知识讲解 动量 动量定理(基础)

合集下载

知识讲解动量定理及其应用基础2

知识讲解动量定理及其应用基础2

动量定理及其应用编稿:张金虎审稿:吴嘉峰【学习目标】1.理解动量的概念,知道动量的定义,知道动量是矢量;2.理解冲量的概念,知道冲量的定义,知道冲量是矢量;3.知道动量变化量也是矢量,理解动量定理的确切含义和表达式,知道动量定理适用于变力的计算;4.)会用动量定理解释现象和处理有关问题.【要点梳理】要点一、动量、动量定理1.动量及动量变化(1)动量的定义:物体的质量和运动速度的乘积叫做物体的动量,记作pmv?.动量是动力学中反映物体运动状态的物理量,是状态量.在谈及动量时,必须明确是物体在哪个时刻或哪个状态所具有的动量.在中学阶段,动量表达式中的速度一般是以地球为参照物的.(2)动量的矢量性:动量是矢量,它的方向与物体的速度方向相同,服从矢量运算法则.(3)动量的单位:动量的单位由质量和速度的单位决定.在国际单位制中,动量的单位是千克·米/秒,符为kgm/s?.(4)动量的变化p?:动量是矢量,它的大小pmv?,方向与速度的方向相同.因此,速度发生变化时,物体的动量也发生变化.速度的大小或方向发生变化时,速度就发生变化,物体具有的动量的大小或方向也相应发生了变化,我们就说物体的动量发生了变化.设物体的初动量11pmv?,末动量22pmv?,则物体动量的变化2121pppmvmv???--.由于动量是矢量,因此,上式一般意义上是矢量式.2.冲量(1)冲量的定义:力和力的作用时间的乘积叫做力的冲量,记作IFt??.冲量是描述力对物体作用的时间累积效果的物理量.(2)冲量的矢量性:因为力是矢量,所以冲量也是矢量,但冲量的方向不一定就是力的方向.(3)冲量的单位:由力的单位和时间的单位共同决定.在国际单位制中,冲量的单位是牛·秒,符为Ns?.(4)在理解力的冲量这一概念时,要注意以下几点:①冲量是过程量,它反映的是力在一段时间内的积累效果,所以它取决于力和时间两个因素.较大的力在较短时间内的积累效果,可以和较小的力在较长时问内的积累效果相同.求冲量时一定要明确是哪一个力在哪一段时间内的冲量.②根据冲量的定义式IFt?,只能直接求恒力的冲量,无论是力的大小还是方向发生变化时,都不能直接用IFt?求力的冲量.③当力的方向不变时,冲量的方向跟力的方向相同,当力的方向变化时,冲量的方向一般根据动量定理来判断.(即冲量的方向是物体动量变化的方向)3.动量变化与冲量的关系——动量定理(1)动量定理的内容:物体所受合外力的冲量等于物体动量的变化.数学表达式为0IFtmvmv??-.式中0mv是物体初始状态的动量,mv是力的作用结束时的末态动量.动量定理反映了物体在受到力的冲量作用时,其状态发生变化的规律,是力在时间上的累积效果.(2)动量定理的理解与应用要点:①动量定理的表达式是一个矢量式,应用动量定理时需要规定正方向.②动量定理公式中F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力.当合外力为变力时,F应该是合外力在作用时间内的平均值.③动量定理的研究对象是单个物体或系统.④动量定理中的冲量是合外力的冲量,而不是某一个力的冲量.在所研究的物理过程中,如果作用在物体上的各个外力的作用时间相同,求合外力的冲量时,可以先求所有外力的合力,然后再乘以力的作用时间,也可以先求每个外力在作用时间内的冲量,然后再求所有外力冲量的矢量和.如果作用在物体上各外力的作用时间不同,就只能先求每一个外力在其作用时间内的冲量,然后再求所有外力冲量的矢量和.⑤动量定理中,是合外力的冲量,是使研究对象的动量发生变化的原因,并非产生动量的原因,不能认为合外力的冲量就是动量的变化.合外力的冲量是引起研究对象状态变化的外在因素,而动量的变化是合外力冲量作用后导致的必然结果.⑥动量定理不仅适用于宏观物体的低速运动,对微观物体和高速运动仍然适用.⑦合外力的冲量是物体动量变化的量度.要点二、有关计算1.动量变化量的计算动量是矢量,当动量发生变化时,动量的变化ppp??末初-,应运用平行四边形定则进行运算.如图所示,当初态动量和末态动量不在一条直线上时,动量变化由平行四边形定则进行运算.动量变化的方向一般与初态动量和末态动量的方向不相同.当初、末动量在同一直线上时可通过正方向的选定,动量变化可简化为带有正、负的代数运算.2.冲量的计算方法(1)若物体受到恒力的作用,力的冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致;若力为同一方向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力则不能直接计算冲量.(2)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(3)冲量的计算公式IFt?既适用于计算某个恒力的冲量,又可以计算合力的冲量.根据IFt?计算冲量时,只考虑该力和其作用时间这两个因素,与该冲量作用的效果无关.(4)冲量的运算服从平行四边形定则.如果物体所受的每一个外力的冲量都在同一条直线上,那么选定正方向后,每个力冲量的方向可以用正负表示,此时冲量的运算就可简化为代数运算.(5)冲量是一过程量,求冲量必须明确研究对象和作用过程,即必须明确是哪个力在哪段时间内对哪个物体的冲量.(6)计算冲量时,一定要明确是计算分力的冲量还是合力的冲量.如果是计算分力的冲量还必须明确是哪个分力的冲量.(7)在Ft?图象下的面积就是力的冲量.如图(a)所示,若求变力的冲量,仍可用“面积法”表示,如图(b)所示.3.动量定理的应用(1)一个物体的动量变化p?与合外力的冲量具有等效代换关系,二者大小相等,方向相同,可以相互代换,据此有:①应用Ip??求变力的冲量:如果物体受到大小或方向改变的力的作用,则不能直接用Ft求变力的冲量,这时可以求出该力作用下物体动量的变化p?,等效代换变力的冲量I.②应用pFt???求恒力作用下的曲线运动中物体动量的变化:曲线运动的物体速度方向时刻在变化,求动量变化ppp??'-需要应用矢量运算方法,比较麻烦.如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化.(2)用动量定理解释相关物理现象的要点.由Ftppp???'-可以看出,当p?为恒量时,作用力F的大小与相互作用的时间t成反比.例如,玻璃杯自一定高度自由下落,掉在水泥地面上,玻璃杯可能破碎,而掉在垫子上就可能不破碎,其原因就是玻璃杯的动量变化虽然相同,但作用时间不同:当F 为恒量时,物体动量的变化与作用时间成正比.例如,叠放在水平桌面上的两物体,如图所示,若施力快速将A水平抽出,物体B几乎仍静止,当物体A抽出后,物体B竖直下落.(3)应用动量定理解题的步骤:①选取研究对象;②确定所研究的物理过程及其始、终状态;③分析研究对象在所研究的物理过程中的受力情况;④规定正方向,根据动量定理列式;⑤解方程,统一单位,求得结果.要点三、与其它相关知识的关联和区别1.几个物理量的区别(1)动量与速度的区别动量和速度都是描述物体运动状态的物理量.它们都是矢量,动量的方向与速度的方向相同.速度是运动学中描述物体运动状态的物理量,在运动学中只需知道物体运动的快慢,而无需知道物体的质量.例如两个运动员跑百米,是比速度的大小,而无需考虑运动员的质量;动量是动力学中描述物体运动状态的物理量,可以直接反映物体受到外力的冲量后,其机械运动的变化情况,动量是与冲量及物体运动变化的原因相联系的.如以相同速度向你滚过来的铅球和足球,你敢用脚踢哪一个?当然是足球,因为足球的质量小,让它停下来所需的冲量小.(2)动量与动能的区别及其联系.①动量是矢量,动能是标量.②动量的改变由合外力的冲量决定,而动能的改变由合外力所做的功决定.③动量和动能与速度一样,它们都是描述物体运动状态的物理量,只是动能是从能量的角度描述物体的状态.物体具有一定的速度,就具有一定的动量,同时还具有一定的动能.例如:质量5 kgm?的小球,在水平地面上运动的速度是10 m/s.则它具有的动量50 kgm/spmv???,它具有的动能2221()250J222k mvpEmvmm????.即22k pEm?或2k pmE?.又如:AB、两物体的质量分别为AB mm、,且AB mm>,当它们具有相同的动能时,由2k pmE?知A物体的动量A p大于B物体的动量B p;反之当它们具有相同的动量时,由22k pEm?可知,A物体的动能kA E小于B物体的动能kB E.(3)冲量与功的区别.①冲量是矢量,功是标量.②由IFt??可知,有力作用,这个力一定会有冲量,因为时间t不可能为零.但是由功的定义式 cosWFs???可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.③冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“Ft?”图象和“Fs?”图象上用面积表示.如图所示,(a)图中的曲线是作用在某一物体上的力F随时间t变化的曲线,图中阴影部分的面积就表示力F在时间21ttt??-内的冲量.(b)图中阴影部分的面积表示力F做的功.2.用动量概念表示牛顿第二定律(1)牛顿第二定律的动量表达式vpFmamtt???????.此式说明作用力F等于物体动量的变化率.即pFt???是牛顿第二定律的另一种表示形式.(2)动量定理与牛顿第二定律的区别与联系.①从牛顿第二定律出发可以导出动量定理,因此牛顿第二定律和动量定理都反映了外力作用与物体运动状态变化的因果关系.②牛顿第二定律反应力与加速度之间的瞬时对应关系;而动量定理则反应力作用一段时间的过程中,合外力的冲量与物体初、末状态的动量变化间的关系.动量定理与牛顿第二定律相比较,有其独特的优点.因在公式0Ft mvmv?-中,只涉及两个状态量mv和0mv及一个过程量Ft.至于这两个状态中间是怎样的过程,轨迹是怎样的,加速度怎样,位移怎样全不考虑.在力F作用的过程中不管物体是做直线运动还是做曲线运动,动量定理总是适用的.动量定理除用来解决在恒力持续作用下的问题外,尤其适合用来解决作用时间短,而力的变化又十分复杂的问题,如冲击、碰撞、反冲运动等.应用时只需知道运动物体的始末状态,无需深究其中间过程的细节.只要动量的变化具有确定的值,就可以用动量定理求冲力或平均冲力,而这是用牛顿第二定律很难解决的.因此,从某种意义上说,应用动量定理解题比牛顿第二定律更为直接,更加简单.③牛顿第二定律只适用于宏观物体的低速运动情况,对高速运动的物体及微观粒子不再适用,而动量定理却是普遍适用的.④牛顿第二定律和动量定理都必须在惯性系中使用.3.动量定理与动能定理的比较动量定理动能定理公式'Ftmvmv??合22211122Fsmvmv??合标矢性矢量式标量式因果关系因合外力的冲量合外力的功(总功)果动量的变化动能的变化应用侧重点涉及力与时间涉及力与位移要点四、应用动量定理解题的步骤①选取研究对象;②确定所研究的物理过程及其始末状态;③分析研究对象在所研究的物理过程中的受力情况;④规定正方向,根据动量定理列式;⑤解方程,统一单位,求得结果。

