∞)上是增函数又★g (1)=0★0<x <1时,g (x )<g (1)=0 即当0<x <1时,f (x )<f (2﹣x ) (★) 证明:★101x << ★121x ->由(★)得:()()112f x f x <- ★()()12f x f x = ★()()212f x f x <- ★()f x 在(1,+∞)内是减函数 ★212x x >- 即122x x +> 2.已知函数f (x )=()2x 11e 2--x 2+e•f ′(12)x . (Ⅰ)求f (x )的单调区间;(Ⅰ)若存在x 1,x 2(x 1<x 2),使得f (x 1)+f (x 2)=1,求证:x 1+x 2<2.【答案】(★)在R 上单调递增;(★)见解析 【解析】(I )f ′(x )=e 2(x -1)-2x +e•f ′(12). 令x =12,则f ′(12)=1e -1+e•f ′(12),解得f ′(12)=1e.★f ′(x )=e 2(x -1)-2x +1.f ″(x )=2e 2(x -1)-2=2(e x -1+1)(e x -1-1),1x >时0,()f x f x '>()单调递增;1x <时0,()f x f x '<()单调递减, ★x =1时,函数f ′(x )取得极小值即最小值,★f ′(x )≥f ′(1)=0, ★函数f (x )在R 上单调递增. (II )由(I )可得:函数f (x )=()2x 11e 2--x 2+x 在R 上单调递增. 要证明:x 1+x 2<2★x 1<2-x 2★f (x 1)<f (2-x 2),又f (x 1)+f (x 2)=1,因此f (x 1)<f (2-x 2)★1-f (x 2)<f (2-x 2),即f (x 2)+f (2-x 2)-1>0,f (1)=1112-+=12,则x 1<1<x 2.令g (x )=f (2-x )+f (x )-1=()21x 1e2--(2-x )2+2-x +()2x 11e 2--x 2+x =()21x 1e 2-+()2x 11e 2--2x 2+4x -2,x >1,g (1)=0.g′(x )=-e 2(1-x )+e 2(x -1)-4x +4,g ″(x )=2e 2(1-x )+2e 2(x -1)-4≥0,★g′(x )在(1,+∞)上单调递增. ★g′(x )>g′(1)=0,★函数g (x )在(1,+∞)上单调递增. ★g (x )>g (1)=0,因此结论x 1+x 2<2成立. 3.已知函数()311sin cos 23x cosx sinx x f x ex a x x x -⎛⎫-⎛⎫=-+--+⎪ ⎪⎝⎭⎝⎭在()0,∞+内有两个极值点x 1,x 2(x 1<x 2),其中a 为常数. (1)求实数a 的取值范围; (2)求证:x 1+x 2>2.【答案】(1)a >1;(2)证明见解析. 【解析】(1)因为()()()1sin x f x eax x x -'=--,由题意知x 1,x 2是导函数()f x '的变号零点,令()sin x x x ϕ=-,则()1cos 0x x ϕ'=-≥,所以()x ϕ在()0,∞+上单调递增, 又()0,x ∈+∞,所以()()00ϕϕ>=x ,所以x 1,x 2是1x y eax -=-的两个零点,即12111200x x e ax e ax --⎧-=⎨-=⎩,则211112x x e e a x x --==, 又令()1x e g x x-=,则g (x 1)=g (x 2), 从而只需直线y =a 与函数g (x )1x e x-=的图象在x ★(0,+∞)上有两个交点,由()()121x x e g x x --'=可得当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>, 所以g (x )在(0,1)递减,在(1,+∞)递增, 从而()()11min g x g ==, 所以a >1.(2)证明:由(1)知,0<x 1<1<x 2,若不等式x 1+x 2>2成立,则g (x 2)>g (2﹣x 1),即g (x 1)>g (2﹣x 1), 令F (x )=g (x )﹣g (2﹣x ),x ★(0,1),则只需F (x )>0, 而()()()11112122x x x e x xe F x x e x x x x ---⎛⎫⎛⎫--'=-+ ⎪ ⎪ ⎪--⎝⎭⎝⎭,只需研究()12xh x x xe -=--的符号, 因为()()111xh x ex -'=--,()()120x h x e x -''=->,所以()()110h x h ''<=-<, 所以()()10h x h >=,则()0F x '<, 所以()()10F x F >=, 即x 1+x 2>2成立. 4.已知函数(1).求函数f (x )的单调区间及极值;(2).若x 1≠x 2满足f (x 1)=f (x 2),求证:x 1+x 2<0 【答案】(1)的增区间是,减区间是,在处取得极小值,无极大值;(2)证明过程详见解析. 【解析】 (1)★,★当时,;当时,.则()f x 的增区间是,减区间是.所以()f x 在处取得极小值,无极大值. 6分(2)★且,由(1)可知异号.不妨设,,则.令=, 8分则, 所以在上是增函数. 10分又,★,又★()f x 在上是增函数,★,即. 12分5.已知函数2()(2)(1)xf x x e a x =-+-有两个零点. (Ⅰ)求a 的取值范围;(Ⅰ)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 【答案】(★)(0,)+∞;(★)见解析 【解析】(★)'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+.(★)设0a =,则()(2)xf x x e =-,()f x 只有一个零点.(★)设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞单调递减,在(1,)+∞单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(★)设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2ea ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞单调递增.又当1x ≤时()0f x <,所以()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.(★)不妨设12x x <,由(★)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x ea x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<. 6.已知函数f (x )=e x ﹣()212ax a R ∈有两个极值点. (1)求实数a 的取值范围;(2)若函数f (x )的两个极值点分别为x 1,x 2,求证:x 1+x 2>2. 【答案】(1)(e ,+∞);(2)见解析 【解析】(1)解:f ′(x )=e x ﹣ax . ★函数f (x )=e x ()212ax a R -∈有两个极值点. ★f ′(x )=e x ﹣ax =0有两个实数根. x =0时不满足上述方程,方程化为:a xe x =,令g (x )xe x=,(x ≠0).g ′(x )()21x e x x-=,可得:x <0时,g ′(x )<0,函数g (x )单调递减;0<x <1时,g ′(x )<0,函数g (x )单调递减;x >1时,g ′(x )>0,函数g (x )单调递增. g (1)=e,得到函数草图如图所示.a >e 时,方程f ′(x )=e x ﹣ax =0有两个实数根. ★实数a 的取值范围是(e ,+∞).