届杨浦区中考数学一模及答案

合集下载

上海市杨浦区2019-2020学年中考数学一模试卷含解析

上海市杨浦区2019-2020学年中考数学一模试卷含解析

上海市杨浦区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.估计19﹣1的值为()A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.12B.13C.23D.343.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣74.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 .你认为其中正确信息的个数有A.2个B.3个C.4个D.5个5.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A .B .C .D .6.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或107.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b 8.下列计算正确的是A .224a a a +=B .624a a a ÷=C .352()a a =D .222)=a b a b --( 9.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 10.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .11.如图,▱ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为( )A .20B .16C .12D .812.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A ,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .34二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .14.如图,在正六边形ABCDEF 中,AC 于FB 相交于点G ,则AG GC值为_____.15.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y=﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 16.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____.17.分解因式:3x 3﹣27x =_____.18.如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.20.(6分)如图,四边形ABCD 的外接圆为⊙O ,AD 是⊙O 的直径,过点B 作⊙O 的切线,交DA 的延长线于点E ,连接BD ,且∠E =∠DBC .(1)求证:DB 平分∠ADC ;(2)若EB =10,CD =9,tan ∠ABE =12,求⊙O 的半径. 21.(6分)如图,⊙O 中,AB 是⊙O 的直径,G 为弦AE 的中点,连接OG 并延长交⊙O 于点D ,连接BD 交AE 于点F ,延长AE 至点C ,使得FC=BC ,连接BC .(1)求证:BC 是⊙O 的切线;(2)⊙O 的半径为5,tanA=34,求FD 的长.22.(8分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.23.(8分)如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).24.(10分)如图,抛物线与x 轴相交于A 、B 两点,与y 轴的交于点C ,其中A 点的坐标为(﹣3,0),点C 的坐标为(0,﹣3),对称轴为直线x =﹣1.(1)求抛物线的解析式;(2)若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;(3)设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.25.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x 名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y 元,求y 与x 的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.26.(12分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.27.(12分)已知:如图,在矩形纸片ABCD 中,AB 4=,BC 3=,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF .()1BD 的长为多少;()2求AE 的长;()3在BE 上是否存在点P ,使得PF PC +的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:根据被开方数越大算术平方根越大,可得答案. 161925,∴119<5,∴319﹣1<1.故选C .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出119<5是解题的关键,又利用了不等式的性质.2.D【解析】【分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.3.B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k14=,故选B.4.D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.5.A【解析】【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P (奇数)= = .故此题选A .【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.6.B【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 7.A【解析】【分析】根据这块矩形较长的边长=边长为3a 的正方形的边长-边长为2b 的小正方形的边长+边长为2b 的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a ﹣2b+2b×2=3a ﹣2b+4b=3a+2b . 故这块矩形较长的边长为3a+2b .故选A .【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 8.B【解析】试题分析:根据合并同类项的法则,可知2222a a a +=,故A 不正确;根据同底数幂的除法,知624a a a ÷=,故B 正确;根据幂的乘方,知()326a a =,故C 不正确;根据完全平方公式,知()2222ab a b a b -=-+,故D 不正确.故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.9.D【解析】试题分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.10.C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.11.B【解析】【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.12.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴=+=+=,∴正方形ABCD的面积是:343434⨯=,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.312π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=32432ππ-+=12π+ 14.12. 【解析】【分析】由正六边形的性质得出AB=BC=AF ,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG ,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG ,即可得出答案.【详解】∵六边形ABCDEF 是正六边形,∴AB =BC =AF ,∠ABC =∠BAF =120°,∴∠ABF =∠BAC =∠BCA =30°,∴AG =BG ,∠CBG =90°,∴CG =2BG =2AG , ∴AG GC =12; 故答案为:12. 【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.15.y 1<y 1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 1的大小,从而可以解答本题. 详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 1)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 1,故答案为:y 1<y 1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.45a ≤<【解析】【详解】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1,∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解,∴a 的范围为45a ≤<,故答案为45a ≤<.【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.17.3x (x+3)(x ﹣3).【解析】【分析】首先提取公因式3x ,再进一步运用平方差公式进行因式分解.【详解】3x 3﹣27x=3x (x 2﹣9)=3x (x+3)(x ﹣3).【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.65°【解析】因为AB ∥CD ,所以∠BEF=180°-∠1=130°,因为EG 平分∠BEF ,所以∠BEG=65°,因为AB ∥CD ,所以∠2=∠BEG=65°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)4AB =;(2)47=m 或1. 【解析】【分析】(1)把m=2代入两个方程,解方程即可求出AC 、BC 的长,由C 为线段AB 上一点即可得AB 的长;(2)分别解两个方程可得m BC 2=,AC 2m 1=-,根据C 为线段AB 的三等分点分别讨论C 为线段AB 靠近点A 的三等分点和C 为线段AB 靠近点B 的三等分点两种情况,列关于m 的方程即可求出m 的值.【详解】(1)当m 2=时,有()1x 122+=,()2x 223+=, 由方程()1x 122+=,解得x 3=,即AC 3=. 由方程()2x 223+=,解得x 1=,即BC 1=. 因为C 为线段AB 上一点,所以AB AC BC 4=+=.(2)解方程()1x 1m 2+=,得x 2m 1=-, 即AC 2m 1=-.解方程()2x m m 3+=,得m x 2=, 即m BC 2=. ①当C 为线段AB 靠近点A 的三等分点时,则BC 2AC =,即()m 22m 12=-,解得4m 7=. ②当C 为线段AB 靠近点B 的三等分点时, 则AC 2BC =,即m 2m 12?2-=,解得m 1=. 综上可得,4m 7=或1. 【点睛】本题考查一元一次方程的几何应用,注意讨论C 点的位置,避免漏解是解题关键.20.(1)详见解析;(2)OA =152. 【解析】【分析】(1)连接OB ,证明∠ABE=∠ADB ,可得∠ABE=∠BDC ,则∠ADB=∠BDC ;(2)证明△AEB ∽△CBD ,AB=x ,则BD=2x ,可求出AB ,则答案可求出.【详解】(1)证明:连接OB ,∵BE 为⊙O 的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,∴AD=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴BE AB BD CD=,∴1029xx=,解得x=∴AB=15,∴OA=152.【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.21.(1)证明见解析(2【解析】【分析】(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)∵点G是AE的中点,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半径,∴BC是⊙O的切线;(2)连接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直径,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG 2=AG•FG ,∴4=4FG ,∴FG=1∴由勾股定理可知:FD=5. 【点睛】 本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG ,∠D=∠OBD 是解(1)的关键,证明证明△DAG ∽△FDG 是解(2)的关键.22.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.23.(1)y=x 2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E 点坐标为(,)时,△CBE 的面积最大.【解析】试题分析:(1)由直线解析式可求得B 、C 坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P 点坐标及对称轴,可设出M 点坐标,表示出MC 、MP 和PC 的长,分MC=MP 、MC=PC 和MP=PC 三种情况,可分别得到关于M 点坐标的方程,可求得M 点的坐标;(3)过E 作EF ⊥x 轴,交直线BC 于点F ,交x 轴于点D ,可设出E 点坐标,表示出F 点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.24.(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3)94.【解析】【分析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12•OC•|a|=2×12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D 的坐标为(x ,x 2+2x ﹣3),则点Q 的坐标为(x ,﹣x ﹣3).∴QD =﹣x ﹣3﹣( x 2+2x ﹣3)=﹣x ﹣3﹣x 2﹣2x+3=﹣x 2﹣3x =﹣(x 2+3x+94﹣94)=﹣(x+32)2+94, ∴当x =﹣32时,QD 有最大值,QD 的最大值为94. 【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.25.(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【解析】【分析】(1)根据题意可以得到y 关于x 的函数解析式,本题得以解决;(2)根据题意可以得到x 的不等式组,从而可以求得x 的取值范围,从而可以得到y 的最大值,本题得以解决.【详解】(1)由题意可得,y=10×50(30﹣x )+3[100x ﹣50(30﹣x )]=﹣50x+10500,即y 与x 的函数关系式为y=﹣50x+10500; (2)由题意可得,()()10050301005030200x x x x ⎧≥-⎪⎨--≥⎪⎩,得x 343≥, ∵x 是整数,y=﹣50x+10500,∴当x=12时,y 取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.26.(1)2-1y x =;(2)3x >-.【解析】【分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x+2,解不等式即得结果.【详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y=2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x+2,解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.27.(1)DB 5=;(2)AE 的长为32;(1)存在,画出点P 的位置如图1见解析,PF PC +的最小值为 5055. 【解析】【分析】(1)根据勾股定理解答即可;(2)设AE=x ,根据全等三角形的性质和勾股定理解答即可;(1)延长CB 到点G ,使BG=BC ,连接FG ,交BE 于点P ,连接PC ,利用相似三角形的判定和性质解答即可.【详解】(1)∵矩形ABCD ,∴∠DAB=90°,AD=BC=1.在Rt △ADB 中,DB 2222345AD AB =+=+=. 故答案为5;(2)设AE=x .∵AB=4,∴BE=4﹣x ,在矩形ABCD 中,根据折叠的性质知:Rt △FDE ≌Rt △ADE ,∴FE=AE=x ,FD=AD=BC=1,∴BF=BD ﹣FD=5﹣1=2.在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x 32=,∴AE 的长为32; (1)存在,如图1,延长CB 到点G ,使BG=BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求,此时有:PC=PG ,∴PF+PC=GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC ,∴△BFH ∽△BDC ,∴FH BF BH DC BD BC==,即2453FH BH ==,∴8655FH BH ,==,∴GH=BG+BH 621355=+=.在Rt △GFH 中,根据勾股定理,得:GF 2222218505555GH FH =+=+=()(),即PF+PC 505. 【点睛】本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.。

2023年上海市杨浦区中考数学一模试卷(含答案)

2023年上海市杨浦区中考数学一模试卷(含答案)

2023年上海市杨浦区中考数学一模试卷(测试时间 100 分钟,满分150)一、选择题(本大题共6题,每题4分。

满分24分)1. 下列函数中,二次函数是(C) (D)2. 已知点A(1,2)在平面直角坐标系xOy中,射线OA与x轴正半轴的夹角为a,那么cosa 的值为(A)3. ,设4. 如图,传送带和底面所成斜坡的坡度为1:3,它把物体从地面点A处送到离地面3米高的B处,那么物体从点A到点B所经历的路程为米5. 如图,在垂足为点D,下列结论中,错误的是(B) (D)6. 如图,在,AG平分D在边AB上,线段CD与AG交于点E,且下列结论中,错误的是(A)(C) (D)二、填空题(本大题共12题,每题2分。

满分24分)7. 计算:=8. =9. 如果函数,那么=10. 如果两个相似三角形周长之比是2:3,那么它们的对应高之比等于11. 已知点P时线段MN的黄金分割点(MP>NP)如果MN=10,那么线段MP=12. 已知在中,AB=13,BC=17,tanB=AC=13. 在对称轴左侧的部分是下降的,那么a的取值范围是14. 向下平移m个单位后,它的顶点恰好落在x轴上,那么m=15. 广场喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(m)关于水珠和喷头的水平距离x达到的最大高度为米16.如图,一条细绳系着一个小球在平面内摆动,已知细绳从悬挂点O到球心的长度为50厘米,小球在左右两个最高位置时,细绳相应所成的角为,那么小球在最高和最低位置时的高度差为厘米,()17.如图,已知在四边形ABCD,AB=CB,点E、F分别在线段AB、AD上,如果CE BF的值为18.如图,已知在矩形ABCD中,AB=6,BC=8,将矩形ABCD绕点C旋转,使点B恰好落在对角线AC A、D分别与边AD交于点M、N,那么线段MN的长为三、解答题(本大题共7题,满分78分)19.(本题满分10分,第1小题4分,第2小题6分)在平面直角坐标系xOy中,点A(1,m)、B(3,n)上。

2021年上海市杨浦区九年级中考一模数学试卷(含解析)

2021年上海市杨浦区九年级中考一模数学试卷(含解析)

