地球化学知识汇总
地球化学复习资料
地球化学复习资料名词解释:常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和⼤类划分。
微量元素:物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素。
其浓度⼀般低于0.1%,在⼤多数情况下明显低于0.1%⽽仅达到ppm乃⾄ppb数量级。
稀有元素:在地壳中分布量较低,但易于在⾃然界⾼度富集形成较常见的矿物和独⽴⼯业矿床的的化学元素。
如REE、Nb、Ta、Be、Li、(W)等。
元素的丰度:元素在宇宙体或较⼤的地球化学系统中的平均含量。
元素在地壳中的丰度⼜称为克拉克值。
陨⽯:从星际空间降落到地球表⾯上来的⾏星物体的碎⽚。
类质同象:元素相互结合过程中,性质相似的元素发⽣代换起到性质相同的作⽤,按概率占据相同的位置,⽽不引起晶格常数过⼤的改变的现象。
晶体场稳定能(CFSE-crystal field stabilization energy):d轨道电⼦能级分裂后的d电⼦能量之和,相对于未分裂前d电⼦能量之和的差值,称为CFSE。
⼋⾯体择位能(Octahedral site preference energy )OSPE = CFSEo – CFSEt O-⼋⾯体配位场t-四⾯体配位场离⼦电位(π):是离⼦⼤⼩和离⼦电荷的综合作⽤效果,决定了离⼦吸引价电⼦的能⼒,π值为离⼦电价与离⼦半径(单位为10nm)的⽐值。
核素:由不同数量的质⼦和中⼦按⼀定结构组成各种元素的原⼦核称为核素,任何⼀个核素都可以⽤A=P+N这三个参数来表⽰。
⽽具有相同质⼦数,不同数⽬中⼦数所组成的⼀组核素称为同位素。
亲⽯元素:离⼦的最外电⼦层具有8电⼦(s2p6)稳定结构,氧化物的形成热⼤于FeO的形成热,与氧的亲和⼒强,易熔于硅酸盐熔体,主要集中在岩⽯圈。
亲铜元素:离⼦的最外电⼦层具有18电⼦(s2p6d10)的铜型结构,氧化物的形成热⼩于FeO的形成热,与硫的亲和⼒强,易熔于硫化铁熔体。
地球化学的基础知识和应用
地球化学的基础知识和应用地球是一个复杂的系统,其中包含着无数的物质元素和化合物,这些元素和化合物,就是地球化学研究的主要内容。
地球化学是研究地球内部的物质组成及其分布规律、地球表层的化学过程及其对环境的影响、地球和生物之间的相互作用等的学科。
本文将介绍地球化学的基础知识和应用。
一、地球化学基础知识1. 元素与化合物元素是指由同种原子组成的物质,如氧气、金属铜等。
而化合物则是由两种或两种以上的元素化合而成的物质,如水分子H2O、二氧化碳CO2等。
地球上绝大部分物质都是由元素和化合物组成的。
2. 元素周期表元素周期表是地球化学研究中非常重要的表格。
它展示了所有已知的元素以及它们的基本性质和化学反应。
元素周期表从左至右按原子编号排列,从上至下按元素原子序数排列。
元素的位置在周期表上决定了它的性质和化学反应。
例如,所有在同一个组中的元素都有类似的电子结构和反应性质。
3. 岩石与矿物岩石是地球构造的基本组成部分,由一个或多个矿物组成。
矿物是一种具有确定的化学成分和晶体结构的天然物质,如石英、方铅矿等。
地球化学家通过研究岩石和矿物,可以了解地球内部的成分和演化过程。
4. 地球化学循环地球上的元素和化合物一直处于循环之中。
例如,矿物在地壳中不断形成和破坏,生物不断吸取和释放各种元素和化合物,这些过程组成了地球化学循环系统。
地球化学循环的研究可以揭示地球的化学演化历史和环境变化规律。
二、地球化学应用1. 污染治理地球化学应用于环境污染治理,是近几十年来地球化学研究的一个重要领域。
地球化学家可以通过分析土壤、岩石、水体等物质中的元素和化合物,了解其受到的污染程度和种类,并制定相应的治理措施。
例如,土壤重金属污染可以通过土壤修复技术进行治理,水体中的有害物质可以通过沉淀、吸附等方式进行处理。
2. 能源勘探地球化学应用于石油、天然气等化石燃料勘探也是地球化学的一个重要领域。
地球化学家通过分析地下水、沉积物中的有机物和微量元素,来寻找化石燃料形成的地质构造、含量等信息。
地球化学考点整理
一、主量元素:把研究体系(矿物、岩石)中元素含量大于1%的元素称为主量元素。
微量元素:研究体系中浓度低到可以近似地服从稀溶液定律的元素称为微量元素。
二、放射性同位素:原子核不稳定,它们以一定方式自发地衰变成其他核素的同位素。
放射性成因同位素:由放射性元素衰变而形成的同位素。
三、能斯特分配系数:在一定的温度、压力条件下,当两个共存地质相A、B平衡时,以相同形式均匀赋存于其中的微量组分i在两相中的浓度比值为一常数,该常数称为能斯特分配系数。
四、元素的地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出来的有选择地与某种阴离子结合的特性,称为元素的地球化学亲和性。
五、高场强元素:离子半径小,离子电荷高,离子电位>3,难溶于水,化学性质稳定,为非活动性元素。
如:Th、Nb、Ta、Zr。
大离子亲石元素:离子半径大,离子电荷低,离子电位<3,易溶于水,化学性质活泼,地球化学活动性强。
如:Rb,K,Cs,Ba。
六、亲铁元素:在自然体系中,特别是在O、S丰度低的情况下,一些金属元素不能形成阳离子,只能以自然金属形式存在,它们常常与金属铁共生,以金属键性相互结合,这些元素具有亲铁性,属于亲铁元素。
七、放射性同位素的衰变方式:(1)β-衰变:原子核中一个中子分裂为一个质子和一个电子,β-质点被射出核外,同时放出中微子v。
(2)电子捕获:原子核自发地从K或L层电子轨道上吸取一个电子(多数为K层,故又称K层捕获),与一个质子结合变成一个中子。
