极值点偏移问题题型归类,极值点偏移典型例题及详细解析

合集下载

极值点偏移的典型例题(含答案)

极值点偏移的典型例题(含答案)

极值点偏移的问题(含答案)21212()ln ,(1()1121()()3(),,f x x ax a f x x x a a f m f mf x x x x x e =-==⋅1.已知为常数)()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小;()有两个零点证明:>21212()ln (),,.f x x ax f x x x x x e =-⋅变式:已知函数,a 为常数。

(1)讨论的单调性;(2)若有两个零点,试证明:>2012120()+sin,(0,1);2()()()()(),2.xf x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围;(2)当=-2时,记取得极小值为若求证>()2121212121()ln -,()2(1=()()()(1)()1,,0,2f x x ax x a R f f xg x f x ax g x a x x f x f x x x x x =+∈-++=+≥3.已知(1)若)0,求函数的最大值;(2)令=-,求函数的单调区间;(3)若=-2,正实数满足()证明:212122(1)1(1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立;(2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x1212312()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈<⋅<5.已知常数。

()求的单调区间;()有两个零点,且;(i)指出的取值范围,并说明理由;(ii)求证:6.设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且12x x <.(1)求a 的取值范围;(2)证明:0f '<(()f x '为函数()f x 的导函数);。

专题20 极值点偏移问题(解析版)

专题20 极值点偏移问题(解析版)

专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。

高中数学极值点偏移问题(解析版)

高中数学极值点偏移问题(解析版)

