2016年江苏“专转本”高等数学试题及参考答案

合集下载

2016年江苏省专转本高数模拟试卷数学(含答案)

2016年江苏省专转本高数模拟试卷数学(含答案)

模 拟 试 卷一、选择题(每小题4分)1、下列极限中正确的是:( )∞==+-+=→→∞→→x x D e x C x x x x B x x A x x x x x ln lim .)21(lim .sin sin lim .111sinlim .02sin 100不存在2、已知==∞→→)21(lim ,2)2(lim 0x xf x x f x x 则( ) 4.1.21.2.D C B A3、已知函数y=y(x)在任意点x 处的增量,12α++∆=∆xx y y 其中)0(→∆∆x x 是比α高阶的无穷小,且y (0) = 1,则y (1)等于( )44..2..πππππe D C B e A4、已知向量++=,则垂直于a 且同时垂直于y 轴的单位向量e 等于( ))(22)(22.)(33.)(33.C B A +±-±+-±++±5、已知⎰⎰-'+=dx x f c e dx x f x )(,)(2则等于( ) c e D c e C c e B c e A x x x x +-+-++----222221.2.21.2.6、下列级数中收敛的是( )∑∑∑∑∞=∞=∞=∞=+⋅11121)1l n (.23.!)2()!(.!.n n n n n n nn n D n C n n B n n A二、填空题(每小题4分)1、 函数='=+=)0(,)sin()2ln()(y xy y x x y y 则确定由2、 已知当x →0时,x 2ln(1+x 2)是sin n x 的高阶无穷小,而sin nx 又是1-cosx 的高阶无穷小,则n =3、 函数)1(1)(2--=x x e x f x 的可去间断点为x =4、 20204)4(lim x dt t t x x ⎰+→=5、 已知⎰==)(,)(2x f xe dx x xf x 则6、 改变积分⎰⎰π0sin 0),(x dy y x f dx 的次序后,原式变为三、解答题(每题8分)1、 求极限xx e e xx x tan lim tan 0--→ 2、计算不定积分dx xe x x x ⎰++)1(13、设2232,32dx y d tt y t t x 求⎪⎩⎪⎨⎧-=-= 4、设f y x xy f z 且),,(22+=为二阶可微函数,求y x z ∂∂∂2 5、计算⎰⎰--20422222x x x y x dy dx6、过直线L :⎩⎨⎧=+-=--+02062z y x z y x 作平面π,使其与已知平面02:1=++z y x π垂直。

江苏省2016年专转本高等数学真题

江苏省2016年专转本高等数学真题

江苏省2015年普通高校“专转本”选拔考试一、 选择题(本大题共6小题,每小题4分,满分24分) 1、当0x→时,函数sin ()1x f x e =-是函数 ()g x x =的 ( )A. 高阶无穷小B. 低阶无穷小C. 同阶无穷小D. 等价无穷小 2、函数(1) (1)x y x x =-<的微分dy 为 ( )A. (1) [ln(1)]1x x x x dx x --+- B. (1) [ln(1)]1x x x x dx x---- C.1(1)x x x dx -- D. 1(1)x x x dx ---3、0x =是函数111, 0()11, 0x xe xf x e x ⎧+⎪≠⎪=⎨-⎪⎪=⎩的 ( ) A. 无穷间断点 B. 跳跃间断点 C.可去间断点 D. 连续点 4、设()F x 是函数()f x 的一个原函数,则(32)f x dx -=⎰ ( )A. 1(32)2F x C --+B. 1(32)2F x C -+ C.2(32)F x C --+ D. 2(32)F x C -+5、下列级数条件收敛的是 ( )A.21(1)n n nn ∞=--∑ B.11(1)21nn n n ∞=+--∑C.1!(1)nn n n n ∞=-∑ D.211(1)nn n n∞=+-∑ 6、二次积分11ln (,)eydy f x y dx =⎰⎰ ( )A.11ln (,)exdx f x y dy ⎰⎰ B.1(,)x edx f x y dy ⎰⎰ 1 0C. 0(,)xe dxf x y dy ⎰⎰ 1 0D.1(,)xe dxf x y dy ⎰⎰ 1 0二、填空题(本大题共6小题,每小题4分,共24分) 7设()lim(1)n n xf x n→∞=-,则(ln 2)f =_________.8、曲线33211x t t y t ⎧=-+⎪⎨=+⎪⎩在点(0,2)处的切线方程为____________.9、设向量b 与向量(1,2,1)a =--平行,且12a b ⋅=,则b =________.10、设1()21f x x =+,则()()n f x =_________.11、微分方程2xy y x '-=满足初始条件12x y==的特解为___ __.12、幂级数11)nn n x ∞=-的收敛域为____________. 三、计算题(本大题共8小题,每小题8分,共64分)13、求极限020arcsin lim222xxx t tdte x x →---⎰.14、设2sin , 0()0, 0x xx f x x x -⎧≠⎪=⎨⎪=⎩,求()f x '. 15、求通过直线112215x y z +-+==与平面32100x y z ++-=的交点,且与直线230240x y z x y z -++=⎧⎨+--=⎩平行的直线方程. 16、求不定积分3⎰.17、计算定积分222()sin xx xdx ππ-+⎰ .18、设(,()),xz f x yϕ=,其中函数f具有二阶连续偏导数,函数ϕ具有连续导数,求yx z∂∂∂2.19、计算二重积分Dxydxdy ⎰⎰,其中D为由曲线y =与直线y x =及直线2y =所围成的平面闭区域. 20、已知2312x x x y C e C e xe =++是二阶常系数非齐次线性微分方程()y py qy f x '''++=的通解,试求该微分方程.四、综合题(本大题共2小题,每小题10分,共20分) 21、设D 是由曲线2y x =与直线(0)y ax a =>所围成的平面图形,已知D 分别绕两坐标轴旋转一周所形成的旋转体的体积相等,试求: (1)常数a 的值; (2)平面图形D 的面积.22、设函数2()(1)ax b f x x +=+在点1x =处取得极值14-,试求: (1)常数,a b 的值;(2)曲线()y f x =的凹凸区间与拐点;(3)曲线)(x f y =的渐近线.五、证明题(本大题共2小题,每小题9分,共18分) 23、证明:当10<<x 时,(2)ln(1)2x x x -->.24、设(,)zz x y =是由方程22()y z xf y z +=-所确定的函数,其中f为可导函数,证明:z zxz y x y∂∂+=∂∂. 2016年试卷一、 选择题(本大题共6小题,每小题4分,满分24分) 1、函数()f x 在0x x =处有意义是极限0lim ()x x f x →存在的( D )A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件 2、函数()sin f x x =,当0x +→时,下列函数中是()f x 的高阶无穷小的是 ( C )A.tan x B.1 C. 21sinx xD. 1-3、设函数()f x 的导函数为sin x ,则()f x 的一个原函数是( B )A.sin x B. sin x - C. cos x D. cos x -4、二阶常系数非齐次线性微分方程22x y y y xe -'''--= 的特解的正确形式为( D )A.x Axe - B. 2x Ax e - C. ()x Ax B e -+ D. ()x x Ax B e -+5、函数2()z x y =-,则1,0d x y z=== ( B )A.22dx dy + B. 22dx dy - C. 22dx dy -+ D. 22dx dy --6、幂级数212n nn x n∞=∑的收敛域为 ( A )A.11[,]22- B. 11[,)22- C. 11(,]22- D. 11(,)22- 二、填空题(本大题共6小题,每小题4分,共24分) 7.极限1lim(12)xx x →-=____2e -_____.8、已知向量(1,0,2)a =,(4,3,2)b =--,则(2)(2)a b a b -⋅+=___-48_________. 9、函数()x f x xe =的n 阶导数()()n f x =____()x n x e +_____.10、函数211()sin 2x f x x x+=的水平渐近线方程为___ 12y =___.11、函数2()ln ,xxF x tdt =⎰则()F x '=___ ln 4x __.12、无穷级数_____发散_______(填写收敛或发散). 三、计算题(本大题共8小题,每小题8分,共64分) 13、求极限201cos lim().sin x xx x x→-.14、设函数()y y x =由方程xy e x y =+确定,求dydx. 15、计算定积分51⎰.16、求不定积分2ln (1)xdx x +⎰  .17、求微分方程22sin xy xy x '+=满足条件()0y π=的解.18、求由直线L1:111131x y z ---==和直线L2:11213x ty t z t=+⎧⎪=+⎨⎪=+⎩所确定的平面方程. 19、设22(,)zf x y y x =--,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.20、计算二重积分Dxdxdy ⎰⎰,其中D 为由直线2y x =+,x轴及曲线y =所围成的平面区域.四、证明题(本大题共2小题,每小题9分,共18分) 21、证明函数||y x =在0x =处连续但不可导.22、证明12x ≥-时,不等式32213x x +≥成立. 五、综合题(本大题共2小题,每小题10分,共20分) 23、平面区域D 由曲线222xy y +=,y y 轴所围成(1)求平面区域D 的面积;(2)求平面图形D 绕x 轴旋转一周所得的旋转体体积. 24、设函数()f x 满足2211()2()f x f x dx x =+⎰, (1)求()f x 的表达式;(2)确定反常积分1()f x dx +∞⎰的敛散性.。

