应用基本不等式的八种变形技巧
基本不等式求最值的八种思维方法
ʏ尹丹青利用基本不等式求最值是高考的常考点,下面介绍基本不等式求最值的八种思维方法㊂方法一: 定和 与 拼凑定和 求积的最值例1 已知x >0,y >0,且x +y =7,则(1+x )(2+y )的最大值为㊂解:由x +y =7,可拼凑(x +1)+(y +2)=10,利用基本不等式求最值㊂易得(x +1)+(y +2)=10,所以(1+x )(2+y )ɤ(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立㊂故(1+x )㊃(2+y )的最大值为25㊂解后反思:利用基本不等式求最值时,必须同时满足: 一正 二定 三相等㊂方法二: 定积 与 拼凑定积 求和的最值例2 若a >-3,则a 2+6a +13a +3的最小值为㊂解:对a 2+6a +13a +3变形拼凑积为定值,利用基本不等式求最值㊂因为a >-3,所以a +3>0,4a +3>0㊂由基本不等式得a 2+6a +13a +3=(a +3)2+4a +3=(a +3)+4a +3ȡ2(a +3)㊃4a +3=4,当且仅当a +3=4a +3即a =-1时等号成立㊂故a 2+6a +13a +3的最小值为4㊂解后反思:观察积与和哪个是定值,根据 和定积动,积定和动 来求解㊂方法三: 和积化归 构建不等式求最值例3 已知x >0,y >0,且x +y +x y =3,若不等式x +y ȡm 2-m 恒成立,则实数m 的取值范围为㊂解:由基本不等式得(x +y )m i n =2,构建m 2-m ɤ(x +y )m i n ,再解不等式即可㊂由3-(x +y )=x y ɤ(x +y )24,当且仅当x =y =1时等号成立,解得x +y ȡ2或x +y ɤ-6(舍去),则(x +y )m i n =2㊂因为不等式x +y ȡm 2-m 恒成立,所以m 2-m ɤ(x +y )m i n ,即m 2-m ɤ2,解得-1ɤm ɤ2㊂解后反思:根据和与积的关系式,结合基本不等式可以求出积或和的最值,这就是 和积化归法㊂方法四: 化1 与 拼凑化1 求最值例4 已知a ,b 均为正数,且1a +1+2b -2=12,则2a +b 的最小值为㊂解:确定b >2,由题设变换得2a +b =2[2(a +1)+(b -2)]1a +1+2b -2,展开凑积为定值,利用基本不等式求最值㊂当b ɪ(0,2)时,2b -2<-1,而1a +1<1,则1a +1+2b -2<0,不符合题意,故b >2㊂2a +b =2(a +1)+(b -2)=2[2(a +1)+(b -2)]1a +1+2b -2=8㊃a +1b -2+2㊃b -2a +1+8ȡ216㊃a +1b -2㊃b -2a +1+8=16,当且仅当8㊃a +1b -2=2㊃b -2a +1,即a =3,b =10时等号成立㊂故2a +b 的最小值为16㊂解后反思: 化1 或 拼凑化1 求最值的关键是基本不等式的灵活应用㊂方法五:不等式链21a +1bɤa b ɤa +b2ɤa 2+b 22(a ,b ɪR *)的合理应用例5 已知a >0,b >0,若a +b =4,51知识结构与拓展高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.则( )㊂A .a 2+b 2有最小值4B .a b 有最大值2C .1a +1b 有最大值1D .1a +b 有最小值24解:已知a >0,b >0,则21a +1b ɤa b ɤa +b 2ɤa 2+b22,当且仅当a =b 时取等号㊂a 2+b 2ȡ(a +b )22=8,A 错误㊂由4=a +b ȡ2a b ,可得a b ɤ4,B 错误㊂1a +1b ȡ4a +b =1,C 错误㊂1a +b ȡ12a +b 2=122=24,当且仅当a =b =2时取等号,D 正确㊂应选D ㊂解后反思:不等式链21a +1bɤa b ɤa +b 2ɤa 2+b 22(a ,b ɪR *)分别为调和平均数㊁几何平均数㊁代数平均数㊁平方平均数㊂方法六:复杂分式构造法凑定值例6 已知a >b ,不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,且∃x 0ɪR ,使得a x 20+2x 0+b =0成立,则a 2+b2a -b的最小值为㊂解:由不等式恒成立和∃x 0ɪR 使得方程成立可得a b =1,将a 2+b2a -b化成a -b +2a -b 求最值㊂因为不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,所以a >0,4-4a b ɤ0㊂因为∃x 0ɪR ,使得a x 20+2x 0+b =0成立,所以4-4a b ȡ0㊂据上可得,4-4a b =0,所以a >0,b >0,a b =1㊂故a 2+b 2a -b =(a -b )2+2a ba -b=a -b +2a -b ȡ22,当且仅当a -b =2a -b 