(3)α衰变:重核通过放射出由两个质子和两个中子组成的α质点而转变成稳定核。
(4)重核裂变:重同位素自发地分裂成2或3个原子量大致相同的碎片。
八、盐效应:当溶液中存在易溶盐类(强电解质)时,溶液的含盐度对化合物的溶解度会产生影响,表现为随溶液中易溶电解质浓度的增大将导致其他难溶化合物的溶解度增大,称盐效应。
电负性:电负性等于电离能(I)与电子亲和性(E)之和X=I+E,可用于度量中性原子得失电子的难易程度。
地球化学复习概要
1、地球化学:就是地球的化学,它是研究地球(广义的也包括部分天体)的化学组成、化学作用及化学演化的学科,它是地学和化学的边缘学科。
2、丰度:一种化学元素在某个自然体中的重量占这个自然体的全部化学元素总重量的相对份额,元素丰度是化学元素在一定自然体中的相对平均含量。
3、类质同象:某种物质在一定外界条件下结晶时,晶体中的部分构造位置被介质中的其他元素(如原子、离子、络离子、分子)所占据而只引起晶格常数的微小改变,晶格构造类型、化学键类型、离子正负电荷的平衡保持不变或相近,这种现象称为类质同象。
4、稀土元素:指原子序数从57到71的15个镧系元素,在周期表中属ⅢB族,同族中的39号元素钇一般也看做稀土元素。
5、分配系数:分为简单分配系数、复合分配系数、对数分配系数、总分配系数,总分配系数D又称岩石分配系数,是矿物的简单分配系数和岩石中矿物的百分含量乘积的代数和。
// 总分配系数:又称为岩石的分配系数,它是用来讨论微量元素在岩石(矿物集合体)和与之平衡的熔体之间的分配关系的。
6、地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选择的与某种阴离子结合的特性;主要有亲氧性元素、亲硫性元素、亲铁性元素。
7、微量元素(?):又称痕量元素,指研究体系中元素含量小于0.1%的元素。
8、环境地球化学:是介于环境科学和地球化学之间的一门新兴边缘交叉学科,研究人类赖以生存的地球环境的化学组成、化学作用、化学演化与人类相互关系的科学。
9、不相容元素(ICE):D小于1的元素, 随着结晶程度的增长而逐步在残余岩浆中富集.如Rb、Cs、Ba、Sr、Zr、Nb、Th、REE、P等10、相容元素(CE):D大于1的元素,倾向在矿物晶体中富集,并随这些矿物的晶出而逐步在残余岩浆中贫化.如Fe、Co、Ni、Cr、Mg等11、生物标志化合物:指沉积有机质、原油、油页岩、煤中那些来源于活的生物体,在有机质演化过程中具有一定稳定性,没有或较少发生变化,基本保存了原始生化组分的碳骨架,记载了原始生物母质的特殊分子结构信息的有机化合物。
地球化学复习资料
地球化学复习资料地球化学复习资料地球化学是研究地球上各种元素及其在地球内外圈层中的分布、迁移和转化规律的科学。
它不仅是地球科学的重要分支,也是研究地球演化和资源勘探的基础。
在地球化学的学习过程中,我们需要掌握一些重要的知识和概念,下面将对其中的一些内容进行复习。
一、地球的成分和结构地球是由各种元素组成的,主要包括铁、氧、硅、镁等。
这些元素在地球内部以不同的方式分布,形成了地球的结构。
地球可以分为地壳、地幔和地核三个主要部分。
地壳是地球最外层的一层,主要由硅酸盐矿物组成。
地幔是地壳与地核之间的一层,主要由硅、镁、铁等元素组成。
地核是地球的内核,主要由铁和镍等重金属元素组成。
二、地球化学循环地球化学循环是指地球上各种元素在地球内外圈层之间的迁移和转化过程。
地球化学循环可以分为大气圈、水圈、岩石圈和生物圈等几个部分。
大气圈是指地球上的气体层,其中包括氧气、二氧化碳等。
水圈是指地球上的水资源,包括海洋、河流、湖泊等。
岩石圈是指地球上的岩石层,其中包括地壳和地幔。
生物圈是指地球上的生物体,包括植物、动物等。
三、地球化学元素地球化学元素是指地球上各种元素的种类和含量分布。
地球上的元素可以分为常量元素、痕量元素和微量元素等几个类别。
常量元素是地球上含量最丰富的元素,主要包括氧、硅、铝等。
痕量元素是地球上含量较少但对地球化学过程有重要影响的元素,主要包括锰、铜、锌等。
微量元素是地球上含量非常少的元素,主要包括金、银、铂等。
四、地球化学过程地球化学过程是指地球上各种元素在地球内外圈层中的迁移和转化过程。
地球化学过程可以分为地球化学风化、沉积作用、岩浆活动等几个环节。
地球化学风化是指地球上岩石和矿物受到气候、水文等因素的作用而发生分解和溶解的过程。
沉积作用是指地球上岩石和矿物在水体中沉积和沉淀的过程。
岩浆活动是指地球上岩浆从地幔上升到地壳的过程,形成火山和岩浆岩等地质现象。
五、地球化学资源地球化学资源是指地球上含有有用元素和化合物的矿石和矿床。
地球化学复习资料
地球化学复习资料第1章绪论一、地球化学的定义地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学(涂光炽)。
地球化学是研究地球的化学成分及元素在其中分布、分配、集中、分散、共生组合与迁移规律、演化历史的科学。
二、地球化学研究的基本问题第一:元素(同位素)在地球及各子系统中的组成(量)第二:元素的共生组合和存在形式(质)第三:研究元素的迁移(动)第四:研究元素(同位素)的行为第五:元素的地球化学演化第2章自然体系中元素的共生结合规律一、元素地球化学亲和性的定义在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。
二、亲氧元素、亲硫元素与亲铁元素的特点地球的组分分异,由元素的性质决定。
元素在周期表中的位置:亲铁元素: 地核亲石元素: 地幔与地壳亲气元素: 大气圈和水圈三、其它的概念离子电位(π):是离子电价(W)与离子半径(R)的比值,即π=W/R电离能:指从原子电子层中移去电子所需要的能量。