(完整版)动量基本知识

(完整版)动量基本知识
量进行合成或分解。
而动量变化等于末动量(包括大小和方向)减去初动量 (包括大小和方向)。
例题1——动量变化的一维计算
一个质量是0.1kg的钢球,以6m/s的速度水平向 右运动,碰到一块坚硬的障碍物后被弹回,沿 着同一直线以6 m/s的速度水平向左运动,碰撞 前后钢球的动量有没有变化?变化了多少?
V
结论:2.运动物体的作用效果还与速度有关。
所以,考虑运动物体的作用效果,要同时考虑 其速度及质量,从而引入了一个新的物理量—— 动量。
一、动量——动量是描述物体运动状态的物理量 (1)定义: 物体的质量m和速度V的乘积mV. (2)大小: P=mV V——该状态的瞬时速度。
P是状态量 (3)方向:动量是矢量。
与功的区别
600
例题2——关于抛体运动物体的重力冲量
质量为5kg的小球,从距地面高为20m处 水平抛出,初速度为10m/s,从抛出到落 地过程中,重力的冲量是(C ).
A.60N·s
B.80N·s
C.100N·s D.120N·s
动量定理
实验一
让鸡蛋从一米多高的地方落到地板上肯定 会被打破。现在,在地板上放一块泡沫塑 料垫(一定厚度的软纸)。尽可能把鸡蛋 举得高高的,然后放开手,让鸡蛋落到泡 沫上(纸上)看看鸡蛋会不会被打破。
实验二:
用细线悬挂一个重物,把重物拿到一定高度, 释放后重物下落可以把细线拉断,如果在细线 上端拴一段皮筋,再从同样的高度释放,就不 会断了。
问题:
如图,质量为m,初速度为v小车,受到一个水
平向右的力F,则经过时间t后,速度为V‘,
合力对小车的冲量与小车的动量变化之间有什
么关系? F ma
a F
思考:动量与动能有什 么区别?

第11章 1 动量 动量定理

第11章 1 动量 动量定理
第十一章动量 近代物理
第 1 课时 动量 动量定理
读 基础知识
基础回顾: 一、动量 1.定义:物体的质量与速度的乘积. 2.表达式:p=mv,单位:kg·m/s. 3.动量的性质 (1)矢量性:方向与瞬时速度方向相同. (2)瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻而言的. (3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量. 4.动量与动能、动量的变化量的关系 (1)动量的变化量:Δp=p′-p. (2)动能和动量的关系:Ek=2pm2 . 二、冲量和动量定理 1.冲量 (1)定义:力与力的作用时间的乘积叫做力的冲量. (2)公式:I=Ft. (3)单位:N·s. (4)方向:冲量是矢量,其方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:mv′-mv=F(t′-t)或 p′-p=I. 3.动量定理的理解 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结 果. (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的 矢 量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义. 自查自纠: (1)一个物体的运动状态变化,它的动量一定改 变。( ) (2)动量越大的物体,其速度越大。( ) (3)两物体的动量相 等,动能也一定相等。( ) (4)物体的动量变化量等于某个力的冲量。( ) (5)物体沿水平面运动,重力不做功,重力的冲量也等于零。( ) (6)系统的动量守恒时,机械能也一定守恒。( ) (7)若在光滑水平面上的两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同。( ) 答案 (1)√ (2)× (3)× (4)× (5)× (6)× (7)√

动量定理

动量定理

动量定理动量定理是力对时间的积累效应,使物体的动量发生改变,是高中物理学科学习的重点。

下面就为大家介绍动量定理,希望对大家有所帮助。

【动量定理知识点】1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间Δt内受合力为F合,合力的冲量是F合Δt;质点的初、未动量是mv0、mvt,动量的变化量是ΔP=Δ(mv)=mvt-mv0.根据动量定理得:F合=Δ(mv)/Δt)2.单位:牛·秒与千克米/秒统一:l千克米/秒=1千克米/秒2·秒=牛·秒;3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。

(2)动量定理中的冲量和动量都是矢量。

定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。

这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

(3)动量定理的研究对象一般是单个质点。

求变力的冲量时,可借助动量定理求,不可直接用冲量定义式。

4.应用动量定理的思路:(1)明确研究对象和受力的时间(明确质量m和时间t);(2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);(3)规定正方向,目的是将矢量运算转化为代数运算;(4)根据动量定理列方程(5)解方程。

【动量定理的内容】动量定理反应的是力在时间维度上的积累效果。

(1)基本概念描述:物体所受合外力的冲量,等于物体的动量变化量。

即F合t=I=Δp;(2)我们还可以这样来表述:对作用在物体上的各个力的冲量的代数和,等于动量的改变量。

在外力不恒定,或者各个力作用时间不同时,优先选择后者。

提醒:动量与冲量都是矢量,是有方向的,因此在解题时首先要规定好正方向。

【动量定理的表达式】基本表达式:F合t=I=Δp;当存在多个力做冲量时,还可以写成分力冲量代数和的形式: F1t1+F2t2+F3t3+……=I1+I2+I3+……=Δp【动量定理的表达式推广】当存在多个力做冲量时,动量定理的表达式还可以写成分力冲量代数和的形式:F1t1+F2t2+F3t3+……=I1+I2+I3+……=Δp这与动能定理的非常类似的。

动量定理(考前必看)

动量定理(考前必看)

动量、动量定理知识讲解一、冲量1.定义:作用在物体上的力和力的作用时间的乘积,叫作该力对这物体的冲量.在碰撞过程中,物体相互作用的时间极短,但力却很大,而且力在这段短暂的时间内变化十分剧烈,因此很难对力和物体的加速度作准确的测量;况且对这类问题有时也并不需要了解每一时刻的力和加速度.而只要了解力在作用时间内的累积作用和它所产生的效果这类问题,虽然原则上可以用牛顿运动定律来研究,但很不方便.为了能简便地处理这类问题,就需要应用冲量这一概念.一般将作用时间短,在短时间内变化大,且能达到很大瞬时值的力叫做冲击力,常简称为冲力.冲量是力对时间的累积效应,它是一个过程物理量.只要有力,而且力作用了一段时间,不论力的大小,作用时间的长短,总有力的冲量.一般计算冲力,都是指平均冲力.分析平均冲力,用平均冲力的冲量代替变力的冲量,是中学物理中经常遇到的.如碰撞一类问题,所提到的冲力,一般都是指这种平均冲力.平均冲力是指这样一个恒力,在相同的时间间隔内,这个力的冲量对物体产生的效果和实际变力的冲量所产生的效果完全相同.注意:(1)冲量是力对时间的累积效应.(2)讲冲量必须明确是哪个力的冲量.2.公式:通常用符号I来表示冲量,即3.单位:在国际单位制中,力F的单位是N,时间t的单位是s,所以冲量Ft的单位是牛秒,符号是N·s。