2016年普通高等学校招生全国统一考试数学试题(江苏卷,参考版解析)

2016年普通高等学校招生全国统一考试数学试题(江苏卷,参考版解析)

...因此 BE CE4a b4 5 137 .2288 8在锐角三角形 ABC 中, sin A 2sin B sin C ,那么 tan A tan B tan C 的最小值是 .8;xiv.由 sin Asin π A sin B C sin B cosC cos B sin C , sin A 2sin Bsin C ,可得 sin B cosC cos B sin C 2sin Bsin C 〔 * 〕,由三角形 ABC 为锐角三角形,那么 cosB 0,cos C 0 ,在〔 * 〕式两侧同时除以 cos B cosC 可得 tan B tan C2tan Btan C ,又 tan Atan π Atan BCtan B tan C (#) ,1 tan B tanC那么 tan A tan B tan Ctan B tan C1tan B tanC ,tan B tanC2由 tan B tanC2 tan B tanC2 tan B tanC 可得 tan A tan B tanC1,tan B tan C令 tan B tanC t ,由 A, B, C 为锐角可得 tan A0, tan B0,tanC 0 ,由(#)得 1 tan B tan C 0 ,解得 t 1tan A tan B tan C2t 2 2 ,t11 1t 2t1 1 1 1 21 1 11,由 t 1 那么0 ,因此 tan Atan B tanC最小值为 8,t2tt24 t2t4当且仅当 t 2 时取到等号,此时 tan B tan C 4 , tan B tan C 2 ,解得 tan B22,tan C22,tan A 4 〔或 tan B,tan C 互换〕,此时 A, B,C 均为锐角.二、解答题: 本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.〔本小题总分值14 分〕在△ABC 中, AC 6 , cos B4, Cπ.54⑴求 AB 的长;⑵求 cos Aπ 的值.6⑴ 5 2;⑵7 26 .201.cos B4, B 为三角形的内角5sin B 3 5AB ACsinC sin BAB623,即: AB 5 2 ;25a) cos A cos C B sin B sin C cos B cosC2cos A10又A为三角形的内角72sin A10cos Aπ3cos A1s in A726.62220〔本小题总分值14分〕如图,在直三棱柱ABC A1 B1C1中, D, E 分别为 AB , BC 的中点,点F在侧棱 B1B 上,且 B D A F AC1A B C111,1 1 1 .求证:⑴直线 DE // 平面 AC FA1B1;11⑵平面 BDE平面AC F.111F 见解析;2.D, E 为中点,DE 为ABC 的中位线DE // AC又ABC A B C 为棱柱,AC //AC1 1 111CEA D BDE // AC1 1,又AC1 1平面 AC11F,且DEAC1 1FDE //平面AC F;1 1a)ABC A1B1C1为直棱柱,AA1平面 A1B1C1AA AC,又AC1A B1 1 11 1 1且AA1 A1 B1 A1, AA1 , A1 B1平面 AA1B1 BAC1平面AAB B,11113又 A 1FB 1D , DE B 1DD ,且 DE, B 1D平面 B 1 DEA F平面B DE,又A FAC F1111 1平面 B DE平面AC 1 F.11〔本小题总分值14 分〕现需要设计一个仓库,它由上下两局部组成,上局部的形状是正四棱锥P A 1 B 1C 1D 1,下局部的形状是正四棱柱 ABCD A 1B 1C 1 D 1〔如下图〕 ,并要求正四棱柱的高O 1O 是正四棱锥的高 PO 1的 4 倍.⑴假设AB6 m , PO 12 m ,那么仓库的容积是多少;PD 1 C 1⑵ 假设正四棱锥的侧棱长为6 m ,当 PO 1为多少时,仓库的容积最大?O 1A 1B 13;⑵ 2 3 m ; DC⑴ 312 mO3. PO 1 2 m ,那么OO 18 m ,ABV P A 1B 1C 1D 1=1S ABCD PO 11 62 224 m 3, V ABCDA 1B 1C 1D 1=S ABCD OO 1628 288 m 3 ,33V =V PABCDV ABCDABCD312 m3 ,11 1 111 11故仓库的容积为 312 m 3;a) 设 PO 1x m ,仓库的容积为 V ( x)那么 OO 1 4 x m , AO 1 136 x 2 m , A 1B 12 36 x 2 m ,11212V P A 1B 1C 1D 1= S ABCD PO 172 2 x 2x72x 2 x 3 24xx 3 m 3 ,3 3332233V ABCD A 1B 1C 1D 1=S ABCD OO 1724 x 288x2x 8 x m ,V x =V PABCDV ABCD ABC D24x 2 x 3 288x8x 326 x 3 312 x 0 x6 ,1 11 11 1 1 133V ' x26x 2 312 26 x 212 0 x 6 ,当 x 0,2 3 时,V' x0 , V x 单调递增,当 x2 3,6 时,V'x0 , V x 单调递减,因此,当 x2 3时,Vx 取到最大值,即 PO 1 23 m 时,仓库的容积最大.〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