(2)证明:由(1)可知:a >e 时,函数f (x )有两个极值点分别为x 1,x 2,不妨设x 1<x 2.证明:1x +2x >2★2x >2﹣1x >1★212212x x e e x x -->, 由1212x x e e x x =,因此即证明:112112x x e e x x -->. 构造函数h (x )22x xe e x x-=--,0<x <1,2﹣x >1. h ′(x )()()222212(2)x x xe x e x e xx -----+=-=-(x ﹣1)222(2)x x e e x x -⎛⎫- ⎪-⎝⎭,令函数u (x )2xe x=,(0<x <2).u ′(x )()320x e x x-=<.可得函数u (x )在(0,2)内单调递减,于是函数v (x )222(2)x xe e x x -=--在(0,1)内单调递减.v (x )≥v (1)=0.★h ′(x )=(x ﹣1)2220(2)x x e e x x -⎛⎫-< ⎪-⎝⎭,h (x )在(0,1)内单调递减. ★h (x )>h (1)=0,★112112x x e e x x -->.因此1x +2x >2成立.7.已知函数()(2)x f x a x e =-,2()(1)g x x =-.(1)若曲线()y g x =的一条切线经过点(0,3)M -,求这条切线的方程. (2)若关于x 的方程()()f x g x =有两个不相等的实数根x 1,x 2。
专题20 极值点偏移问题(解析版)
专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。
极值点偏移问题(1)(2)(3)(4)(5)(6)(7)_极值点_不等式_对数_新浪网
131例题展示点评:该题的三问由易到难,层层递进,完整展现了处理极值点偏移问题的一般方法——对称化构造的全过程,直观展示如下:把握以上三个关键点,就可以轻松解决一些极值点偏移问题.拓展小结:用对称化构造的方法解决极值点偏移问题大致分为以下三步:123牛刀小试极值点偏移问题二——函数的选取(操作细节)例题展示点评点评注1注2思考:上一讲极值点偏移问题(1)中练习1应该用哪一个函数来做呢?极值点偏移问题三——变更结论(操作细节)例题展示解法一(换元法)解法二(加强命题)剧透:下一讲中我们还会给出这道题的第三种证法.能否将双变量的条件不等式化为单变量的函数不等式呢?答案是肯定的,以笔者的学习经验为线索,我们先看一个例子.引例证明发现能否一开始就做这个代换呢?这样一种比值代换在极值点偏移问题中也大有可为.下面就用这种方法再解前面举过的例子.再解例1(3):再解例3:再解练习1:再解例4:再解例5:再解例7:再解例8:行文至此,相信读者已经领略到比值代换的威力.用比值代换解极值点偏移问题方便、快捷,简单得很.只需通过一个代换就可“双元”化“单元”,变为单变量的函数不等式,可证.那是不是可以就此忘掉前面三讲的内容呢?只需比值代换,就可偏移无忧?这里,笔者必须指出,前面再解的过程中有意地略去了一些例子(不知细心的你是否发现),这就补上,请读者明察.试再解例2:试再解例6:试再解练习2:这是比值代换的败笔,又是最精彩之处.没有任何一种方法是万能的,我们不仅要熟悉它的优势,熟练它的操作,还要清醒地认识到它的缺陷,运用时要注意哪些问题,这其实是为了更好的运用.最后,我们来看比值代换另一个应用.牛刀小试极值点偏移问题五——对数平均不等式(本质回归)回顾本讲要给的对数平均不等式是对基本不等式的加细.对数平均不等式:先给出对数平均不等式的多种证法.证法1(对称化构造):证法2(比值代换):证法3(主元法):证法4(积分形式的柯西不等式):证法5(几何图示法):图1图2应用由对数平均不等式的证法1、2即可看出它与极值点偏移问题间千丝万缕的联系,下面就用对数平均不等式解前面举过的例题.再解例1:再解例2:再解例3:再解练习1:再解例4:同本节例1再解例5:同本节例1再解例7(2):再解例8:再解练习2:解练习3选项D:总 结极值点偏移问题,多与指数函数或对数函数有关,用对数平均不等式解题的关键有以下几步:细心的读者不难发现,用对数平均不等式来解极值点偏移问题的方法也有一定局限性,也不是万能的(再解过程中漏掉了例6,读者可尝试),其中能否简洁地表示出对数平均数是关键中的关键.最后再举一例.证法1证法2极值点偏移问题六——泰勒展开(本质回归)这一讲我们回到极值点偏移的直观图形上来,揭示极值点偏移问题的高等数学背景.以极小值点的偏移为例进行说明。
极值点偏移定义及判定定理
极值点偏移定义及判定定理所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数在处取得极值,且函数与直线()f x 0x x =()y f x =y b =交于,两点,则的中点为,而往往.如下图1(,)A x b 2(,)B x b AB 12(,)2x x M b +1202x x x +≠所示.极值点没有偏移一、极值点偏移判定方法1、极值点偏移的定义对于函数在区间内只有一个极值点,方程的解分别为)(x f y =),(b a 0x 0)(=x f ,且,(1)若,则称函数在区间上极21x x 、b x x a <<<210212x x x ≠+)(x f y =),(21x x 值点偏移;(2) 若,则函数在区间上极值点左偏,简0x 0212x x x >+)(x f y =),(21x x 0x 称极值点左偏; (3)若,则函数在区间上极值点右0x 0212x x x <+)(x f y =),(21x x 0x 偏,简称极值点右偏。
0x 2、极值点偏移的判定定理判定定理: 对于可导函数,在区间上只有一个极大(小)值点)(x f y =),(b a ,方程的解分别为,且,(1)若,则0x 0)(=x f 21x x 、b x x a <<<210)2('21>+x x f ,即函数在区间上极大(小)值点右(左)偏;(2)0021)(2x x x ><+)(x f y =),(21x x 0x 若,则,即函数在区间上极大(小)值点0)2('21<+x x f 021)(2x x x <>+)(x f y =),(21x x 左(右)偏。
0x二、极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f三、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证. 此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故02('21<+x x f . 【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或02('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.。
高中数学专题 微专题13 极值点偏移问题
由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,
由
g(x)
=
2x
+
1 x
-
பைடு நூலகம்
ln
x-1
得
g′(x)
=
2
-
1 x2
-
1 x
=
2x2-x-1 x2
=
2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.