4.冲量是矢量,它的方向是由力的方向决定的如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同.注意:两个冲量相同,必定是大小相等方向相同.二、动量1.定义:物体的质量跟其速度的乘积,叫做物体的动量.注意:(1)动量是状态量,我们讲物体的动量,总是指物体在某一时刻的动量,因此计算时相应的速度应取这一时刻的即时速度,(2)动量具有相对性,选用不同参考系时,同一运动物体的动量可能不同,通常在不说明参考系的情况下,指的是物体相对于地面的动量.在分析有关问题时要指明相应的参考系。

2.公式:动量通常用符号p来表示,即。

(完整版)动量知识总结

(完整版)动量知识总结

动量知识总结第一单元 动量和动量定理一、动量、冲量1.动量(1)定义:运动物体的质量和速度的乘积叫做动量,p =mv ,动量的单位:kg ·m/s.(2速度为瞬时速度,通常以地面为参考系.(3)动量是矢量,其方向与速度v 的方向相同(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是:p 2=2mE k .2.动量的变化量(1)Δp =p t -p 0.(2)动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同(3)求动量变化量的方法:①Δp =p t -p 0=mv 2-mv 1;②Δp =Ft .3.冲量(1)定义:力和力的作用时间的乘积,叫做该力的冲量,I =Ft ,冲量的单位:N ·s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.(4)求冲量的方法:①I =Ft (适用于求恒力的冲量,力可以是合力也可能是某个力);②I =Δp .(可以是恒力也可是变力)二、动量定理(1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理.表达式为:Ft =p p -'或Ft =mv v m -'(2)动量定理的研究对象一般是单个物体(3)动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力对作用时间的平均值.(4)动量定理公式中的F Δt 是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.在所研究的物理过程中,如果作用在研究对象上的各个外力的作用时间相同,求合外力的冲量时,可以先按矢量合成法则求所有外力的合力,然后再乘以力的作用时间;也可以先求每个外力在作用时间内的冲量,然后再按矢量合成法则求所有外力冲量的矢量和;如果作用在研究对象上的各个力的作用时间不相同,就只能求每个力在相应时间内的冲量,然后再求所有外力冲量的矢量和.三.用动量定理解题的基本思路(1)明确研究对象和研究过程.研究对象一般是一个物体,研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)规定正方向.(3)进行受力分析,写出总冲量的表达式,如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(4)写出研究对象的初、末动量.(5)根据动量定理列式求解四、典型题1、动量和动量的变化例1 一个质量为m =40g 的乒乓球自高处落下,以速度v =1m/s 碰地,竖直向上弹回,碰撞时间极短,离地的速率为v '=0.5m/s 。

高一物理《动量和动量定理》知识点总结

高一物理《动量和动量定理》知识点总结

高一物理《动量和动量定理》知识点总结
一、动量和动量变化量
1.动量
(1)定义:物体质量和速度的乘积。

(2)定义式:p=m v。

(3)单位:千克米每秒,符号是kg·m/s。

(4)方向:动量是矢量,其方向与速度的方向相同。

2.动量的变化量
(1)公式:Δp=p′-p。

(2)矢量性:动量的变化量是矢量。

二动量定理
1.冲量
(1)定义:力与力的作用时间的乘积,用字母I表示。

(2)定义式:I=FΔt。

(3)单位:牛秒,符号是N·s。

(4)意义:反映了力的作用对时间的累积效应。

2.动量定理
(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量。

(2)表达式:I=p′-p或F(t′-t)=m v′-m v。

3.动量定理的应用
根据动量定理可知:如果物体的动量发生的变化是一定的,那么作用时间短,物体受的力就大;作用时间长,物体受的力就小。

16.2动量和动量定理(讲)

16.2动量和动量定理(讲)

动量发生变化时,动能不一定发生变化, 动量发生变化时,动能不一定发生变化, 动能发生变化时, 动能发生变化时,动量一定发生变化
速度大小改变方向不变 动量发生 变化 速度大小不变方向改变 速度大小和方向都改变
常以匀直、匀加( 常以匀直、匀加(减)直、匀圆、平抛运动为例。 匀圆、平抛运动为例。
试讨论以下几种运动的动量变化情况。 试讨论以下几种运动的动量变化情况。 物体做匀速直线运动 动量大小、 动量大小、方向均不变 物体做自由落体运动 动量方向不变, 动量方向不变,大小随时间推移而增大 物体做平抛运动 动量方向时刻改变, 动量方向时刻改变,大小随时间推移而增大 物体做匀速圆周运动 动量方向时刻改变, 动量方向时刻改变,大小不变
物体的初动量为p=mv、末动量为p‘=mv‘,经历 、末动量为 物体的初动量为 的时间为t 的时间为 ,由加速度的 定义式 F=ma=
(v a=
'
m v' − v , t
(
−v , t
)
由牛顿第二定律

可得Ft=mv’-mv, 可得 , Ft =p‘-p=mv’-mv
)
Ft =p/-p=mv/-mv………(1)
讨论一下动量和动能的关系
求解方法 在同一条直线上运动,先取正方向, 在同一条直线上运动,先取正方向,把矢量运算转化为代数 运算,连同正负号一起代入。 运算,连同正负号一起代入。 的钢球, 例1、一个质量是 、一个质量是0.1kg的钢球,以6m/s的速度水平向右运动 的钢球 的速度水平向右运动 碰到一个坚硬物后被弹回,沿着同一直线以 沿着同一直线以6m/s的速度水 ,碰到一个坚硬物后被弹回 沿着同一直线以 的速度水 平向左运动(如图),碰撞前后钢球的动量各是多少? ),碰撞前后钢球的动量各是多少 平向左运动(如图),碰撞前后钢球的动量各是多少?碰 撞前后钢球的动量变化了多少? 撞前后钢球的动量变化了多少?