江苏专转本高等数学 定积分 例题加习题

江苏专转本高等数学 定积分 例题加习题

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。

其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。

例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。

例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。

2016年江苏专转本(高等数学)真题试卷(题后含答案及解析)

2016年江苏专转本(高等数学)真题试卷(题后含答案及解析)

2016年江苏专转本(高等数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(x)在x=x0处有定义是极限f(x)存在的( )A.充分条件B.必要条件C.充分必要条件D.无关条件正确答案:D解析:f(x)在x=x0处是否有定义不影响f(x)存在.2.设f(x)=sinx,当x→++时,下列函数中是f(x)的高阶无穷小的是( ) A.tanxB.C.x2 sinD.正确答案:C解析:考查条件无穷小(常见形式)当x→0+时,slnx t~x,tgx~x,∴A同阶;∴B低阶.只有(有界五数和无穷小乘积).3.设函数f(x)的导函数为sinx,则f(x)的一个原函数是( )A.sinxB.一sinxC.cosxD.一cosx正确答案:B解析:f’(x) =sinx,则f(x)=∫sinxdx=一cosx+C.令F(x)=∫f(x)dx=一sinx+C1x+C2.∴答案为B.4.二阶常系数非齐次线性微分方程y”一y’一2y=2xe一x的特解y*的正确假设形式为( )A.Axe一xB.Ax2e一xC.(Ax+B)x一xD.x(Ax+B)e一x正确答案:D解析:特征方程为r2一r一2=0.∴r1=一1,r2=2.∴yx=x(Ax+B)e一x,即D.5.函数z=(x—y)2,则dz|x=1,y=0=( )A.2dx+2dyB.2dx一2dyC.一2dx+2dyD.一2dx一2dy正确答案:B解析:∴选B.6.幂级数日的收敛域为( )A.B.C.D.正确答案:A解析:当x=时,原级数=∴收敛,当x=时,原级数=,p的数中p=2>1,∴收敛.∴选A.填空题7.极限=_______.正确答案:e一2.解析:=e一2.8.已知向量a=(1,0,2),b=(4,一3,一2),则(2a一b).(a+2b)=________.正确答案:一48.解析:a=(1,0,2),b=(4,一3,一2),2a一b=(一2,3,6),a+2b=(9,一6,一2),∴(2a一b).(a+2b)=(一2)×9+3×(一6)+6×(一2)=一48.9.函数f(x) =xex的n阶导数f(n)(x)=________.正确答案:(x+n)ex .解析:f(x)xex ,∴f’(x)=exxex=(x+1)ex .f”(x)=ex+(x+1)ex=(x+2)ex ,f”‘(x)=(x+3)ex ,∴f”(x)=(x+n)ex .10.函数f(x)=,则f(x)的图像的水平渐近线方程为________.正确答案:解析:11.函数f(x)=∫x2x inldt,则f’(x)=________.正确答案:lin4x.解析:F(x)=∫x2xlintdt.∴f’(x) = 2limx一limx= 2(lin2+linx) 一linx=lin4+linx = lin4x.12.无穷级数=________.(请填写收敛或发散)正确答案:发散.解析:=发散.解答题解答时应写出推理、演算步骤。

