化学热力学基础
第五章化学热力学基础
状态 (II)
U1
U2
U2 = U1 + Q + W
热力学第一定律数学表达式:
ΔU = U2 – U1 = Q + W (封闭体系) ●热力学第一定律: 能量具有不同的形式, 它们之间可以相互转化和传递,而且在转化 和传递过程中,能量的总值不变。
8
● Q与W的正负号:
体系从环境吸热,Q取+;体系向环境放热,Q取- 环境对体系做功,W取+;体系对环境做功,W取-
第五章 化学热力学基础
•热力学:研究体系状态变化时能量相互转换规律的科 学。 其基础是 热力学第一定律 (主要基础)
热力学第二定律 热力学第三定律 •化学热力学:将热力学原理和方法用于研究化学现象 以及与化学有关的物理现象。 •主要研究内容 化学反应进行的方向 化学反应进行的限度 化学反应的热效应
1
MnO(s) + CO(g) = Mn(s) + CO2(g)的反应热rHm。
解:
(1) Mn(s) + 1/2 O2(g) = MnO(s) rH1 = fHm(MnO)
(2) C(s) + 1/2 O2(g) = CO(g) rH2 = fHm(CO)
(3) C(s) + O2(g) = CO2(g)
§5.1 热力学第一定律
一、基本概念与术语
1、体系与环境
• 体系(系统):被划分出来作为研究对象的那 部分物质或空间。
• 环境:体系之外并与体系密切相关的其余部分。 体系可分为:• 敞开体系——体系与源自境之间既有物质交换又 有能量交换;
• 封闭体系——体系与环境之间没有物质交换只 有能量交换;
• 孤立体系——体系与环境之间既没有物质交换 也没有能量交换。
化学热力学基础
Qp = ΔU +Δ (pV) = (U2 - U1) +p(V2 -V1) = (U2 + p2V2) - (U1 + p1V1)
ΔH 称为焓变。ΔH > 0,表明体系从环境吸热; ΔH < 0, 表明体系向环境放热。
4பைடு நூலகம்
1、“焓”不是系统所含的热量。QP与ΔH只是数值上相等, QP不是状态函数,而ΔH是状态函数 。 特别提醒
恒压过程、恒容过程,绝热过程和循环过程。
2
途径
完成这一过程的具体步骤。
4、热与功
体系与环境之间因为温度差而进行的能量交换形式。 热(Q) 体系从环境吸热:Q > 0 ;体系向环境放热:Q < 0 特点:不是状态函数 体系与环境之间除热以外的其它能量交换形式。
功(W)
环境对体系做功:W > 0 ;体系对环境做功:W < 0
7
对于任意的化学反应:aA + bB = gG + dD 标准摩尔反应焓变 rHm = H = g fHm(G)+ d fHm(D)- a fHm(A)- b fHm(B)
标准摩尔燃烧焓变 C H m
Θ
1mol纯物质在标准状态和指定温度下完全燃烧时的标准焓变。 完全燃烧是指C、H、N、S等分别被氧化为CO2(g)、H2O(l)、N2(g)、SO2(g) 。 规定:完全燃烧产物的 CHm= 0 。即: CHm(CO2,g) = CHm(H2O,l) = CHm(N2,g)= CHm(SO2,g) = CHm(O2,g) = 0 对于任意的化学反应:aA + bB = gG + dD rHm = H = a CHm(A)+ b CHm(B)- g CHm(G)- d CHm(D)
化学热力学基础
W = pΔV
第2章 化学热力学基础
§2.1 热力学第一定律
例:圆筒内装有理想气体,其截面积为 A,圆桶 上有活塞,外压为 p,有一热源使气体膨胀,把活塞 推出ΔL,问系统对外作功多少?