极值点偏移问题【典型例题】例1.已知函数f (x )=ln x -ax ,a 是常数且a ∈R .(1)若曲线y =f (x )在x =1处的切线经过点(-1,0),求a 的值;(2)若0<a <1e(e 是自然对数的底数),试证明:①函数f (x )有两个零点,②函数f (x )的两个零点x 1,x 2满足x 1+x 2>2e .【解析】(1)解:切线的斜率k =f (1)=1-af (1)=-a ,k =f (1)-01-(-1)=-a2,即1-a =-a2,解得a =2;(2)证明:①由f (x )=1x -a =0,得x =1a,当0<x <1a 时,f (x )>0;当x >1a 时,f (x )<0,∴f (x )在x =1a 处取得最大值f 1a=-ln a -1,f (1)=-a <0,∵0<a <1e ,∴f 1a =-ln a -1>0,f (x )在区间1,1a有零点,∵f (x )在区间0,1a 单调递增,∴f (x )在区间0,1a有唯一零点.由幂函数与对数函数单调性比较及f (x )的单调性知,f (x )在区间1a,+∞ 有唯一零点,从而函数f (x )有两个零点.②不妨设0<x 1<1a <x 2,作函数F (x )=f (x )-f 2a -x ,0<x <2a,则F 1a =0,F (x )=f (x )+f 2a -x =2(1-ax )2x (2-ax )≥0.∴F (x 1)<F 1a=0,即f (x 1)-f 2a -x 1 <0,f 2a-x 1 >f (x 1),又f (x 1)=f (x 2),∴f 2a-x 1 >f (x 2).∵0<x 1<1a<x 2,∴2a -x 1,x 2∈1a,+∞ ,∵f (x )在区间1a,+∞ 单调递减,∴2a -x 1<x 2,x 1+x 2>2a.又0<a <1e ,1a >e ,∴x 1+x 2>2e .例2.已知函数f (x )=ln x -ax (a ∈R ).(1)若曲线y =f (x )与直线x -y -1-ln2=0相切,求实数a 的值;(2)若函数y =f (x )有两个零点x 1,x 2,证明1ln x 1+1ln x 2>2.【解析】解:(1)由f (x )=ln x -ax ,得f (x )=1x-a ,设切点横坐标为x 0,依题意得1x 0-a =1x 0-1-ln2=ln x 0-ax 0,解得x 0=12a =1,即实数a 的值为1.(2)不妨设0<x 1<x 2,由ln x 1-ax 1=0ln x 2-ax 2=0,得ln x 2-ln x 1=a (x 2-x 1),即1a =x 2-x 1ln x 2-ln x 1,所以1ln x 2+1ln x 1-2=1ax 1+1ax 2-2=x 2-x 1ln x 2-ln x 11x 1+1x 2-2=x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1,令t =x 2x 1>1,则ln x 2x 1>0,x 2x 1-x 1x 2-2ln x 2x 1=t -1t-2ln t ,设g (t )=t -1t -2ln t ,则g(t )=t 2-2t +1t 2>0,即函数g (t )在(1,+∞)上递减,所以g (t )>g (1)=0,从而x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1>0,即1ln x 2+1ln x 1>2.例3.已知函数f (x )=x -e 2 (a -ln x )且f (e )=e4(其中e 为自然对数的底数).(Ⅰ)求函数f (x )的解析式;(Ⅱ)判断f (x )的单调性;(Ⅲ)若f (x )=k 有两个不相等实根x 1,x 2,证明:x 1+x 2>2e .【解析】解:(Ⅰ)f (e )=e 2a -12 =e 4,解得a =1,所以函数解析式为f (x )=x -e2(1-ln x );(Ⅱ)函数f (x )的定义域为(0,+∞),f (x )=1-ln x +x -e 2-1x =e2x-ln x ,设g(x)=e2x-ln x,g (x)=-e2x2-1x,在(0,+∞)上,g(x)<0恒成立,所以g(x)在(0,+∞)上单调递减,即f (x)在(0,+∞)上单调递减,又f (e)=0,则在(0,e)上f (x)>0,在(e,+∞)上f (x)<0.所以函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减;(Ⅲ)证明:构造函数F(x)=F(x)-f(2e-x),x∈(0,e),F (x)=f (x)+f (2e-x)=e2x-ln x+e2⋅12e-x-ln(2e-x)=ex(2e-x)-ln[x(2e-x)],设t=x(2e-x),当x∈(0,e)时,t∈(0,e),设h(t)=et-ln t,且h (t)=-et2-1t<0,可知h(t)在(0,e)上单调递减,且h(e)=0,所以h(t)>0在t∈(0,e)上恒成立,即F (x)>0在x∈(0,e)上恒成立,所以y=F(x)在(0,e)上单调递增,不妨设x1<x2,由(Ⅱ)知x1<e<x2F(x1)=f(x1)-f(2e-x1)<F(e)=f(e)-f(2e-e) =0,即f(x1)<f(2e-x1),因为f(x1)=f(x2),所以f(x2)<f(2e-x1),由(Ⅱ)知f(x)在(e,+∞)上单调递减,得x2>2e-x1,所以x1+x2>2e.例4.已知函数f(x)=e2x-a(x-1).(1)讨论函数f(x)的单调性;(2)若a>0,设f′(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,求证:f′x1+x22<0.【解析】(1)解:f′(x)=2e2x-a,当a≤0时,f′(x)>0,函数f(x)在R上单调递增;当a>0时,令f′(x)>0,得x>12ln a2,令f′(x)<0,得x<12ln a2,所以f(x)在-∞,12ln a2上单调递减,在12ln a2,+∞上单调递增.(2)证明:由题意得e2x1-a(x1-1)=0e2x2-a(x2-1)=0,两式相减得a=e2x2-e2x1x2-x1,不妨设x1<x2,由f′(x)=2e2x-a,得f′x1+x22=2e x1+x2-e2x2-e2x1x2-x1=e x1+x2x2-x1[2(x2-x1)+e x1-x2-e x2-x1],令t=x2-x1,h(t)=2t-e t+e-t,因为当t>0时,h′(t)=2-e t-e-t=2-(e t+e-t)<0,所以h(t)在(0,+∞)上单调递减,所以当t>0时,h(t)<h(0)=0,又e x1+x2x2-x1>0,故f′x1+x22<0.例5.已知函数f(x)=12x2-(a+1)x+2(a-1)ln x,g(x)=-32x2+x+(4-2a)ln x.(1)若a>1,讨论函数f(x)的单调性;(2)是否存在实数a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,若存在,求出a的范围,若不存在,请说明理由;(3)记h(x)=f(x)+g(x),如果x1,x2是函数h(x)的两个零点,且x1<x2<4x1,h′(x)是h(x)的导函数,证明:h2x1+x23>0.【解析】解:(1)f(x)的定义域为(0,+∞),f (x)=x-(a+1)+2(a-1)1x =x2-(a+1)x+2(a-1)x=(x-2)[x-(a-1)]x,①若a-1=2,则a=3,f (x)=(x-2)2x>0,f(x)在(0,+∞)上单调递增;②若a-1<2,则a<3,而a>1,∴1<a<3,当x∈(a-1,2)时,f′(x)<0;当x∈(0,a-1)及(2,+∞)时f′(x)>0,所以f(x)在(a-1,2)上单调递减,在(0,a-1)及(2,+∞)单调递增;③若a-1>2,则a>3,同理可得f(x)在(2,a-1)上单调递减,在(0,2)及(a-1,+∞)单调递增.(2)假设存在a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,不妨设0<x1<x2,只要f(x2)-f(x1)x2-x1+a>0,即f(x2)+ax2>f(x1)+ax1,令g(x)=f(x)+ax,只要g(x)在(0,+∞)上为增函数,g(x)=12x2-x+2(a-1)ln xg (x)=x-1+2(a-1)x=x2-x+2(a-1)x=x-122+2a-94x,只要g′(x)≥0在(0,+∞)恒成立,只要2a-94≥0,a≥98,故存在a∈98,+∞时,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立.(3)证明:由题意知,h(x)=12x2-(a+1)x+2(a-1)ln x+-32x2+x+(4-2a)ln x=2ln x-x2-ax,h(x1)=2ln x1-x21-ax1=0,h(x2)=2ln x2-x22-ax2=0两式相减,整理得2ln x2x1+(x1-x2)(x1+x2)=a(x2-x1),所以a=2ln x2x1x2-x1-(x2+x1),又因为h (x)=2x-2x-a,所以h2x1+x23=62x1+x2-23(2x1+x2)-a=-2x2-x1lnx2x1-3x2x1-32+x2x1-13(x1-x2),令t=x2x1∈(1,4),φ(t)=ln t-3t-3t+2,则φ(t)=(t-1)(t-4)t(t+2)2<0,所以φ(t)在(1,4)上单调递减,故φ(t)<φ(1)=0,又-2x2-x1<0,-13(x1-x2)>0,所以h2x1+x23>0.例6.设函数f(x)=x2-a ln x,g(x)=(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2.(ⅰ)求满足条件的最小正整数a的值;(ⅱ)求证:F′x1+x22>0.【解析】解:(Ⅰ)f (x)=2x-ax=2x2-ax(x>0).⋯(1分)当a≤0时,f (x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.⋯(2分)当a>0时,由f (x)>0,得x>2a2,f(x)<0,得0<x<2a2,所以函数f(x)的单调增区间为2a2,+∞,单调减区间为0,2a2.⋯(3分)(Ⅱ)(i)F (x)=2x-(a-2)-ax =2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).因为函数F(x)有两个零点,所以a>0,此时函数f(x)在a2,+∞单调递增,在0,a 2单调递减.⋯(4分)所以F(x)的最小值Fa2<0,即-a2+4a-4a ln a2<0.⋯(5分)因为a>0,所以a+4ln a2-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln8116-1>0,所以存在a0∈(2,3),h(a0)=0.⋯(6分)当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.⋯(7分)又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.⋯(8分)(ii)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,即x21-(a-2)x1-a ln x1-x22+(a-2)x2+a ln x2=0,x21+2x1-x22-2x2=ax1+a ln x1-ax2-a ln x2=a(x1 +ln x1-x2-ln x2).所以a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.⋯(10分)因为Fa2=0,当x∈0,a2时,F (x)<0,当x∈a2,+∞时,F (x)>0,故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2,⋯(11分)即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2,也就是证ln x1x2<2x1-2x2x1+x2.⋯(12分)设t=x1x2(0<t<1).令m(t)=ln t-2t-2t+1,则m(t)=1t-4(t+1)2=(t-1)2t(t+1)2.因为t>0,所以m (t)≥0,⋯(13分)当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.⋯(14分)例7.设函数f(x)=x2-a ln x-(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:fx1+x22>0.【解析】解:(Ⅰ)f′(x)=2x-(a-2)-ax=(2x-a)(x+1)x,(x>0).当a≤0时,f′(x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间;当a>0时,由f′(x)>0,得x>a2,f′(x)<0,得0<x<a2,所以函数f(x)的单调增区间为a2,+∞,单调减区间为0,a2;(Ⅱ)(1)由(Ⅰ)可知函数f(x)有两个零点,所以a>0,f(x)的最小值f a2<0,即-a2+4a-4a ln a2<0,∵a>0,∴a-4+4ln a2>0,令h(a)=a-4+4ln a2,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1>0∴存在a0∈(2,3),h(a0)=0,当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f32=341-4ln32<0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(2)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,∴a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,因为f′a2=0,当x∈0,a2时,f′(x)<0;当x∈a2,+∞时,f′(x)>0.故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2.也就是证ln x1x2<2x1-2x2x1+x2.设x1x2=t∈(0,1).令m(t)=ln t-2t-2t+1,则m′(t)=1t-4(t+1)2=(t-1)2t(t+1)2.∵t>0,所以m (t)≥0,当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.例8.已知函数f(x)=e x-12ax2(a∈R),其中e为自然对数的底数,e=2.71828⋯.f(x0)是函数f(x)的极大值或极小值,则称x0为函数f(x)的极值点,极大值点与极小值点统称为极值点.(1)函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断函数f(x)的极值点的个数,并说明理由;(3)当函数f(x)有两个不相等的极值点x1和x2时,证明:x1x2<ln a.【解析】解:(1)f′(x)=e x-ax≥0在(0,+∞)上恒成立,即a≤e xx在(0,+∞)上恒成立,令g(x)=e xx,x∈(0,+∞),g′(x)=e x⋅x-e xx2=e x(x-1)x2,在(0,1)上,g′(x)<0,g(x)单调递减,在(1,+∞)上,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=e,所以a≤e.所以a的取值范围为(-∞,e].(2)f′(x)=e x-ax,令g(x)=e x-ax,则g′(x)=e x-a,①当a<0时,g′(x)=e x-a>0,f′(x)=e x-ax在(-∞,+∞)上单调递增,又f′(0)=1>0,f′1a=e1a-1<0,于是f′(x)=e x-ax在(-∞,+∞)上有一个零点x1,x(-∞,x1)x1(x1,+∞) f′(x)-0+f(x)↓极小值↑于是函数f(x)的有1个极值点,②当a=0时,f(x)=e x单调递增,于是函数f(x)没有极值点,③当0<a≤e时,由g′(x)=e x-a=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(x)≥0,当且仅当x=ln a时,取“=”号,所以函数f(x)在(-∞,+∞)上单调递增,所以函数f(x)没有极值点.④当a>e时,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(ln a)=a(1-ln a)<0,f′(0)=1>0,又因为a>ln a,所以f′(a)=e a-a2>a2-a2=0,于是,函数f′(x)在(-∞,ln a)和(ln a,+∞)上各有一个零点,分别为x2,x3,x(-∞,x2)x2(x2,x3)x3(x3,+∞) f′(x)+0-0+f(x)↑极大值↓极小值↑于是f(x)有2个极值点,综上,当a<0时,函数f(x)有1个极值点,当0≤a≤e时,函数f(x)没有极值点,当a>e时,函数f(x)有2个极值点.(3)证明:当函数f(x)有两个不等的极值点x1和x2时,由(2)知a>e且1<x1<ln a<x2,f′(x1)=f′(x2)=0,令F(x)=f′(x)-f′(2ln a-x),F′(x)=(e x-a)2 e x,由F′(x)=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) F′(x)+0+F(x)↑非极值点↑F(x1)<F(ln a)=0,即f′(x1)<f′(2ln a-x1),即f′(x2)<f′(2ln a-x1),因为x2>ln a,2ln a-x1>ln a,f′(x)在(ln a,+∞)上单调递增,所以x2<2ln a-x1,即x1+x2<2ln a,又x1+x2>2x1x2,所以x1x2<ln a.例9.已知函数f(x)=ln x-1x,g(x)=ax+b.(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若直线g(x)=ax+b是函数f(x)=ln x-1x图象的切线,求a+b的最小值;(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取2为1.4)【解析】(1)解:h(x)=f(x)-g(x)=ln x-1x-ax-b,则h (x)=1x+1x2-a,∵h(x)=f(x)-g(x)在(0,+∞)上单调递增,∴对∀x>0,都有h (x)=1x +1x2-a≥0,即对∀x >0,都有a ≤1x +1x2,∵1x +1x2>0,∴a ≤0,故实数a 的取值范围是(-∞,0];(2)解:设切点x 0,ln x 0-1x 0 ,则切线方程为y -ln x 0-1x 0=1x 0+1x 20(x -x 0),即y =1x 0+1x 20x -1x 0+1x 20 x 0+ln x 0-1x 0,亦即y =1x 0+1x 20x +ln x 0-2x 0-1,令1x 0=t >0,由题意得a =1x 0+1x 20=t +t 2,b =ln x 0-2x 0-1=-ln t -2t -1,令a +b =φ(t )=-ln t +t 2-t -1,则φ (t )=-1t +2t -1=(2t +1)(t -1)t,当t ∈(0,1)时,φ (t )<0,φ(t )在(0,1)上单调递减;当t ∈(1,+∞)时,φ (t )>0,φ(t )在(1,+∞)上单调递增,∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1;(3)证明:由题意知ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),即ln x2x 1x 2-x 1+1x 1x 2=a ,∴ln x 1x 2-x 1+x 2x 1x 2=ln x2x 1x 2-x 1+1x 1x 2 (x 1+x 2),即ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1,不妨令0<x 1<x 2,记t =x 2x 1>1,令F (t )=ln t -2(t -1)t +1(t >1),则F ′(t )=(t -1)2t (t +1)2>0,∴F (t )=ln t -2(t -1)t +1在(1,+∞)上单调递增,则F (t )=ln t -2(t -1)t +1>F (1)=0,∴ln t >2(t -1)t +1,则ln x 2x 1>2(x 2-x 1)x 1+x 2,∴ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1>2,又ln x 1x 2-2(x 1+x 2)x 1x 2<ln x 1x 2-4x 1x 2x 1x 2=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1,令G(x)=ln x-2x,则x>0时,G(x)=1x+2x2>0,∴G(x)在(0,+∞)上单调递增,又ln2e-22e=12ln2+1-2e≈0.85<1,∴G(x1x2)=ln x1x2-2x1x2>1>ln2e-22e,则x1x2>2e,即x1x2>2e2.【同步练习】1.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【解析】解:(Ⅰ)因为f(x)=ln x+2x-ax2,所以f′(x)=1x+2-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+2-2a=0,解得:a=3 2.验证:当a=32时,f′(x)=1x+2-3x=-(3x+1)(x-1)x(x>0),易得f(x)在x=1处取得极大值.(Ⅱ)因为g(x)=f(x)+(a-4)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(Ⅲ)证明:当a=-2时,f(x)=ln x+2x+2x2,因为f(x1)+f(x2)+3x1x2=x1+x2,所以ln x1+2x1+2x21+ln x2+2x2+2x22+3x1x2=x1+x2,即ln x1x2+2(x21+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以当x1+x2=12时,x1x2=1,此时不存在x1,x2满足条件,所以x1+x2>1 2.2.已知函数f(x)=ln x+x-ax2,a∈R.(1)若f(x)在x=1处取得极值,求a的值;(2)设g(x)=f(x)+(a-3)x,试讨论函数g(x)的单调性;(3)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,求证:x1+x2>12.【解析】(1)解:因为f(x)=ln x+x-ax2,所以f′(x)=1x+1-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+1-2a=0,解得:a=1.验证:当a=1时,f′(x)=1x+1-2x=-(x-1)(2x+1)x(x>0),易得f(x)在x=1处取得极大值.(2)解:因为g(x)=f(x)+(a-3)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(3)证明:当a=-2时,f(x)=ln x+x+2x2,因为f(x1)+f(x2)+3x1x2=0,所以ln x1+x1+2x12+ln x2+x2+2x22+3x1x2=0,即ln x1x2+2(x12+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以x1+x2≤-1,因为当x1+x2=12时,x1x2=1,不满足t∈(1,+∞),所以x1+x2>1 2.3.已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【解析】(1)解:由函数的解析式可得f (x)=1-ln x-1=-ln x,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由b ln a-a ln b=a-b,得-1a ln1a+1bln1b=1b-1a,即1a1-ln1a=1b1-ln1b,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2-x1>1,先证2<x1+x2,即证x2>2-x1,即证f(x2)=f(x1)<f(2-x1),令h(x)=f(x)-f(2-x),则h′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2-x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e-x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e-x1),令φ(x)=f(x)-f(e-x),x∈(0,1),则φ (x)=-ln[x(e-x)],令φ′(x0)=0,x∈(0,x0),φ (x)>0,φ(x)单调递增,x∈(x0,1),φ (x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0+φ(x)=0,φ(1)=f(1)-f(e-1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1-ln x1)=x2(1-ln x2),又x1∈(0,1),故1-ln x1>1,x1(1-ln x1)>x1,故x1+x2<x1(1-ln x1)+x2=x2(1-ln x2)+x2,x2∈(1,e),令g(x)=x(1-ln x)+x,g′(x)=1-ln x,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1-ln x2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.4.已知函数f(x)=ln x-x.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a,b为两个不相等的正数,ln a-ln b=a-b,证明:ab<1.【解析】解:(I)f′(x)=1x-1=1-xx,x>0,当0<x<1时,f′(x)>0,函数f(x)单调递增,当x>1时,f′(x)<0,函数f(x)单调递减,故函数在(0,1)上单调递增,在(1,+∞)上单调递减,(II)证明:由ln a-ln b=a-b,得ln a-a=ln b-b,令x1=a,x2=b,则x1,x2是f(x)=x的两根,不妨令x1∈(0,1),x2∈(1,+∞),则0<x1<1,0<1x2<1,要证ab<1,即证x1<1x2,即f(x1)=f(x2)<f1x2,令h(x)=f(x)-f1x=2ln x+1x-x,则h′(x)=2x-1x2-1=-(x-1)2x2<0,所以h(x)在(1,+∞)单调递减,h(x)<h(1)=0,所以f(x1)=f(x2)<f1x2 ,所以ab<1,5.已知函数f(x)=xe-x(x∈R).(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x) >g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.【解析】解:(Ⅰ)解:f′(x)=(1-x)e-x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(-∞,1)1(1,+∞)f′(x)+0-f(x)增极大值减所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2于是F (x)=(x-1)(e2x-2-1)e-x当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2>1,所以2-x2<1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.6.已知函数f(x)=x-e a+x(a∈R).(1)若a=1,求函数f(x)在x=0处的切线方程;(2)若f(x)有两个零点x1,x2,求实数a的取值范围,并证明:x1+x2>2.【解析】解:(1)f(x)=x-e1+x的导数为f′(x)=1-e1+x,则函数f(x)在x=0处的切线斜率为1-e,又切点为(0,-e),则切线的方程为y=(1-e)x-e,即(e-1)x+y+e=0;(2)设函数g(x)=x-ln x+a,与函数f(x)具有相同的零点,g (x)=x-1x,知函数g(x)在(0,1)上递减,(1,+∞)上递增,当x→0,g(x)→+∞;可证当x∈(0,+∞)时,ln x<x-1,即-ln x=ln 1x≤1x-1,即此时g(x)=x-ln x+a<x+1x+a-1,当x→+∞时,g(x)→+∞,f(x)有两个零点,只需g(1)<0,即a<-1;证明:方法一:设函数F(x)=g(x)-g(2-x),(1<x<2)则F(x)=2x-2-ln x+ln(2-x),且F (x)=2(x-1)2x(x-2)<0对x∈(1,2)恒成立即当x∈(1,2)时,F(x)单调递减,此时,F(x)<F(1)=0,即当x∈(1,2)时,g(x)<g(2-x),由已知0<x1<1<x2,则1-x1∈(1,2),则有g(2-x1)<g(2-2+x1)=g(x1)=g(x2)由于函数g(x)在(1,+∞)上递增,即2-x1<x2,即x1+x2>2.方法二:故x2-x1=ln x2-ln x1=ln x2 x1.设x2x1=t,则t>1,且x2=tx1x2-x1=ln t,解得x1=ln tt-1,x2=t ln tt-1.x1+x2=(t+1)ln tt-1,要证:x1+x2=(t+1)ln tt-1>2,即证明(t+1)ln t>2(t-1),即证明(t+1)ln t-2t+2>0,设g(t)=(t+1)ln t-2t+2(t>1),g (t)=ln t+1t-1,令h(t)=g (t),(t>1),则h (t)=t-1t2>0,∴h(t)在(1,+∞)上单调增,g (t)=h(t)>h(1)=0,∴g(t)在(1,+∞)上单调增,则g(t)>g(1)=0.即t>1时,(t+1)ln t-2t+2>0成立,7.已知函数f(x)=axe x-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128⋯).(1)若f(x)仅有一个极值点,求a的取值范围;(2)证明:当0<a<12时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.【解析】(1)解:f (x)=ae x+axe x-2(a-1)(x+1)=(x+1)(ae x-2a+2),由f (x)=0得到x=-1或ae x-2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=2a-2a,故由2a-2a≤0得0<a≤1,由于这两种情况都有,当x<-1时,f (x)<0,于是f(x)为减函数,当x>-1时,f (x)>0,于是f(x)为增函数,∴仅x=-1为f(x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当0<a<12时,x=-1为f(x)的极小值点,又∵f(-2)=-2ae2-(a-1)=-2e2-1a+1>0对于0<a<12恒成立,f(-1)=-ae <0对于0<a<12恒成立,f(0)=-(a-1)>0对于0<a<12恒成立,∴当-2<x<-1时,f(x)有一个零点x1,当-1<x<0时,f(x)有另一个零点x2,即-2<x1<-1,-1<x2<0,且f(x1)=ax1e x1-(a-1)(x1+1)2=0,f(x2)=ax2e x2-(a-1)(x2+1)2=0,(#)所以-3<x1+x2<-1,下面再证明x1+x2<-2,即证x1<-2-x2,由-1<x2<0得-2<-2-x2<-1,由于x<-1,f(x)为减函数,于是只需证明f(x1)>f(-2-x2),也就是证明f(-2-x2)<0,f(-2-x2)=a(-2-x2)e-2-x2-(a-1)(-x2-1)2=a(-2-x2)e-2-x2 -(a-1)(x2+1)2,借助(#)代换可得f(-2-x2)=a(-2-x2)e-2-x2-ax2e x2=a[(-2-x2)e-2-x2-x2e x2],令g(x)=(-2-x)e-2-x-xe x(-1<x<0),则g (x)=(x+1)(e-2-x-e x),∵h(x)=e-2-x-e x为(-1,0)的减函数,且h(-1)=0,∴g (x)=(x+1)(e-2-x-e x)<0在(-1,0)恒成立,于是g(x)为(-1,0)的减函数,即g(x)<g(-1)=0,∴f(-2-x2)<0,这就证明了x1+x2<-2,综上所述,-3<x1+x2<-2.8.已知函数f(x)=e x-ax(a为常数),f′(x)是f(x)的导函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当x>0时,求证:f(ln a+x)>f(ln a-x);(Ⅲ)已知f(x)有两个零点x1,x2(x1<x2),求证:f/x1+x22<0.【解析】证明:(Ⅰ)∵f′(x)=e x-a.当a≤0时,则f′(x)=e x-a>0,即f(x)在R上是增函数,当a>0时,由f′(x)=e x-a=0,得x0=ln a.当x∈(-∞,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.即f(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数,(Ⅱ)证明:设g(x)=f(ln a+x)-f(ln a-x)(x>0)=[e ln a+x-a(ln a+x)]-[e ln a-x-a(ln a-x)]= a(e x-e-x-2x),∴g′(x)=a(e x+e x-2)≥2a e x∙e-x-2a=0,当且仅当x=0时等号成立,但x>0,∴g′(x)>0,即g(x)在(0,+∞)上是增函数,所以g(x)>g(0)=0∴不等式f(x0+x)>f(x0-x)恒成立.(Ⅲ)由(I)知,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最小为f(ln a),且f(ln a)<0.设A(x1,0),B(x2,0),0<x1<x2,则0<x1<ln a<x2.由(II)得f(2ln a-x1)=f(ln a+ln a-x1)>f(x1)=0.∵2ln a-x1=ln a+(ln a-x1)>ln a,x2>ln a,且f(x)在(ln a,+∞)上是增函数又f(2ln a-x1)>0=f(x2),∴2ln a-x1>x2.于是x1+x22<ln a,∵f(x)在(-∞,ln a)上减函数,∴fx1+x22<0.9.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f (x1x2)<0.【解析】解:(1)∵f(x)=e x-ax+a,∴f (x)=e x-a,若a≤0,则f (x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f (x)=0,则x=ln a,当f (x)<0时,x<ln a,f(x)是单调减函数,当f (x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a ln a+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵e x1-ax1+a=0 e x2-ax2+a=0 ,∴两式相减得a=e x2-e x1x2-x1,记x2-x12=s(s>0),则f′x1+x22=e x1+x22-e x2-e x1x2-x1=ex1+x222s[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),则g (s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而e x1+x222s>0,∴f′x1+x22<0.又f (x)=e x-a是单调增函数,且x1+x22>x1x2,∴f′(x1x2)<0.10.设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求f(x)的单调区间和极值点;(2)证明:f′(x1x2)<0(f′(x)是f(x)的导函数);(3)证明:x1x2<x1+x2.【解析】解:(1)设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,所以函数f(x)不单调,∵f (x)=e x-a=0有实数解,所以a>0,解得x=ln a,因为x<ln a,f (x)<0,f(x)单调递减,x>ln a时,f (x)>0,f(x)单调递增,且ln a是极小值点;f(ln a)极小值=e ln a-a ln a+a=2a2-ln a,由题意得,f(ln a)<0,所以a>e2,所以函数f(x)的单调递增区间(-∞,ln a),单调递减区间(ln a,+∞),极小值点是ln a,无极大值点,且a>e2.(2)证明:∵e x1-ax1+a=0 e x2-ax2+a=0 ,两式相减可得,a=e x2-e x1x2-x1,令s=ex2-x12(s>0),则fx1+x22=e x1+x22-e x2-e x1x2-x1,=e x1+x222s[2s-(e s-e-s)],令g(s)=2s-(e s-e-s),则g′(s)=2-(e s+e-s)<0,所以g(s)单调递减,g(s)<g(0)=0,而e x1+x222s>0,∴fx1+x22<0,又x1+x22>x1x2,∴f′(x1x2)<0;(3)证明:由e x1-ax1+a=0e x2-ax2+a=0,可得e x2-x1=x2-1x1-1,∴e(x2-1)-(x1-1)=x2-1 x1-1,令m=x1-1,n=x2-1,则0<m<1<n,∴e n-m=nm,设t=nm,则t>1,n=mt,∴e(t-1)m=t,∴m=ln tt-1,n=t ln tt-1,∴mn=t(ln t)2 (t-1)2,要证明:x1x2<x1+x2,等价于证明:(x1-1)(x2-1)<1,即证mn<1,即证t(ln t)2(t-1)2<1,即证ln tt-1<1t,即证ln t<t-1t ,令g(t)=2ln t-t+1t,(t>1),g′(t)=2t -1-1t2=-(t-1)2t2<0,∴g(t)在(1,+∞)上单调递减,∵t>1,故g(t)<0,∴2ln t-t+1t<0,∴ln t<t-1t,从而有:x1x2<x1+x2.11.已知函数f(x)=x2ln x+ax(a∈R)在x=1处的切线与直线x-y+2=0平行.(1)求实数a的值,并求f(x)的极值;(2)若方程f(x)=m有两个不相等的实根x1,x2,求证:x21+x22>2e.【解析】解:(1)函数f(x)的定义域为(0,+∞),f (x)=2x ln x+x-ax2,由题意知f′(1)=1-a=1,∴a=0.∴f′(x)=2x ln x+x=x(2ln x+1),令f′(x)=0,则x=e e,当x∈0,e e时,f′(x)<0;x∈e e,+∞时,f′(x)>0.∴f(x)的极小值为f ee=-12e,证明:(2)由(1)知f(x)=x2ln x,由f(x1)=f(x2)=m,得x12ln x1=x22ln x2,即2x12ln x1=2x22ln x2,所以x12ln x12=x22ln x22.∵x1≠x2,不妨设x1<x2,令t1=x12,t2=x22,h(t)=t ln t(t>0),则原题转化为h(t)=2m有两个实数根t1,t2(t1<t2),又h′(t)=1+ln t,令h′(t)>0,得t>e-1;令h′(t)<0,得t<e-1,∴h(t)在(0,e-1)上单调递减,在(e-1,+∞)上单调递增,又t→0+时,h(t)→0,h(1)=0,h(e-1)=-e-1,由h(t)图象可知,-e-1<2m<0,0<t1<e-1<t2<1.设g(t)=h(t)-h2e-t=t ln t-2e-tln2e-t,t∈0,1e,则g (t)=(ln t+1)--ln2e-t-1=2+ln t2e-t.当0<t<1e时,t2e-t=-t-1e2+1e2<1e2,则g′(t)<0∴g(t)在0,1 e上单调递减.又∵g1e=h1e -h2e-1e=0∴t∈0,1e时,g(t)>0,得到g(t1)=h(t1)-h2e-t1>0,即h(t1)>h2e-t1,又∵h(t1)=h(t2),∴h(t2)>h2e -t1,又0<t1<1e,则2e-t1>1e,且1>t2>1e,h(t)在1e,+∞上单调递增,∴t2>2e -t1,即t1+t2>2e,即x12+x22>2e.。