极值点偏移(精品)
极值点偏移(部分)极值点偏移问题的两种常见解法之比较在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”.极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(,)2a bL a b +≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b --ln ln a ba b-<-,只须证:ln a b <1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x 在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b -<-①再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅰ)设21,x x 是)(x f 的两个零点,证明:221<+x x .(附解答)例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+- (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<(附解答)例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +<(附解答)例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数)(附解答)总结从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.讲义:极值点偏移一(纯偏型)一、学习目标1.了解极值偏移的两种类型2.掌握两种极值偏移的处理方法 二、学习过程【定义】什么是极值点偏移?我们知道二次函数f(x)的顶点就是极值点0x ,若f(x)=c 的两根的中点为221x x +,则刚好有221x x +=0x ,即极值点在两根的正中间,也就是极值点没有偏移;而函数x ex x g =)(的极值点0x =1刚好在两根的中点221x x +的左边,我们称之为极值点左偏。
最全的极值点偏移问题汇总(90页含答案)
如何教学生用算两次解题分享ppt6620102019文科高考数学分类汇编精校版word含答案67
最全的极值点偏移问题汇总( 90页含答案)
下 面 资 料 在 QQ群 706115789下 载 28.11.11的重磅福利 29.圆锥曲线十大题型总结 30.史上最全:1981-2019高中数学联赛试题汇编(word分享) 31.融入三角函数的导数综合问题探究 32.平面向量综合讲义(含答案) 33.绝世秘籍:竞赛与自主招生专题(word分享) 34.三角专题总动员(80页word) 35.平面解析几何的思维特征与研究方法(ppt) 36.初高中数学衔接——超好教材(word分享) 37.收藏:高中数学思维导图(高清4份全) 38.如何命制数学模拟试题(PPT分享) 39.重磅分享:导数的11个专题(112页word) 40.98页精品:导数压轴题型归纳总结(word分享) 41.套路化与高考全国卷数学(ppt) 42.四大攻略 重出江湖(高考数学 葵花宝典) 43.七剑下天山 终结恒成立 44.收藏:排列组合知识点、题型和结论大全 45.解三角形综合讲义 46.高考考放缩,咱就学放缩(ppt分享)
(完整word版)高中数学极值点偏移问题
(完整word版)⾼中数学极值点偏移问题极值点偏移问题沈阳市第⼗⼀中学数学组:赵拥权⼀:极值点偏移(俗称峰⾕偏)问题的定义对于可导函数y=f(x)在区间(a,b)上只有⼀个极⼤(⼩)值点x0,⽅程f(x)=0(f(x)=m)的解分别为x1,x2且a 若x1+x22≠x0,,则称函数f(x)在区间(a,b)上极值点x0偏移;(1)x1+x22>x0,则称函数f(x)在区间(a,b)上极值点x0左偏移;(2)x1+x22⼆:极值点偏移的判定定理对于可导函数y=f(x)在区间(a,b)上只有⼀个极⼤(⼩)值点x0,⽅程f(x)=0(f(x)=m)的解分别为x1,x2且a (1)若f(x1)2(2)若f(x1)2>x0即函数f(x)在区间上(a,b)极⼩值点x0左偏;(即⾕偏左)(3)若f(x1)>f(2x0?x2)则x1+x22>x0即函数f(x)在区间上(a,b)极⼤值点x0左偏;(即峰偏左)(4)若f(x1)>f(2x0?x2)则x1+x22拓展:1)若)()(x b f x a f -=+,则)(x f 的图象关于直线2ba x +=①f(x)在(0,a)递增,在(a,2a)递减,且f(a -x)<(>)f(a+x)(f(x)<(>)f(2a -x)) ②f(x)在(0,a)递减,在(a,2a)递增,且f(a -x)>(<)f(x+a)(f(x)> (<)f(2a -x))则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰⾕偏函数)其中①极⼤值左偏(或右偏)也称峰偏左(或右)②极⼩值偏左(或偏右)也称⾕偏左(或右);性质:1) )(x f 的图象关于直线a x =对称若x 1,x 2∈(0,2a)x 1≠x 2则 x 1+x 2=2a <=>f (x 1)=f(x 2),(f ′(x 1)+f ′(x 2)=0,f ′(x 1+x 22)=0);2)已知函数是满⾜条件的极⼤值左偏(峰偏左)若x 1,x 2∈(0,2a)x 1≠x 2则f (x 1)=f(x 2)则x 1+x 2>2a ,及f ′(x 1+x 22)<0极值点偏移解题步骤:①求函数f(x)的极值点x 0;②构造函数F(x)=f(x+x 0)-f(x 0?x) (F(x)=f(x 0?x )-f(x 0+x), F(x)=f(x+2x 0)-f(?x) , F(x)=f(x)-f(2x 0?x))确定F(x)单调性③结合F(0)=0(F(-x 0)=0,F(x 0)=0)判断F(x)符号从⽽确定f(x+x 0),f(x 0?x)( f(x+2x 0)与f(?x); f(x)与f(2x 0?x))的⼤⼩关系; 答题模式:已知函数y=f(x)满⾜f (x 1)=f(x 2),x 0为函数y=f(x)的极值点,求证:x 1+x 2<2x 0 ①求函数f(x)的极值点x 0;②构造函数F(x)=f(x+x 0)-f(x 0?x) 确定F(x)单调性③判断F(x)符号从⽽确定f(x+x 0),f(x 0?x) 的⼤⼩关系;假设F(x)在(0,+∞)上单调递增则F(x)>F(0)=0,从⽽得到x>0时f(x+x 0)>f(x 0?x) ④1.(2016年全国I ⾼考)已知函数有两个零点. 设x 1,x 2是的两个零点,证明:+x 2<2.2. (2010年⾼考天津卷理科21)(本⼩题满分14分)已知函数f(x)=xe -x(x ∈R ).(Ⅰ) 求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x)(Ⅲ)如果12,x x ≠且12()(),f x f x =证明122x x +> 证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)2x e-令F(x)=f(x)-g(x),即2()(2)xx F x xe x e --=+-于是22'()(1)(1)x x F x x ee --=--当x>1时,2x-2>0,从⽽2x-2e 10,0,F x e -->>⼜所以’(x)>0,从⽽函数F (x )在[1,+∞)是增函数。
专题23 极值点偏移问题概述(解析版)