电离能愈大,则电子与原子核之间结合得愈牢固。
电子亲和能:原子得到电子所放出的能量(E)叫电子亲和能。
E越大,表示越容易得到电子成为负离子。
电负性:中性原子得失电子的难易程度。
或者说原子在分子中吸引价电子的能力叫电负性。
表示为:X=I+E (X:电负性;I:电离能;E:电子亲和能)周期表上,以Li的电负性为1.0,得出其它元素相对电负性。
化学键:离子键(电子交换),共价键(电子共用),金属键(价电子自由移动),范德华键(分子间或惰性原子间,存在弱的偶极或瞬时偶极),氢键(也属分子间静电力,含H的分子与其它极性分子或负离子间)四、元素的地球化学化学分类(戈式分类)亲氧(亲石)、亲硫(亲铜)、亲铁、亲气根据地球中阴离子中氧丰度最高,其次是硫(主要形成氧的化合物和硫化物);而能以自然金属形式存在的丰度最高的元素是铁,因此,元素的地球化学亲和性主要分为以下三类:①亲氧性(亲石)元素;②亲硫性(亲铜)元素;③亲铁元素。
地球化学复习重点
绪论:1. 地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学.2. 地球化学研究的基本问题:①元素(同位素)在地球及各子系统中的组成②元素的共生组合和存在形式③研究元素的迁移④研究元素(同位素)的行为⑤元素的地球化学演化3. 地球化学的研究思路:"见微而知著"。
通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。
4. 简述地球化学的研究方法:A. 野外工作方法:①宏观地质调研②运用地球化学思维观察、认识地质现象③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品B.室内研究方法:④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值⑤质的研究,也就是元素结合形态和赋存状态的研究⑥动的研究,地球化学作用过程物理化学条件的测定和计算。
包括测定和计算两大类。
⑦模拟地球化学过程,进行模拟实验。
⑧测试数据的多元统计处理和计算。
第一章:基本概念1. 地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P 等)2. 丰度:一般指的是元素在这个体系中的相对含量(平均含量)。
3. 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。
4. 分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。
5. 研究元素丰度的意义:①元素丰度是每一个地球化学体系的基本数据以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。
是研究地球、研究矿产的重要手段之一。
②研究元素丰度是研究地球化学基础理论问题的重要素材之一。
宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。
地球化学重点知识总结
第一章太阳系和地球系统的元素丰度第1节基本概念1、地球化学体系按照地球化学的观点,把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态,并且有一定的时间连续。
这个体系可大可小。
某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床、某个流域、某个城市也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一个地球化学体系。
地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中“量”的研究。
2、分布和丰度体系中元素的分布,一般认为是指的是元素在这个体系中的相对含量(平均含量),即元素的“丰度”,体系中元素的相对含量是以元素的平均含量来表示的。
体系中元素的丰度值实际上只能对这个体系里元素真实含量的一种估计;元素在一个体系中的分布,特别是在较大体系中决不是均一的。
3、分布与分配分布指的是元素在一个地球化学体系中(太阳、陨石、地球、地壳某地区)整体总含量。
元素的分配指的是元素在各地球化学体系内各个区域、区段中的含量。
分布是整体,分配是局部,两者是一个相对的概念,既有联系也有区别. 把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现.4第2节元素在太阳系中的分布规律(一)获得太阳系丰度资料的主要途径。
主要有以下几种:1、光谱分析:对太阳和其它星体的辐射光谱进行定性和定量分析,但这些资料有两个局限性:一是有些元素产生的波长小于2900Å,这部分谱线在通过地球化学大气圈时被吸收而观察不到;二是这些光谱产生于表面,它只能说明表面成分,如太阳光谱是太阳表面产生的,只能说明太阳气的组成。
2 、直接分析:如测定地壳岩石、各类陨石和月岩、火星的样品.上个世纪七十年代美国“阿波罗”飞船登月,采集了月岩、月壤样品,1997年美国“探路者”号,2004年美国的“勇敢者”、“机遇”号火星探测器测定了火星岩石的成分。
地球化学知识点整理
地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。
即“见微而知著”。
第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。
这种不均一性在地球的一定深度表现为突变性质。