解: -WFΔL
因为 p F ,所以 F = pA A
代入上式 -W = pAL= pV= p(V2-V1) W = -pV (求体积功的公式)
第2章 化学热力学基础
§2.1 热力学第一定律
难点:
1、盖斯定律的运用,标准摩尔生成热的含义以及 化学反应热效应的计算;
2、熵的含义、熵值大小的一般规律、标准摩尔熵 的含义及化学反应熵变的计算,熵判断化学反 应进行方向的判断原则及适用条件;
3、吉布斯自由能的含义、标准摩尔吉布斯自由能 的含义以及化学反应吉布斯自由能变的计算, 吉布斯自由能判断化学反应进行方向的判断原 则及适用条件。
§2.2 热化学
反应热的测量: 弹式量热计:
弹式量热计适用于气体以及有机化合物的燃烧 反应。测得的反应热是恒容反应热QV。
杯式量热计: 适用于测量恒压热效应Qp ,如液相反应的反应
热,溶解热,中和热等。
第2章 化学热力学基础
§2.2 热化学
3、反应进度概念
(1) 定义
n B n B 0 ν B ξ
第2章 化学热力学基础
§2.2 热化学
正、逆反应的 H值大小相等,符号相反
H2(g)
+
1 2
O2(g) → H2O(l)
ΔrHm285.m 8 k o 1 Jl
H2O(l)
→
H2(g)
+
1 2
第三章 化学热力学基础
令H=U+pV——焓 (状态函数),则 化学反应的恒压热效应等于系统焓的变化。放热为负,吸热为正。
3. 热化学方程式
热化学方程式:表示化学反应及其热效应关系的化学方程式
标准摩尔焓变:在标准条件下反应或过程的摩尔焓变,△rHmθ,简写 △Hθ。 θ——标准状态, p θ=101.325kPa 气态的标准状态:温度为T,压力为p 体纯物质(假想)状态。
过程:系统状态发生变化时,变化的经过称之为过程。常
见如下
定温过程:过程中系统的温度保持不变,且始终与环境的 温度相等,即T1=T2=Te 定压过程:过程中系统的压力保持不变,切始终与环境的
压力相等,即p1=p2=pe
定容过程:过程中系统的体积始终保持不变 绝热过程:过程中系统与环境之间没有热交换,Q=0 循环过程:系统经一系列变化之后又恢复到起始状态的过 程。
晶体:粒子按一定规则排列,各向异性,有一定沸点 无定形体:内部粒子无规则排列,没有固定熔点,各向同 性
(微晶体):某些物质虽呈无定形,当发现由极微小的晶 粒组成(比晶体小千百倍)
3.2 化学反应热力学
化学反应基本规律
质量守恒定律
能量守恒定律
3.2.1 质量守恒定律
参加化学反应的各种物质的总质量一定等于反应后各种物质的总质 量。 化学方程式(化学反应计量方程式): 根据质量守恒定律,用规定的化学符号和化学式来表示化学反应的 式子。
△Hfθ (物质,相态,T)
指定单质的标准生成焓为零。 △Hfθ (参考态单质,相态,T)=0 例:
反应式中C的指定单质是石墨,指定单质一般都是在该条件下最稳
无机化学-第五章-化学热力学基础
注:①G为广度性质,与参与过程的物质的量成正 比。
②逆过程G与正过程的G数值相等,符号相反。 等于各③反如应果一G个之反总应和是。多个反应的和,总反应的rG
化学热力学的四个重要状态函数
判断一个反应进行的方向时,如果: rG<0反应自发进行 rG>0反应不自发进行 rG=0平衡状态 当rG<0时(产物的G<反应物的G)该反应就自动 向生成产物的方向进行,在反应中反应物不断减 小而产物不断增加,G为广度性质,当G反应物=G产 物即rG=0时反应就不再朝一个方向进行了,这就 是化学反应的限度,即化学平衡。
状态函数。
化学热力学的四个重要状态函数
二、焓(H) 设一封闭体系在变化中只做体积功,不做其它功, 则U=Q+W中W代表体积功:-pV(N/m2×m3)
W=Fl=pSl=-pV
V=V2-V1 若体系变化是恒容过程(体积不变),即没有体积功 则W=0,U=Qv Qv为恒容过程的热量,此式表示在不做体积功的 条件下体系在恒容过程中所吸收的热量全部用来增 加体系的内能。