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)1.已知 $f(x)=\ln x-ax$,其中 $a$ 为常数。

1)若函数 $f(x)$ 在 $x=1$ 处的切线与 $x$ 轴平行,求$a$ 的值;2)当 $a=1$ 时,比较 $f(m)$ 和 $f(1)$ 的大小;3)$f(x)$ 有两个零点 $x_1$ 和 $x_2$,证明:$x_1\cdotx_2>e^2$。

变式:已知函数 $f(x)=\ln x-ax^2$,其中 $a$ 为常数。

1) 讨论 $f(x)$ 的单调性;2) 若有两个零点 $x_1$ 和 $x_2$,试证明:$x_1\cdotx_2>e$。

2.已知 $f(x)=x^2+ax+\sin (\pi x)$,$x\in(0,1)$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

3.已知 $f(x)=\ln x-ax^2+x$,其中 $a\in R$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

4.设 $a>0$,函数 $f(x)=\ln x-ax$,$g(x)=\ln x-\frac{2(x-1)}{x+1}$。

1)证明:当 $x>1$ 时,$g(x)>0$ 恒成立;2)若函数 $f(x)$ 无零点,求实数 $a$ 的取值范围;3)若函数$f(x)$ 有两个相异零点$x_1$ 和$x_2$,求证:$x_1\cdot x_2>e^2$。

高中数学专题 微专题13 极值点偏移问题

高中数学专题 微专题13 极值点偏移问题

由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,

g(x)

2x

1 x

பைடு நூலகம்
ln
x-1

g′(x)

2

1 x2

1 x

2x2-x-1 x2

2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.

专题31 极值点偏移问题的研究(解析版)

专题31 极值点偏移问题的研究(解析版)