江苏省2016年专转本高等数学试卷及解答

江苏省2016年专转本高等数学试卷及解答

绝密★启用前江苏省2016年普通高校专转本选拔考试高等数学 试题卷注意事项:1.本试卷分为试题卷和答题卡两部分.试题卷共3页,全卷满分150分,考试时间120分钟.2.必须在答题卡上作答,作答在试题卷上无效,作答前务必将自己的姓名和准考证号准确清晰地填写在试题卷和答题卡上的指定位置. 3.考试结束时,须将试题卷和答题卷一并交回.一、选择题(本大题共6小题,每小题4分,共24分,在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号与黑)1.函数()f x 在0x x =处有定义是极限0lim ()x x f x →存在的( D ). A .充分条件 B .必要条件 C .充分必要条件 D .无关条件2.设()sin f x x =,当0x +→时,下列函数中是()f x 的高阶无穷小的是( C ). A .tan xB1C .21sinx xD.1−解 00tan lim lim 1sin x x x x x x ++→→==,001()12lim lim 2x x x x ++→→−==−,2001sin 1lim lim sin 0sin x x x x x x x++→→==, 答案:C .3.设函数()f x 的导函数为sin x ,则()f x 的一个原函数是( B ). A .sin x B .sin x − C .cos x D .cos x −解 ()sin f x x ′=,1()sin d cos f x x x x C ==−+∫,()f x 的原函数112(cos )d sin x C x x C x C −+=−++∫,可见()f x 的一个原函数是sin x −(取120C C ==),答案:B . 4.二阶常系数非齐次线性微分方程22e x y y y x −′′′−−=的特解*y 的正确假设形式为 ( D ).A .e x Ax −B .2e x Ax −C .()e x Ax B −+D .()e x x Ax B −+解 由220r r −−=得1212r r =−=,,可见1λ=−是特征单根, 因而可设特解*()e x y x Ax B −=+,答案:D .5.函数2()z x y =−,则10d xy z ===,( B ). A .2d 2d x y + B .2d 2d x y − C .2d 2d x y −+ D .2d 2d x y −−解 2()z x y x ∂=−∂,2()z x y y ∂=−−∂,d d d 2()(d d )z z z x y x y x y x y∂∂=+=−−∂∂,10d 2d 2d x y z x y ===−,,答案:B . 6.幂级数212n nn x n ∞=∑的收敛域为( A ).A .11[]22−,B .11[)22−,C .11(]22−,D .11()22−,解 1222222(1)lim lim 22(1)n n n n n n n n+→∞→∞+==+,收敛半径12R =,当12x =−时,级数21(1)n n n ∞=−∑收敛;当12x =时,级数211n n ∞=∑收敛,因而收敛域为11[]22−,,答案:A . 二、填空题(本大题共6小题,每小题4分,共24分) 7.极限1lim(12)xx x →−=▲ .2e − 解 12220lim{[1(2)]}e x x x −−−→+−=.8.已知向量(102)a = ,,,(432)b =−− ,,,则(2)(2)a b a b −⋅+=▲ .-48 解 2(236)a b −=− ,,,2(962)a b +=−− ,,,(2)(2)48a b a b −⋅+=−. 9.函数()e x f x x =的n 阶导数()()n f x = ▲ .()e x x n +解 ()e e (1)e x x x f x x x ′=+=+,()e (1)e (2)e x x x f x x x ′′=++=+,…,()()()e n x f x n x =+.10.函数211()sin 2x f x x x+=,则()f x 的图像的水平渐近线方程为 ▲ .12y =解 2211111lim ()lim sin lim 222x x x x x f x x x x x →∞→∞→∞++==⋅=,所以水平渐近线方程为12y =. 11.函数2()ln d xx F x t t =∫,则()F x ′= ▲ .2ln 2ln x +解()ln 22ln 2ln 22ln ln 2ln 2ln F x x x x x x ′⋅−+−+.12.无穷级数n ∞=.. 解 因为级数112n n ∞=∑发散,1(1)2n n n ∞=−∑收敛,所以无穷级数11(1)2nn n ∞=+−∑发散.三、计算题(本大题共8小题,每小题8分,共64分) 13. 求极限201cos lim()sin x xx x x →−.解 2230001cos cos sin cos sin lim()lim lim sin sin x x x x x x x x x xx x x x x x →→→−−−==222001(2)1cos 222lim lim 333x x x x x x →→−==. 14. 设函数()y y x =由方程e xy x y =+所确定,求d d yx. 解 d d e ()1d d xyy y y x x x +=+,d 1e =d e 1xyxy y y x x −−. 15. 计算定积分1x ∫.解1x∫22200021d 2(1)d 2(ln(1))2(2ln 3)1+1t t x t t t t =−=−+=−+∫∫. 16. 求不定积分2ln d (1)xx x +∫. 解2ln 1ln 1d ln d d ln (1)111x x x x x x x x x =−=−+++++∫∫∫ln 11d 11x x x x x=−+⋅++∫ ln 11ln ln ()d ln ln(1)ln 11111x x x xx x x C C x x x x x x=−+−=−+−++=−+++++++∫.17. 求微分方程22sin x y xy x ′+=满足条件()0y π=的解. 解 原方程可化为22sin xy y x x ′+=,于是有2()p x x =,2sin ()x q x x =,则方程的通解为 22d d ()d ()d 2sine (()e d )e (e d )x xp x xp x x x x x y q x x C x C x−−∫∫∫∫+=+∫∫2211(sin d )(cos )x x C x C x x=+=−+∫, 由()0y π=得1C =−,因而所求解为2cos 1x y x +=−.8. 求由直线1l :111131x y z −−−==和直线2l :11213x ty t z t=+=+ =+所确定的平面方程.解 依题意所求平面经过点(111),,,法向量13172123i j kn i j k ==−−,因而所求平面方程为7(1)2(1)(1)0x y z −−−−−=,即7240x y z −−−=.19. 设22()z f x y y x =−−,,其中函数f 具有二阶连续偏导数,求2∂∂∂z x y. 解 设2u x y =−,2v y x =−,则()z f u v =,,于是有 122z f u f v xf f x u x v x∂∂∂∂∂′′=+=−∂∂∂∂∂, 211222f f f f zu v u v x x y u y v y u y v y′′′′∂∂∂∂∂∂∂∂∂=+−+∂∂∂∂∂∂∂∂∂∂ 111221221112222(2)(2)2(41))2x f yf f yf xf xy f yf ′′′′′′′′′′′′′′=−+−−+=−++−. 20. 计算二重积分d d Dx x y ∫∫,其中D 是由直线2y x =+,x轴及曲线=y域.解220201d d d d d 2y Dx x y y x y −=∫∫∫∫222220014[(4)(2)]d (2)d 23y y y y y y=−−−=−=∫∫. 或4cos 4cos 3244001d d d (cos 2)d (cos )d 3Dx x yr r rr r ππθθθθθθ=−=⋅−∫∫∫∫∫424244006416(cos 16cos )d (4cos 3cos )d 33ππθθθθθθ=−=−∫∫24400163161cos 43[(1cos 2)(1cos 2)]d [(1+2cos2+)(1cos 2)]d 32322ππθθθθθθθ++−+=−+∫∫440088114(cos 2+cos 4)d (sin 2sin 4)33243ππθθθθθ==+=∫.四、证明题(本大题共2小题,每小题9分,共18分) 21.证明:函数()||f x x =在0x =连续但不可导.解 由0lim ()lim ||0(0)x x f x x f →→===,因而函数()||f x x =在0x =连续。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

2016年专升本试卷真题和答案(数学)

2016年专升本试卷真题和答案(数学)