我们可以从体系和环境间的热量传递来恒量体系 内部焓的变化。
如果化学反应的H为正值,表示体系从环境吸收 热能,称此反应为吸热反应。即:
∑H反应物<∑H生成物 ∑H(生成物-反应物)>0 如果化学反应的H为负值,则表示体系放热给环 境,称此反应为放热反应。即:
∑H反应物>∑H生成物 ∑H(生成物-反应物)<0
rG=-RTlnKa
此式只表示在等温下,rG与K平衡在数值上的关 系。
∴rG=-RTlnKa+RTlnJa
=RTln(Ja/Ka)
化学热力学基础
主要解决过程的能量效应问题,计算过程的功和反应热。
1、在计算应用过程中,不考虑非体积功。
即:W’= 0
2、化学反应发生后,T 始=T 终
ΔU = Q + W’+ W 体= Q + W 体 2.2.3.2 定容过程
定容热 QV: 若系统在变化过程中保持体积恒定,此时的热称为定容热。
2.4 热化学
规定:(1)在计算应用过程中,不考虑非体积功。即:W’= 0 (2)化学反应发生后,T 始=T 终
2.4.1 热化学方程式
热化学方程式表示指定的反应与指定条件下的反应热效应的关系的方程式。 H2 (g) + 1/2O2 (g) = H2O (l) △rHmθ =-285.8kJ/mol 1/2 N2 (g) + O2 (g) = NO2 (g) △rHmθ = 34kJ/mol
即: νA=-a,νB=B -b,νY=y,νZ=z
上式可简写成: 此式中的 B 代表反应物和产物。 反应进度(ξ):是表示物质变化进程的物理量。 其定义为: nBB(ξ)= nBB(0)- nBξB
式中nB(B 0)和nBBξ分别代表反应进度ξ=0(反应未开始)和ξ=ξ 时B的物质的量。由于反应未开始时nB(B 0) 为常量,因此
后,即系统的状态一定时,系统内部的能量总和(热力学能)就有确定的值。所以,热力学能
(U)是状态函数,其变化量 ΔU 与途径无关,其绝对值不可测定。可测量的只是ΔU
2.2.3 热力学第一定律
对于一与环境没有物质交换的系统(封闭系统),若环境对其作功 W 、系统从环境吸收热量 Q , 则系统的能量必有增加,根据能量守恒原理,增加的这部分能量等于 W 与 Q 之和:
化学热力学基础
一、反应热与化学反应方向
早在 19 世纪 70 年代,法国化学家贝塞洛和 丹麦化学家汤姆森提出,反应热是判断化学反应 方向的判据。
许多放热反应在常温、常压下确实能自发进 行,但少数吸热反应在常温、常压下也能自发进 行。这说明反应热是影响化学反应方向的重要因 素,但不是决定反应方向的惟一因素。
二、熵变与化学反应方向
书写热化学方程式应注意以下几点: (1)习惯上将化学反应方程式写在左边,相应的 ΔH
和ΔU写在右边,两者之间用逗号或分号隔开。 (2)注明反应的温度和压力。
(3)注明反应物和产物的聚集状态,分别用 s、l 和 g 表示固态、液态和气态,用 aq 表示水溶液,如 果固态物质存在不同的晶型,也要注明晶型。
(4)同一化学反应,当化学计量数不同时,反应的 摩尔热力学能变和摩尔焓变也不同。
四、赫斯定律
化学反应,不管是一步完成或分成几步完成, 反应热总是相等的。上述规律称为赫斯定律。
A rHm(T ) D
r H m,1(T )
r H m,3(T )
B rHm,2 (T) C
r Hm (T ) r Hm,1(T ) r H m,2 (T ) r H m,3(T )
dGT , p ≤ δW
对有限的化学变化:
(rGm )T ,p ≤W
当 W 0 时:
(rGm )T , p ≤ 0
在标准状态,上式可改写为:
(rGm )T ≤ 0
四、温度对化学反应方向的影响
表2 ΔH、ΔS 及T 对反应自发性的影响
反应实例
ΔH ΔS ΔG = ΔH–TΔS
① H2(g) + Cl2(g) = 2HCl(g) — +
(1)敞开系统:系统与环境之间既有 能量交换,又有物质交换。
化学热力学基础
Q 和W 都不是状态函数
体积功
体积功是体系在反抗外压发生体积变 化时而引起的体系与环境间能量的传递。 W体= p外ΔV