2020-2021学年上海市杨浦区九年级中考一模数学试卷一、选择题(共6小题).1.关于抛物线y=x2﹣x,下列说法中,正确的是()A.经过坐标原点B.顶点是坐标原点C.有最高点D.对称轴是直线x=12.在△ABC中,如果sin A=,cot B=,那么这个三角形一定是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形3.如果小丽在楼上点A处看到楼下点B处小明的俯角是35°,那么点B处小明看点A处小丽的仰角是()A.35°B.45°C.55°D.65°4.在△ABC中,点D、E分别在AB、AC上,下列条件中,能判定DE∥BC的是()A.=B.=C.=D.=5.下列命题中,正确的是()A.如果为单位向量,那么=||B.如果、都是单位向量,那么=C.如果=﹣,那么∥D.如果||=||,那么=6.在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,下列说法中,错误的是()A.S△AOB=S△DOC B.=C.=D.=二、填空题(共12小题).7.计算:3(+2)﹣2(﹣)=.8.已知抛物线y=(1﹣a)x2+1的开口向上,那么a的取值范围是.9.如果小明沿着坡度为1:2.4的山坡向上走了130米,那么他的高度上升了米.10.已知线段AB的长为4厘米,点P是线段AB的黄金分割点(AP<BP),那么线段AP 的长是厘米.11.已知抛物线y=x2﹣4x+3与x轴交于点A、B,与y轴交于点C,那么△ABC的面积等于.12.已知抛物线y=x2,把该抛物线向上或向下平移,如果平移后的抛物线经过点A(2,2),那么平移后的抛物线的表达式是.13.如图,已知小李推铅球时,铅球运动过程中离地面的高度y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为米.14.如图,已知在平行四边形ABCD中,点E在边AB上,=,联结DE交对角线AC 于点O,那么的值为.15.如图,已知在△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,BC=4,那么cos∠GCB=.16.如图,已知在△ABC中,∠C=90°,AB=10,cot B=,正方形DEFG的顶点G、F 分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为.17.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD 中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为.18.如图,已知在△ABC中,∠B=45°,∠C=60°,将△ABC绕点A旋转,点B、C分别落在点B1、C1处,如果BB1∥AC,联结C1B1交边AB于点D,那么的值为.三、解答题(共7题,满分78分)19.(10分)计算:.20.(10分)已知一个二次函数的图象经过点A(﹣1,0)、B(0,3)、C(2,3).(1)求这个函数的解析式及对称轴;(2)如果点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,那么y1 y2.(填“<”或“>”)21.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,点M为边BC上一点,BM=BC,联结AM交DE于点N.(1)求的值;(2)设=,=,如果=,请用向量、表示向量.22.(10分)如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在△ABC中,测得∠B=64°,∠C=45°,BC=50米,求河宽(即点A到边BC的距离)(结果精确到0.1米).(参考数据:≈1.41,sin64°=0.90,cos64°=0.44,tan64°=2.05)23.(12分)已知:如图,在梯形ABCD中,AD∥BC,对角线BD、AC相交于点E,过点A作AF∥DC,交对角线BD于点F.(1)求证:=;(2)如果∠ADB=∠ACD,求证:线段CD是线段DF、BE的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=﹣(x﹣m)2+4与y轴交于点B,与x轴交于点C、D(点C在点D左侧),顶点A在第一象限,异于顶点A的点P(1,n)在该抛物线上.(1)如果点P与点C重合,求线段AP的长;(2)如果抛物线经过原点,点Q是抛物线上一点,tan∠OPQ=3,求点Q的坐标;(3)如果直线PB与x轴的负半轴相交,求m的取值范围.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为边BC上一动点(与点B、C不重合),点E为AB上一点,∠EDB=∠ADC,过点E作EF⊥AD,垂足为点G,交射线AC于点F.(1)如果点D为边BC的中点,求∠DAB的正切值;(2)当点F在边AC上时,设CD=x,CF=y,求y关于x的函数解析式及定义域;(3)联结DF,如果△CDF与△AGE相似,求线段CD的长.参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.关于抛物线y=x2﹣x,下列说法中,正确的是()A.经过坐标原点B.顶点是坐标原点C.有最高点D.对称轴是直线x=1解:∵y=x2﹣x=(x﹣)2﹣,∴顶点坐标是:(,﹣),对称轴是直线x=,∵a=1>0,∴开口向上,有最小值,∵当x=0时,y=x2﹣x=0,∴图象经过坐标原点,故选:A.2.在△ABC中,如果sin A=,cot B=,那么这个三角形一定是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形解:∵sin A=,cot B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°,∴△ABC是直角三角形,故选:D.3.如果小丽在楼上点A处看到楼下点B处小明的俯角是35°,那么点B处小明看点A处小丽的仰角是()A.35°B.45°C.55°D.65°解:因为从点A看点B的仰角与从点B看点A的俯角互为内错角,大小相等.所以小丽在楼上点A处看到楼下点B处小明的俯角是35°,点B处小明看点A处小丽的仰角是35°.故选:A.4.在△ABC中,点D、E分别在AB、AC上,下列条件中,能判定DE∥BC的是()A.=B.=C.=D.=解:当,则DE∥BC,故选项A不符合题意;当=,则DE∥BC,故选项B符合题意;当=,则DE∥BC,故选项C不符合题意;由于=,DE∥BC不一定成立,选项D不符合题意.故选:B.5.下列命题中,正确的是()A.如果为单位向量,那么=||B.如果、都是单位向量,那么=C.如果=﹣,那么∥D.如果||=||,那么=解:A、如果为单位向量,且与方向相同时,那么=||,故本选项不符合题意.B、如果、都是单位向量且方向相同,那么=,故本选项不符合题意.C、如果=﹣,则向量与﹣的大小相等、方向相反,那么∥,故本选项符合题意.D、若||=||,那么与的模相等,但是方向不一定相等,即=不一定成立,故本选项不符合题意.故选:C.6.在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,下列说法中,错误的是()A.S△AOB=S△DOC B.=C.=D.=解:如图,∵AD∥BC,∴S△ABC=S△DCB,即S△AOB+S△OBC=S△OBC+S△DOC,S△AOB=S△DOC,所以A选项的结论正确;∵AD∥BC,∴=,∵=,∴=;所以B选项的结论正确;∵AD∥BC,∴△AOD∽△COB,∴=()2,所以C选项的结论错误;∵AD∥BC,∴点B到AD的距离等于点A到BC的距离,∴=,所以D选项的结论正确;故选:C.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:3(+2)﹣2(﹣)=+8.解:原式=3+6﹣2+2)=+8.故答案是:+8.8.已知抛物线y=(1﹣a)x2+1的开口向上,那么a的取值范围是a<1.解:因为抛物线y=(1﹣a)x2+1的开口向上,所以1﹣a>0,即a<1.故答案为:a<1.9.如果小明沿着坡度为1:2.4的山坡向上走了130米,那么他的高度上升了50米.解:设他沿着垂直方向升高了x米,∵坡比为1:2.4,∴他行走的水平宽度为2.4x米,由勾股定理得,x2+(2.4x)2=1302,解得,x=50,即他沿着垂直方向升高了50米,故答案为:50.10.已知线段AB的长为4厘米,点P是线段AB的黄金分割点(AP<BP),那么线段AP 的长是(6﹣2)厘米.解:∵点P是线段AB的黄金分割点,AP<BP,AB=4厘米,∴BP=AB=(2﹣2)厘米,∴AP=AB﹣BP=4﹣(2﹣2)=(6﹣2)厘米,故答案为:(6﹣2).11.已知抛物线y=x2﹣4x+3与x轴交于点A、B,与y轴交于点C,那么△ABC的面积等于3.解:∵抛物线y=x2﹣4x+3=(x﹣1)(x﹣3),∴当y=0时,x=1或x=3,当x=0时,y=3,∴点A、B、C的坐标为分别为(1,0),(3,0),(0,3),∴AB=2,∴△ABC的面积是:=3,故答案为:3.12.已知抛物线y=x2,把该抛物线向上或向下平移,如果平移后的抛物线经过点A(2,2),那么平移后的抛物线的表达式是y=x2﹣2.解:设所求的函数解析式为y=x2+k,∵点A(2,2)在抛物线上,∴2=22+k解得:k=﹣2,∴平移后的抛物线的表达式是y=x2﹣2.故答案为:y=x2﹣2.13.如图,已知小李推铅球时,铅球运动过程中离地面的高度y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为3米.解:由题意可得:y=﹣x2+x+=﹣(x2﹣8x)+=﹣(x﹣4)2+3,故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.14.如图,已知在平行四边形ABCD中,点E在边AB上,=,联结DE交对角线AC 于点O,那么的值为.解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵=,∴=,∴=,∵AE∥CD,∴△AOE∽△COD,∴==.故答案为.15.如图,已知在△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,BC=4,那么cos∠GCB=.解:延长CG交AB于D,如图,∵点G是△ABC的重心,∴DG=CG=1,AD=BD,∵∠ACB=90°,∴CD=BD=AD=2+1=3,∴AB=6,∠DCB=∠B,在Rt△ACB中,cos B===,∴cos∠GCB=.故答案为.16.如图,已知在△ABC中,∠C=90°,AB=10,cot B=,正方形DEFG的顶点G、F 分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为.解:∵∠C=90°,∴cot B==,设BC=t,则AC=2t,∴AB==t,∴t=10,解得t=2,∴BC=2,AC=4,过C点作CH⊥AB于H,交GF于M,如图,设正方形的边长为x,易得四边形DGMH为矩形,∴MH=DG=x,∵CH×AB=×AC×BC,∴CH==4,∴CM=CH﹣MH=8﹣x,∵GF∥AB,∴△CGF∽△CAB,∴=,即=,解得x=,即正方形DEFG的边长为.17.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD 中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为9.解:如图,过端午A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tan B==,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC﹣BH=12﹣8=4,∴AC===2,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD==,∵CD=5,∴DE=3,CE=4,∴AE===6,∴AD=AE+DE=9.故答案为:9.18.如图,已知在△ABC中,∠B=45°,∠C=60°,将△ABC绕点A旋转,点B、C分别落在点B1、C1处,如果BB1∥AC,联结C1B1交边AB于点D,那么的值为.解:如图,过点D作DE⊥AB1于E,∵∠B=45°,∠C=60°,∴∠CAB=75°,∵BB1∥AC,∴∠CAB=∠ABB1=75°,∵将△ABC绕点A旋转,∴AB=AB1,∠AB1C1=∠ABC=45°,∴∠AB1B=∠ABB1=75°,∴∠B1AB=30°,又∵DE⊥AB1,∠AB1C1=45°,∴AD=2DE,AE=DE,DE=B1E,∴AB1=DE+DE=AB,DB1=DE,∴DB=AB﹣AD=DE﹣DE,∴==,故答案为:.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.解:原式====4﹣2.20.(10分)已知一个二次函数的图象经过点A(﹣1,0)、B(0,3)、C(2,3).(1)求这个函数的解析式及对称轴;(2)如果点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,那么y1<y2.(填“<”或“>”)解:(1)设二次函数的解析式为y=ax2+bx+c(a≠0).根据题意,得,解得.∴二次函数的解析式为y=﹣x2+2x+3,∴抛物线的对称轴为直线x=﹣=1;(2)由(1)可知,抛物线开口向下,对称轴为直线x=1,∵点P(x1,y1)、Q(x2,y2)在这个二次函数图象上,且x1<x2<0,∴y1<y2,故答案为<.21.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,点M为边BC上一点,BM=BC,联结AM交DE于点N.(1)求的值;(2)设=,=,如果=,请用向量、表示向量.【解答】(1)解:∵BM=BC,∴=.∵DE∥BC,∴=,∴==.即:的值是;(2)解:∵=,=,∴=﹣=﹣.∵DE∥BC,=,∴==.∴DN=BM.由(1)知,=,则NE=2DN.∴=2=2×=﹣.22.(10分)如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在△ABC中,测得∠B=64°,∠C=45°,BC=50米,求河宽(即点A到边BC的距离)(结果精确到0.1米).(参考数据:≈1.41,sin64°=0.90,cos64°=0.44,tan64°=2.05)解:过点A作AD⊥BC于点D.如图所示:在Rt△ACD中,∵∠C=45°,∴tan C==1,∴CD=AD,在Rt△ABD中,∵∠B=64°,∴tan∠B==2.05,∴BD=BD,∵BC=BD+CD=50米,∴AD+AD=50米,解得:AD≈33.6(米).答:河的宽度约为33.6米.23.(12分)已知:如图,在梯形ABCD中,AD∥BC,对角线BD、AC相交于点E,过点A作AF∥DC,交对角线BD于点F.(1)求证:=;(2)如果∠ADB=∠ACD,求证:线段CD是线段DF、BE的比例中项.【解答】证明:(1)∵AD∥BC,∴∠CBD=∠ADF,∠ADC+∠BCD=180°,∵AF∥CD,∴∠ADC+∠DAF=180°,∴∠DAF=∠BCD,∴△DAF∽△BCD,∴=,∵AD∥BC,∴△ADE∽△CBE,∴=,∴=;(2)∵∠ADB=∠ACD,∠ADB=∠CBD,∴∠ECD=∠CBD,而∠CDE=∠BDC,∴△DCE∽△DBC,∴=,∴DC2=DE•DB,∵=,∴DE•DB=DF•BE,∴DC2=DF•BE,即线段CD是线段DF、BE的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=﹣(x﹣m)2+4与y轴交于点B,与x轴交于点C、D(点C在点D左侧),顶点A在第一象限,异于顶点A的点P(1,n)在该抛物线上.(1)如果点P与点C重合,求线段AP的长;(2)如果抛物线经过原点,点Q是抛物线上一点,tan∠OPQ=3,求点Q的坐标;(3)如果直线PB与x轴的负半轴相交,求m的取值范围.解:(1)由题意,抛物线y=﹣(x﹣m)2+4经过点C(1,0),∴(1﹣m)2=4,解得m=3或﹣1(舍弃),∴A(3,4),P(1,0),∴PA==2.(2)∵抛物线y=﹣(x﹣m)2+4经过点C(0,0),∴m2=4,解得m=2或﹣2(舍弃),∴抛物线的解析式为y=﹣(x﹣2)2+4,当x=1时,n=3,∴P(1,3),如图1中,延长PQ交X轴于F,设F(t,0).∵P(1,3),∴tan∠POF=3,∵tan∠OPQ=3,∴tan∠POF=tan∠OPQ,∴∠POF=∠OPQ,∴OF=PF,∴t2=32+(t﹣1)2,∴t=5,∴F(5,0),∴直线PF的解析式为y=﹣x+,由,解得(即点P)或,∴Q(,).(3)如图2中,由题意,,解得<m<2且m≠1.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为边BC上一动点(与点B、C不重合),点E为AB上一点,∠EDB=∠ADC,过点E作EF⊥AD,垂足为点G,交射线AC于点F.(1)如果点D为边BC的中点,求∠DAB的正切值;(2)当点F在边AC上时,设CD=x,CF=y,求y关于x的函数解析式及定义域;(3)联结DF,如果△CDF与△AGE相似,求线段CD的长.解:(1)如图1中,过点D作DH⊥AB于H.∵CA=CB=4,∠ACB=90°,∴AB===4,∵CD=DB=2,∠B=45°,∠DHB=90°,∴DH=BH=DB=,∴AH=AB﹣BH=3,∴tan∠DAB==.(2)如图2中,过点A作AT⊥AC,延长FE交AT于T,直线DE交AT于K,交AC的延长线于R.∵AT⊥AC,BC⊥AC,∴AT∥BC,∴∠ADC=∠DAK,∠EDB=∠AKD,∵∠ADC=∠EDB,∴∠DAK=∠DKA,∴DA=DK,∵∠R+∠DKA=90°,∠DAC+∠DAK=90°,∴∠DAC=∠R,∴DA=DR,∵DC⊥AR,∴AC=CR=4,∵∠AFE+∠CAD=90°,∠AKE+∠R=90°,∴∠AFE=∠AKE,∵∠EAF=∠EAK=45°,AE=AE,∴△AEF≌△AEK(AAS),∴AF=AK,∵∠RAK=∠TAF=90°,∠AKR=∠AFT,∴△AKR≌△AFT(ASA),∴AR=AT=8,∠R=∠T=∠DAC,∵∠ACD=∠TAF,∴△ACD∽△TAF,∴==,∴AF=2CD=2x,∵CF+AF=4,∴y+2x=4,∴y=4﹣2x(0<x≤2).(3)如图3中,连接DF,作DH⊥AB于H.∵∠GAE=∠DAH,∠AGE=∠AHD,∴△AGE∽△AHD,∵△CDF与△AGE相似,∴△CFD与△ADH相似,∴=或=,∴=或=,整理得,x2+8x﹣16=0或x2﹣16x﹣16=0,解得,x=4﹣4或﹣4﹣4(舍弃)或8﹣4或8+4(舍弃),∴CD=4﹣4或8﹣4,当点F在下方时,同法可得,CD=,综上所述,满足条件的CD的值为4﹣4或8﹣4或.。