2016年市专升本数学试卷一、单项选择题(每题4分,满分32分)1. 设()f x 在0x x =处可导,则()()0002limh f x h f x h→+-=A.()'0fx - B.()'0f x C.()'02f x D.()'03f x2.定积分121sin x xdx -=⎰A.-1B.0C.1D.2 3.过OZ 轴及点()3,2,4-的平面方程是A.320x y +=B.20y z +=C.20x z +=D.230x y += 4.已知微分方程为dyy dx=通解为 A.xy e = B.xy e C =+C.y x C =+D.xy Ce = 5.下列级数收敛的是A.113n n ∞=⎛⎫+⎪⎭∑B.11sin n n ∞=∑ 1.1n n C n ∞=+∑ D.1!nn n n ∞=∑6.3阶行列式314895111中元素321a =的代数余子式为A.1B.8C.15D.177、设1002A ⎛⎫= ⎪⎝⎭,则3A =A.1002⎛⎫⎪⎝⎭B.3006⎛⎫ ⎪⎝⎭C.1008⎛⎫ ⎪⎝⎭D.3008⎛⎫ ⎪⎝⎭8、在0,1,2,3,4五个数中任意取3个数,则这三个数中不含0的概率为() A.0.4 B.0.5 C.0.6 D.0.8二、填空题(每小4分,共16分)9、极限0sin 6limtan 2x xx→=10、设函数()320cos x f x t dt =⎰,求() f x '=11、设矩阵314035A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,矩阵1102B -⎡⎤=⎢⎥⎣⎦,则 AB =12、已知()0.4P A =,()0.3P B =,()0.5P AB =,则()P A B ⋃=三、计算题(每小题8分,,共64分)13、求极限0cos lim tan 2x x e xx→-14、讨论函数()23()21xf x x =+-的单调性、极值、凹凸性及拐点。

江苏专转本高等数学_不定积分_例题加习题

江苏专转本高等数学_不定积分_例题加习题

第三章 不定积分本章主要知识点:12 (2)c aa dx a x x+=⎰ln ,c e dx e x x +=⎰ (3)⎰+-=c x xdx cos sin ,⎰+=c x xdx sin cos ,c x xdx +=⎰tan sec 2,c x xdx +-=⎰cot csc 2(4)c a xdx x a +=-⎰arcsin 122,(5)c x a xa a dx x a +-+=-⎰||ln 21122121111f dx f d x x x x ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰ ⎰⎰=x d x f dx x xf tan )(tan )(tan sec 2tan sec (sec )(sec )sec x xf x dx f x d x =⎰⎰ 等等。

例3.1.22007(21)x x dx +⎰解:原式=2200722200811(21)(21)(21)48032x d x x c ++=++⎰ 例3.2.3sin 13sin 13sin 111cos (3sin 1)33x x x xedx e d x e c ---=-=+⎰⎰ 例23例例例例14C +例3.8.⎰+dx exe x解:原式xxxe xe xe e e dx e de e C =⋅==+⎰⎰例3.9.⎰+++dx x x x 2233 解:利用综合除法知12127222323+-+-=+++x x x x x x原式C x x x x dx x x x ++-+-=+-+-=⎰2ln 12731)21272(232例 例例=x C =+例3.13.sin sin cos xdx x x +⎰解:原式=1(sin cos sin cos )2sin cos x x x x dx x x ++-⋅+⎰=11(cos sin )22sin cos d x x dx x x --++⎰⎰=11ln sin cos 22x x x c +++例例例 例 例3.18.解:原式==21(1)2x +-1arcsin2xc-+例3.19.⎰+21x edx解:原式=dxeeexxx⎰+-+22211=2221xxdexe-+⎰=cexx++-)1ln(22例例例例例2.直接交换法a)题型dxbaxf)(⎰+方法:令baxt+=,abtx)(2-=,2()f dx tf t dta=⎰⎰例3.25.dxx⎰+11解:令2,txxt==,例=例例b) 题型dxbaxf)(2⎰+f dx⎰变换tax sin=f dx⎰变换tax tan=f dx ⎰变换t a x sec =例3.29.dx xx ⎰-29 解:令3sin x t =,2例 例例原式231sec cos sin sec tdt tdt t c c t ===++⎰⎰ 例3.33.解:令1tan x t +=,原式=221sin cos sin cos sin cos t t dt dt t t t t -=+-⎰⎰=22cos sin 12cos 12sin d t d tt t -+--⎰⎰=|C +(还原略)。

江苏专转本高等数学 常微分方程 例题加习题

江苏专转本高等数学 常微分方程 例题加习题

- 142 -第五章 常微分方程(简记ODE )本章主要知识点● 可分离变量的ODE● 一阶线性非齐次常微分方程及推广● 二阶常系数线性齐次与非齐次常微分方程● 一些特殊类方程一、可分离变量的ODE1.基本型的解法 基本型:()()dy G x H y dx= 基本解法: ()()dy G x dx H y = ()()dy G x dx H y =⎰⎰例5.1.1)0(,==-y e dx dy y x 解:dx e dy e xy =⎰⎰=dx e dy e x y通解为:c e e x y += 将1,0==y x 得: 1-=e c 得 1-+=e e e x y例5.2.(1)ln y y y xdx '+= 解:(1)ln y dy xdx y+= 1(1)ln dy xdx y +=⎰⎰,- 143 -得:ln ||ln y y x x x C +=-+例5.3.dxy x dy y x )1()1(122+=+- 解:dx x x y dy y 2211)1(-=++,2(1)1y dy y +=+⎰ 得:()21arctan ln 12y y C ++= 例5.4.已知()f x 满足0()(1)()1x f t dt x f x +-=⎰,求()f x 。

解:由0()(1)()1xf t dt x f x +-=⎰知(0)1f =-。

方程两边对x 求导得()()(1)()0f x f x x f x '++-=,分离变量求得2()(1)c f x x =-, 将(0)1f =-代入得1c =-,21()(1)f x x =--。

2.可转化的可分离变量的齐次方程 ()x y f y'= 方法:令()y p y p x x y p xp x''=⇒=⇒=+ xdx p p f dp p f dx dp x p =-⇒=+⇒)()(。

例5.5.y x y x dx dy +-= 解:xyx ydx dy +-=11 令p p dx dp x p xp p y px y x y p +-=+⇒+=⇒=⇒=11'', pp p p p p dx dp x +--=-+-=⇒121112- 144 -x dx p p dp p =--+⇒221)1( xdx p dp p =+-+⇒⎰2)1(2)1( C x p p +=---⇒ln 21ln 212, 将x y p =代入即可。

2016年专升本(高等数学二)真题试卷(题后含答案及解析)

2016年专升本(高等数学二)真题试卷(题后含答案及解析)