时取等号㊂故所求的最小值为22㊂解后反思:复杂分式构造法凑定值,其目的是构造和式的积为定值,再利用基本不等式求最值㊂方法七:反解代入消元法凑积为定值例7 设b >0,a b +b =1,则a 2b 的最小值为㊂解:已知等式转化为b =1a +1,再通过常数分离得到a b 2=(a +1)+1a +1-2求最值㊂已知b >0,a b +b =1,所以b =1a +1,a +1>0,所以a 2b =a 2a +1=(a +1-1)2a +1=a +1+1a +1-2ȡ2(a +1)㊃1a +1-2=0,当且仅当a +1=1a +1,即a =0时等号成立㊂故a 2b 的最小值为0㊂解后反思:借助反解代入消元,重新构造积为定值,这是求解最值的通法㊂方法八:两次使用基本不等式求最值例8 已知x ,y 都为正实数,则4(x y +1)x +x 2y的最小值为㊂解:4(x y +1)x +x 2y=4y +4x +x 2y ㊂因为x ,y 都为正实数,所以4y +x 2yȡ24x 2=4x ,当且仅当4y 2=x 2,即2y =x 时等号成立㊂所以4y +4x +x 2yȡ4x +4x ȡ216=8,当且仅当4x =4x,即x =1时等号成立㊂综上所述,当x =1,y =12时,4(x y +1)x +x 2y取得最小值为8㊂解后反思:两次使用不等式求最值,既要注意多次取等号时成立的条件,也要注意两次使用不等式后能 约分凑出定值㊂作者单位:江苏省丹阳高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.。
必修四基本不等式应用技巧非常完美
基本不等式应用技巧归纳总结一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值典例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解析:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x·1x =2;当x <0时, y =x +1x = -(- x -1x )≤-2,∴值域为(-∞,-2]∪[2,+∞)技巧一:凑项例1. 已知54x <,求函数14245y x x =-+-的最大值。
基本不等式(均值不等式)技巧
基本不等式(均值不等式)技巧基本知识】1.(1)若 $a,b\in \mathbb{R}$,则 $a+b\geq 2ab$。
(2)若 $a,b\in \mathbb{R}$,则 $ab\leq \frac{a^2+b^2}{2}$(当且仅当 $a=b$ 时取“=”)2.(1)若 $a,b\in \mathbb{R}$,则 $a+b\geq2\sqrt{ab}$(当且仅当 $a=b$ 时取“=”)。
(2)若 $a,b\in\mathbb{R}$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$(当且仅当 $a=b$ 时取“=”)3.若 $a,b,c\in \mathbb{R}^+$,则 $\frac{a+b+c}{3}\geq \sqrt[3]{abc}$(当且仅当 $a=b=c$ 时取“=”)4.若 $a,b,c\in \mathbb{R}^+$,则 $a+b+c\geq3\sqrt[3]{abc}$(当且仅当 $a=b=c$ 时取“=”)5.若 $a,b\in \mathbb{R}$,则 $\frac{a^2+b^2}{2}\geq\left(\frac{a+b}{2}\right)^2$(当且仅当 $a=b$ 时取“=”)技巧讲解】技巧一:凑项(增减项)与凑系数做题时,条件不满足时关键在于构造条件。
通常要通过乘以或除以常数、拆因式、平方等方式进行构造。
1.已知 $x<5$,求函数 $y=4x-\frac{5}{2}+\frac{1}{4x-5}$ 的最大值。
解:因为 $x<5$,所以首先要“调整”符号,又 $4x-5<0$,要进行拆、凑项,得到:y=4x-\frac{5}{2}+\frac{1}{4x-5}=-\frac{1}{4}\left(5-4x+\frac{1}{4x-5}\right)+\frac{11}{4}由于 $\frac{1}{4x-5}\leq\frac{1}{2}\left(\frac{1}{x}+\frac{1}{4}\right)$(当且仅当$x=2$ 时取“=”),所以:y\leq -\frac{1}{4}\left(5-4x+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{4}\right)\right)+\frac{1 1}{4}=-\frac{1}{4}\left(4x^2-16x+9-\frac{1}{x}\right)+\frac{11}{4}对 $-\frac{1}{4}\left(4x^2-16x+9-\frac{1}{x}\right)$ 求导,得到$x=\frac{1}{2}$ 时取得最小值,代入得到$y_{\max}=3$。
利用基本不等式ab2√ab求最值十大变形技巧
当且仅当口2=虿1+譬,且口2+譬=l,即口=
譬,6:年时取等号.