p内 P内 ΔV
P外 p外
第二节 热力学第一定律和热化学
热力学第一定律
能量只能从一种形式转化为另一种形式,从一个 物体传递给另一个物体,但在转化和传递过程中,能 量的总数量不变。 它的另一种表达形式就是:不供给能量而连续不 断的对外做功的第一类永动机是不可能造成的。
CaCO3 (方解石)
CaO(s)+ CO2(g)
△ rH m
CaO(s)+ CO2(g)
Ca(s)+ C (石墨)+ O2
标准生成焓
温度T下,由标准态的各元素的稳定单质生成 标准态下1mol某纯物质的热效应称为该物质的标 准摩尔生成焓(standard molar enthalpy of formation)简称标准生成焓。
example
例:2H2(g)+O2(g)=2H2O(g)
△rHm(298.15K)=-483.6 kJ· -1 mol H2(g)+1/2O2(g)=H2O(g)
△rHm(298.15K)=-241.8 kJ· -1 mol
标准摩尔生成焓和标准摩尔燃烧焓
CaCO3 (方解石) Qp =△rH=H2 - H1 =∑H(生成物) - ∑H(反应物)
练习题 求H2O(l)→H2O(g) ΔrHm
ΔfHm
1 查表: H2(g) + O2(g) = H2O(l) 2
H2O(l) = -285.8 kJ· -1 mol
1 H2(g) + O2(g) = H2O(g) 2
ΔfHm H2O(g) = -241.8 kJ· -1 mol ΔrHm = ΔfHm H2O(g)-ΔfHm H2O(l) ΔrHm = -241.8+285.8 = 44.0 kJ· -1 mol
2024版《基础化学》第六章热力学基础
02
热力学第一定律
Chapter
2024/1/29
7
热力学第一定律表述及意义
表述
热力学系统从外界吸收的热量Q与对环境所作的功 W之和等于系统内能的增量ΔU。即ΔU=Q+W。
意义
热力学第一定律是能量守恒定律在热力学系统中的 具体表达,它揭示了热力学过程中能量转化的规律, 是热力学的基础。
2024/1/29
8
能量守恒原理在化学反应中应用
化学反应中的能量转化
化学反应中常伴随着能量的吸收和释 放,这些能量变化遵循能量守恒原理。
反应热与焓变
反应热是化学反应过程中吸收或释放的 热量,焓变是反应物和生成物内能之差, 两者在数值上相等,符号相反。
2024/1/29
9
焓变计算及实际意义
2024/1/29
焓变计算
应用举例
利用盖斯定律可以间接计算一些难以直接测量的反应热,例如通过已知的反应 热数据来计算未知反应的反应热。
2024/1/29
11
03
热力学第二定律与熵增原理
Chapter
2024/1/29
12
热力学第二定律表述及意义
热力学第二定律的两种表述
01
04
热力学第二定律的意义
克劳修斯表述:热量不能自发地从低温物 体传到高温物体。
2024/1/29
自发过程判断依据
对于孤立系统,熵变大于零的 过程是自发的。
对于非孤立系统,需要同时考 虑焓变和熵变,利用自由能判
据来判断过程的自发性。
14
熵变计算及实际意义
熵变的计算 对于理想气体,熵变可通过状态方程
和热力学第一定律求得。
对于实际气体和凝聚态物质,需要借 助实验数据或经验公式来计算熵变。
普通化学 第一章 化学热力学基础
1 1 (91.8kJ mol-1 ) 30.6 kJ mol-1 Δr H Δ H m,2 3 r m 3
(3)
NH3 ( g )
Δr H m,3
3 1 H2 ( g) N2 ( g ) 2 2 1 1 (91.8 kJ mol-1 ) 45.9 kJ mol-1 Δ r H m 2 2
体系由始态到终态,状态发生了变化,则称体系经历 了一个热力学过程,简称过程。 在状态发生了变化过程中,若体系的始态和终态温度
相等并且等于恒定的环境温度,称为“恒温过程”;同