上海市杨浦区2019-2020学年中考数学一模考试卷含解析

上海市杨浦区2019-2020学年中考数学一模考试卷含解析

上海市杨浦区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万B .420510⨯C .62.0510⨯D .72.0510⨯3.下列运算正确的是( ) A .5ab ﹣ab=4 B .a 6÷a 2=a 4 C .112a b ab+= D .(a 2b )3=a 5b 34.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( ) 年龄(岁) 12 13 14 15 16 人数 12252A .2,14岁B .2,15岁C .19岁,20岁D .15岁,15岁5. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( ) 月用水量(吨) 4 5 6 9 户数(户) 3421A .中位数是5吨B .众数是5吨C .极差是3吨D .平均数是5.3吨6.3 1-的值是( )A .1B .﹣1C .3D .﹣37.若()292m m --=1,则符合条件的m 有( )A .1个B .2个C .3个D .4个8.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( ) A .4 B .﹣4 C .3 D .﹣39.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.25πcm B.210πcm C.215πcm D.220πcm11.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD 的长为()A.4 B.5 C.8 D.1012.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)14.如图,AB 是半径为2的⊙O 的弦,将»AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的»AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)15.如果2()a xb x +=+v v v v,那么=_____(用向量a r ,b r 表示向量x r ). 16.用换元法解方程221231x x x x +-=+时,如果设21x y x +=,那么原方程化成以y 为“元”的方程是________.17.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____. 18.不等式组2332x x -<⎧⎨+<⎩的解集是 _____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).20.(6分)如图,在▱ABCD 中,AB=4,AD=5,tanA=43,点P 从点A 出发,沿折线AB ﹣BC 以每秒1个单位长度的速度向中点C 运动,过点P 作PQ ⊥AB ,交折线AD ﹣DC 于点Q ,将线段PQ 绕点P 顺时针旋转90°,得到线段PR ,连接QR .设△PQR 与▱ABCD 重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)当点R 与点B 重合时,求t 的值;(2)当点P 在BC 边上运动时,求线段PQ 的长(用含有t 的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.21.(6分)如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.求证:EC=ED.22.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.23.(8分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.(1)求证:AE⊥EF;(2)若圆的半径为5,BD=6 求AE的长度.24.(10分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.25.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F 作FG ∥AB 、FH ∥AC 分别交BC 于点G 、H ,如果BG :GH :HC =2:4:1.求ADEFGHS S △△的值.26.(12分)如图,△ABC 内接于⊙O ,∠B=600,CD是⊙O 的直径,点P 是CD 延长线上的一点,且AP=AC .(1)求证:PA 是⊙O 的切线; (2)若3,求⊙O 的直径.27.(12分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案. 【详解】解:A 、是轴对称图形,不是中心对称图形,故A 错误; B 、是轴对称图形,不是中心对称图形,故B 错误;C 、既是轴对称图形,也是中心对称图形,故C 正确;D 、既不是轴对称图形,也不是中心对称图形,故D 错误; 故选:C. 【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断. 2.C 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106, 故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.B 【解析】 【分析】由整数指数幂和分式的运算的法则计算可得答案. 【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误; 故本题正确答案为B. 【点睛】 幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数) (2)幂的乘方:()m n mn a a =(m 、n 都是正整数) (3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a=(a≠0)(6) 负整数次幂:1ppaa-=(a≠0, p是正整数).4.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1.故选D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.C【解析】【分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.6.B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,31-=﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,7.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】Q()29m--=12m∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.8.A【解析】【分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.9.D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=23,∴AD=AB ACBC⋅=232⨯=3,∴BD=2ABBC=223()=1.∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.10.B【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=27252360π⨯⨯=10π .故选B.11.D【解析】【分析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.【详解】解:∵矩形ABCD的对角线AC,BD相交于点O,∴∠BAD=90°,点O是线段BD的中点,∵点M是AB的中点,∴OM是△ABD的中位线,∴AD=2OM=1.∴在直角△ABD中,由勾股定理知:2222AD AB=86=10++.故选:D.【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.12.B 【解析】 【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算. 【详解】①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.①②③ 【解析】试题分析:根据三角形内角和定理求出∠ABC 、∠C 的度数,根据线段垂直平分线的性质得到EA=EB ,根据等腰三角形的判定定理和三角形的周长公式计算即可. 解:∵AB=AC ,∠A=36°, ∴∠ABC=∠C=72°, ∵DE 是AB 的垂直平分线, ∴EA=EB ,∴∠EBA=∠A=36°, ∴∠EBC=36°, ∴∠EBA=∠EBC ,∴BE 平分∠ABC ,①正确; ∠BEC=∠EBA+∠A=72°, ∴∠BEC=∠C , ∴BE=BC ,∴AE=BE=BC ,②正确;△BEC 周长=BC+CE+BE=BC+CE+EA=AC+BC ,③正确; ∵BE >EC ,AE=BE , ∴AE >EC ,∴点E 不是AC 的中点,④错误, 故答案为①②③.考点:线段垂直平分线的性质;等腰三角形的判定与性质.14.①②【解析】【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.【详解】如图1,连接OA和OB,作OF⊥AB.由题知:»AB沿着弦AB折叠,正好经过圆心O∴OF=OA=12OB∴∠AOF=∠BOF=60°∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)故,①②正确下面研究问题EO的最小值是否是1如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点∴AE ⊥BD (三线合一)又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF即,E 点在以AB 为直径的圆上运动.所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小此时,AE=EF ,AE ⊥EF∵⊙O 的半径是2,即OA=2,OF=1∴3(勾股定理)∴3所以,③不正确综上所述:①②正确,③不正确.故答案是:①②.【点睛】考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理. 15.2b a -v v【解析】 ∵2(a r +x r )=b r +x r ,∴2a r +2x r =b r +x r ,∴x r =b r -2a r ,故答案为2b a -v v.点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.16.y-23y= 【解析】分析:根据换元法,可得答案. 详解:21x x +﹣221x x +=1时,如果设21x x +=y ,那么原方程化成以y 为“元”的方程是y ﹣2y =1. 故答案为y ﹣2y=1. 点睛:本题考查了换元法解分式方程,把21x x +换元为y 是解题的关键. 17.13【解析】【分析】将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可.【详解】解:将三个小区分别记为A 、B 、C ,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为39=13. 故答案为:13. 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.18.x <-1【解析】2332x x -<⎧⎨+<⎩①②解不等式①得:x<5,解不等式②得:x<-1所以不等式组的解集是x<-1.故答案是:x<-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】【分析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a>2662295.8 9故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题20.(1)127;(2)45(9﹣t);(3)①S =﹣23t2+163t﹣327;②S=﹣27t2+1.③S=24175(9﹣t)2;(3)3或215或4或173.【解析】【分析】(1)根据题意点R与点B重合时t+43t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S△PQR﹣S△KBR=12×3×3﹣12×t×47t=﹣27t2+1.③如图3中,当3<t<9时,重叠部分是△PQK.S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53, ∴t=9﹣103=173. 综上所述,满足条件的t 的值为3或215或4或173. 【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题. 21.见解析【解析】【分析】由∠1=∠2,可得∠BED=∠AEC ,根据利用ASA 可判定△BED ≌△AEC ,然后根据全等三角形的性质即可得证.【详解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED ,即∠BED=∠AEC ,在△BED 和△AEC 中,,∴△BED ≌△AEC (ASA ),∴ED=EC .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.(1)见解析;(1)70°.【解析】【分析】(1)根据全等三角形的判定即可判断△AEC ≌△BED ;(1)由(1)可知:EC=ED ,∠C=∠BDE ,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠BDE 的度数.【详解】证明:(1)∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△BED (ASA ).(1)∵△AEC ≌△BED ,∴EC=ED ,∠C=∠BDE .在△EDC 中,∵EC=ED ,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.23.(1)详见解析;(2)AE =6.1.【解析】【分析】(1)连接OD ,利用切线的性质和三角形的内角和证明OD ∥EA ,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD ,∵EF是⊙O的切线,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵点D是弧BC中点,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,22221068AD AB BD-=-=,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴AD AE AB AD=,即8108AE=,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.24.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:() 223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:25.2516【解析】【分析】先根据平行线的性质证明△ADE∽△FGH,再由线段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得ADEFGHSS∆∆的值.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴2ADEFGHS DES GH∆∆⎛⎫= ⎪⎝⎭,∵DE∥BC ,FG∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴设BG=2k,GH=4k,HC=1k,∴DF=2k,FE=1k,∴DE=5k,∴2525416ADEFGHS kS k∆∆⎛⎫==⎪⎝⎭.【点睛】本题考查了平行线的性质和三角形相似的判定和相似比.26.(1)见解析(2)23【解析】解:(1)证明:连接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半径,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=3,∴2OA=2PD=23.∴⊙O的直径为23..(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论.(2)利用含2的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=3,可得出⊙O的直径.27.(1)12;(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.。