知识讲解 动量定理及其应用 基础 - 副本

知识讲解  动量定理及其应用  基础 - 副本

动量定理及其应用编稿:小志【学习目标】1.理解动量的概念,知道动量的定义,知道动量是矢量;2.理解冲量的概念,知道冲量的定义,知道冲量是矢量;3.知道动量变化量也是矢量,理解动量定理的确切含义和表达式,知道动量定理适用于变力的计算;4.)会用动量定理解释现象和处理有关问题.【要点梳理】要点一、动量、动量定理1.动量及动量变化(1)动量的定义:物体的质量和运动速度的乘积叫做物体的动量,记作p mv =.动量是动力学中反映物体运动状态的物理量,是状态量.在谈及动量时,必须明确是物体在哪个时刻或哪个状态所具有的动量.在中学阶段,动量表达式中的速度一般是以地球为参照物的.(2)动量的矢量性:动量是矢量,它的方向与物体的速度方向相同,服从矢量运算法则.(3)动量的单位:动量的单位由质量和速度的单位决定.在国际单位制中,动量的单位是千克·米/秒,符号为kg m/s ⋅.(4)动量的变化p ∆:动量是矢量,它的大小p mv =,方向与速度的方向相同.因此,速度发生变化时,物体的动量也发生变化.速度的大小或方向发生变化时,速度就发生变化,物体具有的动量的大小或方向也相应发生了变化,我们就说物体的动量发生了变化.设物体的初动量11p mv =,末动量22p mv =,则物体动量的变化2121p p p mv mv ∆==--.由于动量是矢量,因此,上式一般意义上是矢量式.2.冲量(1)冲量的定义:力和力的作用时间的乘积叫做力的冲量,记作I F t =⋅.冲量是描述力对物体作用的时间累积效果的物理量.(2)冲量的矢量性:因为力是矢量,所以冲量也是矢量,但冲量的方向不一定就是力的方向.(3)冲量的单位:由力的单位和时间的单位共同决定.在国际单位制中,冲量的单位是牛·秒,符号为N s ⋅.(4)在理解力的冲量这一概念时,要注意以下几点:①冲量是过程量,它反映的是力在一段时间内的积累效果,所以它取决于力和时间两个因素.较大的力在较短时间内的积累效果,可以和较小的力在较长时问内的积累效果相同.求冲量时一定要明确是哪一个力在哪一段时间内的冲量.②根据冲量的定义式I Ft =,只能直接求恒力的冲量,无论是力的大小还是方向发生变化时,都不能直接用I Ft =求力的冲量.③当力的方向不变时,冲量的方向跟力的方向相同,当力的方向变化时,冲量的方向一般根据动量定理来判断.(即冲量的方向是物体动量变化的方向)3.动量变化与冲量的关系——动量定理(1)动量定理的内容:物体所受合外力的冲量等于物体动量的变化.数学表达式为0I Ft mv mv ==-.式中0mv 是物体初始状态的动量,mv 是力的作用结束时的末态动量.动量定理反映了物体在受到力的冲量作用时,其状态发生变化的规律,是力在时间上的累积效果.(2)动量定理的理解与应用要点:①动量定理的表达式是一个矢量式,应用动量定理时需要规定正方向.②动量定理公式中F 是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力在作用时间内的平均值.③动量定理的研究对象是单个物体或系统.④动量定理中的冲量是合外力的冲量,而不是某一个力的冲量.在所研究的物理过程中,如果作用在物体上的各个外力的作用时间相同,求合外力的冲量时,可以先求所有外力的合力,然后再乘以力的作用时间,也可以先求每个外力在作用时间内的冲量,然后再求所有外力冲量的矢量和.如果作用在物体上各外力的作用时间不同,就只能先求每一个外力在其作用时间内的冲量,然后再求所有外力冲量的矢量和.⑤动量定理中,是合外力的冲量,是使研究对象的动量发生变化的原因,并非产生动量的原因,不能认为合外力的冲量就是动量的变化.合外力的冲量是引起研究对象状态变化的外在因素,而动量的变化是合外力冲量作用后导致的必然结果.⑥动量定理不仅适用于宏观物体的低速运动,对微观物体和高速运动仍然适用.⑦合外力的冲量是物体动量变化的量度.要点二、有关计算1.动量变化量的计算动量是矢量,当动量发生变化时,动量的变化p p p ∆=末初-,应运用平行四边形定则进行运算.如图所示,当初态动量和末态动量不在一条直线上时,动量变化由平行四边形定则进行运算.动量变化的方向一般与初态动量和末态动量的方向不相同.当初、末动量在同一直线上时可通过正方向的选定,动量变化可简化为带有正、负号的代数运算.2.冲量的计算方法(1)若物体受到恒力的作用,力的冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致;若力为同一方向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力则不能直接计算冲量.(2)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(3)冲量的计算公式I Ft =既适用于计算某个恒力的冲量,又可以计算合力的冲量.根据I Ft =计算冲量时,只考虑该力和其作用时间这两个因素,与该冲量作用的效果无关.(4)冲量的运算服从平行四边形定则.如果物体所受的每一个外力的冲量都在同一条直线上,那么选定正方向后,每个力冲量的方向可以用正负号表示,此时冲量的运算就可简化为代数运算.(5)冲量是一过程量,求冲量必须明确研究对象和作用过程,即必须明确是哪个力在哪段时间内对哪个物体的冲量.(6)计算冲量时,一定要明确是计算分力的冲量还是合力的冲量.如果是计算分力的冲量还必须明确是哪个分力的冲量.(7)在F t -图象下的面积就是力的冲量.如图(a )所示,若求变力的冲量,仍可用“面积法”表示,如图(b )所示.3.动量定理的应用(1)一个物体的动量变化p ∆与合外力的冲量具有等效代换关系,二者大小相等,方向相同,可以相互代换,据此有:①应用I p ∆=求变力的冲量:如果物体受到大小或方向改变的力的作用,则不能直接用Ft 求变力的冲量,这时可以求出该力作用下物体动量的变化p ∆,等效代换变力的冲量I .②应用p F t ∆∆=求恒力作用下的曲线运动中物体动量的变化:曲线运动的物体速度方向时刻在变化,求动量变化p p p ∆='-需要应用矢量运算方法,比较麻烦.如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化.(2)用动量定理解释相关物理现象的要点.由Ft p p p ∆=='-可以看出,当p ∆为恒量时,作用力F 的大小与相互作用的时间t 成反比.例如,玻璃杯自一定高度自由下落,掉在水泥地面上,玻璃杯可能破碎,而掉在垫子上就可能不破碎,其原因就是玻璃杯的动量变化虽然相同,但作用时间不同:当F 为恒量时,物体动量的变化与作用时间成正比.例如,叠放在水平桌面上的两物体,如图所示,若施力快速将A 水平抽出,物体B 几乎仍静止,当物体A 抽出后,物体B 竖直下落.(3)应用动量定理解题的步骤:①选取研究对象;②确定所研究的物理过程及其始、终状态;③分析研究对象在所研究的物理过程中的受力情况;④规定正方向,根据动量定理列式;⑤解方程,统一单位,求得结果.要点三、与其它相关知识的关联和区别1.几个物理量的区别(1)动量与速度的区别动量和速度都是描述物体运动状态的物理量.它们都是矢量,动量的方向与速度的方向相同.速度是运动学中描述物体运动状态的物理量,在运动学中只需知道物体运动的快慢,而无需知道物体的质量.例如两个运动员跑百米,是比速度的大小,而无需考虑运动员的质量;动量是动力学中描述物体运动状态的物理量,可以直接反映物体受到外力的冲量后,其机械运动的变化情况,动量是与冲量及物体运动变化的原因相联系的.如以相同速度向你滚过来的铅球和足球,你敢用脚踢哪一个?当然是足球,因为足球的质量小,让它停下来所需的冲量小.(2)动量与动能的区别及其联系.①动量是矢量,动能是标量.②动量的改变由合外力的冲量决定,而动能的改变由合外力所做的功决定.③动量和动能与速度一样,它们都是描述物体运动状态的物理量,只是动能是从能量的角度描述物体的状态.物体具有一定的速度,就具有一定的动量,同时还具有一定的动能.例如:质量 5 kg m =的小球,在水平地面上运动的速度是10 m/s .则它具有的动量50 kg m/s p mv ==⋅,它具有的动能2221()250J 222k mv p E mv m m====. 即22k p E m=或p = 又如:A B 、两物体的质量分别为A B m m 、,且A B m m >,当它们具有相同的动能时,由p =A 物体的动量A p 大于B 物体的动量B p ;反之当它们具有相同的动量时,由22k p E m =可知,A 物体的动能kA E 小于B 物体的动能kB E .(3)冲量与功的区别.①冲量是矢量,功是标量.②由I F t =⋅可知,有力作用,这个力一定会有冲量,因为时间t 不可能为零.但是由功的定义式 cos W F s θ=⋅可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.③冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F t -”图象和“F s -”图象上用面积表示.如图所示,(a )图中的曲线是作用在某一物体上的力F 随时间t 变化的曲线,图中阴影部分的面积就表示力F 在时间21t t t ∆=-内的冲量.(b )图中阴影部分的面积表示力F 做的功.2.用动量概念表示牛顿第二定律(1)牛顿第二定律的动量表达式 v p F ma mt t∆∆===∆∆. 此式说明作用力F 等于物体动量的变化率.即p F t ∆=∆是牛顿第二定律的另一种表示形式. (2)动量定理与牛顿第二定律的区别与联系.①从牛顿第二定律出发可以导出动量定理,因此牛顿第二定律和动量定理都反映了外力作用与物体运动状态变化的因果关系.②牛顿第二定律反应力与加速度之间的瞬时对应关系;而动量定理则反应力作用一段时间的过程中,合外力的冲量与物体初、末状态的动量变化间的关系.动量定理与牛顿第二定律相比较,有其独特的优点.因在公式0Ft mv mv =-中,只涉及两个状态量mv 和0mv 及一个过程量Ft .至于这两个状态中间是怎样的过程,轨迹是怎样的,加速度怎样,位移怎样全不考虑.在力F 作用的过程中不管物体是做直线运动还是做曲线运动,动量定理总是适用的.动量定理除用来解决在恒力持续作用下的问题外,尤其适合用来解决作用时间短,而力的变化又十分复杂的问题,如冲击、碰撞、反冲运动等.应用时只需知道运动物体的始末状态,无需深究其中间过程的细节.只要动量的变化具有确定的值,就可以用动量定理求冲力或平均冲力,而这是用牛顿第二定律很难解决的.因此,从某种意义上说,应用动量定理解题比牛顿第二定律更为直接,更加简单.③牛顿第二定律只适用于宏观物体的低速运动情况,对高速运动的物体及微观粒子不再适用,而动量定理却是普遍适用的.④牛顿第二定律和动量定理都必须在惯性系中使用.3 动量定理 动能定理公式'F t mv mv =-合 22211122F s mv mv =-合 标矢性矢量式 标量式 因果关系 因合外力的冲量 合外力的功(总功) 果 动量的变化动能的变化应用侧重点涉及力与时间涉及力与位移要点四、应用动量定理解题的步骤①选取研究对象;②确定所研究的物理过程及其始末状态;③分析研究对象在所研究的物理过程中的受力情况;④规定正方向,根据动量定理列式;⑤解方程,统一单位,求得结果。