样,若体系的始态和终态压力相等并且等于恒定的环境 压力,称为“恒压过程”;若体系的体积保持不变称为 “恒容过程”。若体系变化时和环境之间无热量交换, 则称之为“绝热过程”。
“生成”之意。例如:
1 H 2 ( g ) O 2 ( g ) H 2 O(l ) 2
1 Δr H ( 298 .15 K) 285.8 kJ mol m
普通化学
1.3.2 化学反应的标准摩尔焓变的计算
对任一个化学反应来说 dD eE gG hH 其反应物和生 成物的原子种类和个数是相同的,因此我们可以用同样 的单质来生成反应物和生成物,如图1.5所示。
与Q之和。
U Q W
(1.2)
式(1.2)为封闭体系中热力学第一定律的数学表达式。
普通化学
1.2.1 热力学第一定律
例1.1 设能量状态为U1的体系,体系输出200 J的热量,
Q 200 J
环境对体系做了350 J的功,求体系能量变化和终态能量U2。 解: 由题意
W 350 J
普通化学
普通化学
目 录
大学化学化学热力学基础
真实气体状态方程在科研和工程中的应用举例
石油工业
利用真实气体状态方程预测天然气在地下的分布和储量,指导油气 田的开发和生产。
化学工程
在化工过程中涉及气体的压缩、膨胀、冷却和加热等操作,需要利 用真实气体状态方程进行精确计算和控制。
航空航天工程
在飞机和火箭的发动机设计中,需要考虑高温高压下气体的性质和行 为,真实气体状态方程为相关计算提供了重要依据。
压条件。
混合气体中各组分性质变化规律探讨
道尔顿分压定律
混合气体的总压力等于各组分气 体分压之和,分压与各组分的摩 尔分数成正比。
阿马格分体积定律
混合气体的总体积等于各组分气 体分体积之和,分体积与各组分 的摩尔分数成正比。
亨利定律
在一定温度和平衡状态下,气体 在液体中的溶解度与液面上该气 体的平衡压力成正比。
04
相平衡与相图分析
相平衡条件及相律应用
相平衡条件
在恒温恒压下,当多相系统中各相的性质和数量均不随时间变化时,称系统处于相平衡状态。此时, 各相中的组元成分和物性均保持恒定,且各相间的宏观物质交换达到动态平衡。
相律应用
相律是描述相平衡系统中相数、组元数和自由度之间关系的定律。对于简单系统,相律可表示为F=CP+2,其中F为自由度,C为组元数,P为相数。利用相律可以判断系统可能存在的相数及自由度,进 而分析系统的相平衡状态。
大学化学化学热力学基础
目 录
• 热力学基本概念与定律 • 热力学在化学反应中的应用 • 热化学方程式及计算 • 相平衡与相图分析 • 化学平衡移动原理及影响因素探讨 • 非理想气体状态方程及混合气体性质研究
01
热力学基本概念与定律
热力学系统及其分类
1章 化学热力学基础
第一章化学热力学基础第一节热力学第一定律一、基本概念和常用术语1、体系和环境体系:被选作研究对象的部分。
环境:体系之外并与体系密切相关的部分。
敞开体系:与环境有物质交换、有能量交换。
封闭体系:与环境无物质交换、有能量交换。
孤立体系:与环境无物质交换、无能量交换。
2、状态和状态函数状态:体系的宏观性质的综合表现。
状态函数:确定体系状态的物理量。
(p, V, T, U, H, S, G)状态函数特征:状态函数的改变量只与体系的始态、终态有关,而与变化途径无关。
分类:广度性质(具有加和性)强度性质(不具有加和性T, p )3、过程和途径过程:当体系的状态发生变化时,发生变化的经过。
途径:完成状态变化过程的具体步骤。
等容过程等温过程等压过程绝热过程二、热力学第一定律1、热和功(体系与环境能量交换的两种形式)规定:体系吸热:Q >0体系放热:Q <0环境对体系做功:W >0体系对环境做功:W <0特 点: 热和功不是状态函数其数值与具体途径有关2、热力学能U特 点: 是状态函数,广度性质,其绝对值未知。
3、热力学第一定律该定律的实质是能量守恒与转化定律。
第二节 化学反应的热效应一、反应热在封闭体系、非体积功=0的前提下,当反应物和生成物温度相同时,化学反应过程中吸收或放出的热量。