专题23 极值点偏移问题概述一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.深层理解1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)>f '(x 0)=0.(2)极值点右偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)<f '(x 0)=0.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0; (4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0. 三、极值点偏移问题的一般解法 1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而极值点左偏得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bL a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bL a b +≤≤成立,当且仅当a b =时,等号成立.[例1] (2010天津)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.解析 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)分析法 欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 综合法 构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0,∴F (x )在(1,+∞)上为增函数,∴F (x )>F (1)=0,故当x >1时,f (x )>f (2-x ),(*) 由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2,将x 2代入(*)式可得f (x 2)>f (2-x 2),又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增,∴x 1>2-x 2,∴x 1+x 2>2. 总结提升 本题(2)证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x 1,2-x 2,其取值范围都为(0,1),若将所证不等式化为x 1>2-x 2,则x 2,2-x 1的取值范围都为(1,+∞),此时就必须利用函数h (x )在(1,+∞)上的单调性来求解.对于x 1+x 2型不等式的证明常用对称化构造法去解决,书写过程可用分析法或用综合法.方法二 (比值代换法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.总结提升 对于(2)的证明,也经常用比值代换法证明.比值代换的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2, 可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.总结提升 对于(2)的证明,也可用对数均值不等式法证明,用此法往往可秒证.但必须用前给出证明. [例2] 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.思维引导(2) 证明x 1x 2>e 2,想到把双变量x 1,x 2转化为只含有一个变量的不等式证明. 解析 (1)f ′(x )=1x -a =1-ax x (x >0),①若a ≤0,则f ′(x )>0,不符合题意;②若a >0,令f ′(x )=0,解得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e . 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)法一:对称化构造法1由x 1,x 2是方程f (x )=0的两个不同实根得a =ln x x ,令g (x )=ln xx ,g (x 1)=g (x 2),由于g ′(x )=1-ln xx 2,因此,g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,设1<x 1<e<x 2,需证明x 1x 2>e 2,只需证明x 1>e 2x 2∈(1,e),只需证明f (x 1) > f (e 2x 2), 即f (x 2)>f (e 2x 2),即f (x 2)-f (e 2x 2)>0.令h (x )=f (x )-f (e 2x )(x ∈(1,e)),h ′(x )=(1-ln x )( e 2-x 2)x 2e 2>0.故h (x )在(1,e)上单调递增,故h (x ) <h (0)=0.即f (x )<f (e 2x ),令x =x 1,则f (x 2)=f (x 1) <f (e 2x 1)因为x 2,e 2x 1∈(e ,+∞) ,f (x )在(e ,+∞)上单调递减,所以x 1>e 2x 2,即x 1x 2>e 2.对称化构造法2由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根. 令t 1=ln x 1,t 2=ln x 2.设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.g ′(x )=(1-x )e -x ,易得g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g (x )在x =1处取得极大值g (1)=1e.当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→0且g (x )>0.由g (t 1)=g (t 2),t 1≠t 2,不妨设t 1<t 2,作出函数g (x )的图象如图所示,由图知必有0<t 1<1<t 2, 令F (x )=g (1+x )-g (1-x ),x ∈(0,1],则F ′(x )=g ′(1+x )-g ′(1-x )=xe x +1(e 2x -1)>0,所以F (x )在(0,1]上单调递增,所以F (x )>F (0)=0对任意的x ∈(0,1]恒成立, 即g (1+x )>g (1-x )对任意的x ∈(0,1]恒成立.由0<t 1<1<t 2,得1-t 1∈(0,1],所以g [1+(1-t 1)]=g (2-t 1)>g [1-(1-t 1)]=g (t 1)=g (t 2), 即g (2-t 1)>g (t 2),又2-t 1∈(1,+∞),t 2∈(1,+∞),且g (x )在(1,+∞)上单调递减, 所以2-t 1<t 2,即t 1+t 2>2.总结提升 上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点: (1)求函数g (x )的极值点x 0;(2)构造函数F (x )=g (x 0+x )-g (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F (0)=0,确定g (x 0+x )与g (x 0-x )的大小关系.其口诀为:极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随. 法二:比值换元法1不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令t =x 1x 2(t >1),则不等式变为ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.总结提升 用比值换元法求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示出来,这是解决问题的基础,若只用一个极值点表示参数,如得到a =ln x 1x 1之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数a 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于x 1x 2的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a . (2)抓商构元:令t =x 1x 2,消掉变量x 1,x 2,构造关于t 的函数h (t ).(3)用导求解:利用导数求解函数h (t )的最小值,从而可证得结论. 