故口・/丽的最大值为毛等
点评
练习3
若算<0,求函数),:一12+3茗的最大
件,然后利用基本不等式求最值. 代入 例2 已知上+鱼:l(m>0,n>0),则mn (
B.1 c.8 D.9 4
 ̄/1+Y2的最大值,并求此时并和Y的值.
拆项 例4 解
取等号,从而得y=3—3x一÷≤3—2石,当且仅
≤2×[牮]2-2×。晕)2_
≤×[——‘』]2=×(÷)2=
通过平方变形,创造利用不等式的条 已知正数算,,,满足2x2+3y2=9,求膏
当石=乎时取等号,,故函数),=3—3茗一÷的最大
值为3—2西,选c
点评 如果变量为负,首先化为正,然后再利 用基本不等式求最值. 练习1 值.
号,生+—L的最小值为(血+6)2,选c.
点评 通过添项,然后创设利用不等式的条件 求最值,添项时一定要注意保持恒等. 练习5(2007年山东卷)函数Y=log。(髫+3) 一1(口>0,口≠1)的图象恒过定点A,若点A在直线 /'t'tX+ny+1=0上,其中mtt>0,则上+三的最小
—2,,+3z=0,则L的最小值为——.
口+2√考‘等=(石+1)2,当且仅当考=等,即考
=石时詈“=”号.由已知不等式(算+,,)(÷+号)
≥9对任意正实数x,Y恒成立,则只需(√Ⅱ+1)2≥
1,求(省+Y)(Y+二)的最小值. 解 (髫+Y)(Y+z)=xy+船+),2+yz=影+
y(X+Y+:)≥2厶万页石丐了万=2,当且仅当
l戈yz(菇+Y+三)=,1时取等号,故(髫+y)(,,+彳)的
设口≥o,b≥0,且口2+等=1,求
等式与不等式的变形
等式与不等式的变形在数学中,等式和不等式是我们经常使用的基本概念。
通过变形,我们可以对等式和不等式进行操作,使其更符合我们的计算和推导需求。
本文将介绍等式和不等式的基本变形规则以及应用案例,帮助读者更好地理解和运用这些数学概念。
一、等式的变形1. 合并相同项:当等式中存在相同的项时,我们可以将它们合并成一个项。
例如:3x + 2x = 5x。
2. 移项:在等式中,如果某个变量或常数项在等式两边都有,我们可以将它们移到一边,以便对另一边进行运算。
例如:2x + 5 = 10,可以变形为2x = 10 - 5。
3. 因式分解:有时候我们需要将等式中的某个项进行因式分解,以便于进行运算和简化。
例如:2(x + 1) = 4,可以进行因式分解为2x + 2 = 4。
4. 变量相消:如果等式中的两个变量相等,我们可以将它们进行相消。
例如:2x + 3 = 5x - 1,可以化简为3 + 1 = 5x - 2x。
5. 通分:当等式中含有分数时,我们可以通过通分将分数进行合并。
例如:1/2x + 1/3x = 1,可以通过通分得到3/6x + 2/6x = 1。
二、不等式的变形1. 合并相同项:与等式的变形相似,不等式也可以合并相同项。
例如:3x + 2x > 5x。
2. 移项:不等式的移项与等式类似,将某个变量或常数项移到一边以便进行比较和运算。
例如:2x + 5 > 10,可以变形为2x > 10 - 5。
3. 改变不等号方向:当不等式中的变量或常数项与被比较的对象相互交换位置时,不等号的方向也需要相应改变。
例如:-2x + 3 < 5,可以变形为3 - 5 > 2x。
4. 因式分解:不等式中的因式分解同样适用于等式。
例如:2(x + 1) > 4,可以因式分解为2x + 2 > 4。
5. 通分:如果不等式中含有分数,我们可以通过通分将分数进行合并。
例如:1/2x + 1/3x < 1,可以通过通分得到3/6x + 2/6x < 1。
阅读与欣赏六应用基本不等式的八种变形技巧
2 =
y-2+y-2 2+3≥3+2 2????当y-2=y-2 2,即y=2+ 2
时取等号,此时 x= 2+1???.
第七章 不等式
求以形如或可化为 ax+by=1 型为条件的 cx+dy(a,b,c,d 都 不为 0)的最值可利用 “1”的代换求乘法.本题中的条件 1x+2y= 1 也可化为 2x+y-xy=0.