专题31 极值点偏移问题的研究一、题型选讲题型一、常见的极值点偏移问题常见的极值点偏移问题主要有以下几种题型:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点); 2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 例1、(2019无锡期末)已知函数f(x)=e x -a2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0 成立;(2) 若函数y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.思路分析 (1)利用导数分别讨论函数 和 的单调性即可;(2)直接证明比较困难,需要利用分析法,通过代数变形,换元等方法将问题转化为熟悉的不等式问题,再通过构造函数,结合常用不等式 ,利用导数进行证明.(1)由f(x)=e x -12x 2-x,则f′(x)=e x -x -1,令g(x)=f′(x),则g′(x)=e x -1,(3分)当x>0,g′(x)>0,则f′(x)在(0,+∞)上单调递增,故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分)进而f(x)>f(0)=1>0,即对于任意x>0,都有f(x)>0.(6分)(2) f′(x)=e x -ax -a,因为x 1,x 2为f(x)的两个极值点,所以⎩⎪⎨⎪⎧f′(x 1)=0,f′(x 2)=0.即⎩⎪⎨⎪⎧e x 1-ax 1-a =0,e x 2-ax 2-a =0.两式相减,得a =⎩⎪⎨⎪⎧e x 4-ax 1-a =0,e x 2-ax 2-a =0.两式相减,得a =e x 1-e x 2x 1-x 2,(8分)则所证不等式等价x 1+x 22<ln e x 1-e x 2x 1-x 2,即e x 1-x 22<e x 1-x 2-1x 1-x 2,(12分)令t =x 1-x 2,t>0,所以证不等式只需证明: e t 2<e t -1t →t e t2-e t +1<0,(14分) 设φ(t)=t e t 20⎝⎛⎭⎫t2+1≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)单调递减,φ(t)<φ(0)=0. 所以x 1+x 22<ln a.(16分)例2、(2018常州期末)已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围;(3) 若a =-1,设函数f(x)在(0,1)上的极值点为x 0,求证:f(x 0)<-2.思路分析 第一小问,利用导函数求单调性、极值、值域的一般步骤,必须掌握!也是解决后面问题的基础;第二小问,由函数在(0,-a)上的单调性得出导函数在特定区间的符号,转化为含参数的恒成立问题;第三小问,关键是找到零点的大致范围,还是利用导数求最大值、最小值的方法.规范解答 (1) 当a =0时,f(x)=ln xx 2,定义域为(0,+∞).f′(x)=1-2ln x x 3,令f′(x)=0,得x =e .当x 变化时,f′(x),f(x)的变化情况如下表:所以当x =e 时,f(x)的极大值为12e ,无极小值.(4分)(2) f′(x)=1+ax-2ln x (x +a )3,由题意f′(x)≥0对x∈(0,-a)恒成立.因为x∈(0,-a),所以(x +a)3<0,所以1+ax -2ln x≤0对x∈(0,-a)恒成立.所以a≤2x ln x -x 对x∈(0,-a)恒成立.(6分)令g(x)=2x ln x -x,x∈(0,-a),则g′(x)=2ln x +1.∈若0<-a≤e -12,即0>a≥-e -12,则g′(x)=2ln x +1<0对x∈(0,-a)恒成立,所以g(x)=2x ln x -x 在(0,-a)上单调递减,则a≤2(-a)ln (-a)-(-a),所以ln (-a)≥0,所以a≤-1与a≥-e -12矛盾,舍去;∈若-a>e -12,即a<-e -12,令g′(x)=2ln x +1=0,得x =e -12,当0<x<e -12时,g′(x)=2ln x +1<0,所以g(x)=2x ln x -x 单调递减,当e -12<x<-a 时,g′(x)=2ln x +1>0,所以g(x)=2x ln x -x 单调递增,所以当x =e -12时,g(x)min =g(e -12)=2e -12·lne -12-e -12=-2e -12,所以a≤-2e -12.综上,实数a 的取值范围是(-∞,-2e -12].(10分)(3) 当a =-1时,f(x)=ln x(x -1)2,f′(x)=x -1-2x ln x x (x -1)3.令h(x)=x -1-2x ln x,x∈(0,1),则h′(x)=1-2(ln x +1)=-2ln x -1,令h′(x)=0,得x =e -12.∈当e -12≤x<1时,h′(x)≤0,所以h(x)=x -1-2x ln x 单调递减,h(x)∈(0,2e -12-1],x∈(0,1),所以f′(x)=x -1-2x ln x x (x -1)3<0恒成立,所以f(x)=ln x (x -1)2单调递减,且f(x)≤f(e -12).(12分)∈当0<x≤e -12时,h′(x)≥0,所以h(x)=x -1-2x ln x 单调递增,其中h ⎝⎛⎭⎫12=12-1-2·12·ln 12=ln 4e>0, h(e -2)=e -2-1-2e -2·lne -2=5e2-1<0,所以存在唯一x 0∈⎝⎛⎭⎫e -2,12,使得h(x 0)=0,所以f′(x 0)=0, 当0<x<x 0时,f′(x)>0,所以f(x)=ln x(x -1)2单调递增;当x 0<x≤e -12时,f′(x)<0,所以f(x)=ln x (x -1)2单调递减,且f(x)≥f(e -12),(14分) 由∈和∈可知,f(x)=ln x(x -1)2在(0,x 0)上单调递增,在(x 0,1)上单调递减,所以当x =x 0时,f(x)=ln x(x -1)2取极大值.因为h(x 0)=x 0-1-2x 0ln x 0=0,所以ln x 0=x 0-12x 0,所以f(x 0)=ln x 0(x 0-1)2=12x 0(x 0-1)=12⎝⎛⎭⎫x 0-122-12.又x 0∈⎝⎛⎭⎫e -2,12∈⎝⎛⎭⎫0,12,所以2⎝⎛⎭⎫x 0-122-12∈⎝⎛⎭⎫-12,0,所以f(x 0)=12⎝⎛⎭⎫x 0-122-12<-2.(16分)例3、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=x -a sin x(a>0).(1) 若函数y =f(x)是R 上的单调增函数,求实数a 的取值范围; (2) 设a =12,g (x )=f (x )+b ln x +1(b ∈R ,b ≠0),g ′(x )是g (x )的导函数.∈若对任意的x >0,g ′(x )>0,求证:存在x 0,使g (x 0)<0;∈若g (x 1)=g (x 2)(x 1≠x 2),求证:x 1x 2<4b 2.思路分析 (1) 由题意,f′(x)≥0对x∈R 恒成立,可考虑参数分离求参数范围;(2)∈根据x >0,g ′(x )>0,知g (x )为增函数,根据基本初等函数的性质得出必须有b >0,当然要说明理由,再寻找支撑点x 0的值,x →0时,b ln x 下降的程度大于x ,而-12sin x 在固定范围,所以使b ln x 足够小即可;∈用(1)的结论和g (x 1)=g (x 2)(x 1≠x 2),构建不等式-2b >x 2-x 1ln x 2-ln x 1>0,然后运用放缩和换元的策略,转化为证明一元函数的单调性,即可证明.规范解答 (1) 由题意,f ′(x )=1-a cos x ≥0对x ∈R 恒成立,(1分) 因为a >0,所以1a ≥cos x 对x ∈R 恒成立,因为(cos x )max =1,所以1a≥1,从而0<a ≤1.(3分)(2) ∈g (x )=x -12sin x +b ln x +1,所以g ′(x )=1-12cos x +bx.若b <0,则存在-b 2>0,使g ′⎝⎛⎭⎫-b 2=-1-12cos ⎝⎛⎭⎫-b 2<0,不合题意,所以b >0.(5分)取x 0=e -3b,则0<x 0<1.此时g (x 0)=x 0-12sin x 0+b ln x 0+1<1+12+b lne -3b +1=-12<0.所以存在x 0>0,使g (x 0)<0.(8分)∈依题意,不妨设0<x 1<x 2,令x 2x 1=t ,则t >1.由(1)知函数y =x -sin x 单调递增,所以x 2-sin x 2>x 1-sin x 1.从而x 2-x 1>sin x 2-sin x 1.(10分) 因为g (x 1)=g (x 2),所以x 1-12sin x 1+b ln x 1+1=x 2-12sin x 2+b ln x 2+1,所以-b (ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12(x 2-x 1).所以-2b >x 2-x 1ln x 2-ln x 1>0.(12分)下面证明x 2-x 1ln x 2-ln x 1>x 1x 2,即证明t -1ln t >t ,只要证明ln t -t -1t <0 (*).设h (t )=ln t -t -1t (t >1),所以h ′(t )=-(t -1)22t t <0在(1,+∞)上恒成立.所以h (t )在(1,+∞)上单调递减,故h (t )<h (1)=0,从而(*)得证.所以-2b >x 1x 2,即x 1x 2<4b 2.(16分)例4、(2018南通、泰州一调)已知函数g(x)=x 3+ax 2+bx(a,b∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g′(-a -1)=0且g′(x)=0有两个不等的实数解,解之得b与a 的关系.(2) 求导得F′(x)=(x +a +1)(e x -3x +a +3),解方程F′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规范解答 (1) 因为f′(x)=e x +(x +a)e x =(x +a +1)e x ,令f′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g′(x)=3x 2+2ax +b,由题意可知g′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a≠-32.所以b =-a 2-4a -3⎝⎛⎭⎫a≠-32.(6分) (2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F′(x)=f′(x)-g′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h′(x)=e x -3,令h′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a =3ln e 23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e-a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e-a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m′(t)>0,所以m(t)单调递增.(14分) 所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)题型二、构造函数的极值点偏移问题(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.例5、(2017苏州期末)已知函数f (x )=(ln x -k -1)x (k ∈R ).(1) 当x >1时,求函数f (x )的单调区间和极值;(2) 若对于任意x ∈[e,e 2],都有f (x )<4ln x 成立,求实数k 的取值范围; (3) 若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .. 思路分析 (1) 只要注意对k 的讨论. (2) 分离出k ,转化为k >K (x )恒成立问题.(3) 先说明0<x 1<e k<x 2,从而只要证e k<x 2<e 2k x 1,只要证f (x 1)=f (x 2)<f ⎝⎛⎭⎫e 2k x 1.转化为关于x 1的不等式对0<x 1<e k 恒成立问题.规范解答 (1) f ′(x )=ln x -k ,其中x >1.(1分)∈若k ≤0,则x >1时,f ′(x )>0恒成立,f (x )在(1,+∞)上单调递增,无极值;(2分) ∈若k >0,则f (x )在(1,e k ]上单调递减,在[e k ,+∞)上单调递增,(4分) 有极小值f (e k )=-e k ,无极大值.(5分)(2) 问题可转化为k >⎝⎛⎭⎫1-4x ln x -1对x ∈[e,e 2]恒成立.(7分) 设K (x )=⎝⎛⎭⎫1-4x ln x -1,则K ′(x )=4x 2ln x +⎝⎛⎭⎫1-4x 1x =4x 2(ln x -1)+1x. 当x ∈[e,e 2]时,K ′(x )≥1x >0,所以K (x )在[e,e 2]上单调递增,K (x )max =K (e 2)=1-8e 2.(9分)所以实数k 的取值范围是⎝⎛⎭⎫1-8e 2,+∞.(10分) (3) 因为f ′(x )=ln x -k ,所以f (x )在(0,e k ]上单调递减,在[e k ,+∞)上单调递增.不妨设0<x 1<e k<x 2.要证x 1x 2<e 2k ,只要证x 2<e 2kx 1.因为f (x )在[e k,+∞)上单调递增,所以只要证f (x 1)=f (x 2)<f ⎝⎛⎭⎫e 2kx 1,即要证(ln x 1-k -1)x 1<(k -ln x 1-1)e2kx 1.(12分)令t =2(k -ln x 1)>0,只要证(t -2)e t +t +2>0.设H (t )=(t -2)e t +t +2,则只要证H (t )>0对t >0恒成立.H ′(t )=(t -1)e t +1,H ″(t )=t e t >0对t >0恒成立.所以H ′(t )在(0,+∞)上单调递增,H ′(t )>H ′(0)=0.(14分)所以H (t )在(0,+∞)上单调递增,H (t )>H (0)=0. 综上所述,x 1x 2<e 2k .(16分)例6、(2019南通、泰州、扬州一调)已知函数f(x)=ax +ln x(a∈R ).(1) 讨论f (x )的单调性;(2) 设f (x )的导函数为f ′(x ),若f (x )有两个不相同的零点x 1,x 2.∈求实数a 的取值范围;∈证明:x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2.思路分析 (1)求导函数f′(x),对a 分类讨论,确定导函数的正负,即可得到f(x)的单调性(2)∈根据第(1)问的函数f(x)的单调性,确定a>0,且f(x)min =f(a)<0,求得a 的取值范围,再用零点判定定理证明根的存在性.∈ 对所要证明的结论分析,问题转化为证明x 1x 2>a 2,不妨设0<x 1<a<x 2,问题转化为证明x 1>a 2x 2,通过对f(x)的单调性的分析,问题进一步转化为证明f ⎝⎛⎭⎫a 2x 2>f(x 2),构造函数,通过导数法不难证得结论.解:(1)f(x)的定义域为(0,+∞),且f′(x)=x -ax2.(1.1)当a≤0时,f′(x)>0成立,所以f(x)在(0,+∞)为增函数;(2分)(1.2)当a>0时,(i )当x>a 时,f′(x)>0,所以f(x)在(a,+∞)上为增函数;(ii )当0<x<a 时,f′(x)<0,所以f(x)在(0,a)上为减函数.(4分)(2)∈由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+ln a<0,解得0<a<1e.(6分)一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图像在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点. 另一方面, 因为0<a<1e ,所以0<a 2<a<1e .f(a 2)=1a +ln a 2=1a +2ln a,令g(a)=1a +2ln a,当0<a<1e 时,g′(a)=-1a 2+2a =2a -1a 2<0,所以f(a 2)=g(a)=1a+2ln a>g ⎝⎛⎭⎫1e =e -2>0 又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图像在(a 2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点. 综上,实数a 的取值范围是⎝⎛⎭⎫0,1e .(10分) ∈ 设p =x 1f′(x 1)+x 2f′(x 2)=1-a x 1+1-ax 2=2-⎝⎛⎭⎫a x 1+a x 2. 又⎩⎨⎧ln x 1+a x 1=0,ln x 2+a x 2=0,则p =2+ln (x 1x 2).(12分)下面证明x 1x 2>a 2.不妨设x 1<x 2,由∈知0<x 1<a<x 2. 要证x 1x 2>a 2,即证x 1>a 2x 2.因为x 1,a 2x 2∈(0,a),f(x)在(0,a)上为减函数,所以只要证f ⎝⎛⎭⎫a 2x 2>f(x 1).又f(x 1)=f(x 2)=0,即证f ⎝⎛⎭⎫a 2x 2>f(x 2).(14分) 设函数F(x)=f ⎝⎛⎭⎫a 2x -f(x)=x a -a x -2ln x +2ln a(x>a). 所以F′(x)=(x -a )2ax 2>0,所以F(x)在(a,+∞)为增函数.所以F(x 2)>F(a)=0,所以f ⎝⎛⎭⎫a 2x 2>f(x 2)成立. 从而x 1x 2>a 2成立.所以p =2+ln (x 1x 2)>2ln a +2,即x 1f′(x 1)+x 2f′(x 2)>2ln a +2成立.(16分)解题反思 1. 第(2)∈中,用零点判定定理证明f(x)在(0,a)上有一个零点是解题的一个难点,也是一个热点问题,就是当0<a<1e 时,要找一个数x 0<a,且f(x 0)>0,这里需要取关于a 的代数式,取x 0=a 2,再证明f(a 2)>0,事实上由(1)可以得到x ln x≥-1e ,而f(a 2)=1a +ln a 2=1+2a ln a a>0即可.2. 在(2)∈中证明x 1x 2>a 2的过程,属于构造消元构造函数方法,将两个变量x 1,x 2转化为证明单变量的问题,这一处理方法,在各类压轴题中,经常出现,要能领悟并加以灵活应用二、达标训练1、(2018常州期末)已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围;(3) 若a =-1,设函数f(x)在(0,1)上的极值点为x 0,求证:f(x 0)<-2.思路分析 第一小问,利用导函数求单调性、极值、值域的一般步骤,必须掌握!也是解决后面问题的基础;第二小问,由函数在(0,-a)上的单调性得出导函数在特定区间的符号,转化为含参数的恒成立问题;第三小问,关键是找到零点的大致范围,还是利用导数求最大值、最小值的方法.规范解答 (1) 当a =0时,f(x)=ln xx 2,定义域为(0,+∞).f′(x)=1-2ln x x 3,令f′(x)=0,得x =e .当x 变化时,f′(x),f(x)的变化情况如下表:所以当x =e 时,f(x)的极大值为12e ,无极小值.(4分)(2) f′(x)=1+ax-2ln x (x +a )3,由题意f′(x)≥0对x∈(0,-a)恒成立.因为x∈(0,-a),所以(x +a)3<0,所以1+ax -2ln x≤0对x∈(0,-a)恒成立.所以a≤2x ln x -x 对x∈(0,-a)恒成立.(6分)令g(x)=2x ln x -x,x∈(0,-a),则g′(x)=2ln x +1.∈若0<-a≤e -12,即0>a≥-e -12,则g′(x)=2ln x +1<0对x∈(0,-a)恒成立,所以g(x)=2x ln x -x 在(0,-a)上单调递减,则a≤2(-a)ln (-a)-(-a),所以ln (-a)≥0,所以a≤-1与a≥-e -12矛盾,舍去;∈若-a>e -12,即a<-e -12,令g′(x)=2ln x +1=0,得x =e -12,当0<x<e -12时,g′(x)=2ln x +1<0,所以g(x)=2x ln x -x 单调递减,当e -12<x<-a 时,g′(x)=2ln x +1>0,所以g(x)=2x ln x -x 单调递增,所以当x =e -12时,g(x)min =g(e -12)=2e -12·lne -12-e -12=-2e -12,所以a≤-2e -12.综上,实数a 的取值范围是(-∞,-2e -12].(10分)(3) 当a =-1时,f(x)=ln x(x -1)2,f′(x)=x -1-2x ln x x (x -1)3.令h(x)=x -1-2x ln x,x∈(0,1),则h′(x)=1-2(ln x +1)=-2ln x -1,令h′(x)=0,得x =e -12.∈当e -12≤x<1时,h′(x)≤0,所以h(x)=x -1-2x ln x 单调递减,h(x)∈(0,2e -12-1],x∈(0,1),所以f′(x)=x -1-2x ln x x (x -1)3<0恒成立,所以f(x)=ln x (x -1)2单调递减,且f(x)≤f(e -12).(12分)∈当0<x≤e -12时,h′(x)≥0,所以h(x)=x -1-2x ln x 单调递增,其中h ⎝⎛⎭⎫12=12-1-2·12·ln 12=ln 4e>0, h(e -2)=e -2-1-2e -2·lne -2=5e2-1<0,所以存在唯一x 0∈⎝⎛⎭⎫e -2,12,使得h(x 0)=0,所以f′(x 0)=0,当0<x<x 0时,f′(x)>0,所以f(x)=ln x(x -1)2单调递增;当x 0<x≤e -12时,f′(x)<0,所以f(x)=ln x (x -1)2单调递减,且f(x)≥f(e -12),(14分)由∈和∈可知,f(x)=ln x(x -1)2在(0,x 0)上单调递增,在(x 0,1)上单调递减,所以当x =x 0时,f(x)=ln x(x -1)2取极大值.因为h(x 0)=x 0-1-2x 0ln x 0=0,所以ln x 0=x 0-12x 0,所以f(x 0)=ln x 0(x 0-1)2=12x 0(x 0-1)=12⎝⎛⎭⎫x 0-122-12.又x 0∈⎝⎛⎭⎫e -2,12∈⎝⎛⎭⎫0,12,所以2⎝⎛⎭⎫x 0-122-12∈⎝⎛⎭⎫-12,0,所以f(x 0)=12⎝⎛⎭⎫x 0-122-12<-2.(16分) 2、(2017南京学情调研)已知函数f (x )=ax 2-bx +ln x ,a ,b ∈R .(1) 当a =b =1时,求曲线y =f (x )在x =1处的切线方程; (2) 当b =2a +1时,讨论函数f (x )的单调性;(3) 当a =1,b >3时,记函数f (x )的导函数f ′(x )的两个零点是x 1和x 2 (x 1<x 2),求证:f (x 1)-f (x 2)>34-ln2.思路分析 (1) 通过求出f ′(1),f (1)的值,利用点斜式求出切线的方程;(2) 研究单调性,通过求出导函数f ′(x ),然后研究f ′(x )的正负,分类讨论,确定分类的标准是a ≤0,a >0,在a >0时,再按12a <1,12a =1,12a>1分类;(3) 要证明此不等式,首先要考察x 1,x 2的范围与a ,b 的关系,由已知求出f ′(x )=2x 2-bx +1x (x >0),因此x 1,x 2是方程g (x )=2x 2-bx +1=0的两根,x 1x 2=12,粗略地估计一下,由于g ⎝⎛⎭⎫12=3-b 2<0,g (1)=3-b <0,因此有x 1∈⎝⎛⎭⎫0,12,x 2∈(1,+∞),由此可知f (x )在[x 1,x 2]上为减函数,从而有f (x 1)-f (x 2)>f ⎝⎛⎭⎫12-f (1),这里f ⎝⎛⎭⎫12-f (1)=b 2-34-ln2>34-ln2,正好可证明题设结论.规范解答 (1) 因为a =b =1,所以f (x )=x 2-x +ln x , 从而f ′(x )=2x -1+1x.因为f (1)=0,f ′(1)=2,所以曲线y =f (x )在x =1处的切线方程为y -0=2(x -1),即2x -y -2=0.(3分) (2) 因为b =2a +1,所以f (x )=ax 2-(2a +1)x +ln x ,从而f ′(x )=2ax -(2a +1)+1x =2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x,x >0.(5分)当a ≤0时,若x ∈(0,1),则f ′(x )>0;若x ∈(1,+∞),则f ′(x )<0,所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.(7分)当0<a <12时,由f ′(x )>0得0<x <1或x >12a ;由f ′(x )<0得1<x <12a ,所以f (x )在区间(0,1)和⎝⎛⎭⎫12a ,+∞上单调递增,在区间⎝⎛⎭⎫1,12a 上单调递减. 当a =12时,因为f ′(x )≥0(当且仅当x =1时取等号),所以f (x )在区间(0,+∞)上单调递增.当a >12时,由f ′(x )>0得0<x <12a 或x >1;由f ′(x )<0得12a <x <1,所以f (x )在区间⎝⎛⎭⎫0,12a 和(1,+∞)上单调递增,在区间⎝⎛⎭⎫12a ,1上单调递减.(10分) (3) 证法1 因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=2x 2-bx +1x(x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根,由根与系数的关系可得x 1x 2=12.记g (x )=2x 2-bx +1,因为b >3,所以g ⎝⎛⎭⎫12=3-b 2<0,g (1)=3-b <0,所以x 1∈⎝⎛⎭⎫0,12,x 2∈(1,+∞),且bx i =2x 2i +1(i =1,2),(12分)所以f (x 1)-f (x 2)=(x 21-x 22)-(bx 1-bx 2)+ln x 1x 2=-(x 21-x 22)+ln x 1x 2. 因为x 1x 2=12,所以f (x 1)-f (x 2)=x 22-14x 22-ln(2x 22),x 2∈(1,+∞).(14分) 令t =2x 22∈(2,+∞),φ(t )=f (x 1)-f (x 2)=t 2-12t-ln t .因为φ′(t )=(t -1)22t 2≥0,所以φ(t )在区间(2,+∞)上单调递增,所以φ(t )>φ(2)=34-ln2,即f (x 1)-f (x 2)>34-ln2.(16分)证法2 因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=2x 2-bx +1x(x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根.记g (x )=2x 2-bx +1,因为b >3,所以g ⎝⎛⎭⎫12=3-b 2<0,g (1)=3-b <0,所以x 1∈⎝⎛⎭⎫0,12,x 2∈(1,+∞),且f (x )在[x 1,x 2]上为减函数.(12分)所以f (x 1)-f (x 2)>f ⎝⎛⎭⎫12-f (1)=14-b 2+ln 12-(1-b )=-34+b2-ln2. 因为b >3,所以f (x 1)-f (x 2)>-34+b 2-ln2>34-ln2.(16分)3、已知函数()()2ln 2,g x x ax a x a R =-+-∈.(1)求()g x 的单调区间;(2)若函数()()()212f x g x a x x =++-, 1212,()x x x x <是函数()f x 的两个零点, ()f x '是函数()f x 的导函数,证明: 1202x x f +⎛⎫<⎪⎝⎭'. 【解析】试题分析:(1)先求函数导数,根据导函数是否变号进行讨论,当0a ≤时, ()0g x '>, ()g x 递增,当0a >时,导函数有一零点,导函数先正后负,故得增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a⎛⎫+∞ ⎪⎝⎭;(2)利用分析法先等价转化所证不等式:要证明1202x x f +⎛⎫<⎪⎝⎭',只需证明121212ln ln 20x x x x x x --<+- 12(0)x x <<,即证明()1212122ln ln x x x x x x ->-+,即证明12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+,再令()120,1x t x =∈,构造函数()()1ln 22h t t t t =+-+,利用导数研究函数()h t 单调性,确定其最值: ()h t 在()0,1上递增,所以()()10h t h <=,即可证得结论. 试题解析:(1) ()g x 的定义域为()0,+∞, ()()122g x ax a x-'=+- 当0a ≤时, ()0g x '>, ()g x 递增当0a >时, ()()()()()2221211122ax a x x ax g x ax a x x x-+-++-'+=-+-==()()10,0,xg x g x a '<递增; ()()1,0,x g x g x a'><递减 综上:∈当0a >时, ()g x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭,单调减区间为1,a ⎛⎫+∞ ⎪⎝⎭当0a ≤时, ()g x 的单调增区间为()0,+∞即证明()1212122ln ln x x x x x x ->-+,即证明()12112221ln *1x x xx x x ⎛⎫- ⎪⎝⎭>+令()120,1x t x =∈,则()()1ln 22h t t t t =+-+ 则()1ln 1h t t t +'=-, ()2110h t t t -'=<' ∈()h t '在()0,1上递减, ()()10h t h ''>=,∈()h t 在()0,1上递增, ()()10h t h <=所以()*成立,即1202x x f +⎛⎫<⎪⎝⎭' 4、已知函数()ln (,f x ax x b a b =+为实数)的图像在点()()1,1f 处的切线方程为1y x =-. (1)求实数,a b 的值及函数()f x 的单调区间;(2)设函数()()1f x g x x+=,证明()()1212()g x g x x x =<时, 122x x +>.5、过点P(−1,0)作曲线f(x)=e x的切线l.(1)求切线l的方程;(2)若直线l与曲线y=a f(x) (a∈R)交于不同的两点A(x1,y1),B(x2,y2),求证:x1+x2<−4.试题分析:(1)先根据导数几何意义求切线斜率y′|x=0=1,再根据点斜式求切线方程y=x+1.因为x1≠x2,不妨设x1<−2,x2>−2.设g(x)=f(x)−f(−4−x),则g′(x)=f′(x)+f′(−4−x)=(x+2)e x(1−e−2(2+x)),当x>−2时,g′(x)>0,g(x)在(−2,+∞)单调递增,所以g(x)>g(−2)=0,所以当x>−2时,f(x)>f(−4−x).因为x2>−2,所以f(x2)>f(−4−x2),从而f(x1)>f(−4−x2),因为−4−x2<−2,f(x)在(−∞,−2)单调递减,所以x1<−4−x2,即x1+x2<−4.。