(完整word版)动量、动量定理

(完整word版)动量、动量定理

[目标定位] 1.理解动量的概念,知道动量和动量变化量均为矢量,会计算一维情况下的动量变化量.2.知道冲量的概念,知道冲量是矢量.3.理解动量定理的确切含义,掌握其表达式.4.会用动量定理解释碰撞、缓冲等生活中的现象.一、动量1.定义运动物体的质量和速度的乘积叫动量;公式p=m v;单位:千克·米/秒,符号:kg·m/s.2.矢量性方向与速度的方向相同.运算遵循平行四边形定则.3.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式).(2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量都用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).深度思考质量相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动量是矢量,有方向,而动能是标量,无方向.质量相同的两个物体动能相同,速度大小一定相同,但速度方向不一定相同.例1关于动量的概念,下列说法中正确的是()A.动量大的物体,惯性一定大B.动量大的物体,运动一定快C.动量相同的物体,运动方向一定相同D.动量相同的物体,动能也一定相同解析物体的动量由质量及速度共同决定,动量大的物体质量不一定大,惯性也不一定大,A错;动量大的物体速度不一定大,B错;动量相同指的是动量的大小和方向都相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C对;有动量和动能的关系p=2mE k知,只有质量相同的物体动量相同时,动能才相同,故D错.答案 C动量与动能的区别与联系:(1)区别:动量是矢量,动能是标量,质量相同的两物体,动量相同时动能一定相同,但动能相同时,动量不一定相同.(2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p22m或p=2mE k.例2质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为()A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同解析以原来的运动方向为正方向,由定义式Δp=m v′-m v得Δp=(-7×0.5-3×0.5) kg·m/s=-5 kg·m/s,负号表示Δp的方向与原运动方向相反.答案 A关于动量变化量的求解(1)若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.(2)若初、末动量不在同一直线上,运算时应遵循平行四边形定则.二、冲量1.定义:力与力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.2.矢量性:方向与力的方向相同.3.物理意义:反映力的作用对时间的积累.深度思考水平面上的物体所受水平拉力F随时间t的变化情况如图1所示,求0~8 s时间内拉力的冲量.图1答案变力的冲量的计算:图中给出了力随时间变化的图象,可用面积法求变力的冲量.0~8 s时间内拉力的冲量I=F1Δt1+F2Δt2+F3Δt3=18 N·s.例3如图2所示,在倾角α=37°的斜面上,有一质量为5 kg 的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s的时间内,物体所受各力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)图2解析重力的冲量:I G=G·t=mg·t=5×10×2 N·s=100 N·s,方向竖直向下.支持力的冲量:I F N=F N·t=mg cos α·t=5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上.摩擦力的冲量:I F f=F f·t=μmg cos α·t=0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上. 答案见解析求各力的冲量或者合力的冲量,首先判断是否是恒力,若是恒力,可直接用力与作用时间的乘积,若是变力,可考虑以下方法求解:(1)利用动量定理求解.(2)若力与时间成线性关系变化,则可用平均力求变力的冲量.(3)若给出了力随时间变化的图象,可用面积法求变力的冲理.三、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.2.公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的理解:(1)动量定理的表达式m v′-m v=F·Δt是矢量(填“矢量”或“标量”)式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.深度思考在日常生活中,有不少这样的例子:跳高时在下落处要放厚厚的海绵垫子,跳远时要跳在沙坑中,这样做的目的是什么?答案物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小,这样做可以延长作用的时间,以减小地面对人的冲击力.例4篮球运动员通常要伸出两臂迎接传来的篮球.接球时,两臂随球迅速收缩至胸前,这样做可以()A.减小球对手的冲量B.减小球对人的冲击力C.减小球的动量变化量D.减小球的动能变化量解析篮球运动员接球的过程中,手对球的冲量等于球的动量的变化量,大小等于球入手时的动量,接球时,两臂随球迅速收缩至胸前,并没有减小球对手的冲量,也没有减小球的动量变化量,更没有减小球的动能变化量,而是因延长了手与球的作用时间,从而减小了球对人的冲击力,B正确.答案 B利用动量定理解释现象的问题主要有三类:(1)Δp一定,t短则F大,t长则F小.(2)F一定,t短则Δp小,t长则Δp大.(3)t一定,F大则Δp大,F小则Δp小.例5质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s后停止,则该运动员身体受到的平均冲力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s停下,则沙坑对运动员的平均冲力约为多少?(g取10 m/s2) 解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间=1 s是t=2hg从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.答案 1 400 N7 700 N应用动量定理定量计算的一般步骤:(1)选定研究对象,明确运动过程.(2)进行受力分析和运动的初、末状态分析.(3)选定正方向,根据动量定理列方程求解.1.(对动量的理解)关于动量,下列说法正确的是()A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体运动的速度大小不变,物体的动量也保持不变D.质量一定的物体,动量变化越大,该物体的速度变化一定越大答案 D解析动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,选项A、B均错误;动量是矢量,只要速度方向变化,动量也发生变化,选项C错误;由Δp=mΔv知D正确.2.(对冲量的理解)如图3所示,质量为m的小滑块沿倾角为θ的斜面向上滑动,经过时间t1速度为零然后又下滑,经过时间t2回到斜面底端,滑块在运动过程中受到的摩擦力大小始终为F1.在整个过程中,重力对滑块的总冲量为()图3A.mg sin θ(t1+t2)B.mg sin θ(t1-t2)C.mg(t1+t2)D.0答案 C解析谈到冲量必须明确是哪一个力的冲量,此题中要求的是重力对滑块的总冲量,根据冲量的定义式I=Ft,因此重力对滑块的总冲量应为重力乘以作用时间,所以I G=mg(t1+t2),即C正确.3.(动量定理的理解和应用)(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是()A.引起小钢球动量变化的是地面给小钢球的弹力的冲量B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C.若选向上为正方向,则小钢球受到的合冲量是-1 N·sD.若选向上为正方向,则小钢球的动量变化是1 kg·m/s答案BD4.(动量定理的理解和应用)高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚刚产生作用前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力多大?答案 m 2gh t+mg 解析 对自由落体运动,有:h =12gt 21解得:t 1=2h g规定向下为正方向,对运动的全过程,根据动量定理,有:mg (t 1+t )-Ft =0解得:F =m 2gh t+mg .题组一 对动量和冲量的理解1.(多选)下列关于动量的说法中,正确的是( )A.动能不变,物体的动量一定不变B.做匀速圆周运动的物体,其动量不变C.一个物体的速率改变,它的动量一定改变D.一个物体的运动状态发生变化,它的动量一定改变答案 CD解析 动能不变,若速度的方向变化,动量就变化,选项A 错误.做匀速圆周运动的物体的速度方向时刻变化,所以其动量时刻变化,B 错.速度的大小、方向有一个量发生变化都认为速度变化,动量也变化,C 对.运动状态发生变化即速度发生变化,D 对.2.下列说法正确的是( )A.动能为零时,物体一定处于平衡状态B.物体受到恒力的冲量也可能做曲线运动C.物体所受合外力不变时,其动量一定不变D.动量相同的两个物体,质量大的动能大答案 B3.(多选)在任何相等时间内,物体动量的变化总是相等的运动可能是()A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动答案BCD4.如图1所示甲、乙两种情况中,人用相同大小的恒定拉力拉绳子,使人和船A均向右运动,经过相同的时间t,图甲中船A没有到岸,图乙中船A没有与船B相碰,则经过时间t()图1A.图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量小B.图甲中人对绳子拉力的冲量比图乙中人对绳子拉力的冲量大C.图甲中人对绳子拉力的冲量与图乙中人对绳子拉力的冲量一样大D.以上三种情况都有可能答案 C解析甲、乙两种情况下人对绳子的拉力相等,由冲量的定义式p=Ft可知,两冲量相等,只有选项C是正确的.5.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动.从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力答案 A解析 由于绳对人的作用力一直向上,故绳对人的冲量始终向上,由于人在下降中速度先增大后减小,故动量先增大后减小,故A 正确;在该过程中,拉力与运动方向始终相反,绳子的力一直做负功,但由分析可知,人的动能先增大后减小,故B 错误;绳子恰好伸直时,绳子的形变量为零,弹性势能为零,但此时人的动能不是最大,故C 错误;人在最低点时,绳子对人的拉力一定大于人受到的重力,故D 错误.题组二 动量定理的理解及定性分析6.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时,相互作用时间长答案 CD解析 杯子是否被撞碎,取决于撞击地面时,地面对杯子的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,杯子停下,在此过程中,玻璃杯的动量变化Δp =-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =-(-m 2gh ),所以F =m 2gh Δt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,杯子掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎.7.(多选)下面关于动量和冲量的说法,正确的是( )A.物体所受合外力冲量越大,它的动量也越大B.物体所受合外力冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受合外力的冲量方向D.物体所受合外力冲量越大,它的动量变化就越大答案BCD解析由动量定理可知,物体所受合外力的冲量,其大小等于动量的变化量的大小,方向与动量增量的方向相同,故A项错,B、C、D项正确.8.如图2所示,一铁块压着一纸条放在水平桌面上,当以速度v抽出纸条后,铁块掉到地面上的P点,若以速度2v抽出纸条,则铁块落地点为()图2A.仍在P点B.在P点左侧C.在P点右侧不远处D.在P点右侧原水平位移的两倍处答案 B解析以速度2v抽出纸条时,纸条对铁块的作用时间减短,而纸条对铁块的作用力相同,故与以速度v抽出相比,纸条对铁块的冲量I减小,铁块获得的动量减小,平抛的初速度减小,水平射程减小,故落在P点的左侧.题组三动量定理的定量计算9.质量为m的钢球自高处落下,以速度大小v1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为()A.向下,m(v1-v2)B.向下,m(v1+v2)C.向上,m(v1-v2)D.向上,m(v1+v2)答案 D解析钢球以大小为v1的竖直速度与地面碰撞后以大小为v2的速度反弹.钢球在与地面碰撞过程的初、末状态动量皆已确定.根据动量定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft-mgt=m v2-(-m v1)=m v2+m v1由于碰撞时间极短,t趋于零,则mgt趋于零.所以Ft=m(v2+v1),即弹力的冲量方向向上,大小为m(v2+v1).10.(多选)一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,设球棒与垒球的作用时间为0.01 s.下列说法正确的是()A.球棒对垒球的平均作用力大小为1 260 NB.球棒对垒球的平均作用力大小为360 NC.球棒对垒球做的功为126 JD.球棒对垒球做的功为36 J答案AC解析设球棒对垒球的平均作用力为F,由动量定理得F·t=m(v t-v0),取末速度方向为正方向,则v t=45 m/s,v0=-25 m/s,代入上式得F=1 260 N.由动能定理得W=12m v2t-12m v2=126 J,故A、C正确.11.如图3所示,质量为1 kg的钢球从5 m 高处自由下落,又反弹到离地面3.2 m高处,若钢球和地面之间的作用时间为0.1 s,求钢球对地面的平均作用力大小.(g取10 m/s2)图3答案190 N解析钢球落到地面时的速度大小为v0=2gh1=10 m/s,反弹时向上运动的速度大小为v t =2gh2=8 m/s,分析钢球和地面的作用过程,取向上为正方向,因此有v0的方向为负方向,v t 的方向为正方向,再根据动量定理得(F N -mg )t =m v t -(-m v 0),代入数据解得F N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.12.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度约为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力的大小;(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力的大小.答案 (1)5.4×104 N (2)1.8×103 N解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m.设运动的时间为t ,则由x =v 02t 得,t =2x v 0=130s. 根据动量定理得Ft =Δp =-m v 0,解得F =-m v 0t =-60×30130N =-5.4×104 N ,与运动方向相反. (2)若此人系有安全带,则F ′=-m v 0t ′=-60×301 N =-1.8×103 N ,与运动方向相反. 13.将质量为m =1 kg 的小球,从距水平地面高h =5 m 处,以v 0=10 m /s 的水平速度抛出,不计空气阻力,g 取10 m/s 2.求:(1)抛出后0.4 s 内重力对小球的冲量;(2)平抛运动过程中小球动量的增量Δp ;(3)小球落地时的动量p ′.答案 (1)4 N·s 方向竖直向下(2)10 N·s 方向竖直向下 (3)10 2 kg·m/s 方向与水平方向的夹角为45°解析 (1)重力是恒力,0.4 s 内重力对小球的冲量I =mgt =1×10×0.4 N·s =4 N·s ,方向竖直向下.(2)由于平抛运动的竖直分运动为自由落体运动,故h =12gt 2, 落地时间t =2h g=1 s.小球飞行过程中只受重力作用,所以合外力的冲量为I=mgt=1×10×1 N·s=10 N·s,方向竖直向下.由动量定理得Δp=I=10 N·s,方向竖直向下.(3)小球落地时竖直分速度为v y=gt=10 m/s.由速度合成知,落地速度v=v20+v2y=102+102m/s=10 2 m/s,所以小球落地时的动量大小为p′=m v=10 2 kg·m/s.。