2019-2020学年上海市杨浦区初三数学第一学期中考一模试卷及解析

2019-2020学年上海市杨浦区初三数学第一学期中考一模试卷及解析

2019-2020学年上海市杨浦区初三数学第一学期中考一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)将抛物线2y x =向左平移1个单位,所得抛物线解析式是( ) A .2(1)y x =+B .2(1)y x =-C .21y x =+D .21y x =-2.(4分)在Rt ABC ∆中,90C ∠=︒,如果2AC =,3cos 4A =,那么AB 的长是( ) A .52B .83C .103D .2733.(4分)已知a 、b 和c 都是非零向量,下列结论中不能判定//a b 的是( ) A .//a c ,//b cB .12a c =,2bc = C .2a b =D .||||a b =4.(4分)如图,在66⨯的正方形网格中,联结小正方形中两个顶点A 、B ,如果线段AB 与网格线的其中两个交点为M 、N ,那么::AM MN NB 的值是( )A .3:5:4B .3:6:5C .1:3:2D .1:4:25.(4分)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是236(04)2y x x x =-+,那么水珠的高度达到最大时,水珠与喷头的水平距离是( ) A .1米B .2米C .5米D .6米6.(4分)如图,在正方形ABCD 中,ABP ∆是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC ,CP ,AC 与BF 相交于点H ,下列结论中错误的是( )A .2AE DE =B .CFP APH ∆∆∽C .CFP APC ∆∆∽D .2CP PH PB =⋅二、填空题:(本大题共12题,每题4分,满分48分) 7.(4分)如果cot 3α=,那么锐角α= 度.8.(4分)如果抛物线231y x x m =-+-+经过原点,那么m = . 9.(4分)二次函数2251y x x =+-的图象与y 轴的交点坐标为 .10.(4分)已知点1(A x ,1)y 、2(B x ,2)y 为抛物线2(2)y x =-上的两点,如果122x x <<,那么1y 2y .(填“>”“<”或“=”) 11.(4分)在比例尺为1:8000000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为 千米.12.(4分)已知点P 是线段AB 上的一点,且2BP AP AB =,如果10AB cm =,那么BP = cm . 13.(4分)已知点G 是ABC ∆的重心,过点G 作//MN BC 分别交边AB 、AC 于点M 、N ,那么AMNABCS S ∆∆= . 14.(4分)如图,某小区门口的栏杆从水平位置AB 绕固定点O 旋转到位置DC ,已知栏杆AB 的长为3.5米,OA 的长为3米,点C 到AB 的距离为0.3米,支柱OE 的高为0.6米,那么栏杆端点D 离地面的距离为 米.15.(4分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31︒,AB 的长为12米,则大厅两层之间的高度为 米.(结果保留一位小数)【参考数据:sin310.515︒=,cos310.867︒=,tan310.601︒=】16.(4分)如图,在四边形ABCD 中,90B D ∠=∠=︒,3AB =,2BC =,4tan 3A =,则CD = .17.(4分)定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD 中,对角线BD 是它的相似对角线,70ABC ∠=︒,BD 平分ABC ∠,那么ADC ∠= 度.18.(4分)在Rt ABC ∆中,90A ∠=︒,4AC =,AB a =,将ABC ∆沿着斜边BC 翻折,点A 落在点1A 处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交1A B 所在直线于点F ,联结1A E ,如果△1A EF 为直角三角形时,那么a = .三、解答题:(本大题共7题,满分78分)19.(10分)抛物线2y ax bx c =++中,函数值y 与自变量x 之间的部分对应关系如表:x⋯ 3- 2- 1-0 1⋯ y⋯4- 1- 01- 4-⋯(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点(2,4)M 的位置,那么其平移的方法是 . 20.(10分)如图,已知在梯形ABCD 中,//AB CD ,12AB =,7CD =,点E 在边AD 上,23DE AE =,过点E 作//EF AB 交边BC 于点F . (1)求线段EF 的长;(2)设AB a =,AD b =,联结AF ,请用向量a 、b 表示向量AF .21.(10分)如图,已知在ABC ∆中,90ACB ∠=︒,3sin 5B =,延长边BA 至点D ,使AD AC =,联结CD .(1)求D ∠的正切值;(2)取边AC 的中点E ,联结BE 并延长交边CD 于点F ,求CFFD的值.22.(10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精确到0.1m ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈23.(12分)如图,已知在ABC ∆中,AD 是ABC ∆的中线,DAC B ∠=∠,点E 在边AD 上,CE CD =. (1)求证:AC BDAB AD=; (2)求证:22AC AE AD =.24.(12分)已知在平面直角坐标系xOy 中,抛物线224(0)y mx mx m =-+≠与x 轴交于点A ,B (点A 在点B 的左侧),且6AB =.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点(0,2)E ,点F 为第一象限内抛物线上一点,联结BF ,EF ,如果10OEFB S =四边形,求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于EBF ∠,求点P 的坐标.25.(14分)已知在菱形ABCD 中,4AB =,120BAD ∠=︒,点P 是直线AB 上任意一点,联结PC .在PCD ∠内部作射线CQ 与对角线BD 交于点Q (与B 、D 不重合),且30PCQ ∠=︒. (1)如图,当点P 在边AB 上时,如果3BP =,求线段PC 的长;(2)当点P 在射线BA 上时,设BP x =,CQ y =,求y 关于x 的函数解析式及定义域; (3)联结PQ ,直线PQ 与直线BC 交于点E ,如果QCE ∆与BCP ∆相似,求线段BP 的长.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.【解答】解:将抛物线2y x =向左平移1个单位,所得抛物线解析式是2(1)y x =+, 故选:A .2.【解答】解:在Rt ABC ∆中,90C ∠=︒,2AC =, 又3cos 4AC A AB ==, 83AB ∴=, 故选:B .3.【解答】解:A 、由//a c ,//b c ,可以推出//a b .本选项不符合题意. B 、由12a c =,2bc =,可以推出//a b .本选项不符合题意.C 、由2a b =,可以推出//a b .本选项不符合题意.D 、由||||a b =,不可以推出//a b .本选项符合题意.故选:D . 4.【解答】解:13AM MN =,32MN NB =, ::1:3:2AM MN NB ∴=,故选:C .5.【解答】解:方法一: 根据题意,得236(04)2y x x x =-+,23(2)62x =--+所以水珠的高度达到最大时,水珠与喷头的水平距离是2米. 方法二: 因为对称轴62322x ==⨯,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米. 故选:B .6.【解答】解:四边形ABCD是正方形,90D DAB∴∠=∠=︒,APB∆是等边三角形,60PAB PBA APB∴∠=∠=∠=︒,30DAE∴∠=︒,2AE DE∴=,故A正确,//AB CD,60PFE ABP APH∴∠=∠=∠=︒,6045105 AHP PBA BAH∠=∠+∠=︒+︒=︒,又BC BP=,30PBC∠=︒,75BPC BCP∴∠=∠=︒,105CPF∴∠=︒,PHA CPF∴∠=∠,CFP APH∴∆∆∽,故B正确,6075135CPA CPF∠=︒+︒=︒≠∠,CFP∴∆与APC∆不相似,故C错误,754530 PCH PCB BCH∠=∠-∠=︒-︒=︒,PCH PBC∴∠=∠,CPH BPC∠=∠,PCH PBC∴∆∆∽,∴PC PHPB PC=,2CP PH PB∴=⋅,故D正确,故选:C.二、填空题:(本大题共12题,每题4分,满分48分) 7.【解答】解:cot3α=,∴锐角30α=︒.故答案为:30.8.【解答】解:抛物线231y x x m =-+-+经过点(0,0), 10m ∴-+=, 1m ∴=.故答案为1.9.【解答】解:当0x =时,1y =-,所以二次函数2251y x x =+-的图象与y 轴的交点坐标为(0,1)-. 故答案为(0,1)-. 10.【解答】解:2(2)y x =-,10a ∴=>,∴抛物线开口向上,抛物线2(2)y x =-对称轴为直线2x =, 122x x <<, 12y y ∴>.故答案为>.11.【解答】解:设甲、乙两地的实际距离为xcm , 比例尺=图上距离实际距离,1:80000004:x ∴=, 32000000x ∴=,∴甲、乙两地的实际距离为是320km ,故答案为:320.12.【解答】解:点P 是线段AB 上的一点 10AP AB BP BP ∴=-=-,2BP AP AB =,10AB cm =,2(10)10BP BP =-⨯,解得5BP =.故答案为:(555)-.13.【解答】解:如图,,连接AG 并延长交BC 于点E , 点G 是ABC ∆的重心,∴21AG GE =, //MN BC ,AMN ABC ∴∆∆∽,∴24()9AMN ABC S AG S AE ∆∆==, 故答案为:4914.【解答】解:过D 作DG AB ⊥于G ,过C 作CH AB ⊥于H , 则//DG CH , ODG OCH ∴∆∆∽,∴DG ODCH OC=, 栏杆从水平位置AB 绕固定点O 旋转到位置DC , 3.5CD AB m ∴==,3OD OA m ==,0.3CH m =, 0.5OC m ∴=,∴30.30.5DG =, 1.8DG m ∴=, 0.6OE m =,∴栏杆D 端离地面的距离为1.80.6 2.4m +=.故答案为:2.4.15.【解答】解:在Rt ABC ∆中, 90ACB ∠=︒,sin 120.515 6.2BC AB BAC ∴=∠=⨯≈(米),答:大厅两层之间的距离BC 的长约为6.2米. 故答案为:6.2.16.【解答】解:延长AD 和BC 交于点E . 在直角ABE ∆中,4tan 3BE A AB ==,3AB =, 4BE ∴=,422EC BE BC ∴=-=-=,ABE ∆和CDE ∆中,90B EDC ∠=∠=︒,E E ∠=∠,DCE A ∴∠=∠,∴直角CDE ∆中,4tan tan 3DE DCE A DC ∠===, ∴设4DE x =,则3DC x =,在直角CDE ∆中,222EC DE DC =+, 224169x x ∴=+,解得:25x =, 则65CD =. 故答案是:65.17.【解答】解:如图所示,70ABC ∠=︒,BD 平分ABC ∠, ABD DBC ∴∠=∠,又对角线BD 是它的相似对角线, ABD DBC ∴∆∆∽,A BDC ∴∠=∠,ADBC ∠=∠, A C ADC ∴∠+∠=∠,又36070290A C ADC ∠+∠+∠=︒-︒=︒,145ADC ∴∠=︒,故答案为:145.18.【解答】解:当△1A EF 为直角三角形时,存在两种情况:①当190A EF ∠=︒时,如图1,△1A BC 与ABC ∆关于BC 所在直线对称,14AC AC ∴==,1ACB ACB ∠=∠, 点D ,E 分别为AC ,BC 的中点,D ∴、E 是ABC ∆的中位线,//DE AB ∴,90CDE MAN ∴∠=∠=︒,1CDE A EF ∴∠=∠,1//AC A E ∴,1ACB A EC ∴∠=∠,11ACB A EC ∴∠=∠, 114AC A E ∴==, Rt △1ACB 中, E 是斜边BC 的中点,128BC A E ∴==,由勾股定理得:222AB BC AC =-,228443AB ∴=-=②当190A FE ∠=︒时,如图2,90ADF A DFB ∠=∠=∠=︒,90ABF ∴∠=︒,△1A BC 与ABC ∆关于BC 所在直线对称,145ABC CBA ∴∠=∠=︒,ABC ∴∆是等腰直角三角形,4AB AC ∴==;综上所述,AB 的长为43或4;故答案为:43或4;三、解答题:(本大题共7题,满分78分)19.【解答】解:(1)抛物线2y ax bx c =++过点(1,0)-,(0,1)-,(1,4)-, ∴041a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得121a b c =-⎧⎪=-⎨⎪=-⎩,∴该抛物线的表达式为221y x x =---;(2)新顶点(2,4)M ,2(2)4y x ∴=--+,2221(1)y x x x =---=-+,∴抛物线的表达式为221y x x =---向右平移3个单位,向上平移4个单位可得到2(2)4y x =--+, 故答案为:向右平移3个单位,向上平移4个单位.20.【解答】解:(1)过D 作//DM BC 交EF 于N ,交AB 于M ,则7BM FN CD ===, 1275AM AB BM ∴=-=-=, 23DE AE =, ∴25DE EN DA AM == 2EN ∴=,279EF EN FN ∴=+=+=;(2)9EF =,12AB =,∴34EF AB =, AB a =,∴3344EF AB a ==, 35AE AD =,AD b =, ∴35AE b =,∴3354AF AE EF b a =+=+.21.【解答】解:(1)过点C 作CG AB ⊥,垂足为G ,90ACB ∠=︒,ACG B ∴∠=∠,在ABC ∆中,3sin 5B =,设3AC x =,则5AB x =,4BC x =, 3sin sin 5AG ACG B AC ∴∠===, 95AG x ∴=,125CG x =, 924355DG DA AG x x x ∴=+=+=,在Rt DCG ∆中,1tan 2CG D DG ∠==; (2)过点C 作//CH DB ,交BF 的延长线于点H ,则有CHF DBF ∆∆∽,又有E 是AC 的中点,可证CHE ABE ∆≅∆,5HC AB x ∴==,由CHF DBF ∆∆∽得:55358CF CH x DF DB x x ===+.22.【解答】解:设MC x =,30MAC ∠=︒,∴在Rt MAC ∆中,3tan 3MC AC x MAC ===∠. 45MBC ∠=︒,∴在Rt MCB ∆中,MC BC x ==,又40AB DE ==,40AC BC AB ∴-==340x x -=,解得:2020354.6x =+≈,54.6 1.556.1MF MC CF ∴=+=+=(米),答:楼MF 的高56.1米.23.【解答】(1)证明:CD CE =,CED EDC ∴∠=∠,180AEC CED ∠+∠=︒,180ADB EDC ∠+∠=︒,AEC ADB ∴∠=∠,DAC B ∠=∠,ACE BAD ∴∆∆∽;∴AC CE AB AD=, BD CD CE ==,∴AC BD AB AD =; (2)DAC B ∠=∠,ACD BCA ∠=∠,ACD BCA ∴∆∆∽,∴AC CB CD CA=, 2AC CD CB ∴=,ACE BAD ∆∆∽,∴AE CE BD AD=, AE AD BD CE ∴=,22AE AD BD CE BC CD ∴==,22AC AE AD ∴=.24.【解答】解:(1)由2224(1)4y mx mx m x m =-+=-+-得到:抛物线对称轴为直线1x =. 6AB =,(2,0)A ∴-,(4,0)B .将点A 的坐标代入函数解析式得到:4440m m ++=,解得12m =-. 故该抛物线解析式是:2142y x x =-++; (2)如图1,联结OF ,设21(,4)2F t t t -++,则 211124410222OEF OFB OEFB S S S t t t ∆∆⎛⎫=+=⨯+⨯-++= ⎪⎝⎭四边形. 11t ∴=,22t =.∴点F 的坐标是9(1,)2或(2,4); (3)由题意得,(2,4)F ,如图2,设PF 与y 轴的交点为G .,21tan 42OE EBO OB ∠===,1tan 2BH HFB FH ∠==, tan tan EBO HFB ∴∠=∠.EBO HFB ∴∠=∠.又PFH EGF FBE ∠=∠=∠,PFB PBF ∴∠=∠.PF PB ∴=.设(,0)P a .则PF PB =,222(4)(2)4a a ∴-=-+,解得1a =-.(1,0)P ∴-25.【解答】解:(1)如图1中,作PH BC ⊥于H .四边形ABCD 是菱形,4AB BC ∴==,//AD BC ,180A ABC ∴∠+∠=︒,120A ∠=︒,60PBH ∴∠=︒,3PB =,90PHB ∠=︒,3cos602BH PB ∴=︒=,33sin 60PH PB =︒=, 35422CH BC BH ∴=-=-=, 2222335()()1322PC PH CH ∴=++ (2)如图1中,作PH BC ⊥于H ,连接PQ ,设PC 交BD 于O . 四边形ABCD 是菱形,30ABD CBD ∴∠=∠=︒,30PCQ ∠=︒,PBO QCO ∴∠=∠,POB QOC ∠=∠,POB QOC ∴∆∆∽, ∴PO BO QO CO =, ∴OP QO BO CO=, POQ BOC ∠=∠,POQ BOC ∴∆∆∽,30OPQ OBC PCQ ∴∠=∠=︒=∠,PQ CQ y ∴==,3PC y ∴=,在Rt PHB ∆中,12BH x =,32PH x =, 222PC PH CH =+,222313()(4)22y x x ∴=+-, 231248(08)3x x y x -+∴=<. (3)①如图2中,若直线QP 交直线BC 于B 点左侧于E .此时120CQE ∠=︒,60PBC ∠=︒,PBC ∴∆中,不存在角与CQE ∠相等,此时QCE ∆与BCP ∆不可能相似.②如图3中,若直线QP 交直线BC 于C 点右侧于E .则60CQE B QBC QCP CBP ∠=∠=+∠=︒=∠, PCB E ∠>∠,∴只可能75BCP QCE ∠=∠=︒,作CF AB ⊥于F ,则2BF =,23CF =,45PCF ∠=︒, 23PF CF ∴==,此时223PB =+③如图4中,当点P 在AB 的延长线上时,QCE ∆与BCP ∆相似, 120CQE CBP ∴∠=∠=︒, 15QCE PCB ∴∠=∠=︒, 作CF AB ⊥于F . 30FCB ∠=︒, 45FCP ∴∠=︒, 122BF BC ∴==,23CF PF == 232PB ∴=-.综上所述,满足条件的PB 的值为223+232.。