由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。
界面分别为:莫霍面和古登堡面。
(2)上地壳和下地壳分界面为康拉德面。
上地壳又叫做硅铝层,下地壳又叫做硅镁层。
大陆地壳由上、下地壳,而大洋地壳只有下地壳。
【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。
它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。
(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。
地球化学的基本知识
地球化学的基本知识地球化学是研究地球物质成分、构造、演化及其与生命和环境的相互关系的科学。
它涉及到地球物质的地球化学元素和同位素地球化学、地球化学循环和地球化学环境等方面的内容。
在地球科学中,地球化学是一个非常重要的学科,对于我们了解地球内部的构造和演化过程、地球环境问题以及探索地质资源方面都有着重要的作用。
地球化学元素地球化学元素是组成地球物质的最基本成分,它们是地球化学研究的重点。
地球化学元素可分为7类,包括:1. 结构元素:构成地球物质的主体,包括氧、硅、铝、钙、钾、钠、镁等。
2. 生命元素:在生命过程中起重要作用的元素,包括碳、氧、氢、氮、磷、硫等。
3. 外源元素:由于地球物质的外来污染而进入地球大气圈和地表水的元素,包括铜、铅、锌、镉等。
4. 稀有元素:在地球物质中数量较少,但对人类发展有重要作用的元素,包括铀、银、金、铂等。
5. 晶体元素:在矿物中起构成稳定晶体结构的作用,包括铝、硅、钾、钠、钙等。
6. 地壳亏损元素:在地壳中含量很少,经常进入地球内部或者被深海沉积物吸附,包括锆、铪、钨、锂等。
7. 稳定代表元素:是代表不同物质来源的元素,包括铷、锶、氧等。
同位素地球化学同位素指同一元素的不同质量数的原子,它们具有相同的原子序数但是质量不同。
同位素地球化学主要研究同位素的地球化学特征及其在地球环境中的物质循环。
同位素的研究可以揭示地球的起源和演化历程,也可以为寻找矿产资源提供线索,同时还可以在环境研究中提供很多信息。
同位素地球化学有很多研究方向,涵盖了从宏观到微观的各个层面。
其中最常用的应用是同位素地球化学年代学,即利用某些放射性同位素的衰变规律测定岩石和化石的年龄。
同位素地球化学还可以研究地球历史和地质过程中物质的迁移和循环,以及对生态和环境方面的影响。
地球化学循环地球化学循环是指地球物质在各种环境作用下发生的化学反应,并通过不同的地球系统之间相互转移,形成一个复杂的物质循环过程。
地球化学知识点整理
地球化学知识点整理地球化学是研究地球的化学组成、化学作用和化学演化的科学。
它涉及到地球的各个圈层,包括岩石圈、水圈、大气圈和生物圈,以及地球内部的各种地质过程和现象。
以下是对地球化学一些重要知识点的整理。
一、元素的分布1、地球的元素丰度地球的元素丰度是指各种元素在地球中的相对含量。
研究表明,氧、硅、铝、铁、钙、钠、钾、镁这八种元素占了地球总质量的绝大部分。
2、元素在不同圈层的分布岩石圈中,硅、铝、铁等元素较为丰富;水圈中,氢、氧以及一些溶解的离子如钠、氯等常见;大气圈中,氮、氧是主要成分。
3、元素分布的控制因素元素的分布受到多种因素的影响,如原子结构、地球的形成过程、地质作用等。
二、同位素地球化学1、同位素的概念同位素是指质子数相同而中子数不同的同一元素的不同原子。
2、稳定同位素和放射性同位素稳定同位素在自然界中不发生衰变,如碳的同位素 C-12 和 C-13;放射性同位素会自发地发生衰变,如铀-238 衰变为铅-206。
3、同位素分馏由于物理化学过程中同位素的质量差异,会导致同位素在不同物质中的相对丰度有所不同,这就是同位素分馏。
4、同位素地质年代学通过测定岩石或矿物中放射性同位素的衰变产物和剩余量,可以计算出岩石或矿物的形成年龄。
三、地球化学热力学1、热力学基本概念包括内能、焓、熵等,它们用于描述体系的能量状态和变化。
2、地球化学平衡在地质过程中,各种化学反应达到平衡状态,通过热力学原理可以判断反应的方向和限度。
3、相平衡研究不同相(如固相、液相、气相)之间的平衡关系,对于理解岩石的形成和演化具有重要意义。
四、微量元素地球化学1、微量元素的定义在地质体系中含量较低的元素。
2、分配系数微量元素在不同矿物或相之间的分配比例,它反映了微量元素在地质过程中的行为。
3、微量元素的示踪作用通过分析微量元素的含量和比值,可以推断岩石的成因、源区特征以及地质过程的条件。
五、有机地球化学1、有机化合物的来源和分布有机化合物可以来源于生物遗体和分泌物,在沉积岩中广泛分布。
地球化学知识点总结
地球化学知识点总结地球化学是研究地球上元素在地壳、海洋、大气、生物圈等不同地球部分的分布和演化规律的一门科学。
它是地球科学、环境科学、地球化学和物质科学的交叉学科。
地球化学可以帮助人们更好地理解地球的起源与演化过程,从而为人类的生存、发展提供科学依据。
下面将从地壳、海洋、大气和生物圈等方面详细介绍地球化学的知识点。
1.地壳化学:地壳是地球表面上最外面的固体壳层,它主要由岩石和土壤组成。
地壳化学研究地壳中元素的组成、分布和形成机制。
地壳中的元素可分为岩石形成的主要元素和矿物形成的次要元素。
主要元素包括氧、硅、铝、铁、钙、钠、钾等,次要元素包括钛、锰、镁、铜、锌、铅等。
地壳化学的主要目标是研究地壳元素的含量、赋存形态和变化规律,从而探索地壳的演化历史和地球构造的变化。
2.海洋化学:海洋是地球上最大的水体,其中溶解有大量的盐类和其他化学物质。
海洋化学研究海水中元素的分布、循环和相互作用。