专题11 极值点偏移问题 - 2021年高考数学二轮经典专题深度解读(解析版)

专题11 极值点偏移问题 - 2021年高考数学二轮经典专题深度解读(解析版)

专题11 极值点偏移问题一、极值点偏移的概念1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图1.图 1 图 2 图 32.若≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图2、图3.(1)若,则,即函数在区间上极(小)大值点右(左)偏; (2)若,则,即函数在区间上极(小)大值点右(左)偏.证明:(1)因为对于可导函数,在区间上只有一个极大(小)值点,则函数的单调递增(减)区间为,单调递减(增)区间为,由于,有,且,又,故,所以,即函数极(小)大值点右(左)偏;二、极值点偏移的求解方法:利用对称构造函数(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造一元差函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2> ,则令F (x )=f (x )-f (注意:x 0为极值点);(3)对F(x)求导,判断导数符号,即利用导数讨论F (x )的单调性;(4)比较大小:即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系;(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求;[注意] 若要证明f ′的符号,还需进一步讨论与x 0的大小,得出所在的单调区间,从而得出该处导数值的考点剖析)2()(201x x f x f -<)2()(201x x f x f ->b x x a <<<21)2()(201x x f x f -<2012)(x x x -><正负.三、极值点偏移问题求解另一种方法:利用对数平均不等式求解对数平均不等式:),0,0(2ln ln b a b a ba b a b a ab ≠>>+<-+<,利用换元法将双变量问题转化为单变量问题,再构造函数求导数,利用单调性证明不等式的成立。

高考数学:极值点偏移问题与拐点偏移问题

高考数学:极值点偏移问题与拐点偏移问题

极值点偏移问题与拐点偏移问题【考点预测】1.极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。

若函数f (x )在x =x 0处取得极值,且函数y =f (x )与直线y =b 交于A (x 1,b ),B (x 2,b )两点,则AB 的中点为M x 1+x 22,b ,而往往x 0≠x 1+x 22。

如下图所示。

图1 极值点不偏移图2 极值点偏移极值点偏移的定义:对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )的解分别为x 1、x 2,且a <x 1<x 2<b ,(1)若x 1+x 22≠x 0,则称函数y =f (x )在区间(x 1,x 2)上极值点x 0偏移;(2)若x 1+x 22>x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0左偏,简称极值点x 0左偏;(3)若x 1+x 22<x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0右偏,简称极值点x 0右偏。

【方法技巧与总结】1.对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2>x 20,则令F (x )=f (x )-f 2x 0x.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.【注意】若要证明f x 1+x 22 的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2.应用对数平均不等式x1x2<x1-x2ln x1-ln x2<x1+x22证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到x1-x2ln x1-ln x2;③利用对数平均不等式来证明相应的问题.3.比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【题型归纳目录】题型一:极值点偏移:加法型题型二:极值点偏移:减法型题型三:极值点偏移:乘积型题型四:极值点偏移:商型题型五:极值点偏移:平方型题型六:拐点偏移问题【典例例题】题型一:极值点偏移:加法型例1.(2022•浙江期中)已知函数f(x)=x-ln x-a有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)证明:x1+x2>a+1.例2.(2022•汕头一模)已知函数f(x)=x-ln x-a有两个相异零点x1,x2(x1<x2).(1)求a的取值范围;(2)求证:x1+x2<4a+23.例3.(海淀区校级月考)已知函数f(x)=(x-2)e x+a(x-1)2,a∈R.(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线方程;(Ⅱ)若a≥0,求f(x)的零点个数;(Ⅲ)若f(x)有两个零点x1,x2,证明:x1+x2<2.例4.(2022•江门一模)已知函数f(x)=ln|x-1|-ax,a∈R是常数.(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程,并证明对任意a∈R,切线经过定点;(Ⅱ)证明:a<0时,设x1、x2是f(x)的两个零点,且x1+x2>2.题型二:极值点偏移:减法型例5.(2022•七星区校级月考)已知函数f(x)=x ln x-a2x2+1.(1)若f(x)在(0,+∞)上单调递减,求a的取值范围;(2)若f(x)在x=1处的切线斜率是12,证明f(x)有两个极值点x1x2,且3ln2<|ln x2-ln x1|<3.例6.(2022•常熟市月考)设函数f(x)=ln x,g(x)=a(x-1),其中a∈R.(1)若a=1,证明:当x>1时,f(x)<g(x);(2)设F(x)=f(x)-g(x)e x,且0<a<1e,其中e是自然对数的底数.①证明F(x)恰有两个零点;②设x0如为F(x)的极值点,x1为F(x)的零点,且x1>x0,证明:3x0-x1>2.例7.(2022•黄州区校级模拟)已知函数f(x)=ax ln x-(a+1)ln x,f(x)的导数为f (x).(1)当a>-1时,讨论f (x)的单调性;(2)设a>0,方程f(x)=3e-x有两个不同的零点x1,x2(x1<x2),求证:x1+e>x2+1e.例8.(2022•道里区校级二模)已知函数f(x)=mx ln x-(m+1)ln x,f (x)为函数f(x)的导数.(1)讨论函数f (x)的单调性;(2)若当m>0时,函数f(x)与g(x)=3e-x的图象有两个交点A(x1,y1),B(x2,y2)(x1<x2),求证:x2+1e<x1+e.题型三:极值点偏移:乘积型例9.(2021春•汕头校级月考)已知,函数f(x)=ln x-ax,其中a∈R.(1)讨论函数f(x)的单调性;(2)若函数f(x)有两个零点,(i)求a的取值范围;(ii)设f(x)的两个零点分别为x1,x2,证明:x1x2>e2.例10.(2022•攀枝花模拟)已知函数f(x)=ln x+bx-a(a∈R,b∈R)有最小值M,且M≥0.(Ⅰ)求e a-1-b+1的最大值;(Ⅱ)当e a-1-b+1取得最大值时,设F(b)=a-1b-m(m∈R),F(x)有两个零点为x1,x2(x1<x2),证明:x1⋅x22>e3.例11.(2022•张家口二模)已知函数f(x)=e x-a ln xx-a(e是自然对数的底数)有两个零点.(1)求实数a的取值范围;(2)若f(x)的两个零点分别为x1,x2,证明:x1x2>e2e x1+x2.例12.(2022•武进区校级月考)已知函数f (x )=ln x +12x 2-ax .(1)若函数f (x )在x =1处的切线与x 轴平行,求a 的值;(2)若存在t ∈[-1,1],使不等式f (x )≤tx -(a -1)ln x 对于x ∈[1,e ]恒成立,求a 的取值范围;(3)若方程f (x )=12x 2有两个不等的实数根x 1、x 2,试证明x 1x 2>e 2.题型四:极值点偏移:商型例13.已知函数f (x )=x -e x a (a >0)有两个相异零点x 1、x 2,且x 1<x 2,求证:x 1x 2<e a.例14.(2022•新疆模拟)已知函数f(x)=ln x-ax+12x2.(1)当a=52时,求f(x)的单调区间;(2)已知a≥433,x1,x2(x1>x2)为函数f(x)的两个极值点,求y=2(x1-x2)x1+x2-lnx1x2的最大值.例15..(2021春•湖北期末)已知函数f(x)=ae-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性:(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤(2e+1)⋅ln2e2e-1,求x2x1的最大值.例16.(2022•宁德三模)已知函数f(x)=ae-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性:(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤2ln3,求x2x1的最大值.题型五:极值点偏移:平方型例17.(2022•广州一模)已知函数f(x)=x ln x-ax2+x(a∈R).(1)证明:曲线y=f(x)在点(1,f(1))处的切线l恒过定点;(2)若f(x)有两个零点x1,x2,且x2>2x1,证明:x21+x22>4e.例18.(2022•浙江开学)已知a∈R,f(x)=x⋅e-ax(其中e为自然对数的底数).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.例19.(2021秋•泉州月考)已知函数f(x)=ln x+1 ax.(1)讨论f(x)的单调性;(2)若(ex1)x2=(ex2)x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.例20.(2022•开封三模)已知函数f(x)=ln x mx2.(1)讨论f(x)的单调性;(2)若m=2,对于任意x1>x2>0,证明:(x21⋅f(x1)-x22⋅f(x2))⋅(x21+x22)>x1x2-x22.题型六:拐点偏移问题例21.已知函数f(x)=2ln x+x2+x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若正实数x1,x2满足f(x1)+f(x2)=4,求证:x1+x2≥2.例22.已知函数f(x)=12a x2-1+1a2x+1a Inx(a∈R).(1)当a>0时,讨论函数f(x)的单调性;(2)当a=12时,设g(x)=f(x)+6x,若正实数x1,x2,满足g(x1)+g(x2)=4,求证:x1+x2≥2.例23.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【过关测试】1.(2022·天津河东·二模)已知函数f x =x2a-2ln x(a∈R且a≠0).(1)a=2,求函数f x 在2,f2处的切线方程.(2)讨论函数f x 的单调性;(3)若函数f x 有两个零点x1、x2x1<x2,且a=e2,证明:x1+x2>2e.2.(2022·河北·沧县中学高二阶段练习)已知函数f x =x+3x+2ln x-a a∈R有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)求证:x1x2>1.3.(2022·江苏泰州·模拟预测)已知函数f x =e x-ax2+bx-1,其中a,b为常数,e为自然对数底数,e =2.71828⋅⋅⋅.(1)当a=0时,若函数f x ≥0,求实数b的取值范围;(2)当b=2a时,若函数f x 有两个极值点x1,x2,现有如下三个命题:①7x1+bx2>28;②2a x1+x2>3x1x2;③x1-1+x2-1>2;请从①②③中任选一个进行证明.(注:如果选择多个条件分别解答,按第一个解答计分)4.(2022·湖北武汉·模拟预测)已知函数f x =x-ln x(1)求证:当x>1时,ln x>2x-1x+1;(2)当方程f x =m有两个不等实数根x1,x2时,求证:x1+x2>m+15.(2022·浙江绍兴·模拟预测)已知函数f x =e x-2x-a+1(其中ex-a+2,g x =x2+a-1≈2.71828是自然对数的底数)(1)试讨论函数f x 的零点个数;(2)当a>1时,设函数h x =f x -g x 的两个极值点为x1、x2且x1<x2,求证:e x2-e x1<4a+2.e x-k(x-1),x>-1,k∈R.6.(2022·安徽淮南·二模(理))已知函数f(x)=1-2x+1(1)若k=0,证明:x∈(-1,0)时,f(x)<-1;(2)若函数f(x)恰有三个零点x1,x2,x3,证明:x1+x2+x3>1.7.(2022·湖南·岳阳一中一模)已知函数f x =a ln x+2-x a∈R.(1)讨论f(x)的单调性和最值;(2)若关于x的方程e x=2m-1m ln mx+2(m>0)有两个不等的实数根x1,x2,求证:e x1+e x2>2 m.8.(2022·山东·青岛二中高三期末)已知函数f x =x1-a ln x,a∈R.(1)讨论f(x)的单调性;(2)若x∈0,12时,都有f x <1,求实数a的取值范围;(3)若有不相等的两个正实数x1,x2满足1+ln x21+ln x1=x2x1,证明:x1+x2<ex1x2.9.(2021·广东·新会陈经纶中学高三阶段练习)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a+1b.10.(2022·全国·高三专题练习)已知函数f x =-e x-ax2a∈R.(1)当a=0时,求曲线y=f x 在点1,f1处的切线方程;(2)当a>0时,若函数g x =xe x+f x ,求g x 的单调区间;(3)当a>0时,若函数h x =f x +2e x-ax恰有两个不同的极值点x1、x2,且x1<x2,求证:x1+x22<ln2a.11.(2022·全国·高三专题练习)已知函数f(x)=a-1-xe x(x>0)(e为自然对数的底数,a∈R).(1)求f(x)的单调区间和极值;(2)若存在x1≠x2,满足f x1=f x2,求证:x1+x2>4aa+2.12.(2022·全国·高三专题练习)已知函数f(x)=x-a-1x+a,a∈R.(1)若f(1)=2,求a的值;(2)若存在两个不相等的正实数x1,x2,满足f(x1)=f(x2),证明:①2<x1+x2<2a;②x2x1<a2+1.13.(2022·四川省泸县第二中学模拟预测(文))已知函数f(x)=x-x.e x(1)求f(x)的单调区间;(2)已知a,b∈R,且a≠b,若ae a+b+be a=ae b+be a+b,求证:a+b>0.。