2016年专升本(高等数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.1C.2D.3正确答案:C2.设函数f(x)=在x=0处连续,则a= ( ) A.一1B.0C.1D.2正确答案:C3.设函数y=2+sinx,则y’= ( )A.cosxB.-cosxC.2+cosxD.2-cosx正确答案:A4.设函数y=ex-1+1,则dy= ( )A.exdxB.ex-1dxC.(ex+1)dxD.(ex-1+1)dx正确答案:B5.∫01(5x4+2)dx= ( )A.1B.3C.5D.7正确答案:B6.∫0(1+cosx)dx ( )A.+1B.C.一1D.1正确答案:A7.设函数y=x4+2x2+3,则= ( ) A.4x3+4xB.4x3+4C.12x2+4xD.12x2+4正确答案:D8.∫1+∞dx= ( )A.一1B.0C.1D.2正确答案:C9.设函数z=x2+y,则dz= ( )A.2xdx+dyB.x2dx+dyC.x2dx+ydyD.2xdx+ydy正确答案:A10.若=2,则a= ( )A.B.1C.D.2正确答案:D填空题11.=______.正确答案:12.设函数y=x2一ex,则y’=_______.正确答案:2x-ex13.设事件A发生的概率为0.7,则A的对立事件发生的概率为______.正确答案:0.314.曲线y=Inx在点(1,0)处的切线方程为______.正确答案:y=x-115.∫()dx=_______.正确答案:ln|x|+arctanx+C16.∫-11(sinx+x)dx=_______·正确答案:017.设函数F(x)=∫0xcostdt,则F’(x)=_______.正确答案:cosx18.设函数z=sin(x+2y),则=________.正确答案:cos(x+2y)19.已知点(1,1)是曲线y=x2+alnx的拐点,则a=______.正确答案:220.设y=y(x)是由方程y=x一ey所确定的隐函数,则=______.正确答案:解答题21.计算.正确答案:解:=3.22.设函数y=xe2x,求y’.正确答案:y’=x’e2x+x(e2x)’=(1+2x)e2x.23.设函数z=x3y+xy3,求.正确答案:解:=3x2y+y3,=6xy,=3x2+3y2.24.计算∫xcosx2dx.正确答案:解:∫xcosx2dx=∫cosx2dx2=sinx2+C.25.计算∫12xlnxdx.正确答案:解:26.求曲线y=,直线x=1和x轴所围成的有界平面图形的面积S,及该平面图形绕z轴旋转一周所得旋转体的体积V.正确答案:解:面积S=∫01dx=.旋转体的体积V=∫01π()2dx=∫01πxdx=x2|01=.27.设函数f(x,y)=x2+y2+xy+3,求f(x,y)的极值点与极值.正确答案:由已知,=2x+y,=2y+x,故=2.因为A >0且AC—B2>0,所以(0,0)为f(x,y)的极小值点,极小值为f(0,0)=3.已知离散型随机变量X的概率分布为28.求常数a;正确答案:解因为0.2+a+0.2+0.3=1,所以a=0.3.29.求X的数学期望EX及方差DX.正确答案:EX=0×0.2+10×0.3+20×0.2+30×0.3=16,DX=(0一16)2×0.2+(10一16)2×0.3+(20一16)2×0.2+(30一16)2×0.3=124.。