2020年上海市杨浦区中考数学一模试卷(解析版)

2020年上海市杨浦区中考数学一模试卷(解析版)

2020年上海市杨浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)将抛物线y=x2向左平移1个单位,所得抛物线解析式是()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣12.(4分)在Rt△ABC中,∠C=90°,如果AC=2,cos A=,那么AB的长是()A.B.C.D.3.(4分)已知、和都是非零向量,下列结论中不能判定∥的是()A.,B.=,=2C.=2D.||=||4.(4分)如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段AB 与网格线的其中两个交点为M、N,那么AM:MN:NB的值是()A.3:5:4B.3:6:5C.1:3:2D.1:4:25.(4分)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x(0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米6.(4分)如图,在正方形ABCD中,△ABP是等边三角形,AP、BP的延长线分别交边CD于点E、F,联结AC,CP,AC与BF相交于点H,下列结论中错误的是()A.AE=2DE B.△CFP~△APH C.△CFP~△APC D.CP2=PH•PB二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果cotα=,那么锐角α=度.8.(4分)如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=.9.(4分)二次函数y=2x2+5x﹣1的图象与y轴的交点坐标为.10.(4分)已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1y2.(填“>”“<”或“=”)11.(4分)在比例尺为1:8000000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为千米.12.(4分)已知点P是线段AB上的一点,且BP2=AP•AB,如果AB=10cm,那么BP=cm.13.(4分)已知点G是△ABC的重心,过点G作MN∥BC分别交边AB、AC于点M、N,那么=.14.(4分)如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为米.15.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留一位小数)【参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】16.(4分)如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=.17.(4分)定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC =度.18.(4分)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=.三、解答题:(本大题共7题,满分78分)19.(10分)抛物线y=ax2+bx+c中,函数值y与自变量x之间的部分对应关系如表:x…﹣3﹣2﹣101…y…﹣4﹣10﹣1﹣4…(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点M(2,4)的位置,那么其平移的方法是.20.(10分)如图,已知在梯形ABCD中,AB∥CD,AB=12,CD=7,点E在边AD上,=,过点E作EF∥AB交边BC于点F.(1)求线段EF的长;(2)设=,=,联结AF,请用向量、表示向量.21.(10分)如图,已知在△ABC中,∠ACB=90°,sin B=,延长边BA至点D,使AD =AC,联结CD.(1)求∠D的正切值;(2)取边AC的中点E,联结BE并延长交边CD于点F,求的值.22.(10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼项M的仰角为45°,已知测角仪的高AD为1.5米.请根据他们的测量数据求此楼MF的高.(结果精到0.1m,参考数据:≈1.414,≈1.732,≈2.449)23.(12分)如图,已知在△ABC中,AD是△ABC的中线,∠DAC=∠B,点E在边AD 上,CE=CD.(1)求证:=;(2)求证:AC2=2AE•AD.24.(12分)已知在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+4(m≠0)与x轴交于点A,B(点A在点B的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y轴上取点E(0,2),点F为第一象限内抛物线上一点,联结BF,EF,如果S=10,求点F的坐标;四边形OEFB(3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P在x轴上且在点B左侧,如果直线PF与y轴的夹角等于∠EBF,求点P的坐标.25.(14分)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ =30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.2020年上海市杨浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)将抛物线y=x2向左平移1个单位,所得抛物线解析式是()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2向左平移1个单位,所得抛物线解析式是y=(x+1)2,故选:A.【点评】本题主要考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.2.(4分)在Rt△ABC中,∠C=90°,如果AC=2,cos A=,那么AB的长是()A.B.C.D.【分析】根据cos A==,求出AB即可.【解答】解:在Rt△ABC中,∵∠C=90°,AC=2,又∵cos A==,∴AB=,故选:B.【点评】本题考查锐角三角函数的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(4分)已知、和都是非零向量,下列结论中不能判定∥的是()A.,B.=,=2C.=2D.||=||【分析】根据平行向量的定义判断即可.【解答】解:A、由∥,∥,可以推出∥.本选项不符合题意.B、由=,=2,可以推出∥.本选项不符合题意.C、由=2,可以推出∥.本选项不符合题意.D、由||=||,不可以推出∥.本选项符合题意.故选:D.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(4分)如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段AB 与网格线的其中两个交点为M、N,那么AM:MN:NB的值是()A.3:5:4B.3:6:5C.1:3:2D.1:4:2【分析】根据平行线分线段成比例定理得出即可.【解答】解:∵=,=,∴AM:MN:NB=1:3:2,故选:C.【点评】本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键.5.(4分)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x(0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米【分析】根据二次函数的顶点式即可求解.【解答】解:方法一:根据题意,得y=x2+6x(0≤x≤4),=﹣(x﹣2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x==2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.【点评】本题考查了二次函数的应用,解决本题的关键是掌握二次函数的顶点式.6.(4分)如图,在正方形ABCD中,△ABP是等边三角形,AP、BP的延长线分别交边CD于点E、F,联结AC,CP,AC与BF相交于点H,下列结论中错误的是()A.AE=2DE B.△CFP~△APH C.△CFP~△APC D.CP2=PH•PB 【分析】①正确.利用直角三角形30度角的性质即可解决问题.②正确,根据两角相等两个三角形相似即可判断.③错误.通过计算证明∠CPA≠∠CPF,即可判断.④正确.利用相似三角形的性质即可证明.【解答】解:∵四边形ABCD是正方形,∴∠D=∠DAB=90°,∵△APB是等边三角形,∴∠PAB=∠PBA=∠APB=60°,∴∠DAE=30°,∴AE=2DE,故①正确,∵AB∥CD,∴∠PFE=∠ABP=∠APH=60°,∵∠AHP=∠PBA+∠BAH=60°+45°=105°,又∵BC=BP,∠PBC=30°,∴∠BPC=∠BCP=75°,∴∠CPF=105°,∴∠PHA=∠CPF,∴△CFP∽△APH,故②正确,∵∠CPA=60°+75°=135°≠∠CPF,∴△PFC与△PCA不相似,故③错误,∵∠PCH=∠PCB﹣∠BCH=75°﹣45°=30°,∴∠PCH=∠PBC,∵∠CPH=∠BPC,∴△PCH∽△PBC,∴=,∴CP2=PH•PB,故④正确,故选:C.【点评】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果cotα=,那么锐角α=30度.【分析】直接利用特殊角的三角函数值进而得出答案.【解答】解:∵cotα=,∴锐角α=30°.故答案为:30.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.8.(4分)如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=1.【分析】把原点坐标代入y=﹣x2+3x﹣1+m中得到关于m的一次方程,然后解一次方程即可.【解答】解:∵抛物线y=﹣x2+3x﹣1+m经过点(0,0),∴﹣1+m=0,∴m=1.故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.(4分)二次函数y=2x2+5x﹣1的图象与y轴的交点坐标为(0,﹣1).【分析】根据y轴上点的坐标特征计算自变量为0时的函数值即可得到交点坐标.【解答】解:当x=0时,y=﹣1,所以二次函数y=2x2+5x﹣1的图象与y轴的交点坐标为(0,﹣1).故答案为(0,﹣1).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.10.(4分)已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1>y2.(填“>”“<”或“=”)【分析】根据二次函数的性质得到抛物线y=(x﹣2)2的开口向上,对称轴为直线x=2,则在对称轴左侧,y随x的增大而减小,所以x1<x2<2时,y1>y2.【解答】解:∵y=(x﹣2)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x﹣2)2对称轴为直线x=2,∵x1<x2<2,∴y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a>0,抛物线开口向上;对称轴为直线x=﹣,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大.11.(4分)在比例尺为1:8000000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为320千米.【分析】根据比例尺=代入数据计算即可.【解答】解:设甲、乙两地的实际距离为xcm,∵比例尺═,∴1:8000000=4:x,∴x=32000000,∴甲、乙两地的实际距离为是320km,故答案为:320.【点评】本题考查了比例线段,熟练掌握比例尺=是解题的关键.12.(4分)已知点P是线段AB上的一点,且BP2=AP•AB,如果AB=10cm,那么BP=(5﹣5)cm.【分析】根据点P是线段AB上的一点,且BP2=AP•AB,列方程即可求解.【解答】解:∵点P是线段AB上的一点∴AP=AB﹣BP=10﹣BP,∵BP2=AP•AB,AB=10cm,BP2=(10﹣BP)×10,解得BP=5﹣5.故答案为:(5﹣5).