1. 恒容反应热(QV)W =0+(- p e x V )=0U= QV + W= QVQV 全部用于改变系统的热力学能2.恒压反应热 U Q V ∆=Vp Q U p ∆-=∆ex()12ex 12V V p Q U U p --=- 定义焓: ()111222)(V p U V p U Q p +-+=状态函数,广度性质焓变:Qp = H pV U H +=3. 反应进度ξ(读作“克赛”)a A + d D = g G + h H0= – a A – d D + g G + h H写成通式式中符号B 表示反应中的物质,而νB 为数字或简分数,称为物质B 的化学计量数。
第1章 化学热力学基础
外力压缩气体时:压力f,活塞移动的距离l
We f l pA l = p V
所以气体的膨胀功:
We p外 V
非体积功: 体积功以外的其他功(电功、表面功等)
3. 热力学能 (U)
体系内所有微观粒子的全部能量之和
单位:J
热力学能的理解
U 是状态函数,系统的性质
内能的绝对值无法测知,只能测其变化量
热的理解
热不是状态函数 体系从环境吸热: Q > 0 体系向环境放热: Q < 0
2.功 ( W ) 系统与环境之间除热之外以其它形式传递的能量
单位:焦耳(J)
功的理解
功也不是状态函数
系统对环境做功,W < 0
环境对系统做功,W > 0
体积功(膨胀功):
体系由于体积的变化而做的功
T—气体的温度(K)
气体常数R 的常用数值与量纲
p
atm Pa kPa
V
dm3 m3 dm3
R
0.08206 atm· dm3· mol–1· K–1 8.314 Pa· m3· mol–1· K–1 (J· mol–1· K –1) 8.314 kPa· dm3· mol–1· K–1 (J· mol–1· K –1)
孤立体系:与环境无物质、能量交换
敞开体系
封闭体系
孤立体系
1.2.2 状态和状态函数 (state & state function)
1. 状态: 体系所有的物化性质的综合表现
2. 状态函数: 确定体系状态的物理量 (p,V,T,n ) 1)状态函数的分类:
容量性质(广度性质,广延性质):
与物质的量有关,有加和性
第五章化学热力学基础
5-2-6、状态与状态函数
1、状态 由一系列表征体系性质的物理量
所确定下来的体系的一种存在形式,称为体
系的状态。 2、状态函数 态函数。 确定体系状态的物理量,称为状
例如某理想气体体系
n = 1 mol, p = 1.013 10 5 Pa, V = 22.4 dm 3 ,T = 273 K 这就是一种状态。是由 n、p、V、T 所确定下来的体系的一种
恒压反应热—在恒压反应中体系所吸收的热量, 全部 用来改变体系的热焓.即 Qp=ΔU+PΔV=U2-U1+P2V2-P1V1 =(U2+P2V2)-(U1+P1V1) 令H=U+PV,则Qp=ΔH (3)反应进度 设有化学反应 νAA+νBB=νGG+νHH 式中ν为各物质的计量数,反应未发生时各物质的物 质的量分别为n0,反应进行到t时刻,各物质的量分别为 n:则反应进度ξ定义为: ξ= [n0(A)-n(A)]/ νA=[n0(B)-n(B)]/ νB =[n0(G)-n(G)]/ νG=[n0(H)-n(H)]/ νH
5-3-3自由能
自发过程的方向性
所谓自发过程就是不需要任何外界作用 而自动进行的过程。例如热量由高温物体传向 低温物体就是一个自发过程,反之则不能自发 进行,这是人所共知的常识。机械能通过摩擦 转变为热能的过程也是一个自发过程,例如, 行驶中的汽车刹车时,汽车的动能通过摩擦全 部变成热能,造成地面和轮胎升温,最后散失 于环境。
5-2-2、相
系统中物理状态、物理性质与化学性质完全均匀的部分 称为一个相(phase)。 如:系统里的气体,无论是纯气体还是混合气体,总是 1个相。系统中若只有一种液体,无论这种液体是纯物质 还是溶液,也总是一个相。 相是系统里物理性质完全均匀的的部分。
第三章 化学热力学基础