比值换元法2由题知a =ln x 1x 1=ln x 2x 2,则ln x 2ln x 1=x 2x 1,设x 1<x 2,t =x 2x 1(t >1),则x 2=tx 1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t ,解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln tt -1.由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2,所以ln t -2(t -1)t +1>0,令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.法三:差值换元法由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t 1=ln x 1,t 2=ln x 2,设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.由g (t 1)=g (t 2),得t 11e t -=t 22e t -,化简得21e t t -=t 2t 1,①不妨设t 2>t 1,由法二知,0<t 1<1<t 2.令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1,解得t 1=s e s -1.则t 1+t 2=2t 1+s =2s e s -1+s ,故要证t 1+t 2>2,即证2s e s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0,②令G (s )=2s +(s -2)(e s -1)(s >0),则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0,从而G (s )在(0,+∞)上单调递增, 所以G (s )>G (0)=0,所以②式成立,故t 1+t 2>2.总结提升 该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1. (3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论.函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商.[例3] 已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.解析 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:构造差函数法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a <x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1, 而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值代换法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,所以g (t )在(1,+∞)上单调递减,所以当t >1时,g (t )<g (1)=0,所以f ′⎝⎛⎭⎫x 1+x 22<0.。
求解极值点偏移问题的两个技巧
知识导航所谓极值点偏移,是指函数f ()x 的极值点x 0与区间()x 1,x 2上的中点x 1+x22不相等.极值点偏移问题主要考查函数的图象和性质、不等式的性质、方程的根的判别式、韦达定理等.解答极值点偏移问题的关键在于,正确处理两根之间的关系,确保不等式恒成立.解答此类问题主要有两个技巧:差值代换和比值代换.下面,我们结合一道典型例题来进行探讨.例题:已知函数f ()x =xe -x,若0<x 1<x 2,且f ()x 1=f ()x 2,求证:3x 1+x 2>3.题目中出现了两个变量x 1、x 2,求解的难度较大.我们需根据已知条件建立关于x 1、x 2的关系式,灵活运用函数的图象和性质、不等式的性质、方程的根的判别式、韦达定理等进行推理、运算,由已知条件逐步向目标式靠近.我们可以运用差值代换和比值代换两个技巧来求解.一、差值代换运用差值代换技巧求解极值点偏移问题,需首先令t =x 2-x 1,消去其中的一个变量x 1或x 2,将函数转化关于变量t 的式子,通过探讨函数的单调性、极值,从而证明结论.在解答本题时,要先设t =x 2-x 1,而3x 1+x 2>3等价于3t e t -1+te te t -1>3,可构造函数g ()t =()t -3e t +3t +3,并运用导数法对其性质和图象进行深入探讨,从而证明结论成立.解:∵0<x 1<x 2,且f ()x 1=f ()x 2,∴x 1e x 1=x 2ex 2,x 2=x 1∙e x 2-x 1,令t =x 2-x 1,t =()e t -1x 1,∴x 1=t e t -1,x 2=te te t -1,∴3x 1+x 2>3等价于3t e t-1+te te t -1>3,设g ()t =()t -3e t+3t +3()t >0,∴g '()t =()t -2e t+3,令h ()t =()t -2e t +3,∴h '()t =()t -1e t,当0<t <1时,h '()t <0,h ()t 在()0,1上单调递减;当t >1时,h '()t >0,h ()t 在()1,+∞上单调递增;h ()t ≥h ()1=3-e >0,∴g '()t >0,g ()t 在()0,+∞上单调递增,g ()t >0,∴3x 1+x 2>3.二、比值代换所谓比值代换,是指通过引入变量t =x 2x 1,将极值点偏移问题转变为关于t 的函数问题来求解的技巧.在研究f ()t 时,可先对其进行求导,分析导函数与0之间的关系,进而判断出函数的单调性,求得最值,从而证明结论.对于本题,可先令t =x 2x 1,则x 1=ln tt -1、x 2=t ln t t -1,而目标式可等价于ln t -3()t -1t +3>0,构造函数g ()t =ln t -3()t -1t +3,研究其导函数,便可确定g (t )的极值和单调性,进而证明3x 1+x 2>3.解:∵0<x 1<x 2,且f ()x 1=f ()x 2,∴x 1e x 1=x 2ex 2,x 2=x 1∙e x 2-x 1,∴ln x 1ln x 2=x 1-x 2,设t =x 2x 1>1,∴x 1=ln t t -1,x 2=t ln tt -1,∴3x 1+x 2>3等价于()t +3ln t t -1>3,设g ()t =()t +3ln tt -1()t >1,∴g '()t =t +2-3t -4ln t()t -12,令h ()t =t +2-3t-4ln t ()t >1,∴h '()t =()t -1()t -3t 2,当1<t <3时,h '()t <0,h ()t 在()1,3上单调递减;当t >3时,h '()t >0,h ()t 在()3,+∞上单调递增;∵h ()3=4-4ln 3<0,h ()e 2>0,∴在()3,e 2上存在唯一零点t 0使h ()t 0=0,即ln t 0=t 20+2t 0-34t 0,当1<t <t 0时,g '()t <0,g ()t 在()1,t 0上单调递减;当t >t 0时,g '()t >0,g ()t 在()t 0,+∞上单调递增,g ()t ≥g ()t 0=14æèçöø÷t 0+9t 0+6,∵t 0>3,y =t 0+9t 0在()3,+∞上单调递增,∴g ()t 0=14æèçöø÷t 0+9t 0+6>3,∴3x 1+x 2>3.比值代换、差值代换都是求解极值点偏移问题的常用技巧,也是同学们应该学习和掌握的重要内容.通过上述分析,我们不难发现解答极值点偏移问题,需灵活运用换元、消参的技巧,将问题转化为关于t 的函数问题,然后运用导数法来求解.(作者单位:陕西省渭南经开区渭南中学)申一鸣39Copyright©博看网 . All Rights Reserved.。
导数压轴题之极值点偏移归纳总结