【点评】本题考查了根据线段之间的等量关系列方程,解决本题的关键是解方程.13.(4分)已知点G是△ABC的重心,过点G作MN∥BC分别交边AB、AC于点M、N,那么=.【分析】根据三角形重心和相似三角形的判定和性质解答即可.【解答】解:如图,,连接AG并延长交BC于点E,∵点G是△ABC的重心,∴,∵MN∥BC,∴△AMN∽△ABC,∴,故答案为:【点评】此题考查三角形的重心,关键是根据三角形的重心得出比例关系.14.(4分)如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为 2.4米.【分析】过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,根据相似三角形的性质即可得到结论.【解答】解:过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,∴△ODG∽△OCH,∴=,∵栏杆从水平位置AB绕固定点O旋转到位置DC,∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,∴OC=0.5m,∴=,∴DG=1.8m,∵OE=0.6m,∴栏杆D端离地面的距离为1.8+0.6=2.4m.故答案为:2.4.【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.15.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2米.(结果保留一位小数)【参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.16.(4分)如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=.【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC 的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.∵在直角△ABE中,tan A==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tan A==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.【点评】此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.17.(4分)定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC =145度.【分析】依据四边形的相似对角线的定义,即可得到∠ABD=∠DBC,∠A=∠BDC,∠ADB=∠C,再根据四边形内角和为360°,即可得到∠ADC的度数.【解答】解:如图所示,∵∠ABC=70°,BD平分∠ABC,∴∠ABD=∠DBC,又∵对角线BD是它的相似对角线,∴△ABD∽△DBC,∴∠A=∠BDC,∠ADB=∠C,∴∠A+∠C=∠ADC,又∵∠A+∠C+∠ADC=360°﹣70°=290°,∴∠ADC=145°,故答案为:145.【点评】此题主要考查了相似三角形的性质,理解新定义“相似对角线”,利用相似三角形的性质是解题的关键.18.(4分)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=4或4.【分析】当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,根据对称的性质和平行线可得:A1C=A1E=4,根据直角三角形斜边中线的性质得:BC=2A1B=8,最后利用勾股定理可得AB的长;②当∠A1FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,∵△A1BC与△ABC关于BC所在直线对称,∴A1C=AC=4,∠ACB=∠A1CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A1EF,∴AC∥A1E,∴∠ACB=∠A1EC,∴∠A1CB=∠A1EC,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了翻折变换(折叠问题),三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、解答题:(本大题共7题,满分78分)19.(10分)抛物线y=ax2+bx+c中,函数值y与自变量x之间的部分对应关系如表:x…﹣3﹣2﹣101…y…﹣4﹣10﹣1﹣4…(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点M(2,4)的位置,那么其平移的方法是向右平移3个单位,向上平移4个单位.【分析】(1)将(﹣1,0),(0,﹣1),(1,﹣4)代入抛物线解析式y=ax2+bx+c 中即可得解;(2)根据“上加下减,左加右减”的原则进行解答即可.【解答】解:(1)∵抛物线y=ax2+bx+c过点(﹣1,0),(0,﹣1),(1,﹣4),∴,解得,∴该抛物线的表达式为y=﹣x2﹣2x﹣1;(2)∵新顶点M(2,4),∴y=﹣(x﹣2)2+4,∵y=﹣x2﹣2x﹣1=﹣(x+1)2,∴抛物线的表达式为y=﹣x2﹣2x﹣1向右平移3个单位,向上平移4个单位可得到y=﹣(x﹣2)2+4,故答案为:向右平移3个单位,向上平移4个单位.【点评】本题考查了二次函数图象与几何变换,用待定系数法求二次函数的解析式等知识点,能求出二次函数的解析式是解此题的关键.20.(10分)如图,已知在梯形ABCD中,AB∥CD,AB=12,CD=7,点E在边AD上,=,过点E作EF∥AB交边BC于点F.(1)求线段EF的长;(2)设=,=,联结AF,请用向量、表示向量.【分析】(1)过D作DM∥BC交EF于N,交AB于M,则BM=FN=CD=7,根据平行线分线段成比例定理即可得到结论;(2)根据平行线分线段成比例定理即可得到结论.【解答】解:(1)过D作DM∥BC交EF于N,交AB于M,则BM=FN=CD=7,∴AM=AB﹣BM=12﹣7=5,∵=,∴==∴EN=2,∴EF=EN+FN=2+7=9;(2)∵EF=9,AB=12,∴=,∵=,∴==,∵=,=,∴=,∴=+=+.【点评】本题主要考查平行线分线段成比例定理,熟练掌握定理并灵活运用是解题的关键.21.(10分)如图,已知在△ABC中,∠ACB=90°,sin B=,延长边BA至点D,使AD =AC,联结CD.(1)求∠D的正切值;(2)取边AC的中点E,联结BE并延长交边CD于点F,求的值.【分析】(1)作高构造直角三角形,设AC=3x,表示出CG、AG、DG,再利用直角三角形的边角关系,求出∠D正切值;(2)过点C作CF∥DB,交BF的延长线于点H,相似三角形、全等三角形,进而得出HC=AB=5x,将:转化为求即可.【解答】解:(1)过点C作CG⊥AB,垂足为G,∵∠ACB=90°,∴∠ACG=∠B,在△ABC中,sin B=,设AC=3x,则AB=5x,BC=4x,∴sin∠ACG===sin B,∴AG=x,CG=x,∴DG=DA+AG=3x+x=x,在Rt△DCG中,tan∠D==;(2)过点C作CF∥DB,交BF的延长线于点H,则有△CHF∽△DBF,又有E是AC的中点,可证△CHE≌△ABE,∴HC=AB=5x,由△CHF∽△DBF得:===.【点评】考查直角三角形的边角关系、相似三角形的判定和性质以及全等三角形的判定和性质等知识,作合适的辅助线将问题转化为已知是解决问题的关键.22.(10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼项M的仰角为45°,已知测角仪的高AD为1.5米.请根据他们的测量数据求此楼MF的高.(结果精到0.1m,参考数据:≈1.414,≈1.732,≈2.449)【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:设MC=x,∵∠MAC=30°,∴在Rt△MAC中,AC===x.∵∠MBC=45°,∴在Rt△MCB中,MC=BC=x,又∵AB=DE=40,∴AC﹣BC=AB=40,即x﹣x=40,解得:x=20+20≈54.6,∴MF=MC+CF=54.6+1.5=56.1(米),答:楼MF的高56.1米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到等腰直角三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,熟练掌握以上知识是解答此题的关键.23.(12分)如图,已知在△ABC中,AD是△ABC的中线,∠DAC=∠B,点E在边AD 上,CE=CD.(1)求证:=;(2)求证:AC2=2AE•AD.【分析】(1)先利用等腰三角形的性质,由CD=CE得到∠CED=∠EDC,则可根据等角的补角相等得到∠AEC=∠ADB,加上∠DAC=∠B,于是可根据有两组角对应相等的两个三角形相似判断△ACE∽△BAD.(2)由∠DAC=∠B及公共角相等证明△ACD∽△BCA,利用相似比即可得到结论.【解答】(1)证明:∵CD=CE,∴∠CED=∠EDC,∵∠AEC+∠CED=180°,∠ADB+∠EDC=180°,∴∠AEC=∠ADB,∵∠DAC=∠B∴△ACE∽△BAD;(2)∵∠DAC=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=,∴AC2=CD•CB,∵△ACE∽△BAD,∴=,∴AE•AD=BD•CE,∴2AE•AD=2BD•CE=BC•CD,∴AC2=2AE•AD.【点评】本题考查了相似三角形的判定与性质.关键是利用已知相等角,等腰三角形底角的外角相等,证明三角形相似.24.(12分)已知在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+4(m≠0)与x轴交于点A,B(点A在点B的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点E (0,2),点F 为第一象限内抛物线上一点,联结BF ,EF ,如果S 四边形OEFB =10,求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于∠EBF ,求点P 的坐标.【分析】(1)根据抛物线解析式求得对称轴方程为x =1,结合AB =6求得点A 、B 的坐标;然后利用待定系数法确定函数解析式;(2)如图1,联结OF ,设F (t ,﹣ t 2+t +4),根据图形得到S四边形OEFB =S △OEF +S △OFB ,由三角形的面积公式列出方程,利用方程求得点F 的横坐标,结合二次函数图象上点的坐标特征求得点F 的纵坐标;(3)如图2,设PF 与y 轴的交点为G .由tan ∠EBO =tan ∠HFB =得到:∠EBO =∠HFB .易推知∠PFB =∠PBF .故PF =PB .设P (a ,0).由两点间的距离公式求得相关线段的长度并列出方程,通过解方程求得点P 的横坐标.【解答】解:(1)由y =mx 2﹣2mx +4=m (x ﹣1)2+4﹣m 得到:抛物线对称轴为直线x =1.∵AB =6,∴A (﹣2,0),B (4,0).将点A 的坐标代入函数解析式得到:4m +4m +4=0,解得m =﹣.故该抛物线解析式是:y =﹣x 2+x +4;(2)如图1,联结OF ,设F(t,﹣t2+t+4),则S四边形OEFB =S△OEF+S△OFB=×2t+×4(﹣t2+t+4)=10.∴t1=1,t2=2.∴点F的坐标是(1,)或(2,4);(2)由题意得,F(2,4),如图2,设PF与y轴的交点为G.,∵tan∠EBO===,tan∠HFB==,∴tan∠EBO=tan∠HFB.∴∠EBO=∠HFB.又∵∠PFH=∠EGF=∠FBE,∴∠PFB=∠PBF.∴PF=PB.设P(a,0).则PF=PB,∴(a﹣4)2=(a﹣2)2+42,解得a=﹣1.∴P(﹣1,0)【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.25.(14分)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ =30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH 中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB2+2,综上所述,满足条件的PB的值为2+2.【点评】本题考查相似形综合题,考查了菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