极值点偏移四种题型的解法及例题

极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。

在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。

而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。

本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。

1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。

在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。

但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。

比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。

举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。

解:求导得 $f'(x)=3x^2-6x$。

令导数为零,得到 $x=0$ 或 $x=2$。

根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。

但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。

也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。

这就是极值点偏移的思想。

2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。

当我们遇到优化问题时,常常需要求解函数的极值点。

而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。

举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。

解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。

则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。

问题转化为求 $x+y$ 的最大值。

导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。

常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。

2.利用对数平均不等式ab<a-b+a+b。

3.变换主元等方法lna-lnb^2<ln(a-b^2)。

接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。

题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。

解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。

②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。

③若a0,函数f(x)单调递增。

2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。

在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。

2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。

微专题37 极值点偏移问题

微专题37 极值点偏移问题

微专题37 极值点偏移问题1.已知函数f (x )图象顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1)所示.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3)所示.2.设a ,b >0,a ≠b ,则a +b 2>a -b ln a -ln b >ab ,其中a -b ln a -ln b被称之为对数平均数,上述不等式称为对数均值不等式.类型一 对称变换对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2>x 20,则令F (x )=f (x )-f ⎝ ⎛⎭⎪⎫x 20x .(3)判断单调性,即利用导数讨论F(x)的单调性.(4)比较大小,即判断函数F(x)在某段区间上的正负,并得出f(x)与f(2x0-x)的大小关系.(5)转化,即利用函数f(x)的单调性,将f(x)与f(2x0-x)的大小关系转化为x与2x0-x之间的关系,进而得到所证或所求.例1 已知函数f(x)=x e-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)若x1≠x2,且f(x1)=f(x2),求证:x1+x2>2.(1)解由题知f′(x)=(1-x)e-x,则由f′(x)<0,得x>1,由f′(x)>0,得x<1,所以f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,f(x)的极大值是f(1)=1 e.(2)证明构造函数F(x)=f(1+x)-f(1-x)=(1+x)e-(1+x)-(1-x)e x-1,则F′(x)=x[e x-1-e-(1+x)],当x>0时,F′(x)>0,所以F(x)在(0,+∞)上单调递增.又F(0)=0,所以F(x)>0,即f(1+x)>f(1-x).因为x1≠x2,不妨设x1<x2,由(1)知x1<1,x2>1,所以f(x1)=f(x2)=f[1+(x2-1)]>f[1-(x2-1)]=f(2-x2).因为x2>1,所以2-x2<1,f(x)在(-∞,1)上单调递增,所以x1>2-x2,所以x1+x2>2.训练1 已知函数f(x)=x ln x-x,两相异正实数x1,x2满足f(x1)=f(x2).求证:x1+x2>2.证明f′(x)=ln x,当x∈(0,1)时,f(x)单调递减,当x>1时,f(x)单调递增,且f(1)=-1,如图所示,不妨设x1<1<x2,要证x1+x2>2,即证x2>2-x1,只需要证f(2-x1)<f(x2),又f(x1)=f(x2),所以只需证f(2-x1)<f(x1),设g(x)=f(x)-f(2-x)(x∈(0,1)),则g′(x)=f′(x)-[f(2-x)]′=ln x+ln(2-x),0<x<1,再设h(x)=ln x+ln(2-x),0<x<1,则h′(x)=1x -12-x=2-2xx(2-x)>0,∴h(x)在(0,1)上单调递增,∴h(x)<h(1)=0,∴g(x)在(0,1)上单调递减,∴g(x)>g(1)=0,∴f(x)-f(2-x)>0,0<x<1,∴f(x1)>f(2-x1),∴x1+x2>2.类型二消参减元含参函数问题可考虑先消去参数,其目的就是减元,进而建立与所求解问题相关的函数.例2 (2022·济南模拟改编)已知函数f(x)=ln x-ax,a为常数,若函数f(x)有两个零点x1,x2,求证:x1·x2>e2.证明法一消参转化成无参数问题:由题知f(x)=0,则ln x=ax,即ln x=a e ln x.因为x1,x2是方程f(x)=0的两个根,所以x1,x2也是方程ln x=a e ln x的两个根,即ln x1,ln x2是方程x=a e x的两个根.设u1=ln x1,u2=ln x2,g(x)=x e-x,即g(u1)=g(u2),从而由x1x2>e2,可得ln x1+ln x2>2,即u1+u2>2,由本专题例1得证.法二直接换元构造新函数:由题知a=ln x1x1=ln x2x2,则ln x2 ln x1=x2 x1,设x1<x2,t=x2x1(t>1),则x2=tx1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t , 解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln t t -1. 由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2, 所以ln t -2(t -1)t +1>0,构造g (t )=ln t -2(t -1)t +1,t >1,g ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 所以g (t )在(1,+∞)上单调递增.又g (1)=0,所以g (t )>g (1)=0,即ln t >2(t -1)t +1,故x 1x 2>e 2. 训练2 已知函数f (x )=ln(ax )+12ax 2-2x ,a >0.设x 1,x 2是函数f (x )的两个极值点,且x 1<x 2,求证:x 1+x 2>2.证明 因为f ′(x )=ax 2-2x +1x(x >0),f (x )有两个极值点x 1,x 2, 所以x 1,x 2是方程ax 2-2x +1=0的两个不相等的正实数根,从而Δ=(-2)2-4a >0,a >0,解得0<a <1.由ax 2-2x +1=0得a =2x -1x 2.因为0<a <1,所以x >12且x ≠1.令g (x )=2x -1x 2,x >12且x ≠1,则g ′(x )=2(1-x )x 3, 所以当12<x <1时,g ′(x )>0,从而g (x )单调递增;当x >1时,g ′(x )<0,从而g (x )单调递减,于是a =2x 1-1x 21=2x 2-1x 22⎝⎛⎭⎪⎫12<x 1<1<x 2. 要证x 1+x 2>2,只要证x 2>2-x 1,只要证明g (x 2)<g (2-x 1).因为g (x 1)=g (x 2),所以只要证g (x 1)<g (2-x 1).令F (x 1)=g (x 1)-g (2-x 1)=2x 1-1x 21-2(2-x 1)-1(2-x 1)2, 则F ′(x 1)=2(1-x 1)x 31+2[1-(2-x 1)](2-x 1)3=2(1-x 1)x 31+2(x 1-1)(2-x 1)3 =2(1-x 1)⎣⎢⎡⎦⎥⎤1x 31-1(2-x 1)3 =4(1-x 1)2[(2-x 1)2+(2-x 1)x 1+x 21]x 31(2-x 1)3.因为12<x 1<1,所以F ′(x 1)>0,即F (x 1)在⎝ ⎛⎭⎪⎫12,1上单调递增, 所以F (x 1)<F (1)=0,即g (x 1)<g (2-x 1),所以x 2>2-x 1,即x 1+x 2>2.类型三 比(差)值换元比(差)值换元就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.一般用t 表示两个极值点之比(差),继而将所求解问题转化为关于t 的函数问题.例3 (2022·长沙调研改编)已知函数f (x )=x ln x 的图象与直线y =m 交于不同的两点A (x 1,y 1),B (x 2,y 2).求证:x 1x 2<1e 2.证明 f ′(x )=ln x +1,由f ′(x )>0,得x >1e ,由f ′(x )<0,得0<x <1e ,∴函数f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减, 在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. 可设0<x 1<1e <x 2.法一 f (x 1)=f (x 2)即x 1ln x 1=x 2ln x 2,令t =x 2x 1>1,则x 2=tx 1, 代入上式得x 1ln x 1=tx 1(ln t +ln x 1),得ln x 1=t ln t 1-t. 又x 1x 2<1e 2⇔ln x 1+ln x 2<-2⇔2ln x 1+ln t <-2⇔2t ln t 1-t+ln t <-2⇔ln t -2(t -1)t +1>0.设g (t )=ln t -2(t -1)t +1(t >1), 则g ′(t )=(t -1)2t (t +1)2>0. ∴当t >1时,g (t )单调递增,g (t )>g (1)=0,∴ln t -2(t -1)t +1>0.故x 1x 2<1e 2.法二 构造函数F (x )=f (x )-f ⎝ ⎛⎭⎪⎫1e 2x , 则F ′(x )=f ′(x )+1e 2x 2f ′⎝ ⎛⎭⎪⎫1e 2x =1+ln x +1e 2x 2·⎝ ⎛⎭⎪⎫1+ln 1e 2x =(1+ln x )·⎝ ⎛⎭⎪⎫1-1e 2x 2, 当0<x <1e 时,1+ln x <0,1-1e 2x 2<0,则F ′(x )>0,得F (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递增, ∴F (x )<F ⎝ ⎛⎭⎪⎫1e =0, ∴f (x )<f ⎝ ⎛⎭⎪⎫1e 2x ⎝ ⎛⎭⎪⎫0<x <1e , 将x 1代入上式得f (x 1)<f ⎝ ⎛⎭⎪⎫1e 2x 1, 又f (x 1)=f (x 2),∴f (x 2)<f ⎝ ⎛⎭⎪⎫1e 2x 1, 又x 2>1e ,1e 2x 1>1e , 且f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,∴x 2<1e 2x 1,∴x 1x 2<1e 2. 训练3 已知函数f (x )=ln x x -m ⎝ ⎛⎭⎪⎫m ∈⎝ ⎛⎭⎪⎫0,1e 的两个零点为x 1,x 2,证明:ln x 1+ln x 2>2.证明 不妨设x 1<x 2,由题意知⎩⎪⎨⎪⎧ln x 1=mx 1,ln x 2=mx 2.则ln x 1x 2=m (x 1+x 2),ln x 2x 1=m (x 2-x 1)⇒m =ln x 2x 1x 2-x 1. 欲证ln x 1+ln x 2>2,只需证ln x 1x 2>2,只需证m (x 1+x 2)>2,即证x 1+x 2x 2-x 1ln x 2x 1>2. 即证1+x 2x 1x 2x 1-1 ln x 2x 1>2, 设t =x 2x 1>1, 则只需证ln t >2(t -1)t +1, 即证ln t -2(t -1)t +1>0.记u (t )=ln t -2(t -1)t +1(t >1),则u ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0.所以u(t)在(1,+∞)上单调递增,所以u(t)>u(1)=0,所以原不等式成立,故ln x1+ln x2>2.类型四对数均值不等式对数均值不等式可用对称化构造或比值换元进行证明,在解答题中,一般要先证明后应用.例4 (2022·南京质检改编)已知f(x)=a-1x-ln x有两个零点x1,x2,且x1<x2,求证:2<x1+x2<3e a-1-1.证明函数f(x)定义域为(0,+∞).∵a=1x1+ln x1=1x2+ln x2,∴x1x2=x2-x1ln x2-ln x1,由对数均值不等式知:x1x2<x2-x1ln x2-ln x1,∴x1x2<x1x2,∴x1x2>1,∴x1+x2>2x1x2>2.令f(x)=0,即ax-1-x ln x=0,设h(x)=ax-1-x ln x,x>0,则h′(x)=a-1-ln x,其在(0,+∞)上单调递减,且h′(x)的零点为p=e a-1,∴h(x)在(0,p)单调递增,在(p,+∞)单调递减,且a-1-ln p=0(*)∴x 1<p <x 2,由对数均值不等式知:ln x 1-ln p x 1-p >2x 1+p, ∴ln x 1<2(x 1-p )x 1+p+ln p , ∴a -1x 1<2(x 1-p )x 1+p+ln p , 化简得:(2+ln p -a )x 21-(2p +ap -p ln p -1)x 1+p >0,把(*)式代入上式得:x 21-(3p -1)x 1+p >0;同理可得:x 22-(3p -1)x 2+p <0,∴x 22-(3p -1)x 2+p <x 21-(3p -1)x 1+p ,∴(x 2-x 1)(x 2+x 1)<(3p -1)(x 2-x 1),∵x 1<x 2,∴x 1+x 2<3e a -1-1.综上所述,2<x 1+x 2<3e a -1-1.训练4 试用对数均值不等式证明例2.证明 不妨设x 1>x 2,∵ln x 1-ax 1=0,ln x 2-ax 2=0,∴ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),∴ln x 1-ln x 2x 1-x 2=a =ln x 1+ln x 2x 1+x 2, 由对数均值不等式可得x 1+x 22>x 1-x 2ln x 1-ln x 2=x 1+x 2ln x 1+ln x 2,∴ln x 1+ln x 2>2,即ln(x 1x 2)>2,故x 1x 2>e 2.一、基本技能练1.已知函数f (x )=2x +ln x ,若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>4.证明 由题知f ′(x )=-2x 2+1x =x -2x 2,则f (x )在(0,2)上为减函数,在(2,+∞)上为增函数.由函数f (x )=2x +ln x 的单调性可知,若f (x 1)=f (x 2),设x 1<x 2,则必有0<x 1<2<x 2,所以4-x 1>2,则f (x 1)-f (4-x 1)=2x 1+ln x 1-24-x 1-ln(4-x 1). 令h (x )=2x -24-x+ln x -ln(4-x )(0<x <2), 则h ′(x )=-2x 2-2(4-x )2+1x +14-x =-2(4-x )2-2x 2+x (4-x )2+x 2(4-x )x 2(4-x )2=-8(x -2)2x 2(4-x )2<0, 所以函数h (x )在(0,2)上为减函数,所以h (x )>h (2)=0,所以f (x 1)-f (4-x 1)>0,则f (x 1)>f (4-x 1),又f (x 1)=f (x 2),所以f (x 2)>f (4-x 1),则x 2>4-x 1,所以x 1+x 2>4.2.已知函数f (x )=e x e x ,f (x 1)=f (x 2)=t (0<x 1<x 2,0<t <1).证明:x 1+x 2>2x 1x 2.证明 因为x 2>x 1>0,依题意得⎩⎪⎨⎪⎧e x 1=t e x 1,e x 2=t e x 2⇒ ⎩⎪⎨⎪⎧1+ln x 1=ln t +x 1,1+ln x 2=ln t +x 2,两式相减得ln x 1-ln x 2=x 1-x 2,由对数均值不等式得x 1x 2<x 1-x 2ln x 1-ln x 2=1<x 1+x 22, ∴x 1x 2<1,即1x 1x 2>1,且x 1+x 2>2, 故x 1+x 2x 1x 2>2, 所以x 1+x 2>2x 1x 2.3.(2022·宁波调研)已知函数f (x )=x -ln x -a 有两个不同的零点x 1,x 2.(1)求实数a 的取值范围;(2)证明:x 1+x 2>a +1.(1)解 ∵函数f (x )=x -ln x -a ,∴f′(x)=1-1x=x-1x,当x∈(0,1)时,f′(x)<0,f(x)为减函数;当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.故当x=1时,函数f(x)=x-ln x-a取最小值f(1)=1-a,若函数f(x)=x-ln x-a有两个不同的零点x1,x2.则1-a<0,即a>1.故实数a的取值范围为(1,+∞).(2)证明由(1)可设0<x1<1<x2,则x1-ln x1=a,且x2-ln x2=a,若证x1+x2>a+1,即证x2>1-ln x1,构造函数g(x)=f(x)-f(1-ln x),0<x<1,所以g(x)=x-ln x-(1-ln x)+ln(1-ln x)=x-1+ln(1-ln x),所以g′(x)=1-1x(1-ln x),0<x<1,令h(x)=x(1-ln x),则h′(x)=-ln x>0,所以h(x)单调递增,所以0<h(x)<h(1)=1.所以g′(x)<0,所以g(x)>g(1)=0,即f(x)>f(1-ln x),0<x<1,又0<x1<1<x2,所以f(x2)=f(x1)>f(1-ln x1).因为f(x)在区间(1,+∞)上单调递增,所以x2>1-ln x1,故原不等式得证.二、创新拓展练4.已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,求证:x1+x2<2.(1)解f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①当a=0时,f(x)=(x-2)e x,f(x)只有一个零点.②当a>0时,f′(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.因为f(1)=-e,f(2)=a,故在(1,+∞)上有一个零点.取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a⎝ ⎛⎭⎪⎫b2-32b>0,故在(-∞,1)上有一个零点,故f(x)存在两个零点.③当a<0时,由f′(x)=0,得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,f(x)在(1,+∞)上单调递增.当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,所以f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明不妨设x1<x2,由(1)知x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)上单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.因为f(2-x2)=-x2e2-x2+a(x2-1)2,f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,x>1,则g′(x)=(x-1)(e2-x-e x),当x>1时,g′(x)<0,g(x)单调递减.因为g(1)=0,所以当x>1时,g(x)<0,从而g(x2)=f(2-x2)<0,故x1+x2<2.。