极值点偏移问题一、问题指引极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: 若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏. 以函数函数2x y =为例,极值点为0,如果直线1=y 与它的图像相交,交点的横坐标为1-和1,我们简单计算:0211=+-.也就是说极值点刚好位于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.二、极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、方法详解(一)基本解法之对称化构造例1是这样一个极值点偏移问题:对于函数()e xf x x -=,已知()()12f x f x =,12x x ≠,证明122x x +>.再次审视解题过程,发现以下三个关键点: (1)1x ,2x 的范围()1201x x <<<; (2)不等式()()()21f x f x x >->;(3)将2x 代入(2)中不等式,结合()f x 的单调性获证结论. 小结:用对称化构造的方法解极佳点偏移问题大致分为以下三步:step1:求导,获得()f x 的单调性,极值情况,作出()f x 的图像,由()()12f x f x =得1x ,2x 的取值范围(数形结合);step2:构造辅助函数(对结论()1202x x x +><,构造()()()02F x f x f x x =--;对结论()2120x x x ><,构造()()20x F x f x f x ⎛⎫=- ⎪⎝⎭),求导,限定范围(1x 或2x 的范围),判定符号,获得不等式;step3:代入1x (或2x ),利用()()12f x f x =及()f x 的单调性证明最终结论. 下面给出第(3)问的不同解法【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示.由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<, 构造函数()(1)(1),(0,1]F x f x f x x =+--∈, 则21()(1)(1)(1)0x x xF x f x f x e e+'''=++-=->,所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=,也即(1)(1)f x f x +>-对(0,1]x ∈恒成立.由1201x x <<<,则11(0,1]x -∈,所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +-=->--==, 即12(2)()f x f x ->,又因为122,(1,)x x -∈+∞,且()f x 在(1,)+∞上单调递减, 所以122x x -<,即证12 2.x x +>法二:欲证122x x +>,即证212x x >-,由法一知1201x x <<<,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =,故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立. 由221()()(2)(1)0x x x H x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法三:由12()()f x f x =,得1212x xx e x e --=,化简得2121x x x ex -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221t tt e +>-,又因为10t e ->,等价于证明:2(2)(1)0t t t e +-->…②,构造函数()2(2)(1),(0)tG t t t e t =+-->,则()(1)1,()0ttG t t e G t te '''=-+=>,故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.法四:由法三中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x xx x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证 式成立,也即原不等式122x x +>成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.【类题展示】已知函数2)1()2()(-+-=x a e x x f x 有两个零点21,x x .证明:122x x +<.法二:参变分离再构造差量函数,由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211xx x e x e a x x ---==--,设()()()221xx e g x x -=-,则()()12g x g x =那么()()()2321'1xx g x e x -+=-,当1x <时,()'0g x <,()g x 递减;当1x >时,()'0g x >,()g x 递增. 设0m >,构造代数式:()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111mm h m e m -=++,0m >则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=. 因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x <<令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦,而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔->整理得:122x x +<. 法三:参变分离再构造对称函数由法二得()()()221x x e g x x -=-,构造()()(2),((,1))G x g x g x x =--∈-∞,利用单调性可证,此处略.法五:利用“对数平均”不等式参变分离得:222211)1()2()1()2(21--=--=x e x x e x a x x ,由0>a 得,2121<<<x x ,将上述等式两边取以e 为底的对数,得22221211)1()2(ln )1()2(lnx x x x x x +--=+--,化简得:21212221)]2ln()2[ln(])1ln()1[ln(x x x x x x -=-------,故2121212221)]2ln()2[ln(])1ln()1[ln(1x x x x x x x x ---------=)2()2()]2ln()2[ln()1()1(])1ln()1[ln()]1()1[(21212221222121x x x x x x x x x x ------+-------+-= 由对数平均不等式得:221222221212[ln(-1)-ln(-1)]2(1)(1)(1)(1)x x x x x x >----+-,121212[ln(2-)-ln(2-)]22222x x x x x x >----+-()()()(),从而122212122(2)21(1)(1)22x x x x x x +->+-+--+-()()1212122212122(2)[4()]2(1)(1)4()x x x x x x x x x x +--+++-=+-+--+12122212122(2)21(1)(1)4()x x x x x x x x +-+-=++-+--+等价于:12122212122(2)20(1)(1)4()x x x x x x x x +-+->+-+--+1222121221(2)[](1)(1)4()x x x x x x =+-+-+--+ 由221212(1)(1)0,4()0x x x x -+->-+>,故122x x +<,证毕.(二) 含参函数问题可考虑先消去参数【例2】已知函数()ln f x x ax =-,a 为常数,若函数()f x 有两个零点12,x x ,试证明:212.x x e ⋅>【解析】法一:消参转化成无参数问题:ln ()0ln ln x f x x ax x ae =⇔=⇔=,12,x x 是方程()0f x =的两根,也是方程ln ln x x ae =的两根,则12ln ,ln x x 是x x ae =,设1122ln ,ln u x u x ==,()xg x xe -=,则12()()g u g u =,从而2121212ln ln 22x x e x x u u >⇔+>⇔+>,此问题等价转化成为例1,下略.