江苏专转本高等教育数学真题和答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2017年普通高校专转本选拔考试
高数试题卷
一、单项选择题(本大题共 6 小题,没小题 4 分,共 24 分。在下列每小题中选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)
1.设)(x f 为连续函数,则0)(0='x f 是)(x f 在点0x
处取得极值的( )
A.充分条件
B.必要条件
C.充分必要条件
D.非充分非必要条件
2.当0→x 时,下列无穷小中与x 等价的是( )
A.x x sin tan -
B.x x --+11
C.11-+x
D.x cos 1-
3. 0=x 为函数)(x f =0
0,1sin ,
2,1>=<⎪⎪⎩
⎪⎪⎨⎧-x x x x x e x
的( )
A.可去间断点
B.跳跃间断点
C.无穷间断点
D.连续点
4.曲线
x x x x y 48622++-=
的渐近线共有( )
A.1 条
B.2 条
C.3 条
D.4 条
5.设函数)(x f 在 点0=x 处可导,则有( )
A.)0(')()(lim
f x x f x f x =--→ B.)
0(')
3()2(lim 0f x x f x f x =-→ C.)0(')0()(lim
0f x f x f x =--→ D.)
0(')
()2(lim 0f x x f x f x =-→
6.若级数∑∞
-1-n n
1p
n )(条件收敛,则常数P 的取值范围( )
A. [)∞+,
1 B.()∞+,1 C.(]1,0 D.()1,0
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
7.设dx
e x x a x x
x ⎰∞
-∞→=-)1(lim ,则常数a= .
8.设函数)(x f y =的微分为
dx e dy x
2=,则='')(x f .
9.设)(x f y =是由参数方程 {
13sin 13++=+=t t x t
y 确定的函数,则)
1,1(dx
dy
= .
10.设x x cos )(F =是函数)(x f 的一个原函数,则⎰
dx
x xf )(= .
11.设 →
a 与 →
b 均为单位向量, →
a 与→
b 的夹角为3π,则→a +→
b = .
12.幂级数 的收敛半径为 .
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
13.求极限x x dt
e x
t x --⎰
→tan )1(lim
02
.
14.设),(y x z z =是由方程0ln =-+xy z z 确定的二元函数,求2
2z x ∂∂ .
15.求不定积分 dx x x ⎰
+32
.
n
n x ∑∞1
-n 4n
16.计算定积分⎰
210
arcsin xdx
x .
17.设
),(2
xy y yf z =,其中函数f 具有二阶连续偏导数,求y x ∂∂∂z
2
18.求通过点(1,1,1)且与直线
11
2111-+=-=-+z y x 及直线{
12z 3y 4x 0
5=+++=-+-z y x 都垂直的直线方程.
19.求微分方程x y y y 332=+'-''是通解.
20.计算二重积分dxdy y x ⎰⎰D 2,其中 D 是由曲线
1-=y x 与两直线1,3==+y y x 围
成的平面闭区域.
四.证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当π≤ 22.设函数)(x f 在闭区间[]a a ,-上连续,且)(x f 为奇函数,证明: (1)⎰⎰--=0 )()(a a dx x f dx x f (2)⎰ -=a a dx x f 0 )( 五、综合题(本大题共 2 题,每小题 10 分,共 20 分) 23.设平面图形 D 由曲线 x e y = 与其过原点的切线及 y 轴所围成,试求; (1)平面图形D 的面积; (2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积. 24.已知曲线 ) (x f y=通过点(-1,5),且) (x f满足方程3 5 12 ) ( 8 ) ( 3x x f x f x= - ' ,试求: (1)函数 ) (x f的表达式; (2)曲线 ) (x f y=的凹凸区间与拐点. 高数试题卷答案 一、单项选择题1-6 DBACD 解析: 二、填空题 7. -1 8. x e2 2 9. 3 1 10.