海洋中的主要元素包括氯、钠、镁、硫、钾、钙等,其含量和分布受到多种因素的影响,如河流输入、地壳物质的侵蚀和火山喷发等。
海洋化学的研究可以揭示海洋中元素的循环和交换过程,为海洋环境保护和资源开发提供科学依据。
3.大气化学:4.生物地球化学:生物圈是地球上生物活动的部分,其中包括陆地生态系统和海洋生态系统。
生物地球化学研究生物圈中元素的循环和生物对地球化学过程的影响。
生物圈中的生物通过光合作用和呼吸作用,将二氧化碳转换为有机物,并释放出氧气。
同时,生物还通过摄食和分解等过程参与地球化学循环,如植物吸收地壳中的元素,动物通过排泄将元素输入土壤等。
生物地球化学的研究可以揭示生物对地球化学循环的调节作用,为生物多样性保护和生态系统管理提供科学依据。
地球化学的研究方法包括采样、分析和模拟等。
采样是获取地球样品的过程,可以通过地质勘探、海洋探测和环境监测等方式进行。
分析是对样品进行化学分析的过程,可以利用化学分析仪器和实验方法进行。
地球化学复习重点
一 名词解释1、同位素值:指原子核内质子数相同而中子数不等的一些原子。
2、稳定沉积学:是以沉积物和沉积岩为对象,研究其在成岩过程中所含元素及稳定同位素的迁移、聚集和分布规律的一门学科。
3、干酪根:沉积岩中不溶于有机溶剂的集合体。
4、生烃强度:只有效烃源岩分布范围内单位面积的生烃量。
5、稳定同位素:原子能稳定存在的时间大于1017a 的就是稳定同位素。
6、稳定同位素地层学:稳定同位素地层学是同位素地层学的基本内容,是利用稳定同位素组成在地层中的变化特征进行地层的划分和对比,确定地层的相对时代,并探讨地质历史中发生的重大事件。
7、烃源岩:具备了生烃条件,已经生成并能排出具有工业价值的石油和天然气的岩石。
又称生油气岩、生油气母岩。
8、克拉克值:每一种化学元素在地壳中所占的平均比值。
9、同位素丰度:元素中某种同位素的含量。
指 某(稳定)同位素 占所属元素 的含量百分比。
同位素丰度是指某一元素的各种同位素在自然界或某种物质中所占的百分含量。
10、同位素△值的表示:样品中某元素的同位素比值(R 样)相对于标准样品的同位素比值(R 标)的千分偏差,称为δ值。
写成表达式即:二 简答题1、 如何判断沉积物的沉积环境?①古盐度(a.硼法→相当硼 b.元素比值法 c 磷酸法)②氧化还原条件的判断(a.铁矿物的组合 b.Fe 2+/Fe 3+比值 c.Kfe 系数 d.Cu/Zn Cu+Mo/Zn)③离岸距离的标志(a.元素组合 b 元素比值)④构造背景的判别(a 判别函数分析b.Sio 2/Al 2O 3分析 c 根据氧化物的比值判别构造背景 d 根据砂岩的平均化学成分 e 根据稀土元素含量的比值)⑤判别硅质岩的成因(a Al-Fe 元素分区 b 氧化物散点图)2 、如何通过稳定同位素来判断海平面升降?①δC 13 、δO 18 与海平面呈负相关关系,即δC13 、δO18含量增大,全球海平面就降低,反之升高②δS 34与海平面呈正相关关系,即δS34含量增大,全球海平面也随之升高,反之降低3 、影响沉积岩元素分布的因素有哪些?①母岩的成分与风化强度。
地球化学复习重点(部分)
绪论:1.地球化学的定义:地球化学是研究地球及其子系统(含部分宇宙体)的化学组成、化学机制和化学演化的科学。
2.地球化学研究的基本问题:(1)地球系统中元素及同位素的组成问题(2)元素的共生组合和赋存形式问题(3)元素的迁移和循环(4)地球的历史与演化。
第一章:1.陨石的分类:陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成按成份分为三类:(1)铁陨石:主要由金属Ni-Fe(98%)和少量其它矿物如磷铁镍古矿[(Fe,Ni,Co)3P]、陨硫铁(troilite)(FeS)、镍碳铁矿(Fe3C)和石墨(graphite)等组成。
(2)石陨石:主要由硅酸盐矿物silicate minerals组成。
根据它是否含有细小而大致相近的球状硅酸盐结构而进一步分为球粒陨石和无球粒陨石。
球粒主要是橄榄石和辉石,有时为玻璃;无球粒陨石缺乏球粒结构,成分上与前者也有差异。
(3)石-铁陨石:由数量大体相等的Ni-Fe 和硅酸盐(主要是橄榄石,偶尔辉石)组成。
2.地壳、地球和太阳系元素丰度组成特征及其差异的原因:太阳系:H>He>O>C>Ne>N>Fe>Si>Mg>S;特征规律:1.原子序数较低的范围内,元素的丰度随原子序数增大而呈指数递减,而在原子序数较大的范围内(Z>45)个元素丰度值很接近;2.原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素;3.H 和He的丰度最高的两种元素;4.与He向邻近的Li和Be、B具有很低的丰度,属于强亏损的元素;5.在元素丰度曲线上O和Fe呈明显的峰,它们是过剩元素;6.质量数为4的倍数的核素和同位素具有较高丰度;地球:Fe>O>Mg>Si>Ni>S>Ca>Al>Co>Na;特征:1.地球物质的90%由Fe、O、Si和Mg四纵元素组成;2.含量大于1%的元素有Ni、Ca、Al、和S;3.Na、K、Cr、Co、P、Mn和Ti的含量均在0.01%-1%扥范围;地壳:O>Si>Al>Fe>Ca>Na>K>Mg>Ti>H ;特征:①与地球和太阳系相比,最丰富的十种元素是O-Si-Al-Fe-Ca-Na-K-Mg-Ti-H;②不均匀性:前13种元素占地壳总重的99.7%;其余只占0.3%。
地球化学重点整理
地球化学重点整理Part I 后半学期内容Chap1 宇宙和地球的成因及组成1.元素丰度的定义、表达形式、研究意义定义:化学元素在一定自然体系中的相对平均含量。