法二:利用参数a 作为媒介,换元后构造新函数: 不妨设12x x >,∵1122ln 0,ln 0x ax x ax -=-=,∴12121212ln ln (),ln ln ()x x a x x x x a x x +=+-=-,∴1212ln ln x x a x x -=-,欲证明212x x e >,即证12ln ln 2x x +>.∵1212ln ln ()x x a x x +=+,∴即证122a x x >+,∴原命题等价于证明121212ln ln 2x x x x x x ->-+,即证:1122122()ln x x x x x x ->+,令12,(1)x t t x =>,构造2(1)ln ,1)1(t t g t t t -=->+,此问题等价转化成为例2中思路二的解答,下略. 法三:直接换元构造新函数:12221211ln ln ln ,ln x x x x a x x x x ==⇔=设2121,,(1)x x x t t x <=>,则112111ln ln ln ,ln ln tx t x x tx t t x x +==⇔=, 反解出:1211ln ln ln ln ,ln ln ln ln ln 111t t t tx x tx t x t t t t ===+=+=---, 故212121ln ln 2ln 21t x x e x x t t +>⇔+>⇔>-,转化成法二,下同,略. 【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
极值点偏移的判定方法
极值点偏移的判定方法和运用策略一、判定方法1、极值点偏移的定义对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2) 若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏; (3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。
2、极值点偏移的判定定理判定定理1 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0)2('21>+x x f ,则021)(2x x x ><+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)0若0)2('21<+x x f ,则021)(2x x x <>+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 左(右)偏。
证明:(1)因为可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又b x x a <<<21,有),(221b a x x ∈+由于0)2('21>+x x f ,故),(2021x a xx ∈+,所以021)(2x x x ><+,即函数极大(小)值点0x 右(左)偏。
简单的极值点的偏移
,证明:
x1
x2>2e2
ln 2 0.7,
2 1.4
4.
已知
f (x) ax4 4ax3 1 x2 (x x>0,a>1),
2
f (x) 有两个零点 x1, x2 ,证明: 4<x1 x2<a 4
5.
已知
f (x) a 1 ln x ,
x
f (x) 有两个零点 x1, x2 ,证明: 2<x1 x2<3ea1 1
6. 已知 f (x) xln x ,若 f x1 f x2 ,证明: x1 x2<(x1 x2)4 解:
7. 已知 f (x) ln x x2 x ,若正实数 x1, x2 满足 (f x1) f x2 x1 x2 0 ,证明: x1 x2
y 1 与它的图象相交,交点横坐标分别为 1 和1 , 我们简单计算 11 0 .也就是说,极值点刚好位于
2
两个交点的中点处,此时我们称极值点相对中点不 偏移. 当然,更多的情况是极值点相对中点偏移.
下面的图形能形象地解释这一点.
极值点左偏
极值点右偏
那么,如何判断一道题是否属于“极值点偏移”问题呢?
特征就是: ①函数 f (x) 的极值点为 x0 ;
②函数 f (x) 中存在 f x1 f x2 ;
③证明 x1 x2 2x0 或者 x1 x2 2x0 .
Baby Steps to Giant Strides
解题步骤:
构造差函数 F x f 2x0 x f x ; 研究 F x 单调性; 结合 F x0 0 ,判断 F x 的符号,从而确定 f 2x0 x 与 f (x) 的大小关系; 进一步确定 f x1 f x2 f 2x0 x 或者 f x1 f x2 f 2x0 x ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f −=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f −>或)2()(x m f x f −<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: 若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.左快右慢(极值点左偏221x x m +<⇔) 左慢右快(极值点右偏221x x m +>⇔)左快右慢(极值点左偏221x x m +<⇔) 左慢右快(极值点右偏221x x m +>⇔) 如函数x exx g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .5.()2120x x x ><三、应对极值点偏移问题的若干思路思路一: 对称化构造1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F −−+=;或)2()()(0x x f x f x F −−= (3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f −的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x −∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F −−+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F −−=的形式.(对结论()2120x x x><,构造()()20x F x f x f x ⎛⎫=− ⎪⎝⎭),(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f −的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=−=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f −>+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f −的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f −>+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f −=−−>−+==,又因为01x x <,0202x x x <−且)(x f 在),(0x −∞上单调递减,从而得到2012x x x −<,从而0212x x x <+得证.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x −∞上单调递减,故0)2('21<+x x f . 【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f −(或)(x f 与)2(0x x f −)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题. 口诀为:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。