(完整版)极值点偏移问题

(完整版)极值点偏移问题

极值点偏移问题总结一、 判定方法1、极值点偏移的定义对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,〔1〕假设0212x x x ≠+,那么称函数)(x f y =在区间),(21x x 上极值点0x 偏移; 〔2〕 假设0212x xx >+,那么函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;〔3〕假设0212x x x <+,那么函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。

2、极值点偏移的判定定理证明:〔1〕因为可导函数)(x f y =,在区间),(b a 上只有一个极大〔小〕值点0x ,那么函数)(x f y =的单调递增〔减〕区间为),(0x a ,单调递减〔增〕区间为),(0b x ,又b x x a <<<21,有),(221b a x x ∈+由于0)2('21>+x x f ,故),(2021x a xx ∈+,所以021)(2x x x ><+,即函数极大〔小〕值点0x 右〔左〕偏。

证明:〔1〕因为对于可导函数)(x f y =,在区间),(b a 上只有一个极大〔小〕值点0x ,那么函数)(x f y =的单调递增〔减〕区间为),(0x a ,单调递减〔增〕区间为),(0b x ,又b x x a <<<21,有01x x <,且0202x x x <-,又)2()(201x x f x f -<,故2012)(x x x -><,所以021)(2x x x ><+,即函数极大〔小〕值点0x 右〔左〕偏. 结论〔2〕证明略。

二、 运用判定定理判定极值点偏移的方法1.方法概述:〔1〕求出函数()f x 的极值点;〔2〕构造一元差函数00()()()F x f x x f x x =+-- 〔3〕确定函数()F x 的单调性;〔4〕结合(0)0F =,判断()F x 的符号,从而确定00(),()f x x f x x -+的大小关系。

极值点偏移经典例题

极值点偏移经典例题

极值点偏移经典例题
极值点的偏移是一个常见的优化问题,在实际应用中有广泛的应用。

以下是一个经典的例题:
问题描述:
假设有一个平面上的函数 f(x, y),求函数的极小值点 P1。

现在,我们要在给定的条件下,求函数的极小值点 P2,使得 P2 距离 P1 最远。

解题思路:
1. 首先,需要找到函数的极小值点 P1。

可以使用数值优化的方法,如梯度下降法或牛顿法,求解函数的梯度为零的点。

2. 找到极小值点 P1 后,计算 P1 到其他点的距离,并选取距离 P1 最远的点作为 P2 的初始解。

3. 使用优化算法,如模拟退火算法、遗传算法或粒子群优化算法等,在给定的条件下,求解函数的极小值点 P2。

可以将函数的极小值问题转化为一个约束优化问题,加入对 P1 到 P2 距离的约束条件。

4. 循环迭代优化过程,直到找到满足条件的极小值点 P2。

注意事项:
1. 需要注意函数可能存在多个极小值点的情况,需要根据实际情况选择合适的优化算法。

2. 在计算过程中,由于函数可能存在复杂的形式,可能需要进行函数的近似或简化处理。

3. 在设置约束条件时,需要合理选择约束条件的范围,以保证优化过程的有效性。

总结:
极值点偏移是一个常见的优化问题,需要综合运用数值优化方法和约束优化方法,以找到满足条件的极小值点。

根据实际问题的复杂程度和条件限制,选择合适的优化算法和约束条件设置方法,以求得最优解。

微专题极值点偏移题型归纳

微专题极值点偏移题型归纳

极值点偏移问题梳理极值点偏移的含义众所周知,函数/(x)满足泄义域内任意自变量X都有f(x) =则函数f(x)关于直线兀=加对称:可以理解为函数/(x)在对称轴两侧,函数值「变化快慢相同,且若/(x)为单峰函数,则x = m 必为/(x)的极值点.如二次函数/(X)的顶点就是极值点%,若f(x) = c的两根的中点为送空,则刚好有土严=忑,即极值「点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数f(x)的极值点为加,且函数_/(x)满足定义域内x = m左侧的任意自变昼x都有fM > f(2〃? - x)或/(J)<f(2m-x),则函数/(x)极值点m左右侧变化快慢不同.故单蜂函数/(X)泄义域内任意不同的实数旺宀满足/(x,) = /(x2),则送仝与极值点川必有确定的「大小关系:若加<土仝,则称为极值点左偏;若加>土亠,则称为极值点右偏. 如函数g(x) = —的极2 2 e值点X。

= 1刚好在方程g(x) = c的两根中点土护的左边,我们称之为「极值点左偏.极值点偏移问题的一般题设形式:匚若函数/(X)存在两个零点旺,心且旺工勺,求证^ K+心>2兀(X。

为函数/(X)的极值点);2.若函数/(X)中存在几孔且山式七满足/(^!)= /(%2),求证:X] +x2 > 2x0 (兀)为函数/(X)的极值点):3.若函数于⑴存在两F个零点旺,勺且州工勺,令尤0 ; ' '2 求证:/'(Xo)>O: 4.若函数f(X)中存在坷,勺且Xj X2满足/(x() = f(x2),令x0 = -A' ^A:,求证:广(勺)>0.运用判定定理判定极值点偏移的方法1、方法概述:(1)求岀函数/(X)的极值点入:(2)构造一元差函数F(x) = /(x n + x)-/(x0-x):(3)确「左函数F(x)的单调性:(4)结合F(0) = 0 ,判断F(x)的符号,从而确泄/(x°+x)、/(X0-A)的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数f(x)满足/(%,) = f(x2), X。

专题07 极值点偏移问题 (解析版)

专题07 极值点偏移问题 (解析版)

导数及其应用 专题七:极值点偏移问题一、知识储备1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。

若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210xx x +≠。

如下图所示。

图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。

2、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.[提醒] 若要证明122x x f +⎛⎫'⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负. 二、例题讲解1.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性;(2)当1m =时,若在()f x 定义域内存在两实数1x ,2x 满足12x x <且()()12f x f x =,证明:122x x +>.【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得m x m =,当0mx m <<时,()0f x '>,当m x m >时,()0f x '<,于是得()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减;(2)分析 :如图:1201x x <<< 要证122x x +> 只需证:122x x -<由于101x <<,则112x <-即只需证1212x x <-< 如图,只需证12(2)()f x f x ->;由于()()12f x f x = 只需证11(2)()f x f x ->此时可构造函数()()(2)F x f x f x =--(即用x 替代了上式1x ) 只需证:在01x <<,()()(2)0F x f x f x =--<。