江苏专转本高等数学模拟测试题答案详解

江苏专转本高等数学模拟测试题答案详解

江苏专转本高等数学模拟测试题答案详解江苏省专转本高等数学模拟测试题一.选择题(每小题4分,共24分) 1.当 0x→时, 1cos 2x -与2ln(1)ax +是等价无穷小,则常数a 地值为( )A. 1B. 2C.3D. 4解:本题考查无穷小阶地比较,就是求两个函数比值地极限,条件说是等价无穷小,那么比值地极限是1,即有222001(2)1cos 222lim lim 1ln(1)x x x x ax ax a→→-===+ 则2a=,选B.2.曲线2(1)(2)x xy x x x -=--地垂直渐近线是( )A.0x = B. 1x = C. 2x = D. 没有垂直渐近线解:所谓垂直渐近线就是若0lim ()x xf x →=∞(也可以是单侧极限,即左极限或右极限为无穷大),则称0x x =为垂直渐近线.一般拿来讨论极限地0x 为函数中无定义地点,本题有三个无定义地点,即0x =,1x =,2x =,但是在求极限时函数经过化简后变成12y x =-,因此只有21lim2x x →=∞-,所以选C. 3. 设sin 0()ln(1)xx t t dt ?=+?,则()x ?'=( )A. sin cos ln(1sin )x x x +B. sin ln(1sin )x x +C. sin cos ln(1sin )x x x -+D. sin ln(1sin )x x -+ 解:本题考查变上限积分函数求导公式,选A.4. 下列级数中条件收敛地是( )A.21(1)nn n∞=-∑ B.1(1)1nn n ∞=-+∑ C.11(1)21nn n n ∞=+-+∑ D.1(1)2nnn ∞=-∑解:本题考查绝对收敛与条件收敛地概念,首先要知道无论是绝对收敛还是条件收敛都是满足收敛,只是收敛地“强度”不同罢了.选项A 与D 都是满足绝对收敛地,选项C 一般项地极限不是零,显然发散,只有选项B 满足条件收敛. 5.将二重积分D,{(,)|1}D x y x y x =≤≤≤化成极坐标下地二次积分,则得( )A.224d r drπθ?B.240d dr πθ?C. 2224d r dr ππθD. 2204d dr ππθ?解:本题考查二重积分地极坐标变换,首先关键是画出积分区域来,作图如下:本题积分区域形如右图阴影部分,显然答案选D. 6.函数x y xe -=单调递减且其图形为凸地区间是( )A .(,2)-∞ B. (1,)+∞ C. (2,1)- D. (1,2) 解:单调减就是一阶导数小于零,凸就是二阶导数小于零,于是(1),(2)x x y x e y x e --'''=-=-(1)0112(2)02x xx e x x x e x --?-?<<?-<?7.221lim()21xx x x →∞-=+解:本题考查“1∞”型地幂指函数求极限,利用“重要极限地推广公式”24lim 2lim 22222121212122lim()lim()lim(1)212121x x x x x x x x x x x x x x e e e x x x →∞→∞--?-++→∞→∞→∞-+--==+===+++ 8.已知()2f x '=,则0(2)(22)limx f x f x x→+--=_______________解:本题考查导数地定义,极限中地x 只是一个字母,一个无穷小而已,如同原始定义中地x ?一样,从极限分子中可以看出自变量改变了(2)(22)3x x x +--=,于是0(2)(22)(2)(22)lim3lim 3(2)63x x f x f x f x f x f x x→→+--+--'===9.定积分2424sin sin cos x xdx x ππ-+=?___________. 解:本题考查定积分化简计算,即利用函数奇偶性2222444442200444240sin sin sin tan 2tan 2(sec 1)cos cos 2(tan )22x x x dx dx xdx xdx x dx x x x x ππππππππππ---+=+==-=-=-10.设(1,2,0),(1,2,1)ab ==-则()()a b a b +?-=_________.解:本题考查向量坐标地加法、减法以及叉乘运算由已知可得()(0,4,1),()(2,0,1)a b a b +=-=-,则()()041(4,2,8)201i j ka b a b +?-==---11.设函数(,)zz x y =由方程1z xe yz +=所确定,则zy=?_______. 解:本题考查多元隐函数求偏导,可以选择地方法有很多,比如“公式法”、“全微分法”、“两边求法”,这里我们采用两边求地方法,即对原方程两边同时关于x 求偏导得0zzz z e xe y x x ??++=??,解得z zz e x xe y=-?+.当然本题用公式法做也很简单.12.幂级数2)nn x -地收敛域为__________. 解:本题考查利用系数模比值法求幂级数地收敛域因为1n x ρ===,所以1R =于是121x -<-<,所以13x <<;当1x=时,2)1)n n nn x -=-=(发散-P-级数);当3x=时,2)n n n nn x -==(收敛-莱布尼茨判别法);综上,收敛域为(1,3] 三.计算题(每题8分,共64分)13.求极限30sin lim arcsin x x x x→-解:原式=3220000233lim lim lim 6arcsin 12x x x x x x x x x x→→→→====---- 注:在本题地求解过程中使用了直接代入,即1x →=;并且利用(1)1x x μμ+-(0)x →,则12222111(1())1()22x x x =+---=- 14. 设函数()y y x =由方程1x y e xy +-=所确定,求(0),(0)y y ''' 解:本题考查隐函数求导,而且是求具体点地导数值当0=x时,代入原方程得0=y方程两边同时关于x 求导得 (1)()0x ye y y xy +''+-+= (*)代入0=x,0=y 得 1)0(-='y再对(*)式两边同时关于x 求导得 2[(1)][()]0x y x y e y e y y y xy ++'''''''++-++=整理得 2(1)()20x yx y e y e x y y ++''''+++-=代入0=x,0=y 及1)0(-='y 得 2)0(-=''y15.求不定积分?t =,则21,2x t dx tdt =+=,代入得22()2()t t t t te dt td e te e dt ===-2(1)1)t t e C C16.求定积分4t =,则242,33t x dx tdt -==;当0x =时2t =,当4x =时4t =;代入得2344424222412221003(1)()399327t t tdt t dt t t -+==-=-=17. 设(23,)xz f x y ye =+,其中f 有二阶连续偏导数,求2zx y解:121222x x zf f ye f ye f x''''=?+?=+?212111222122221112212122222(2)2(3)[1(3)]6236(23)x x x x x x x x x x x z f ye f f f e e f y f f e x y ye f f e f ye f ye f e f f y e f ye f f f ??'''''''''''=+=?+?+?+?+'''''''''=+++?+'''''''=+++''''+=()18. 设直线通过点(-1,2,0),垂直于直线12231x ty t z t =+??=-??=--?又与平面231x y z -+=平行,求其方程解:设直线12231x t y t z t =+??=-??=--?地方向向量为0s ,平面231x y z -+=地法向量为0n ,则0(2,3,1),(1,2,3)s n =--=-,设所求直线地方向向量为s ,则00123(11,7,1)231i j ks n s =?=-=--于是所求直线方程为121171x y z+-==19.计算二重积分,{(,)|1}Dxdxdy D x y x y =≤≤≤≤??解:由已知条件可知积分区域D 是由曲线222,2y x x y =+=所围成,在第一象限中地交点坐标为(1,1),形如右图阴影部分,所以21112001((2)22Dx xdxdy dy y y dy ===-- 321011117(2)(2)23223212y y y =--=?--= 注:本题有些同学可能会错误地认为阴影部分应该是,这是不正确地这是因为{(,)|1}D x y x y =≤≤≤≤若2{(,)|1}D x y x y x =≤≤≤≤,则就是第二个图中地阴影部分了.20.求微分方程32x y y y e '''-+=地通解解:原方程对应齐次线性微分方程地特征方程为2320rr -+=,解得121,2r r ==所以对应齐次线性微分方程地通解为212x x Y C e C e =+;又1λ=为其中地一个特征根,所以原方程地一个特解为*x y Axe =,则*(1)x y A x e '=+,*(2)x y A x e ''=+,代入原方程得(2)3(1)2x x x x A x e A x e Axe e +-++=,化简得1A =-所以*x y xe =-,所以通解为212x x x y C e C e xe =+-四.证明题(每小题9分,共18分)21.证明:当01x <<时,2sin 12xx e x -+<+证明:令2()sin 12xx f x e x -=+--,则()cos x f x e x x -'=-+-()sin 1x f x e x -''=--,()cos 0(01)x f x e x x -'''=--<<<,所以()f x ''单调递减,又(0)0f ''=,所以()0f x ''<,所以()f x '单调递减,又(0)0f '=,所以()0f x '<,所以()f x 单调递减,又(0)0f =,所以()0f x <,即当01x <<时,2sin 12xx e x -+<+注:本题是利用三阶导数相关信息一次次反推到原来地函数,即连续使用了三次利用导数证明不等式地方法,具体地关系图如下:()0()()0()()(0)0()0(0)0(0)0f x f x f x f x f x f f x f f ??'''''?<?'''?<''=??=? 22.设函数1,0()32,0x e x f x x x ?+≤=?+>?,证明()f x 在0x =处连续但不可导证明:显然()f x 在0x =地函数值为(0)2f =因为lim ()lim(1)2,lim ()lim(32)2x x x x x f x e f x x --+-→→→→=+==+=,所以0lim ()2x f x →= 所以0lim ()(0)x f x f →=,即()f x 在0x =处连续因为0000000()(0)121lim lim lim lim 10()(0)3223lim lim lim 30x x x x x x x x x f x f e e xx x x x f x f x x x xx ----+--→→→→→→→-+--====--+-===-所以(0)(0)f f -+''≠,即左导数不等于右导数,所以()f x 在0x =处不可导综上所述()f x 在0x =处连续但不可导五.综合题(每题10分,共20分) 23.设函数3233y x ax bx c =+++在1x =-处取得极大值,且点(0,3)是其图形地拐点,求常数,,a b c 地值解:因为函数3233y x ax bx c =+++显然满足一阶和二阶可导,所以它地极值点1x =-是驻点(一阶导数等于零地点),它地拐点(0,3)是二阶导数等于零地点因为2363,66y x ax b y x a '''=++=+,且(0,3)在曲线上,所以综上可得(0)33(1)03630(0)060f c f a b f a =='-=?-+=''==??,解得013a b c =??=-??=?24.求微分方程(2)0xdy x y dx +-=地一个解()y y x =,使曲线()y y x =于直线1,2x x ==及x 轴所围成地平面图形绕x 轴旋转一周所得地旋转体体积最小解:将上述微分方程变形为2220101dy dy dy xx y y y dx dx x dx x+-=?+-=?-=- 即21y y x '-=-,这是一个一阶非齐次线性微分方程,其中2(),()1P x Q x x=-=-通解为22()()222211[](())()dxdx xx y ee dx C x dx C x C Cx x x x---??=-+=-+=+=+??2543222224322111()(2)()523x C x Cx x V Cx x dx C x Cx x dx πππ=+=++=++??231157()523C C π=++ 即231157()523V C C π=++,显然此时地体积V是一个关于参数C 地一元二次函数,是一条抛物线,由中学数学可知抛物线地顶点是最小值点,顶点坐标公式为24(,)24b ac ba a --,即当1575231212425b C a =-=-=-?时取得最小值因此所求函数为275124y x x =-+ 注:本题涉及到画图地问题,对于抛物线2y Cx x =+,我们知道它一定过原点(0,0),但是常数C 地正负性不知道,也就是不知道抛物线开口向上还是向下.由于本题只是求旋转体体积,所以只要画出大致图形即可.不过,光知道经过原点是不够地,会有很多种情况,从而围成地图形也不一样.我们做如下地讨论当0C>时,对称轴为1022b x a C =-=-<,即此时抛物线开口向上且对称轴在y 轴地左边;当0C <时,对称轴为1022b x a C=-=->,即此时抛物线开口向下且对称轴在y 轴地右边边因此就是下面这两种图形:由旋转体体积公式可知,不管是哪种图形,其体积公式都是2221()x V Cx x dx π=+?。