例1.解:例2. 已知函数)()(R x xe x f x ∈=−.(1)求函数f(x)的单调区间和极值;(2)若1x ≠2x ,且f(1x )=f(2x ),证明:1x +2x >2.例3.已知函数2()ln f x x x=+, 若1x ≠2x ,且f(1x )=f(2x ),证明:1x +2x >4.证明:例4.已知函数()()()221xf x x e a x =−+−有两个零点.设12,x x 是()f x 的两个零点,证明:122x x +<.解:不妨设12x x <由题意知()()120f x f x ==.要证不等式成立,只需证当121x x <<时,原不等式成立即可.令()()()11F x f x f x =−−+,则()()'11x x F x x e e −+=−,当0x >时,()'0F x <. ()()00F x F ∴<=.即()()11f x f x −<+.令11x x =−,则()()()()()()()2111111112f x f x f x f x f x ==−−<+−=−,即()()212f x f x <−.而()21,21,x x −∈+∞,且()f x 在()1+∞,上递增,故212x x <−,即122x x +<.思路二: 、极值点偏移问题的不等式解法我们熟知平均值不等式:,a b R +∈2112a b a b +≤≤≤+即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值” 等号成立的条件是a b =.我们还可以引入另一个平均值:对数平均值:ln ln a b a b−− 那么上述平均值不等式可变为:对数平均值不等式a>0,b>0,∀>≠a b a b ln ln 2a b a b a b −+−<<以下简单给出证明:不妨设a b >>0,设a bx =,则原不等式变为:2(1)1,ln 1x x x x −∀><<+以下只要证明上述函数不等式即可1用对数均值常数若,ln ln 1212=−−x x x xln ln 2a b a b a b −+−<<221021221x x x x x x <>+),()证明:(,2. 有时用对数不等式时,既需要)()(),()(1212x f x f x f x f +−也要。
3. 含有xe 需要取对数,可用对数不等式 4. 用对数不等式时,需要先证明。
以下我们来看看对数不等式的作用.例1:(2015长春四模题)已知函数()xf x e ax =−有两个零点12x x <,则下列说法错误的是A. a e >B.122x x +>C.121x x >D.有极小值点0x,且1202x x x +<【答案】C【解析】函数()f x 导函数:'()x f x e a =−有极值点ln x a =,而极值(ln )ln 0f a a a a =−<,a e ∴>,A 正确.()f x 有两个零点:110xe ax −=,220x e ax −=,即:11ln ln x a x =+① 22ln ln x a x =+②①-②得:1212ln ln x x x x −=−根据对数平均值不等式:12121212ln ln x x x x x x +−>=>−122x x ∴+>,而1>121x x ∴< B 正确,C 错误而①+②得:12122ln ln 2ln x x a x x a+=+<,即D 成立.例2:(2010天津理)已知函数()xf x xe −=()x R ∈.如果12x x ≠,且()()12f x f x =.证明:122x x +>.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设12()()f x f x c ==,则11x x c e =,22x x c e =,12()x x ≠两边取对数 11ln ln x x c −=① 22ln ln x x c−=②①-②得:12121ln ln x x x x −=−根据对数平均值不等式12121212ln ln x x x x x x +−>=−122x x ∴+>例3:已知函数()ln f x x x =与直线y m =交于1122(,),(,)A x yB x y 两点.求证:12210x x e <<【解析】由11ln =x x m,22ln =x x m,可得:11ln m x x =①,22ln mx x =②①-②得:211212121212ln ln ()ln ln ln ln ln ln −−−−=⇒=−x x x x mx x m x x x x x x ③①+②得:211212(ln ln )ln ln m x x x x x x ++=④根据对数平均值不等式121212()2ln ln +−>≠−x x mx x x x利用③④式可得:121212(ln ln )2ln ln ln ln m x x mx x x x +−>由题于y m =与ln y x x =交于不同两点,易得出则0m < ∴上式简化为:212ln()2ln x x e −⋅<−=∴12210<<x x e例4:(2011辽宁理)已知函数()2ln (2)f x x ax a x=−+−.若函数()y f x =的图像与x 轴交于,A B 两点,线段AB 中点的横坐标为x ,证明:()0'0f x <【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设11(,())A x f x ,22(,())B x f x ,12x x <,则1202+=x x x ,2111ln (2)0x ax a x −+−=①2222ln (2)0x ax a x −+−=②①-②得:12121212ln ln ()()(2)()0x x a x x x x a x x −−+−+−−=,化简得:12121210()(2)ln ln x x a x x a x x −=>+−−−③而根据对数平均值不等式:121212ln ln 2x x x xx x −+<−③等式代换到上述不等式12012011()(2)22(2)x x x a x x a ax a +<⇒<+−−−−④根据:002(2)0ax a x −−>(由③得出)∴④式变为:200002(2)10(21)(1)0ax a x x ax −−−>⇒+−>∵0(21)0x +>,∴01x a >,∴0x 在函数单减区间中,即:0'()0f x ∴<例5:(2014江苏南通市二模)设函数()x f x e ax a=−+()a R ∈,其图象与x 轴交于()()12,0,0A x B x 两点,且12x x <.证明:f '<(()f x '为函数()f x 的导函数).【解析】根据题意:110x e ax a −+=,220x e ax a −+=移项取对数得:11ln(1)ln x x a =−+① 22ln(1)ln x x a=−+②①-②得:1212ln(1)ln(1)x x x x −=−−−,即:1212(1)(1)1ln(1)ln(1)x x x x −−−=−−−根据对数平均值不等式:1212(1)(1)1ln(1)ln(1)x x x x −−−<=−−− 1212(1)(1)1ln(1)(1)0x x x x ∴−−<⇒−−<,①+②得:12122ln ln(1)(1)2ln x x a x x a+=+−−<根据均值不等式:12ln 2x x a +<<∵函数()f x 在(,ln )a −∞单调递减∴f <练习1(天一大联考 2019—2020)21. (12 分) 设函数221)1(ln )(x x k x k x f −−+=. (I)讨论函数)(x f 的单调性;(II)设函数)(x f 的图象与直线y =m 交于),(),,(21m x B m x A 两点,且)<21x x ,求证:0<)2('21x x f +.思路三: 、齐次化构造解极值点偏移在极值点偏移问题中,证明与1212x x x x −或有关的不等式中,常常设t x x t x x =−=1212或进行齐次化构造。