专题 动量定理

专题 动量定理

专题二动量定理●基础知识落实●知识点一、动量定理的概念:1、物体动量与冲量有密切的关系,两者间相联系的规律就是动量定理。

2、推导:设质量为m 的物体在合外力F 作用下沿直线运动,经过时间t ,速度由υ变为υˊ,则由 F = m ×a 和a=(υ′-υ)/t 得:F ·t=m υ′-m υ=m (υ′-υ),即I=ΔP 。

3.动量定理:物体所受合外力的冲量等于物体的动量变化.4、数学表达式为:(1)、通用表达式:I = ΔP ;(用于定性分析的矢量式)(2)、F ·t = P - P ′(当物体所受的合外力为恒力F 时,且在作用时间△t 内,物体的质量m 不变)(3)、用于一维情况的计算式:F ·t = m υ2-m υ1式中F 为作用在物体上的合外力,t 为作用时间,下标“1”和“2”分别代表初、末两个时刻.由于动量和冲量都是矢量,所以动量定理及表达式都具有矢量性.式中I 的方向总是与ΔP 的方向相一致.当I 、p 的方向都在一条直线上时,上式可看为代数式.5、计算时应选定正方向,确定F 、υ、υ′的正负,才能进行代数运算。

6、各矢量在一条直线上,但各外力对物体作用时间不相等时的形式:υυm m t F t F t F n n -'=+++ 22117、各外力不在一条直线上时,用分量式:(个别学生可介绍)x x x m m t F υυ-'= y y y m m t F υυ-'=8、动量定理主要用于求变力的冲量。

【释例1】如图所示,一质量为m的小球,以速度υ碰到墙壁上,被反弹回来的速度大小仍是υ,若球与墙壁的接触时间为t,求小球在与墙相碰时所受的合力.【解析】取向左的方向为正方向,对小球与墙相碰的物理过程,概括动量定理有:F·t=mυ-(-mυ)所以F=2mυ/t,方向向左(与碰后速度方向相同)【点评】【变式】知识点二、对动量定理的理解:1.动量定理F·t = mυ2 - mυ1中的F是研究对象所受的包括重力在内的所有力的合力,它可以是恒力,也可以是变力;当合力是变力时,F应该是合外力对时间的平均值。

(完整版)知识讲解动量动量定理(基础)

(完整版)知识讲解动量动量定理(基础)

物理总复习:动量 动量定理编稿:刘学【考纲要求】1、理解动量的概念;2、理解冲量的概念并会计算;2、理解动量变化量的概念,会解决一维的问题;3、理解动量定理,熟练应用动量定理解决问题。

【知识网络】【考点梳理】考点一、动量和冲量1、动量(1)定义:运动物体的质量与速度的乘积。

(2)表达式:p mv =。

单位:/kg m s ⋅(3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。

(4)动量的变化量:21p p p ∆=-,p ∆是矢量,方向与v ∆一致。

(5)动量与动能的关系:2221()222k mv p E mv m m=== 2k p mE =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。

对“p ∆是矢量,方向与v ∆一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ∆=--=,方向向上,动量的变化量为:2p mv ∆=方向向上。

2、冲量(1)定义:力与力的作用时间的乘积。

(2)表达式:I Ft = 单位: N s ⋅(3)冲量是矢量:它由力的方向决定考点二、动量定理(1)内容:物体所受的合外力的冲量等于它的动量的变化量。

(2)表达式:21Ft p p =- 或 Ft p =∆(3)动量的变化率:根据牛顿第二定律 2121v v p p F ma mt t --===∆∆ 即 p F t∆=∆,这是动量的变化率,物体所受合外力等于动量的变化率。

如平抛运动物体动量的变化率等于重力mg 。

要点诠释:(1)动量定理的研究对象可以是单个物体,也可以是物体系统。

对物体系统,只需分析系统受的外力,不必考虑系统内力。

系统内力的作用不改变整个系统的总动量。

(2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。

完整版)动量、动量守恒定律知识点总结

完整版)动量、动量守恒定律知识点总结

完整版)动量、动量守恒定律知识点总结龙文教育动量知识点总结一、对冲量的理解冲量是力在时间上的积累作用,可以用公式I=Ft计算XXX或平均力F的冲量。

对于变力的冲量,常用动量定理求。

对于合力的冲量,有两种求法:若物体受到的各个力作用的时间相同,且都为XXX,则I合=F合.t;若不同阶段受力不同,则I合为各个阶段冲量的矢量和。

二、对动量定理的理解动量定理指出,冲量等于物体动量的变化量,即I合=Δp=p2-p1=mΔv=mv2-mv1.冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。

需要注意的是,ΔP的方向由Δv决定,与p1、p2无必然的联系,计算时先规定正方向。

三、对动量守恒定律的理解动量守恒定律指出,相互作用的物体所组成的系统的总动量在相互作用前后保持不变。

需要注意的是,动量守恒定律的条件有三种:理想条件、近似条件和单方向守恒。

在满足这些条件的前提下,可以应用动量守恒定律求解问题。

四、碰撞类型及其遵循的规律碰撞类型包括一般的碰撞、完全弹性碰撞和完全非弹性碰撞。

对于这些碰撞类型,需要遵循相应的规律,如系统动量守恒、系统动能守恒等。

需要特别注意的是,在等质量弹性正碰时,两者速度交换,这是根据动量守恒和动能守恒得出的结论。

五、判断碰撞结果是否可能的方法判断碰撞结果是否可能,需要检查碰撞前后系统动量是否守恒,系统的动能是否增加,以及速度是否符合物理情景。

动能和动量之间的关系是EK=p=2mEK/2m。

六、反冲运动反冲运动是指静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象。

在反冲运动中,系统动量守恒。

人船模型是反冲运动的典型例子,需要满足动量守恒的条件。

七、临界条件处理“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的关键是,系统各组成部分具有共同的速度v。

八、动力学规律的选择依据在选择动力学规律时,需要根据题目涉及的时间t和物体间相互作用的情况进行选择。

如果涉及时间t,优先选择动量定理;如果涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒。

一、动量 冲量 动量定理(一)

一、动量  冲量  动量定理(一)