二、标准摩尔生成焓
在温度T的标准状态下,由稳定单质生成1mol指定相态
物质的焓变,称为该物质的标准摩尔生成焓,符号为
(B,T),单位kJ/mol。 f Hm
其中,下标“f” 表示生成反应,“m” 表示摩尔反应, “ ”指各种物质均处于标准态;若为298.15K,温度可 略,具体物质还要注明状态。
首页
上页
下页
返回
298.15K时任意化学反应的标准摩尔反应焓为
r Hm B f H m (B)
B
r Hm
(3-22)
——化学反应的标准摩尔反应焓,kJ/mol;
f Hm (B)——反应物质B在指定相态的标准摩尔生成焓,kJ/mol;
首页
上页
下页
返回
二、系统和环境 热力学研究的对象,称为系统;与系统密切相 关的部分为环境。
根据系统与环境之间有无物质及能量传递,可将系统分为三类: (1) 封闭系统 与环境只有能量传递,而没有物质传递的系统。 (2) 敞开系统 与环境既有能量传递,又有物质传递的系统。 (3) 隔离系统 与环境既无能量传递,又无物质传递的系统,或 称孤立系统。
首页
上页
下页
返回
四、功
除热以外,系统与环境之间的其他能量传递统称为 功,其符号为W,单位为J或kJ。 热力学规定 环境对系统做功时,W>0;
系统对环境做功时,W<0。
功也是过程变量(途径函数),无限小量用δW表示。
热力学功分为体积功和非体积功(如机械功、电功等)。
通常,热力学系统发生变化时,只做体积功。 如图3-2所示,当气缸受热,气 体反抗环境压力(p环)使活塞(面 积A)膨胀dl,体积变化为dV时,系 统做功为 W = v p环 dV
第二章 化学热力学基础
普通化学第二章化学热力学基础⏹§1.1 热力学基本概念⏹§1.2 热力学第一定律⏹§1.3 焓热力学⏹§1.4 自发过程和熵⏹§1.5 吉布斯自由能与化学反应的方向⏹总结化学热力学研究与解决的主要问题?热力学-------研究各种形式的能量相互转变过程中所遵循规律的科学。
热力学的基础:热力学第一定律和热力学第二定律化学热力学-------将热力学的原理应用于化学变化过程,就称为化学热力学。
化学热力学研究与解决的主要问题:一是在指定的条件下,某一化学反应进行时,与外界交换多少能量?即计算化学反应热。
二是在指定的条件下,某一化学反应能否自发进行,即判断化学反应进行的方向。
三若可能自发进行,反应进行的温度如何?热力学方法的特点:大量质点组成的宏观体系1、热、功、状态函数△U、△H、△G和△S2、热力学第一、二、三定律3、盖斯定律4、自发过程的判定5、吉布斯—亥姆霍兹公式1、功、热、内能、焓、自由能、熵的计算2、自发过程判定AgNO 3与NaCl 的水溶液:如果只研究在水溶液中所进行的反应,则含有这两种物质的水溶液就是体系。
溶液以外的烧杯、溶液上方的空气都是环境。
如果还要研究反应时的能量变化,则水溶液和烧杯为体系,空气为环境。
例如:NaCl+AgNO 3溶液-体系分类敞开体系:体系与环境之间既有能量交换,又有物质交换。
封闭体系:体系与环境之间只有能量交换,没有物质交换。
孤立体系:体系与环境之间既没有能量交换,也没有物质交换。
敞开体系封闭体系绝热箱孤立体系NaOH+H2ONaOH+H2ONaOH+H2O热物质热二、体系的性质1、体系的性质:确定体系状态的各种宏观物理量。
如温度、压力、体积、质量、密度、浓度等2、体系的性质分为广度性质和强度性质两类:广度性质:在数值上与体系中物质的量成正比,即具有加和性。
如体积、质量、内能、焓、熵等。
强度性质:在数值上与体系中物质的量无关,即不具有加和性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章化学热力学基础
一、填空题
1. 将化学反应方程式写成0 = Σν(B)R(B)的形式,式中ν(B)为,
反应物的ν(B)0,生成物的ν(B)0。
2. 反应进度ξ是描述的量,ξ的单位是。
3. 根据体系与环境之间物质交换及能量交换的关系,可以将体系划分为、和三类。