2023届高考数学导数满分通关:极值点偏移问题概述

2023届高考数学导数满分通关:极值点偏移问题概述

专题23 极值点偏移问题概述一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏.深层理解1.已知函数f (x )的图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图(1).2.若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图(2)(3).(1)极值点左偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)>f '(x 0)=0.(2)极值点右偏:x 1+x 2>2x 0,x =x 1+x 22处切线与x 轴不平行. 若f (x )上凸(f '(x )递减),则f '(x 1+x 22)<f '(x 0)=0,若f (x )下凸(f '(x )递增),则f '(x 1+x 22)<f '(x 0)=0.二、极值点偏移问题的一般题设形式(1)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2且x 1≠x 2,令x 0=x 1+x 22,求证:f '(x 0)>0; (4)若函数f (x )定义域中存在x 1,x 2且x 1≠x 2,满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f '(x 0)>0. 三、极值点偏移问题的一般解法 1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0. (2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而极值点左偏得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立. 只证:当a b ≠(, )2a bL a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减, 故()(1)0f x f <=,从而不等式①成立; (2)再证:(, )2a bL a b +<②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增, 故()(1)0g x g <=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R ,(, )2a bL a b +≤≤成立,当且仅当a b =时,等号成立.[例1] (2010天津)已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.解析 (1)f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1, ∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )有极大值f (1)=1e,f (x )无极小值.(2)方法一 (对称化构造法)分析法 欲证x 1+x 2>2,即证x 1>2-x 2,由(1)可设0<x 1<1<x 2,故x 1,2-x 2∈(0,1), 又因为f (x )在(0,1)上单调递增,故只需证f (x 1)>f (2-x 2),又因为f (x 1)=f (x 2), 故也即证f (x 2)>f (2-x 2),构造函数F (x )=f (x )-f (2-x ),x ∈(1,+∞), 则等价于证明F (x )>0对x ∈(1,+∞)恒成立.由F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, 则F (x )在(1,+∞)上单调递增,所以F (x )>F (1)>0,即已证明F (x )>0对x ∈(1,+∞)恒成立,故原不等式x 1+x 2>2亦成立. 综合法 构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ), ∵当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0,∴F (x )在(1,+∞)上为增函数,∴F (x )>F (1)=0,故当x >1时,f (x )>f (2-x ),(*) 由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2,将x 2代入(*)式可得f (x 2)>f (2-x 2),又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增,∴x 1>2-x 2,∴x 1+x 2>2. 总结提升 本题(2)证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用x 1,2-x 2,其取值范围都为(0,1),若将所证不等式化为x 1>2-x 2,则x 2,2-x 1的取值范围都为(1,+∞),此时就必须利用函数h (x )在(1,+∞)上的单调性来求解.对于x 1+x 2型不等式的证明常用对称化构造法去解决,书写过程可用分析法或用综合法.方法二 (比值代换法)设0<x 1<1<x 2,f (x 1)=f (x 2)即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0,设g (t )=ln t -2(t -1)t +1 (t >1),∴g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,∴当t >1时,g (t )为增函数,∴g (t )>g (1)=0,∴ln t -2(t -1)t +1>0,故x 1+x 2>2.总结提升 对于(2)的证明,也经常用比值代换法证明.比值代换的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.方法三 (对数均值不等式法)设0<x 1<1<x 2,f (x 1)=f (x 2),即1212e e ,x x x x --=取对数得ln x 1-x 1=ln x 2-x 2, 可得,1=x 1-x 2ln x 1-ln x 2,利用对数平均不等式得,1=x 1-x 2ln x 1-ln x 2<x 1+x 22,即证,x 1+x 2>2.总结提升 对于(2)的证明,也可用对数均值不等式法证明,用此法往往可秒证.但必须用前给出证明. [例2] 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.思维引导(2) 证明x 1x 2>e 2,想到把双变量x 1,x 2转化为只含有一个变量的不等式证明. 解析 (1)f ′(x )=1x -a =1-ax x (x >0),①若a ≤0,则f ′(x )>0,不符合题意;②若a >0,令f ′(x )=0,解得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e . 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)法一:对称化构造法1由x 1,x 2是方程f (x )=0的两个不同实根得a =ln x x ,令g (x )=ln xx ,g (x 1)=g (x 2),由于g ′(x )=1-ln xx 2,因此,g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,设1<x 1<e<x 2,需证明x 1x 2>e 2,只需证明x 1>e 2x 2∈(1,e),只需证明f (x 1) > f (e 2x 2), 即f (x 2)>f (e 2x 2),即f (x 2)-f (e 2x 2)>0.令h (x )=f (x )-f (e 2x )(x ∈(1,e)),h ′(x )=(1-ln x )( e 2-x 2)x 2e 2>0.故h (x )在(1,e)上单调递增,故h (x ) <h (0)=0.即f (x )<f (e 2x ),令x =x 1,则f (x 2)=f (x 1) <f (e 2x 1)因为x 2,e 2x 1∈(e ,+∞) ,f (x )在(e ,+∞)上单调递减,所以x 1>e 2x 2,即x 1x 2>e 2.对称化构造法2由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根. 令t 1=ln x 1,t 2=ln x 2.设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.g ′(x )=(1-x )e -x ,易得g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g (x )在x =1处取得极大值g (1)=1e.当x →-∞时,g (x )→-∞;当x →+∞时,g (x )→0且g (x )>0.由g (t 1)=g (t 2),t 1≠t 2,不妨设t 1<t 2,作出函数g (x )的图象如图所示,由图知必有0<t 1<1<t 2, 令F (x )=g (1+x )-g (1-x ),x ∈(0,1],则F ′(x )=g ′(1+x )-g ′(1-x )=xe x +1(e 2x -1)>0,所以F (x )在(0,1]上单调递增,所以F (x )>F (0)=0对任意的x ∈(0,1]恒成立, 即g (1+x )>g (1-x )对任意的x ∈(0,1]恒成立.由0<t 1<1<t 2,得1-t 1∈(0,1],所以g [1+(1-t 1)]=g (2-t 1)>g [1-(1-t 1)]=g (t 1)=g (t 2), 即g (2-t 1)>g (t 2),又2-t 1∈(1,+∞),t 2∈(1,+∞),且g (x )在(1,+∞)上单调递减, 所以2-t 1<t 2,即t 1+t 2>2.总结提升 上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点: (1)求函数g (x )的极值点x 0;(2)构造函数F (x )=g (x 0+x )-g (x 0-x ); (3)确定函数F (x )的单调性;(4)结合F (0)=0,确定g (x 0+x )与g (x 0-x )的大小关系.其口诀为:极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随. 法二:比值换元法1不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令t =x 1x 2(t >1),则不等式变为ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.总结提升 用比值换元法求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示出来,这是解决问题的基础,若只用一个极值点表示参数,如得到a =ln x 1x 1之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数a 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于x 1x 2的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a . (2)抓商构元:令t =x 1x 2,消掉变量x 1,x 2,构造关于t 的函数h (t ).(3)用导求解:利用导数求解函数h (t )的最小值,从而可证得结论. 比值换元法2由题知a =ln x 1x 1=ln x 2x 2,则ln x 2ln x 1=x 2x 1,设x 1<x 2,t =x 2x 1(t >1),则x 2=tx 1,所以ln tx 1ln x 1=t ,即ln t +ln x 1ln x 1=t ,解得ln x 1=ln t t -1,ln x 2=ln tx 1=ln t +ln x 1=ln t +ln t t -1=t ln tt -1.由x 1x 2>e 2,得ln x 1+ln x 2>2,所以t +1t -1ln t >2,所以ln t -2(t -1)t +1>0,令h (t )=ln t -2(t -1)t +1,t >1,所以h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=ln1-0=0,即ln t -2(t -1)t +1>0(t >1),因此原不等式x 1x 2>e 2得证.法三:差值换元法由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t 1=ln x 1,t 2=ln x 2,设g (x )=x e -x ,则g (t 1)=g (t 2),从而x 1x 2>e 2⇔ln x 1+ln x 2>2⇔t 1+t 2>2. 下证:t 1+t 2>2.由g (t 1)=g (t 2),得t 11e t -=t 22e t -,化简得21e t t -=t 2t 1,①不妨设t 2>t 1,由法二知,0<t 1<1<t 2.令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1,解得t 1=s e s -1.则t 1+t 2=2t 1+s =2s e s -1+s ,故要证t 1+t 2>2,即证2s e s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0,②令G (s )=2s +(s -2)(e s -1)(s >0),则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0,从而G (s )在(0,+∞)上单调递增, 所以G (s )>G (0)=0,所以②式成立,故t 1+t 2>2.总结提升 该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1. (3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论.函数的极值点偏移问题,其实质是导数的应用问题,解题的策略是把含双变量的等式或不等式转化为仅含一个变量的等式或不等式进行求解,解题时要抓住三个关键量:极值点、根差、根商.[例3] 已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设f (x )的两个零点是x 1,x 2,求证:f ′⎝⎛⎭⎫x 1+x 22<0.解析 (1)函数f (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), f ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 则f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)法一:构造差函数法由(1)易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减,不妨设0<x 1<1a <x 2, f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a ⇔x 1+x 2>2a ,故要证f ′⎝⎛⎭⎫x 1+x 22<0,只需证x 1+x 2>2a 即可.构造函数F (x )=f (x )-f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , F ′(x )=f ′(x )-⎣⎡⎦⎤f ⎝⎛⎭⎫2a -x ′=f ′(x )+f ′⎝⎛⎭⎫2a -x =2ax (ax -2)+2x (2-ax )=2(ax -1)2x (2-ax ), ∵x ∈⎝⎛⎭⎫0,1a ,∴F ′(x )=2(ax -1)2x (2-ax )>0,∴F (x )在⎝⎛⎭⎫0,1a 上单调递增, ∴F (x )<F ⎝⎛⎭⎫1a =f ⎝⎛⎭⎫1a -f ⎝⎛⎭⎫2a -1a =0,即f (x )<f ⎝⎛⎭⎫2a -x ,x ∈⎝⎛⎭⎫0,1a , 又x 1,x 2是函数f (x )的两个零点且0<x 1<1a <x 2,∴f (x 1)=f (x 2)<f ⎝⎛⎭⎫2a -x 1, 而x 2,2a -x 1均大于1a ,∴x 2>2a -x 1,∴x 1+x 2>2a ,得证.法二:对数平均不等式法易知a >0,且f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 不妨设0<x 1<1a <x 2,f ′⎝⎛⎭⎫x 1+x 22<0⇔x 1+x 22>1a .因为f (x )的两个零点是x 1,x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以ln x 1-ln x 2+2(x 1-x 2)=a (x 21-x 22+x 1-x 2),所以a =ln x 1-ln x 2+2(x 1-x 2)x 21-x 22+x 1-x 2,以下用分析法证明,要证x 1+x 22>1a , 即证x 1+x 22>x 21-x 22+x 1-x 2ln x 1-ln x 2+2(x 1-x 2),即证x 1+x 22>x 1+x 2+1ln x 1-ln x 2x 1-x 2+2,即证2x 1+x 2<ln x 1-ln x 2x 1-x 2+2x 1+x 2+1,只需证2x 1+x 2<ln x 1-ln x 2x 1-x 2,即证x 1+x 22>x 1-x 2ln x 1-ln x 2,根据对数平均不等式,该式子成立,所以f ′⎝⎛⎭⎫x 1+x 22<0.法三:比值代换法因为f (x )的两个零点是x 1,x 2,不妨设0<x 1<x 2,所以ln x 1-ax 21+(2-a )x 1=ln x 2-ax 22+(2-a )x 2,所以a (x 22-x 21)+(a -2)(x 2-x 1)=ln x 2-ln x 1,所以ln x 2-ln x 1x 2-x 1=a (x 2+x 1)+a -2,f ′(x )=1x -2ax +2-a ,f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2-a (x 1+x 2)-(a -2)=2x 1+x 2-ln x 2-ln x 1x 2-x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎫x 2x 1-11+x 2x 1-ln x 2x 1, 令t =x 2x 1(t >1),g (t )=2(t -1)1+t -ln t ,则当t >1时,g ′(t )=-(t -1)2t (t +1)2<0,。

数学高考专题极值点偏移

数学高考专题极值点偏移

极值点偏移专题(一)1、极值点偏移以函数函数为例,极值点为0,如果直线与它的图像相交,2x y =1=y 交点的横坐标为和,我们简单计算:.也就是说极值点刚好位1-10211=+-于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.那么,如何判断一道题是否属于“极值点偏移”问题呢?其具体特征就是:2、主元法破解极值点偏移问题2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.例1.(2016全国1-21)已知函数有两个零点.()()()221xf x x e a x =-+- (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明:. ()f x 122x x +<(1)解析:详细解答⑴方法一:由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+①若,那么,只有唯一的零点,不合题意; 0a =()()0202x f x x e x =⇔-=⇔=()f x 2x =②若,那么,所以当时,,单调递增0a >20x x e a e +>>1x >()'0f x >()f x 当时,,单调递减,即:1x <()'0f x <()f xx(),1-∞1()1,+∞ ()'f x-+()f x ↓ 极小值 ↑故在上至多一个零点,在上至多一个零点()f x ()1,+∞(),1-∞由于,,则,()20f a =>()10f e =-<()()210f f <根据零点存在性定理,在上有且仅有一个零点. ()f x ()1,2而当时,,,1x <x e e <210x -<-<故()()()()()()()222212111x f x x e a x e x a x a x e xe =-+->-+-=-+--则的两根,, ,因为()0f x =11t =+21t =12t t <,故当或时,0a >1x t <2x t >()()2110a x e x e -+-->因此,当且时,1x <1x t <()0f x >文末获取Word文档又,根据零点存在性定理,在有且只有一个零点.()10f e =-<()f x (),1-∞此时,在上有且只有两个零点,满足题意.()f x R ③ 若,则,02ea -<<()ln 2ln 1a e -<=当时,,,()ln 2x a <-()1ln 210x a -<--<()ln 2220a x e a e a -+<+=即,单调递增;()()()'120x f x x e a =-+>()f x 当时,,,即()ln 21a x -<<10x -<()ln 2220a x e a e a -+>+=,单调递减;()()()'120x f x x e a =-+<()f x 当时,,,即,单调递增.1x >10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 即:x()(),ln 2a -∞- ()ln 2a -()()ln 2,1a -1()1,+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当时,在处取到最大值,那么1x ≤()f x ()ln 2x a =-()ln 2f a -⎡⎤⎣⎦恒成立,即无解()()ln 20f x f a -<⎡⎤⎣⎦≤()0f x =而当时,单调递增,至多一个零点,此时在上至多一个零点,1x >()f x ()f x R 不合题意.④ 若,那么2ea =-()ln 21a -=当时,,,即,单()1ln 2x a <=-10x -<()ln 2220a x e a e a -+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a >=-10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 调递增又在处有意义,故在上单调递增,此时至多一个零点,不合题()f x 1x =()f x R 意.⑤ 若,则2ea <-()ln 21a ->当时,,,即,单1x <10x -<()ln 212220a x e a e a e a -+<+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a <<-10x ->()ln 2220a x e a e a -+<+=()'0f x <()f x 调递减当时,,,即,()ln 2x a >-()1ln 210x a ->-->()ln 2220a x e a ea -+>+=()'0f x >单调递增,即:()f xx(),1-∞1()()1,ln 2a - ()ln 2a -()()ln 2,a -+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑故当时,在处取到最大值,那么()ln 2x a -≤()f x 1x =()1f e =-()0f x e -<≤恒成立,即无解()0f x =当时,单调递增,至多一个零点,此时在上至多一个零()ln 2x a >-()f x ()f x R 点,不合题意.综上所述,当且仅当时符合题意,即的取值范围为.0a >a ()0,+∞简要解析(Ⅰ)方法二:.'()(1)2(1)(1)(2)x xf x x e a x x e a =-+-=-+(i )设,则,只有一个零点.0a =()(2)xf x x e =-()f x (ii )设,则当时,;当时,.所以在0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x 上单调递减,在上单调递增.(,1)-∞(1,)+∞又,,取满足且,则 (1)f e =-(2)f a =b 0b <ln2a b <, 223()(2)(1)()022a fb b a b a b b >-+-=->故存在两个零点.()f x (iii )设,由得或.0a <'()0f x =1x =ln(2)x a =-若,则,故当时,,因此在上单调递2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞增.又当时,,所以不存在两个零点.1x ≤()0f x <()f x 若,则,故当时,;当时,2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞.因此在单调递减,在单调递增.又当时,'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤,所以不存在两个零点.综上,的取值范围为.()0f x <()f x a (0,)+∞⑵ 方法一:由已知得:,不难发现,,()()120f x f x ==11x ≠21x ≠故可整理得:()()()()121222122211xx x e x e a x x ---==--设,则,那么, ()()()221x x e g x x -=-()()12g x g x =()()()2321'1x x g x e x -+=-当时,,单调递减;当时,,单调递增. 1x <()'0g x <()g x 1x >()'0g x >()g x 设,构造代数式:0m > ()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设, ()2111mm h m e m -=++0m >则,故单调递增,有.()()2222'01m m h m e m =>+()h m ()()00h m h >=因此,对于任意的,.0m >()()11g m g m +>-由可知、不可能在的同一个单调区间上,不妨设,则()()12g x g x =1x 2x ()g x 12x x <必有121x x <<令,则有110m x =->()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦而,,在上单调递增,因此:121x ->21x >()g x ()1,+∞()()121222g x g x x x ->⇔->整理得:.122x x +<(2)方法二:不妨设,由(1)知,12x x <,在上单调递减,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞()f x (),1-∞所以等价于,即. 122x x +<()()122f x f x >-()()222f x f x >-由于,而,()()22222221x f x x ea x --=-+-()()()2222221x f x x e a x =-+-所以.()()()222222222x x f x f x x e x e ---=---令,则,()()22xx g x xex e -=---()()()21x x g x x e e -'=--所以当时,,而,1x >()0g x '<()10g =故当时,.从而,故. 1x >()()10g x g <=()()2220g x f x =-<122x x +<(二)对解析的分析本问待证是两个变量的不等式,官方解析的变形是,借助于函数的特性及其122x x <-单调性,构造以为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为2x ,同理构造以为主元的函数来处理.此法与官方解析正是极值点偏移问题的处212x x <-1x 理的通法.不妨设,由(1)知,,在12x x <()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞()f x 上单调递增,所以等价于,即. ()1,+∞122x x +<()()212f x f x <-()()1120f x f x --<令,则()()()()()2221xx u x f x f x xex e x -=--=--<,()()()210x x u x x e e -'=-->所以,即, ()()10u x u <=()()()21f x f x x <-<所以; ()()()1212f x f x f x =<-所以,即.212x x <-122x x +<变式、(2010年天津理科21题)已知函数()()xf x xe x R -=∈(Ⅰ)求函数的单调区间和极值;()f x (Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当()y g x =()y f x =1x =时,1x >()()f x g x > (Ⅲ)如果,且,证明.12x x ≠12()()f x f x =122x x +>解:(21)本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力,满分14分 (Ⅰ)解:f ′,令f ′(x )=0,解得x =1()(1)xx x e-=-当x 变化时,f ′(x ),f (x )的变化情况如下表 X(),1-∞ 1()1,+∞f ’(x ) + 0 -f (x )极大值所以f (x )在()内是增函数,在()内是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档