★★★★可从哪些角度考?★★★★ 可从哪些角度考? 可从哪些角度考
在水平方向上, 在水平方向上,第一次将 纸迅速抽出木块受到的是滑动 Fµ 摩擦力, 摩擦力,第二次将纸慢慢抽出 木块受到的是静摩擦力, 木块受到的是静摩擦力,滑动 摩擦力接近最大滑动摩擦力, 摩擦力接近最大滑动摩擦力, 所以木块第一次受到的摩擦力 大于第二次受到的摩擦力; 大于第二次受到的摩擦力; 但第一次力的作用时间极短, 但第一次力的作用时间极短,摩擦力的冲 量小,因此木块没有明显的动量变化, 量小,因此木块没有明显的动量变化,几乎不 第二次摩擦力虽然较小, 动。第二次摩擦力虽然较小,但它的作用时间 摩擦力的冲量反而大, 长,摩擦力的冲量反而大,因此木块会有明显 的动量变化。 的动量变化。
√ √ √
★★★★可从哪些角度考?★★★★ 可从哪些角度考? 可从哪些角度考
2.动量定理的定性应用 动量定理的定性应用 用动量定理解释的现象一般可分为两类: 用动量定理解释的现象一般可分为两类: (1)物体的动量变化一定时,力的作用时间越短,力就 物体的动量变化一定时,力的作用时间越短, 物体的动量变化一定时 越大;时间越长,力就越小。 越大;时间越长,力就越小。 (2)当作用力一定时,力的作用时间越长,动量变化 当作用力一定时, 当作用力一定时 力的作用时间越长, 越大;力的作用时间越短,动量变化越小, 越大;力的作用时间越短,动量变化越小,分析问 题时,要把哪个量一定,哪个量变化搞清楚。 题时,要把哪个量一定,哪个量变化搞清楚。 【例6】某同学要把压在木块下的纸抽出来。第一 】某同学要把压在木块下的纸抽出来。 次他将纸迅速抽出,木块几乎不动; 次他将纸迅速抽出,木块几乎不动;第二次他将纸 较慢地抽出,木块反而被拉动了。这是为什么? 较慢地抽出,木块反而被拉动了。这是为什么? 解:物体动量的改变不是取决于合 物体动量的改变不是取决于合 力的大小, 力的大小,而是取决于合力冲量 的大小。 的大小。

16.2 动量和动量定理(解析版)

16.2 动量和动量定理(解析版)

16.2动量和动量定理学习目标1.理解动量和冲量的概念,知道动量和冲量是矢量。

2.知道动量的变化也是矢量,会正确计算一维的动量变化。

3.掌握动量定理,并会应用它解决实际问题。

重点:动量定理的理解和应用。

难点:应用动量定理解决实际问题。

知识点一、动量1.定义:运动物体的质量和它的速度的乘积叫做物体的动量。

2.表达式:p=mv。

单位,千克米每秒,符号kg·m·s-1。

3.方向:动量是矢量,它的方向与速度的方向相同。

4.对动量的理解(1)动量是状态量:求动量时要明确是哪一物体在哪一状态(时刻)的动量,p=mv中的速度v是瞬时速度。

动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。

速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。

(2)动量的矢量性:动量的方向与物体的瞬时速度的方向相同,有关动量的运算,如果物体在一条直线上运动,则选定一个正方向后,动量的矢量运算就可以转化为代数运算了。

(3)动量的相对性:指物体的动量与参考系的选择有关,选不同的参考系时,同一物体的动量可能不同,通常在不说明参考系的情况下,物体的动量是指物体相对地面的动量。

(4)动量与速度的区别和联系①区别:速度描述物体运动快慢和方向;动量在描述物体运动方面更进一步,更能体现运动物体的作用效果。

②联系:动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,p=mv。

(5)动量和动能的的区别和联系动量和动能都是描述物体运动状态的物理量,运动物体在某一时刻既有动量又有动能.由于动量p=mv,动能E k=12mv2,因此可知它们的联系是p=2mE k或E k=p22m。

30 第七章 第1讲 动量和动量定理

30 第七章 第1讲 动量和动量定理

√A.0到t1时间内,墙对B的冲量等于mAv0
C.B运动后,弹簧的最大形变量等于x
√B.mA>mB √D.S1-S2=S3
ABD [0到t1时间内,对A物体由动量定理得I=mAv0,而B物体处于 静止状态,墙壁对B的冲量等于弹簧弹力对A的冲量I,A正确;t1时 刻后,B物体离开墙壁,t2时刻A、B两物体的加速度大小均达到最大, 弹簧拉伸到最长,二者速度相同,由于此时A、B两物体所受弹簧弹 力大小相等,而B的加速度大于A的,故由牛顿第二定律可知, mA>mB,B正确;B运动后,由题图可知任意时刻A的加速度小于其 初始时刻的加速度,因此弹簧的形变量始终小于初始时刻的形变量x, C错误;t2时刻A、B共速,图线与坐标轴所围面积表示速度的变化量 的大小,故有S1-S2=S3,D正确。]
考向3 动量定理与图像的综合 例3 (多选)(2021·湖南高考)如图(a),质量分别为mA、mB的A、B两物体 用轻弹簧连接构成一个系统,外力F作用在A上,系统静止在光滑水平 面上(B靠墙面),此时弹簧形变量为x。撤去外力并开始计时,A、B两 物体运动的a -t图像如图(b)所示,S1表示0到t1时间内A的a -t图线与坐 标轴所围面积的大小,S2、S3分别表示t1到t2时间内A、B的a-t图线与坐 标轴所围面积的大小。A在t1时刻的速度为v0。下列说法正确的是
我国蹦床运动员朱雪莹在东京奥运会上一举夺冠,为
祖国争了光。如图所示为朱雪莹比赛时的情景,比赛
中某个过程,她自距离水平网面高3.2 m处由静止下
落,与网作用后,竖直向上弹离水平网面的最大高度为5 m,朱雪莹
与网面作用过程中所用时间为0.7 s。不考虑空气阻力,重力加速度取
10 m/s2,则若朱雪莹质量为60 kg,则网面对她的冲量大小为

物理动量 动量定理部分知识点总结

物理动量 动量定理部分知识点总结

物理动量动量定理部分知识点总结动量动量定理1、动量、冲量2、动量变化量和动量变化率3、动量、冲量4、应用动量定理解题的一般步骤(1)选定研究对象,明确运动过程(2)受力分析和运动的初、末状态分析(3) 选正方向,根据动量定理列方程求解动量动量定理动量定理揭示了冲量和动量变化量之间的关系.1.应用动量定理的两类简单问题(1) 应用I=Δp求变力的冲量和平均作用力.物体受到变力作用,不能直接用I=Ft求变力的冲量.(2) 应用Δp=Ft求恒力作用下的曲线运动中物体动量的变化.曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量.2.动量定理使用的注意事项(1) 用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便.(2) 动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.动量定理在电磁感应现象中的应用在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量.动量守恒定律1、动量守恒定律内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.2、动量守恒定律表达式(1) m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统相互作用前后,动量保持不变.(2) Δp1=-Δp2,相互作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反.(3) Δp=0,系统的动量变化量为零.3、对动量守恒定律的理解(1) 矢量性:只讨论物体相互作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向.(2)瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定.(3)相对性:动量的大小与参考系的选取有关,一般以地面为参考系.(4) 普适性:①适用于两物体系统及多物体系统;②适用于宏观物体以及微观物体;③适用于低速情况及高速情况.动量守恒定律的简单应用1、应用动量守恒定律的条件(1) 系统不受外力或系统所受的合外力为零.(2) 系统所受的合外力不为零,比系统内力小得多.(3) 系统所受的合力不为零,在某个方向上的分量为零.2、运用动量守恒定律解题的基本思路(1) 确定研究对象并进行受力分析和过程分析;(2) 确定系统动量在研究过程中是否守恒;(3) 明确过程的初、末状态的系统动量;(4) 选择正方向,根据动量守恒定律列方程.3、动量守恒条件和机械能守恒条件的比较(1) 守恒条件不同:系统动量守恒是系统不受外力或所受外力的矢量和为零;机械能守恒的条件是只有重力或弹簧弹力做功,重力或弹簧弹力以外的其他力不做功.(2) 系统动量守恒时,机械能不一定守恒.(3) 系统机械能守恒时,动量不一定守恒.。

理论力学基础动量定理讲解

理论力学基础动量定理讲解
m a m d d v tF d d(m tv ) F
微分形式: d(mv)FdtdI
t2
积分形式: mv2 mv1 Fdt I t1
理论力学基础动量定理讲解
21
投影形式: ddt(mvx)Fx
ddt(mvy) Fy ddt(mvz) Fz
质点的动量守恒
若 F 0 ,则 mv常矢量,
若 Fx 0 ,则 mvx 常量,
16
例题. 水平面上放一均质 三棱柱 A,在此三棱柱上又 放一均质三棱柱B. 两三棱
柱的横截面都是直角三角
B
形,且质量分别为M和m.设
各接触面都是光滑的,在图 A
示瞬时, 三棱柱A的速度为
v, 三棱柱B相对于A的速度 为u, 求该瞬时系统的动量.
理论力学基础动量定理讲解
17
解:取系统为研究对象
B
PAx = M v PAy = 0
A
v vcy vc
C
vcx
设 杆AB质心 C 的速度为vC
由 vc = ve + vr
ve = v
vr
1 2
l
B
1 vcxv2lc os
vcy
1l 2
sin
PAB x m v1 2mlcos PABy12mlsin
PxMmv1 2mlcos
பைடு நூலகம்
Py
1mlsin 2
理论力学基础动量定理讲解
则小三角块 vavvr 由水平方向动量守恒及初始静止;则
M(v)mavx0 M ( v) m (vrx v) 0
vvrxM m m S S rxM m 理论m 力学基础 动S 量 定理M 讲m 解m Srx M m m (ab)25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理总复习:动量 动量定理编稿:刘学【考纲要求】1、理解动量的概念;2、理解冲量的概念并会计算;2、理解动量变化量的概念,会解决一维的问题;3、理解动量定理,熟练应用动量定理解决问题。