【中考冲刺】2020年上海市杨浦区中考数学模拟试卷一模(附答案)

【中考冲刺】2020年上海市杨浦区中考数学模拟试卷一模(附答案)
【分析】
根据余弦函数的定义即可直接求解.
【详解】
解:∵cosA= ,
∴AB=AC· = ,
故选:B.
【点睛】
本题考查了余弦函数的定义,理解定义是关键.
3.D
【解析】
【分析】
根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.
【详解】
解:A.∵ // , // ,∴ ∥ ,故本选项错误;
过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,根据相似三角形的性质即可得到结论.
【详解】
解:过D作DG⊥AB于G,过C作CH⊥AB于H,
则DG∥CH,
∴△ODG∽△OCH,
∴ ,
∵栏杆从水平位置AB绕固定点O旋转到位置DC,
∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,
∴OC=0.5m,
绝密★启用前
2020年上海市杨浦区中考数学模拟试卷一模(附答案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题
1.将抛物线 向左平移1个单位,所得抛物线解析式是()
A. B. C. D.
2.在Rt 中,∠C=90°,如果AC=2, ,那么AB的长是()
解:∵点P在线段AB上,BP2=AP•AB,
∴点P为线段AB的黄金分割点,
又AB=10cm,
∴BP=10× =(5 )cm.
故答案为5 .
【点睛】
此题考查了黄金分割,理解黄金分割点的概念,熟记黄金比的值是解决问题的关键.
13.
【解析】
【分析】
延长AG交BC于H.由G是△ABC的重心,推出AG:GH=2:1,推出AG:AH=2:3,由MN∥BC,推出△AMN∽△ABC, ,可得 ,即可解决问题.

2024杨浦初三数学一模17题解析

2024杨浦初三数学一模17题解析

2024杨浦初三数学一模17题解析
摘要:
1.题目分析
2.解题思路
3.解题步骤
4.同类题型推荐
5.总结与建议
正文:
一、题目分析
2024年杨浦初三数学一模17题是一道典型的几何题,主要考察了学生的数学思维能力、几何知识运用能力和解题技巧。

题目如下:
已知矩形ABCD中,AB=3,BC=4,E为AD的中点,F为CD的中点,求EF的长度。

二、解题思路
1.利用矩形的性质,知道AD=BC,AB=CD。

2.利用中点公式,求出AE=ED=1.5,CF=FD=2。

3.利用三角形相似性质,得到△AEF∽△CDF。

4.利用相似比,求出EF的长度。

三、解题步骤
1.根据矩形性质,得到AD=4,AB=3。

2.计算AE=ED=1.5,CF=FD=2。

3.由于△AEF与△CDF有一对对应边相等,且两个三角形有一个共同的角(直角),所以两个三角形相似。

4.计算相似比:AF/CD=EF/BC=1/2。

5.根据相似比,得到EF=BC/2=4/2=2。

四、同类题型推荐
1.矩形中求边长、角度、对角线等问题。

2.相似三角形求比例、边长等问题。

3.几何图形中的中点问题。

五、总结与建议
本题的解题关键在于熟练掌握矩形、相似三角形的性质和判定方法。

在解题过程中,要善于发现题目中的已知条件和隐含信息,灵活运用几何知识。

同时,要加强数学思维能力的训练,提高解题速度和准确率。

2024杨浦一模数学初三解析

2024杨浦一模数学初三解析

2024杨浦一模数学初三解析摘要:1.全文概述2.解析题目一:函数图像与函数性质3.解析题目二:代数式求解4.解析题目三:几何问题5.解析题目四:数据统计与概率6.总结与建议正文:【全文概述】本文为2024年杨浦区初三数学一模试题解析,主要包括四个题目的详细解析,涉及函数图像与函数性质、代数式求解、几何问题、数据统计与概率等知识点。

以下将对每个题目进行详细解析,并给出相应的解题策略和建议。

【解析题目一:函数图像与函数性质】该题目要求根据函数图像判断函数的性质,主要包括函数的单调性、奇偶性等。

解题关键在于熟练掌握函数图像的特征,通过观察图像判断函数的性质。

针对此类题目,建议同学们多加练习,熟悉常见函数的图像和性质。

【解析题目二:代数式求解】该题目主要考察了代数式的化简与求解,涉及整式、分式、二次根式等知识点。

解题时需注意化简过程的规范性,以及运用恰当的求解方法。

建议同学们在平时学习中多加练习代数式的化简与求解,提高解题速度和准确率。

【解析题目三:几何问题】该题目涉及几何图形的性质和应用,如相似三角形、勾股定理等。

解题关键在于熟练掌握几何图形的性质,并能灵活运用相关定理和公式。

为了更好地应对此类题目,建议同学们多加练习几何图形的分析和证明,培养空间想象力。

【解析题目四:数据统计与概率】该题目主要考察了数据统计和概率方面的知识,如频数、频率、概率计算等。

解题时需注意掌握数据统计的方法和概率计算公式,并能灵活运用。

针对此类题目,建议同学们加强数据分析和概率计算的练习,提高解题能力。

【总结与建议】本次杨浦区初三数学一模试题涵盖了多个知识点,考查了同学们的基本功和解题能力。

为了在考试中取得好成绩,建议同学们加强对各知识点的掌握,注重基础知识的巩固,多做练习题,提高解题速度和准确率。

2024年上海市杨浦区九年级中考一模数学试题(原卷版)

2024年上海市杨浦区九年级中考一模数学试题(原卷版)

2023学年度第二学期初三质量调研(一)数学学科(测试时间:100分钟,满分:150分)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分,下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上)1.同类二次根式是( )A. B.C. D. 2. 已知,下列不等式成立的是()A B. C.D. 3. 当k <0,b <0时,一次函数y =kx +b 的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知一组数据a ,2,4,1,6的中位数是4,那么a 可以是( )A. 0B. 2C. 3D. 55. 下列命题中,真命题的是( )A. 四条边相等的四边形是正方形B. 四个内角相等的四边形是正方形C. 对角线互相垂直的平行四边形是正方形D. 对角线互相垂直的矩形是正方形6. 如图,在中,,,将绕点C 逆时针旋转,点A 、B 分别落在点D 、E 处,如果点A 、D 、E 在同一直线上,那么下列结论错误的是( )A B. C. D. 的..a b >a b ->-22a b -<-22a b <0a b -<ABC AB AC ≠120BAC ∠=︒ABC 60ADC ∠=︒60ACD ∠=︒BCD ECD ∠=∠BAD BCE ∠=∠二、填空题:(本大题共12题,每题4分,满分48分,请将结果直接填入答题纸的相应位置上)7. 计算:______.8. 在实数范围内因式分解__________9. 函数的定义域是__________.10. 若关于x 的方程有两个实数根,则k 的取值范围是________.11. 布袋中有大小、质地完全相同的5个小球,每个小球上分别标有数字1,2,3,4,5,如果从布袋中随机抽一个小球,那么这个小球上的数字是合数的概率是______.12. 已知反比例函数的图象在每一个象限内,都随的增大而减小,则的取值范围是_________.13. 根据上海市统计局数据,上海市2021年的地区生产总值约是4.32万亿,2023年的地区生产总值约是4.72万亿,设这两年上海市地区生产总值的年平均增长率都为x ,根据题意可列方程______.14. 如图,在平行四边形中,E 是边的中点,与对角线相交于点F ,设向量,向量,那么向量______.(用含、的式子表示)15. 近年来越来越多的“社区食堂”出现在街头巷尾,它们是城市服务不断丰富的缩影.已知某社区食堂推出了15元、18元、20元三种价格的套餐,每人限购一份.据统计,3月16日该食堂销售套餐共计160份,其中15元的占总份数的40%,18元的卖出40份,其余均为20元,那么食堂这一天卖出一份套餐的平均价格是______元.16. 如图,在中,,的垂直平分线交边于点D ,如果,那么______.17. 如图,已知一张正方形纸片的边长为6厘米,将这个正方形纸片剪去四个角后成为一个正八边形,那3262a a ÷=23=x-y =260x x k -+=1k y x-=y x k ABCD AD CE BD AB a =BC b =BF = a b Rt ABC △90C ∠=︒AB BC 4BD CD =tan B =么这个正八边形的边长是______厘米.18. 已知矩形中,,以为半径的圆A 和以为半径的圆C 相交于点D 、E ,如果点E 到直线的距离不超过3,设的长度为m ,则m 的取值范围是______.三、解答题:(本大题共7题,满分78分)19. 计算:20. 解方程组:.21. 如图,已知在中,,G 是的重心,延长交边于点D ,以G 为圆心,为半径的圆分别交边、于点E 、F .(1)求的长;(2)求的长.22. 寒假期间,小华一家驾车去某地旅游,早上6∶00点出发,以80千米/小时的速度匀速行驶一段时间后,途经一个服务区休息了1小时,再次出发时提高了车速.如图,这是她们离目的地的路程y (千米)与所用时间x (小时)的函数图像.根据图像提供信息回答下列问题:(1)图中的_______,______;(2)求提速后y 关于x 的函数解析式(不用写出定义域);的ABCD 5AB =AD CD BC AD )0112112713-⎛⎫+--+- ⎪⎝⎭222124440x y x xy y +=⎧⎨-+-=⎩ABC 9AB AC ==cos B =ABC AG BC GA AB AC AG BE =a b =(3)她们能否在中午12∶30之前到达目的地?请说明理由.23. 已知:如图,在梯形中,,,,的平分线交延长线于点E ,交于点F .(1)求证:四边形是菱形;(2)连接交于点G ,如果,求证:.24. 定义:我们把平面内经过已知直线外一点并且与这条直线相切的圆叫做这个点与已知直线的点切圆.如图1,已知直线l 外有一点H ,圆Q 经过点H 且与直线l 相切,则称圆Q 是点H 与直线l 的点切圆.阅读以上材料,解决问题:已知直线外有一点P ,,,,圆M 是点P 与直线的点切圆.(1)如果圆心M 在线段上,那么圆M 的半径长是_____(直接写出答案).(2)如图2,以O 为坐标原点、为x 轴的正半轴建立平面直角坐标系,点P 在第一象限,设圆心M 的坐标是.①求y 关于x 函数解析式;②点B 是①中所求函数图象上的一点,连接 并延长交此函数图象于另一点C .如果,求点B 的坐标.25. 已知以为直径的半圆上有一点,,垂足为点,点是半径上一点(不与点、重合),作交弧于点,连接.的ABCD AD BC ∥AB CD =BD BC =DBC ∠AD CD BCED AC BF A C C E ⊥2AB AG AC =⋅OA PA OA ⊥4OA =2AP =OA OP OA xOy (),x y BP :1:4CP BP =AB O C CD OA ⊥D E OC O C EF OC ⊥BC F OF(1)如图,当的延长线经过点时,求的值;(2)如图,作,垂足为点,连接.试判断与的大小关系,并证明你的结论;当是等腰三角形,且,求的值.1FE A CD AF 2FG AB ⊥G EG ①EG CD ②EFG 4sin 5COD ∠=OE OD。