4. 状态函数的数值只与有关,某一过程中状态函数数值的变化只取决于,而与变化的无关。
5. 298K时,反应N2(g)+3H2(g)====2NH3(g), Δr U mθ= -87.2KJ•mol-1, 则该反应的
ΔrH mθ值为。
6. 利用自由能的变化判断过程的方向和限度的条件是。
7.下列物理量P、T、V、U、H、W、Q、G、S,其中是状态函数。
8. ΔH等于定压热的条件是。
9. ΔU等于定容热的条件是。
10. 浓硫酸溶于水时反应热(填吸或放),过程的ΔH0,ΔS0,ΔG0(填>、<或=)。
11. Γecc定律说的是。
12. ΔH的单位是,ΔrH mθ的单位是。
13. ΔrH mθ、ΔrS mθ、ΔrG mθ...量中,下标r的物理意义是,下标m的物
理意义是。
14. 自由能减少原理适用于体系,过程。
二、选择题
1. 下列各物质中,属于稳定的单质的是
A. C(金刚石)
B. S(l)
C. Br2(l)
D. Hg(s)
2. 下列反应中ΔrH mθ等于AgBr(s)的Δf H mθ的是
A. Ag+(aq) + Br-(aq) ==== AgBr(s)
B. 2Ag(s) + Br2(g)====2AgBr(s)
C. Ag(s) + 1/2 Br2(l)==== AgBr(s)
D. Ag(s) +1/2 Br2(g)==== AgBr(s)
3.下列反应中ΔrG mθ等于CO2(g)的Δf G mθ的是
A. C(石墨) + O2(g) ==== CO2(g)
B. C(金刚石) + O2(g) ====CO2(g)
C. CO(g) + 1/2 O2(g) ====CO2(g)
D. C(石墨) + O2(g) ==== CO2(l)
4. 在298K和标准状态时,下列反应均为非自发反应,其中在高温时仍为非自发反应的是
A. Ag2O(s) ====2Ag(s) + 1/2 O2(g)
B. N2O4(g) ==== 2NO2(g)
C. Fe2O3(s) + 3/2 C(s) ====2Fe(s) + 3/2 CO2(g)
D. 6C(s) + 6H2O(g) ==== C6H12O6(s)
5. 下列物质标准熵S mθ的大小排列顺序正确的是
A. Cl2O(g) <Br2 (g)<Cl2(g)<F2(g)<H2(g)
B. Br2 (g) >Cl2O(g) >Cl2(g) >F2(g) >H2(g)
C. H2(g) <F2(g)<Cl2(g)<Br2 (g)<Cl2O(g)
D. Br2 (g) <Cl2O(g)<Cl2(g)<F2(g)<H2(g)
6. 在下列物质中,Δf H mθ为0的是
A. O3(g)
B. O2(g)
C. CO(g)
D.H2O(l)
7. 100kPa下,温度低于291K时,灰锡比白锡稳定;温度高于291K时,白锡比灰锡稳定。
则Sn(白锡) ====Sn(灰锡)反应()
A. 放热,熵增加
B. 吸热,熵增加
C. 放热,熵减少
D. 吸热,熵减少
8. 当体系向环境放热时,体系的焓
A.升高
B.降低
C.不变
D.无法判断
9. 373K,101.3kPa时水变为水蒸气,下列热力学函数中值增大的是
A.熵
B. 水的饱和蒸汽压
C. 温度
D.水的汽化热
10. 273K,101.3kPa时冰融化为水,下列正确的是
A. W<0
B. ΔH = Qp
C. ΔH<0
D. ΔU<0
11. 1molO2(g)与2molH2(g)完全反应生成2molH2O(g), 反应进度ξ为
A. 0.5mol
B. 1mol
C. 2mol
D. 无法判断
12. 1molO2(g)与2molH2(g)在绝热钢瓶中完全反应生成2 molH2O(g), 体系的
A. ΔG = 0
B. ΔH = 0
C. ΔU = 0
D. ΔS = 0
13. 某体系经循环过程回到起始状态,下列量中不一定为零的是
A.Q
B. ΔH
C. ΔS
D. ΔU。