表达形式:元素丰度值采用的是相对于106个Si 原子的各个元素的原子数,即原子丰度值,选择Si 作为标准是因为该元素分布广且挥发性又小,因而稳定性好。
意义:丰度实际上是一个体系的背景,它是是地球化学的几个基本问题之一,在地球化学的发展中必不可少的工作。
2.化学元素在太阳系行星中的分布特点类地行星:主要元素是Fe, Si, Mg等非挥发性元素;巨行星:化学成分以H、He为主,亲铁、亲石元素少;远日行星:成分以C、N、O为主,H、He比例不大,少量亲铁-亲石元素。
3.确定太阳系元素丰度的途径太阳系平均化学成分或元素宇宙丰度的确定主要依据两类数据:一是根据太阳大气光谱资料确定太阳系中挥发性元素含量。
二是根据球粒陨石的化学组成确定太阳系中非挥发性元素的组成和含量。
4.元素在宇宙中的丰度宇宙中元素分布的如下特征规律:1. 宇宙中最丰富的元素为H 和He,H/He 比值为12.5。
2. 原子序数较低(Z<50)的轻元素随原子序数增加呈指数递减,而在较重元素范围内(Z>50),不仅元素的丰度低,而且丰度值几乎不变,即丰度曲线近乎水平。
3. 原子序数为偶数的元素其丰度值大大高于原子序数为奇数的相邻元素。
4. 与He 相邻的元素Li、Be 和B 具有很低的丰度,按较轻元素的丰度水平它们是非常亏损的元素;O 和Fe 呈明显的峰出现在元素丰度曲线上,说明它们是过剩的元素5. Tc 和Pm 没有稳定性同位素,在宇宙中不存在;原子序数大于83(Bi)的元素也没有稳定同位素,它们都是Th 和U 的长寿命放射成因同位素。
在丰度曲线上这些元素的位置空缺。
6. 质量数为4的倍数的核素或同位素具有较高的丰度,如4He、16O、40Ca、56 Fe和140Ce等。
(完整word版)地球化学知识点整理
地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。
即“见微而知著”。
第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。
这种不均一性在地球的一定深度表现为突变性质。
由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。
界面分别为:莫霍面和古登堡面。
(2)上地壳和下地壳分界面为康拉德面。
上地壳又叫做硅铝层,下地壳又叫做硅镁层。
大陆地壳由上、下地壳,而大洋地壳只有下地壳。
【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。
它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。
(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。
地球化学知识点总结(详细)
第一章克拉克值:元素在地壳中的丰度,称为克拉克值。
元素在宇宙体或地球化学系统中的平均含量称之为丰度。
丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。
2 .富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。
3. 载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。
4. 浓集系数 =工业利用的最低品位/克拉克值。
为某元素在矿床中可工业利用的最低品位与其克拉克值之比。
5.球粒陨石:是石陨石的一种。
(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。
基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。
划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。
为研究生命起源提供重要信息。
分Ⅰ型、Ⅱ型和Ⅲ型。
Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。
6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。
1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。
1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。
2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。
(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。
(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。
地球化学复习资料
地球化学复习资料地球化学研究的主要内容:研究自然界(范围)中元素及其同位素(对象)的化学运动(具体问题),并以此来恢复各种地质体和天体的形成历史(目的)具体内容a.自然界元素和同位素的组成(composition)与分布(distribution)b.元素的共生组合规律和赋存形式c.地质运动过程中元素的迁移和循环d.地球化学的基础理论研究e.地球化学的技术方法研究f. 应用地球化学研究地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。
地球化学的基本工作方法:A.总体研究方法:主要采用“类比”和“反序”的研究方法B.野外工作方法:特别是采样要求:代表性、系统性、统计性一、太阳系的组成和元素丰度(一)了解太阳系组成的研究方法自然体系(地球化学体系):概念:通常将所要研究的对象总体看做是一个地球化学体系。