【知识网络】【考点梳理】考点一、动量和冲量1、动量(1)定义:运动物体的质量与速度的乘积。

(2)表达式:p mv =。

单位:/kg m s ⋅(3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。

(4)动量的变化量:21p p p ∆=-,p ∆是矢量,方向与v ∆一致。

(5)动量与动能的关系:2221()222k mv p E mv m m=== p =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。

对“p ∆是矢量,方向与v ∆一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ∆=--=,方向向上,动量的变化量为:2p mv ∆=方向向上。

2、冲量(1)定义:力与力的作用时间的乘积。

(2)表达式:I Ft = 单位: N s ⋅(3)冲量是矢量:它由力的方向决定考点二、动量定理(1)内容:物体所受的合外力的冲量等于它的动量的变化量。

(2)表达式:21Ft p p =- 或 Ft p =∆(3)动量的变化率:根据牛顿第二定律2121v v p p F ma mt t --===∆∆ 即 p F t∆=∆,这是动量的变化率,物体所受合外力等于动量的变化率。

如平抛运动物体动量的变化率等于重力mg 。

要点诠释:(1)动量定理的研究对象可以是单个物体,也可以是物体系统。

对物体系统,只需分析系统受的外力,不必考虑系统内力。

系统内力的作用不改变整个系统的总动量。

(2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。

但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力。

对于变力,动量定理中的F 应当理解为变力在作用时间内的平均值。

(3)用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。

另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。

分析问题时,要把哪个量一定哪个量变化搞清楚。

(4)应用I p =∆求变力的冲量:如果物体受到变力作用,则不直接用I Ft =求变力的冲量,这时可以求出该力作用下的物体动量的变化p ∆,等效代换变力的冲量I 。

(5)应用p Ft ∆=求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化21p p p ∆=-需要应用矢量运算方法,比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。

【典型例题】类型一、动量、动量变化量的计算【高清课堂:动量 动量定理例1】 例1、质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,被墙以4m/s 的速度弹回,如图所示,求:这一过程中动量改变了多少?方向怎样?举一反三【变式】(2014 北京大兴模拟)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量举一反三【变式】(2015 重庆卷)高空作业须系安全带.如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为mgmg -mg +mg - 类型二、冲量的计算【高清课堂:动量 动量定理例3】 例2、如图所示在倾角θ=37°的斜面上,有一质量m =10kg 的物体沿斜面以5/v m s =匀速下滑,求物体下滑2s 的时间内:(1)斜面对物体支持力的冲量和功;(2)斜面对物体的冲量和功。

(sin 370.6=,cos370.8=,g 取210/m s )举一反三【变式】如图所示,一个物体在与水平方向成θ角的拉力F 的作用下匀速前进了时间t ,则( )A .拉力对物体的冲量为FtB .拉力对物体的冲量为FtcosθC .摩擦力对物体的冲量为FtD .合外力对物体的冲量为Ft类型三、用动量定理解释现象例3、如图所示,把重物G 压在纸带上,若用一水平力迅速拉动纸带,纸带将会从重物下抽出;若缓慢拉动纸带,纸带也从重物下抽出,但重物跟着纸带一起运动一段距离。

下列解释上述现象的说法中正确的是( )A. 在缓慢拉动纸带时,纸带给重物的摩擦力大B. 在迅速拉动纸带时,纸带给重物的摩擦力小C. 在缓慢拉动纸带时,纸带给重物的冲量大D. 在迅速拉动纸带时,纸带给重物的冲量小举一反三【变式1】跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( )A. 人跳在沙坑里的动量比跳在水泥地上小B. 人跳在沙坑里的动量的变化比跳在水泥地上小C. 人跳在沙坑里受到的冲量比跳在水泥地上小D. 人跳在沙坑里受到的冲力比跳在水泥地上小【变式2】某人身系弹性绳自高空p 点自由下落,图中a 点是弹性绳的原长位置,c 是人所到达的最低点,b 是人静止地悬吊着时的平衡位置。

不计空气阻力,则下列说法中正确的是( )A .从p 至c 过程中重力的冲量大于弹性绳弹力的冲量B .从p 至c 过程中重力所做的功等于人克服弹力所做的功C .从p 至b 过程中人的速度不断增大D .从a 至c 过程中加速度方向保持不变类型四、用动量定理求变力的冲量例4、物体A 和B 用轻绳相连挂在轻质弹簧下静止不动,如图(甲)所示,A 的质量为m ,B 的质量为M ,当连接A 、B 的绳突然断开后,物体A 上升经某一位置时的速度大小为v ,这时物体B 的下落速度大小为u ,如图(乙)所示,在这段时间里,弹簧的弹力对物体A 的冲量为( )A. mvB. mv Mu -C. mv Mu +D. mv mu +举一反三【变式一】摆长为L 的单摆在做小角度摆动时,若摆球质量等于m ,最大偏角等于θ。

在摆从最大偏角位置摆向平衡位置时,下列说法正确的是( )A B .重力的冲量等于)cos 1(gL 2m θ-C .合力的冲量等于)cos 1(gL 2m θ-D .合力做的功等于)cos 1(mgL θ-【变式2】一质量为m 的小球,以初速度0v 沿水平方向射出,恰好垂直地射到一倾角为30的固定斜面上,并立即反方向弹回。

已知反弹速度的大小是入射速度大小的34,求在碰撞 中斜面对小球的冲量大小。

类型五、用动量定理求相互作用力例5、一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s ,然后推力减小为F 2=5N ,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经过t 3=6s 停下来。

试求物体在水平面上所受的摩擦力。

【变式1】物体在恒定的合力F 作用下作直线运动,在时间1t ∆内速度由0增大到v ,在时间2t ∆内速度由v 增大到2v 。

设F 在1t ∆内做的功是1W ,冲量是1I ;在2t ∆内做的功是2W ,冲量是2I 。

那么( )A. 12I I < 12W W =B. 12I I <, 12W W <C. 12I I = 12W W =D. 12I I = 12W W <【变式2】如图所示, PQS 是固定于竖直平面内的光滑的圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑,以下说法正确的是 ( )A. a 比b 先到达S ,它们在S 点的动量不相等B. a 与b 同时到达S ,它们在S 点的动量不相等C. a 比b 先到达S ,它们在S 点的动量相等D. b 比a 先到达S ,它们在S 点的动量相等例6、(2014 天津卷)如图所示,水平地面上静止放置一辆小车A ,质量m A =4kg ,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块 B 置于A 的最右端,B 的质量m B =2kg.现对A 施加一个水平向右的恒力F =10N ,A 运动一段时间后,小车左端固定的挡板与B 发生碰撞,碰撞时间极短,碰后A 、B 粘合在一起,共同在F 的作用下继续运动,碰撞后经时间t =0.6s ,二者的速度达到v t =2m/s.求:(1)A 开始运动时加速度a 的大小;(2)A 、B 碰撞后瞬间的共同速度v 的大小;(3)A 的上表面长度l .举一反三(变式1)、(2015 安徽卷)一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示。

物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止。

g 取10m/s 2。

(1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W 。

举一反三【高清课堂:动量 动量定理例5】A【变式】一质量为100g 的小球从0.80m 高处自由下落到一厚软垫上,若从小球接触软垫到小球陷至最低点经历了0.2s ,则这段时间内软垫对小球的平均冲击力为多少?(取g=10m/s 2,不计空气阻力)类型六、用动量定理解决变质量问题例7、一艘帆船在静水中由风力推动做匀速直线运动。

设帆面的面积为S ,风速为1v ,船速为2v (21v v <),空气的密度为ρ,则帆船在匀速前进时帆面受到的平均风力大小为多少?举一反三【变式】宇宙飞船以4010/v m s =的速度进入分布均匀的宇宙微粒尘区,飞船每前进 310s m =要与410n =个微粒相碰。

假如每一微粒的质量3210m kg -=⨯,与飞船相碰后附在飞船上。

为了使飞船的速度保持不变,飞船的牵引力应为多大。

类型七、用动量定理求解物体系运动问题例8、如图所示,质量分别为m 和M 的两个木块A 和B 用细线连在一起,在恒力F 的作用下在水平桌面上以速度v 做匀速运动。

突然两物体间的连线断开,这时仍保持拉力F 不变,当木块A 停下的瞬间木块B 的速度的大小为__________。

举一反三【变式】质量为M 的汽车带着质量为m 的拖车在平直公路上以加速度a 匀加速前进,当速度为0v 时发生脱钩,直到拖车停下瞬间司机才发现。

相关文档
最新文档