杨浦区初中一模数学试卷

杨浦区初中一模数学试卷

一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 等边三角形C. 矩形D. 等腰梯形3. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 40cm²B. 48cm²C. 50cm²D. 64cm²4. 下列函数中,在定义域内是增函数的是()A. y = -x²B. y = 2x - 1C. y = 1/xD. y = x³5. 一个长方形的长是10cm,宽是6cm,那么它的对角线长是()A. 12cmB. 14cmC. 16cmD. 18cm6. 下列方程中,x=3是它的一个解的是()A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 3 = 11D. 5x - 4 = 117. 一个数列的前三项分别是2,5,8,那么这个数列的第四项是()A. 11B. 12C. 13D. 148. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)9. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 矩形的对边平行且相等C. 菱形的对角线互相平分D. 正方形的对角线互相垂直10. 下列计算正确的是()A. 5 - 3 = 2B. 4 + 2 = 6C. 6 ÷ 3 = 2D. 7 × 2 = 14二、填空题(每题3分,共30分)11. (3分)若a > b,则a - b的符号是__________。

12. (3分)一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________cm。

13. (3分)函数y = 2x + 1在x=1时的函数值是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

届杨浦区中考数学一模及答案Prepared on 21 November 2021杨浦区2017学年度第一学期期末质量调研初 三 数 学 试 卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果5x =6y ,那么下列结论正确的是( )(A ):6:5x y =; (B ):5:6x y =; (C )5,6x y ==; (D )6,5x y ==. 2.下列条件中,一定能判断两个等腰三角形相似的是 ( )(A )都含有一个40°的内角; (B )都含有一个50°的内角; (C )都含有一个60°的内角; (D )都含有一个70°的内角.3.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB ∶DE =1∶2,那么下列等式一定成立的是( ) (A )BC ∶DE =1∶2; (B ) △ABC 的面积∶△DEF 的面积=1∶2; (C )∠A 的度数∶∠D 的度数=1∶2;(D )△ABC 的周长∶△DEF 的周长=1∶2.4.如果2a b =(,a b 均为非零向量),那么下列结论错误的是( )(A )//a b ;(B )20a b -=; (C )12b a =; (D )2a b =.5.如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么下列不等式成立的是( ) (A )0a >; (B )0b <; (C )0ac <;(D )0bc <.6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且∠AED =∠B ,再将下列四个选项中的一个作为条件,不一定能使得△ADE ∽△BDF 的是( ) (A )EA EDBD BF =; (B )EA EDBF BD =;(C )AD AEBD BF=;(D )BD BABF BC=.(第6题B二、填空题:(本大题共12题,每题4分,满分48分) 7.抛物线23y x =-的顶点坐标是 .8.化简:112()3()22a b a b --+= .9.点A (-1,m )和点B (-2,n )都在抛物线2(3)2y x =-+上,则m 与n 的大小关系为m n (填“<”或“>”).10.请写出一个开口向下,且与y 轴的交点坐标为(0,4)的抛物线的表达式 . 11.如图,DE 12.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,联结BE 并延长交AD 于点F ,如果△AEF 的面积是4,那么△BCE 的面积是 .13.Rt △ABC 中,∠C =90°,如果AC =9,cos A =13,那么AB = .14.如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶ . 15.如图,Rt △ABC 中,∠C =90°,M 是AB 中点,MH ⊥BC ,垂足为点H ,CM 与AH 交于点O ,如果AB =12,那么CO = .16.已知抛物线22y ax ax c =++,那么点P (-3,4)关于该抛物线的对称轴对称的点的坐标是 .17.在平面直角坐标系中,将点(-b ,-a )称为点(a ,b )的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第 象限.18.如图,在△ABC 中,AB =AC ,将△ABC 绕点A 旋转,当点B 与点C 重合时,点C 落在点D 处,如果sin B =23,BC =6,那么BC 的中点M 和CD 的中点N 的距离是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒20.(本题满分10分,第(1)、(2)小题各5分)已知:如图,Rt △ABC 中,∠ACB =90°,sin B =35,点D 、E 分别在边AB 、BCAC (第18题图) (第11题图) (第12题图) (第15题图)B上,且AD ∶DB =2∶3,DE ⊥BC .(1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .21.(本题满分10分)甲、乙两人分别站在相距6米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面米的D 处成功击球,球飞行过程中的最高点H 与甲的水平距离AE 为4米,现以A 为原点,直线AB 为x 轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(本题满分10分)如图是某路灯在铅垂面内的示意图,灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tan α=6. 求灯杆AB 的长度.23.(本题满分12分,第(1)小题5分,第(2)小题7分) 已知:梯形ABCD 中,AD (1)求证:△AED ∽△CFE ; (2)当EF(第20题图) (第21题图) . H A (O ) B C Dxy E (第22题图)AD(第23题图)A B C DFE24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H . (1)求顶点D 的坐标(用含m 的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D 在第二象限时,如果∠ADH =∠AHO ,求m 的值.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分)已知:矩形ABCD 中,AB =4,BC =3,点M 、N 分别在边AB 、CD 上,直线MN 交矩形对角线AC 于点E ,将△AME 沿直线MN 翻折,点A 落在点P 处,且点P 在射线CB 上. (1)如图1,当EP ⊥BC 时,求CN 的长; (2)如图2,当EP ⊥AC 时,求AM 的长;(3)请写出线段CP 的长的取值范围,及当CP 的长最大时MN 的长.(第24题图)(备用图) (图1) A B C D NP ME(图2) A B C D N P M E (第25题图)A B C D杨浦区初三数学期末试卷参考答案及评分建议一、 选择题:(本大题共6题,每题4分,满分24分) 1、A ; 2、C ; 3、D ; 4、B ; 5、C ; 6、C 二、 填空题:(本大题共12题,每题4分,满分48分) 7、()0,3-; 8、142a b -; 9、<; 10、24y x =-+等; 11、12; 12、36; 13、27; 14、; 15、4; 16、()1,4; 17、二、四; 18、4 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=12231122⋅+⨯--------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分)20.(本题满分10分,第(1)、(2)小题各5分)解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分)∴设AC =3a ,AB =5a . 则BC =4a . ∵AD :DB =2:3,∴AD =2a ,DB =3a . ∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC ,∴AC ∴DE BD AC AB =, CE ADCB AB=.∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分)(2)∵AD :DB =2:3,∴AD :AB =2:5. ------------------------------------------------(1分)∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分)∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)21.(本题满分10分)解:由题意得:C (0,1),D (6,),抛物线的对称轴为直线x =(3分)设抛物线的表达式为()210y ax bx a =++≠-------------------------------------(1分)则据题意得:421.53661ba ab ⎧-=⎪⎨⎪=++⎩. ----------------------------------------------(2分) 解得:12413a b ⎧=-⎪⎪⎨⎪=⎪⎩. -------------------------------------------------------------------(2分) ∴羽毛球飞行的路线所在的抛物线的表达式为2111243y x x =-++. ------(1分) ∵()2154243y x =--+,∴飞行的最高高度为53米. ------------------------(1分) 22.(本题满分10分)解:由题意得∠ADE =α,∠E =45°.----------------------------------------------(2分)过点A 作AF ⊥CE ,交CE 于点F ,过点B 作BG ⊥AF ,交AF 于点G ,则FG =BC =10. 设AF =x . ∵∠E =45°,∴EF =AF =x . 在Rt△ADF 中,∵tan∠ADF =AFDF ,-----------------(1分)∴DF =tan tan 6AF x xADF α==∠. --------------------------(1分)∵DE =,∴6x x +=. ---------------------------(1分) ∴x =. ---------------------------------------------(1分)A B C D EF G∴AG=AF﹣GF=﹣10=. ------------------------------------------------------------(1分)∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.-------------------(1分)∴AB=2AG= ----------------------------------------------------------------------- (1分)答:灯杆AB的长度为米.------------------------------------------------------------(1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵∠BEC=∠BAC+∠ABD,∠BEC=∠BEF+∠FEC,又∵∠BEF=∠BAC,∴∠ABD=∠(1分)∵AD=AB,∴∠ABD=∠(1分)∴∠FEC=∠ADB. --------------------------------------------------------(1分)∵AD ---------------------------------------------------------(1分)(2)∵EF ---------------------------------------------------(1分)∵∠ABD=∠FEC ,∴∠ABD=∠(1分)∵∠AEB=∠DEC.∴△AEB∽△DEC. -----------------------------------------------(1分)∴AE BEDE CE=.------------------------------------------------------------------------------(1分)∵AD AE DECE BE=---------------------------------------------------------------(1分)∴AE AE BE DEDE CE CE BE⋅=⋅.即22AE DE=.-------------------------------------------(1分)∴ AE=DE. ----------------------------------------------------------------------------- (1分)24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)解:(1)∵22221()1y x mx m m x m m=-+--+=---+.------------------------(1分)∴顶点D(m, 1-m).------------------------------------------------------------------(2分)(2)∵抛物线2221y x mx m m=-+--+过点(1,-2),∴22121m m m-=-+--+.即220m m--=. ---------------------------(1分)∴2m =或1m =-(舍去). ------------------------------------------------------(2分)∴抛物线的顶点是(2,-1).∵抛物线22y x x =-+的顶点是(1,1),∴向左平移了1个单位,向上平移了2个单位. -------------------------(2分)(3)∵顶点D 在第二象限,∴0m <.情况1,点A 在y 轴的正半轴上,如图(1).作AG ⊥DH 于点G ,∵A (0,21m m --+),D (m ,-m +1),∴H (,0m ),G (2,1m m m --+)∵∠ADH =∠AHO ,∴tan ∠ADH = tan ∠AHO , ∴AG AODG HO =. ∴2211(1)m m m m m m m ---+=----+-. 整理得:20m m +=. ∴1m =-或0m =(舍)情况2,点A 在y 轴的负半轴上,如图(2).作AG ⊥DH ∵A (0,21m m --+),D (m ,-m +1),∴H (,0m ),G (2,1m m m --+)∵∠ADH =∠AHO ,∴tan ∠ADH = tan ∠AHO ,∴AG AODG HO=. ∴2211(1)m m m m m m m -+-=----+-. 整理得:220m m +-=. ∴2m =-或1m =(舍). ---------(2分)∴1m =-或2m =-.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分) 解:(1)∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME . ∴∠AEM =∠PEM ,AE=PE . ∵ABCD 是矩形,∴AB ⊥BC .∵EP ⊥BC ,∴AB ∴∠AME =∠PEM . ∴∠AEM =∠AME . ∴AM =AE . ---------------------(2分)∵ABCD 是矩形,∴AB ∴AM AECN CE=. ∴CN =CE . ------------------(1分) 设CN = CE =x .∵ABCD 是矩形,AB =4,BC =3,∴AC =5. ∴PE= AE=5- x . ∵EP ⊥BC ,∴4sin 5EP ACB CE =∠=. ∴545x x -=. ---------------------(1分) ∴259x =,即259CN =. ------------------------------------------------------(2分)(2)∵△AME 沿直线MN 翻折,点A 落在点P 处, ∴△AME ≌△PME . ∴AE=PE ,AM=PM .x x∵EP ⊥AC ,∴4tan 3EP ACB CE =∠=. ∴43AE CE =. ∵AC =5,∴207AE =,157CE =.∴207PE =. ---------------------(2分)∵EP ⊥AC ,∴257PC ===. ∴254377PB PC BC =-=-=. --------------------------------------(2分)在Rt △PMB 中,∵222PM PB MB =+,AM=PM .∴2224()(4)7AM AM =+-. ∴10049AM =. --------------------------------------(2分)(3)05CP ≤≤,当CP 最大时MN .--------------------------------------------------(2分)。

相关文档
最新文档