特点:一定空间范围、一定物化条件下特定物化状态、时间连续性陨石:落到地球上的行星物体碎块,即从行星际空间穿越大气层到达地表的星体(流星体)残骸. 陨石来源:主要来自小行星带:小行星碎块和崩解的彗星残核,少量来自其它天体陨石分类(石陨石、铁陨石、石-铁陨石三大类,石陨石再分为球粒陨石和无球粒陨石)C1型碳质球粒陨石可用来估计太阳系中非挥发性元素的丰度研究陨石的意义:陨石是目前最易获取和数量最大的地外物质,可用于研究太阳系的物质组成、起源与演化;探索有机质和生命起源;作为地球成分研究的对比标准;研究及防止天体撞击等自然灾害太阳系元素丰度的规律(1)Z(原子序数)<45的元素随原子序数增大丰度呈指数降低,Z>45的元素丰度相近。
(2)原子序数为偶数的元素丰度大大高于相邻的奇数元素。
(3)H,He为丰度最高的元素。
(4)Li,Be,B 丰度异常低,为强亏损元素。
(5)O和Fe为过剩元素。
(6)质量数为4的倍数的核素或同位素具较高丰度地球元素丰度估算方法:(1)陨石类比法(2)地球模型-陨石类比法(3) 地球物理类比法地球元素丰度及其规律:① Fe+O+Si+Mg ≧ 90%;②含量大于1%的元素:Ni,Ca,Al,S;③含量介于0.01%--1%的元素Na,K,Cr,Co,P,Mn,Ti。
高一必修一地化学知识点
高一必修一地化学知识点地化学,即地球化学,是地质学和化学的交叉学科。
它研究地球中各种元素和物质的分布、运移和转化过程,以及地球物质的演化历史和地球表面环境的变化。
在高一必修一的地化学课程中,我们将学习一些基本的地化学知识点,下面就让我们来了解一下这些知识点。
一、地壳的组成地壳是地球上最外层的固体壳层,由各种岩石和矿物组成。
地壳中主要含有氧、硅、铝、铁、钙等元素。
氧元素是地壳中含量最多的元素,占地壳总质量的46.6%,其次是硅元素,占28.2%。
二、矿物的分类和特征矿物是地球地壳中的天然无机化合物。
根据其组成和性质,矿物可分为硅酸盐类矿物、氧化物类矿物、硫化物类矿物、硝酸盐类矿物等。
不同的矿物具有不同的物理特征和化学性质,可以通过色泽、硬度、断口等特征进行鉴定。
三、岩石的分类和成因岩石是地壳中的主要构成物质,它是由一个或多个矿物组成的天然坚固固体。
岩石可以分为火成岩、沉积岩和变质岩三大类。
火成岩是由火山喷发或岩浆冷却凝固形成的,常见的有花岗岩、玄武岩等;沉积岩是由沉积物在地壳表面堆积形成的,常见的有砂岩、泥岩等;变质岩是在高温高压条件下由火成岩或沉积岩经历变质作用形成的,常见的有片麻岩、云母片岩等。
四、地球的内部结构地球的内部分为地壳、地幔和地核三个部分。
地壳厚度约为35千米,地幔厚度约为2,900千米,地核厚度约为3,500千米。
地幔主要由硅酸盐矿物和铁镁矿物组成,地核主要由铁和镍组成。
地球的内部结构对地球表面的地质现象和运动起着重要的控制作用。
五、地球化学循环地球化学循环是地球上各种物质在不同地质环境中的运移和转化过程。
其中包括大气循环、水循环、岩石圈循环和生物圈循环。
循环过程中,物质在不同地质介质之间进行运输和转化,从而维持地球上的物质平衡和能量平衡。
六、地质灾害与环境保护地质灾害是地球自然环境中的一种破坏性事件,包括地震、火山喷发、泥石流等。
地质灾害对人类的生命和财产安全造成严重威胁,因此,在地质灾害预测和防治方面的研究具有重要意义。
地球化学-重点精选全文完整版
可编辑修改精选全文完整版绪论1地球化学学科特点:1.地球化学研究的主要物质系统是地球、地壳、地幔及地质作用体系, 因此它是地球科学的一部分。
2.地球化学着重研究地球系统中的化学运动3.地球化学以化学类科学理论为基础(无机化学、有机化学、物理化学、热力学等);4.综合性边缘科学,与其它学科相互渗透,已形成三十个分支学科。
5.理论与应用并重:在矿产资源开发与利用、全球环境与气候变化、污染与治理、地方病防治、农牧业生产等需要应用地球化学知识;6 . 地球化学是年青学科,发展迅速。
3地球化学的研究思路:那就是在地质作用过程中形成宏观地质体的同时,还形成大量肉眼难以辨别的常量元素、微量元素及同位素成分的组合的微观踪迹,它们包含着重要的定性和定量的地质作用信息,只要应用现代分析测试手段观察这些微观踪迹以及宏观的地球化学现象,便可深入地揭示地质作用的奥秘。
概括一句话那就是见微而知著(即通过观察原子之微,以求认识地球和地质作用之著)5地球化学研究方法及其的特点研究方法:一)野外阶段:1)宏观地质调研。
明确研究目标和任务,制定计划;2)运用地球化学思维观察认识地质现象;3)采集各种类型的地球化学样品。
二)室内阶段:1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。
元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其次是高灵敏度;第三是快速、成本低;2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究;3)地球化学作用的物理化学条件的测定和计算;4)归纳、讨论:针对目标和任务进行归纳、结合已有研究成果进行讨论。
特点第一个特点:由于地球化学是隶属于地球科学的,为此,首先要遵循地质学的思维方法和工作途径。
归纳起来有以下几个方面:♠第一手实际资料来自对自然地质现象的详细观察和研♠在地学的时空结构中整理和综合资料;♠确信事实规律的统计性特征;♠反序追踪历史;♠结论的推断性和多解性,以及认识的反复深化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中科院研究生院硕士研究生入学考试