江苏专转本数学真题共28页文档

江苏专转本数学真题共28页文档

<1>一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211( ) A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21( ) A 、0 B 、2C 、-1D 、15、方程xy x 422=+在空间直角坐标系中表示( ) A 、圆柱面 B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数y x z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([ 三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim2002⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求xz∂∂、y x z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积; (3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专转本高等数学真题 (附答案)

江苏专转本高等数学真题 (附答案)

2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏省“专转本”《高等数学》试卷分类解析不定积分.

江苏省“专转本”《高等数学》试卷分类解析不定积分.

同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。

解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2016年普通高校专转本选拔考试
高等数学试题卷
注意事项:
1.本试卷分为试题卷和答题卡两部分,试题卷共3页,全卷满分150分,考试时间120分钟。

2.必须在答题卡上作答,作答在试题卷上无效,作答前务必将自己的姓名和准考证号准确清晰地填写在试题卷和答题卡上的指定位置。

3.考试结束时,须将试题卷和答题卡一并交回。

一、单项选择题(本大题共6小题,每小题4分,共24分,在下列每小题中选出一个正确答案,请在答题卡上将所选的字母标号涂黑)
1.函数()f x 在0x x =处有定义是极限0lim ()x x f x →存在的()
A.充分条件
B.必要条件
C.充分析要条件
D.无关条件
2.设()sin f x x =,当0x +→时,下列函数中是()f x 的高阶无穷小的是(
)A.tan x B.11x -- C.21
sin x x D.1
x e -3.设函数()f x 的导函数为sin x ,则()f x 的一个原函数是(
)A.sin x B.sin x - C.cos x D.cos x
-4.二阶常系数非齐次线性微分方程"'22x y y y xe ---=的特解*y 的正确假设形式为(
)A.x Axe - B.2x Ax e
- C.()x Ax B x -+ D.()x x Ax B e -+5.函数2()z x y =-,则1,0|x y dz ===(
)A.22dx dy
+ B.22dx dy - C.22dx dy -+ D.22dx dy --6.幂级数212n n
n x n
∞=∑的收敛域为(
)A.11[,]22- B.11[,)22- C.11(,]22- D.11(,)22
-二、填空题(本大题共6小题,每小题4分,共24分)
7.极限x x x 10)
21(lim -→▲.
8.已知向量(1,0,2),(4,3,2)a b ==-- ,则(2)(2)a b a b -⋅+=
▲.9.函数()x f x xe =的n 阶导数()()n f x =▲.
10.函数211()sin 2x f x x x
+=,则()f x 的图像的水平渐近线方程为▲.11.函数2()ln x x F x d ιι=
⎰,则'()F x =▲.
12.无穷级数1
1(1)2n n n ∞=+-∑▲.(请填写收敛或发散)三、计算题(本大题共8小题,每小题8分,共64分)
13.求极限201cos lim sin x x x x x →⎛⎫- ⎪⎝
⎭.14.设函数()y y x =由方程xy e
x y =+所确定,求dy dx .15.
计算定积分51⎰.
16.求不定积分2ln (1)x dx x +⎰.
17.求微分方程2'2sin x y xy x +=满足条件()0y π=的解.
18.求曲直线1111:131x y z l ---==和直线21:1213x l y z ιιι=+⎧⎪=+⎨⎪=+⎩
所确定的平面方程.19.设22
(,)z f x y y x =--,其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂.20.计算二重积分D
xdxdy ⎰⎰,其中D 是由直线2y x =+,x
轴及曲线y =所围绕成的平面闭区域.四、证明题(本大题共2小题,每小题9分,共18分)
21.证明:函数()f x x =在0x =处连续但不可导.
22.证明:当12
x ≥-时,不等式32213x x +≥成立.
3五、综合题(本大题共2小题,每小题10分,共20分)
23.平面区域D 由曲线y y x 222=+,x y =及y 轴所围成。

(1)求平面区域D 的面积;
(2)求平面区域D 绕x 轴旋转一周所得的旋转体的体积。

24.设函数)(x f 满足等式dx x f x x f ⎰+=212)(21
)(。

(1)求)(x f 的表达式;
(2)确定反常积分⎰+∞
1)(dx x f 的敛散性。

相关文档
最新文档