《地球化学》考试大纲
本《地球化学》考试大纲适用于中国科学院研究生院地质学各专业的硕士研究生入学考试。
地球化学是地质学的重要支柱学科之一,也是地质学各专业必备的基础理论课程。
地球化学是个庞大的学科家族,不仅研究固体地球岩石圈,也研究地球表层的土壤、水系、有机体的地球化学演化规律。
它从微观角度研究宏观问题,探索地球系统物质运动中物质的化学运动规律。
研究目标集中于地球系统中元素及同位素组成、元素的共生组合及赋存形式、元素的迁移和循环、地球及其它行星形成历史及演化等四大科学问题。
尤其是近年来,随着实验方法和分析手段的迅猛发展,地球化学理论发展更加迅速,研究方法更加先进,研究内容日益丰富,能解决的问题也更加宽广。
本考试大纲限于无机地球化学范围,要求考生准确掌握无机地球化学的基本原理和研究方法,初步了解各项实验分析手段,并能客观地解释实验分析数据,具有从地球化学角度解决地质科学问题的基本能力。
一、考试内容
(一)化学元素的丰度与分布
1. 元素丰度的概念和表示方法
2. 地球的化学组成
3. 地壳的化学组成
4. 大气圈、水圈、生物圈的化学组成
(二)地球化学热力学基础
1. 热力学基本定律
2. 热力学状态函数
3. 自然过程的方向判据
4. 热力学平衡系统的表达
5. 矿物固体溶液的混合性质
(三)微量元素地球化学
1.微量元素的概念
2.能斯特分配定律
3.岩浆过程中的微量元素
4. 稀土元素地球化学
5. 微量元素地球化学示踪
(四)放射性同位素地球化学
1.自然界的放射性同位素
2.放射性衰变定律及地质年代学基本原理
3.各种放射性定年系统
4.同位素封闭温度及冷却年龄
(五)稳定同位素地球化学
1.稳定同位素组成和分馏
2.稳定同位素分馏原理
3.主要的稳定同位素系统
4. 稳定同位素温度计
(六)地壳与地幔的化学演化
1.地壳和上地幔的基本特征
2.地幔的不均一性
3. 地壳的形成和演化
二、考试要求
(一)化学元素的丰度与分布
1. 熟悉丰度和丰度体系、丰度系数、丰度各种表示方法(重量丰度、原子丰度、相对丰度)、陨石及其成分分类(铁陨石、石铁陨石、石陨石)等基本内容。
2. 熟悉地球的结构模型(地壳、地幔、地核)及各层的细分、地表圈层划分(水圈、大气圈、生物圈)、地球的化学组成(地球元素丰度计算法、地球元素丰度特征)、地球元素分类(亲铁、亲铜、亲石、亲气、亲生物元素)等内容。
3. 了解地壳元素丰度的确定、地壳元素丰度特征(不均匀性、随原子序数增大的特征、与整个地球的对比、偶数规则、四倍规则和壳层规则)、元素地壳丰度的意义。
4. 大致了解地表各圈层的基本特征。
(二)地球化学热力学基础
1. 掌握热力学系统与环境的概念、系统的划分(孤立系统、封闭系统、开放系统)、热力学第零定律、第一定律、熵与第二定律、第三定律与绝对熵等基本内容。
2. 对状态函数的本质(变化量与具体过程无关的性质)、焓、熵、Gibbs自由能等状态函数有较好的把握。
3. 掌握系统自发演化方向的热力学判据(孤立系统的熵判据、任意系统的Gibbs自由能判据)。
4. 深入了解地球化学热力学系统热力学平衡的定义、平衡常数、热力学平衡的一般表达式、相律及其地质意义等内容。
5. 掌握理想混合、非理想混合、正规溶液的概念、亨利定律、拉乌尔定律等内容。
(三)微量元素地球化学
1. 牢固掌握常量元素与微量元素、微量元素的分类、相容元素、不相容元素等概念。
2.深入了解能斯特分配定律的来源、分配系数分类(简单分配系数、复合分配系数、对数分配系数、总分配系数)、分配系数测定等内容。
3.熟悉岩浆过程中微量元素分配的定量模型的意义,对部分熔融模型(批式部分熔融、连续分离熔融、多步熔融、带状或区域熔融、不一致熔融)、分离结晶模型(平衡分离结晶、连续分离结晶、多阶段分离结晶)等模型有初步了解。
4. 掌握稀土元素的地球化学特征、稀土元素的分配系数,掌握稀土元素在自然界的分布特征、
稀土元素组成模式图、表征稀土元素组成的参数(总量、轻重稀土比值、异常系数、稀土参数图解)等内容。
5. 了解微量元素在岩浆成岩过程鉴别、成岩成矿大地构造环境判别等方面的意义,及微量元素地质温度计的基本原理。
(四)放射性同位素地球化学
1.准确掌握核素的概念、同位素的定义、同位素的分类。
2.掌握各种放射性衰变(α衰变、β衰变、电子捕获、重核裂变)、放射性衰变不受外界干扰的特性、半衰期、放射性衰变定律、地质年代学基本原理等。
3.了解U-Th-Pb法、Rb-Sr法、K-Ar法、Sm-Nd法、14C法、裂变年径迹法等地质年代学方法的基本原理,了解各种方法的适用对象。
4.掌握封闭温度的概念、冷却年龄的概念、同位素地质年龄解释等方面的基本原理。
(五)稳定同位素地球化学
1. 掌握稳定同位素比值、稳定同位素分馏系数、稳定同位素标准、稳定同位素富集系数表达方法等内容。
2. 了解稳定同位素的物理分馏、动力分馏、平衡分馏、生物化学分馏等概念。
3. 了解O、H、C、S等稳定同位素系统的最基本特征。
4. 掌握稳定同位素地质温度计的基本原理。
(六)地壳与地幔的化学演化
1.大致掌握岩石圈与板块基本概念、地壳类型(区段)划分、岩浆系列的划分(拉斑玄武系列、钙碱性系列、碱性系列)、玄武岩类的地球化学特征等。
2.了解地幔的区域性不均一、层状不均一、亏损地幔与富集地幔的划分等。
3. 了解原始地壳、大陆地壳的概念、地壳的增生与再造、TTG岩石组合、地壳生长的几种模式等。
三、主要参考书目
1 韩吟文、马振东(2003)地球化学。
第一版。
北京:地质出版社
2 陈道公、支霞臣、杨海涛(1994)地球化学。
第一版。
合肥:中国科技大学出版社
编制单位:中国科学院研究生院
编制日期:2011年7月1日。