函数 f(x)=x-4 3+x(x<3)的最大值是 (
)
A.- 4
B.1
C.5
D.- 1
第七章 不等式
【解析】 因为 x<3,所以 3-x>0,所以 f(x)= -????3-4 x+(3-x)????+3≤- 2 3-4 x·(3-x)+ 3=- 1.当 且仅当3-4 x=3-x,即 x=1 时等号成立,所以 f(x)的最大值 是-1. 【答案】 D
-x)] =a2+a2(1x-x )+1b-2xx+b2≥a2+b2+2ab=(a+b)2.
上式当且仅当
a2(1- x
x
)=1b-2xx
时,等号成立.
所以ax2+1-b2 x≥(a+b)2.
故函数 f(x)的最小值为 (a+b)2.
第七章 不等式
若实数 a,b 满足 ab-4a-b+1=0(a>1),则(a+1)·(b +2)的最小值是 __________ . [ 点拨] 由于所给条件式中含两个变量 a,b,因此可以用一 个变量表示另一个变量,将待求式转化为含一个变量的式子 后求其最值.
第七章 不等式
若 a,b 为常数,且 0<x<1,求 f(x)=ax2+1-b2x的最小 值. [ 点拨] 根据待求式的特征及 0<x<1 知 x>0,1-x>0.又 1=x +(1-x),因此可考虑利用“ 1”的代换法.
基本不等式的八种方法
基本不等式的八种方法
《基本不等式的八种方法基本不等式的八种方法》
嘿,朋友们!今天咱们来唠唠基本不等式的八种方法,可别小瞧这八种方法,学会了能在数学的世界里如鱼得水呢!
第一种方法,咱们叫它“直接法”。
就好比开门见山,直截了当,题目给啥条件,咱就直接往上套基本不等式,看能不能一下子就把答案给揪出来。
再说说“消元法”,有时候式子里面未知数太多,看得眼花缭乱?别慌,咱们想办法把多余的未知数消掉,让问题变得简单明了。
“换元法”也很有趣哦!就像给式子换个新造型,通过巧妙的换元,让复杂的式子变得亲切可爱,基本不等式就能派上用场啦。
“构造法”像是搭积木,根据条件和问题,构造出合适的式子或者函数,然后用基本不等式来解决。
还有“平方法”,有时候平方一下,就能让隐藏的关系浮出水面,基本不等式也就有机会大展身手啦。
“均值代换法”呢,就像是给式子找个替身,通过巧妙的代换,让解题过程变得轻松愉快。
是“判别式法”,把式子看成一个方程,利用判别式的特点,结合基本不等式,就能把难题攻克。
怎么样,朋友们,这八种方法是不是各有各的妙处?多练习,多琢磨,相信大家都能把基本不等式玩得团团转,数学成绩那肯定是蹭蹭往上涨!加油哦,小伙伴们,让我们在数学的海洋里畅游,把这些方法都变成我们的得力武器!。
基本不等式的所有变形
基本不等式的所有变形第一篇嗨呀,亲爱的小伙伴们!今天咱们来聊聊基本不等式的那些变形,可有意思啦!咱们先来说说常见的一种变形。
比如说,当两个正数 a 和 b 相加为定值时,它们的乘积就有最大值。
这就好像两个小伙伴手拉手,力气加起来就那么多,怎么配合能发挥最大作用是有讲究的哟!还有哦,如果两个正数的乘积是定值,那它们相加就有最小值。
这就好比你有固定的资源,怎么分配能让收获最多,是有窍门的呢!再瞧瞧这个变形,如果 a 大于 0,b 大于 0,而且 a + b = S (S 是定值),那么 ab 就小于等于(S/2)² 。
是不是感觉有点神奇呀?另外,当 a 大于 0,b 大于 0 ,且 ab = P(P 是定值),这时候 a + b 就大于等于 2 倍的根号 P 。
就像搭积木,给定了一些条件,能搭出的最稳固的形状是有规律的。
其实呀,基本不等式的变形还有好多好多,只要咱们多琢磨,多练习,就能把它们都掌握得牢牢的,让数学变得好玩又有趣!怎么样,小伙伴们,是不是对基本不等式的变形有点感觉啦?第二篇嘿,朋友们!咱们继续来唠唠基本不等式的变形。
你看哈,如果 a,b 都是正实数,那么(a + b)² 大于等于4ab ,这就好像是给它们穿上了一件特别的衣服,样子变了,但本质不变哟。
还有那个(a² + b²)/2 大于等于(a + b)²/4 ,是不是有点绕?别担心,多想想就明白了。
再有哦,如果 a 大于 b 大于 0 ,那么 a + 1/(b(a b)) 大于等于 3 。
这就像是走迷宫,找到正确的路才能顺利通过。
咱们再说说,如果 a,b,c 都是正实数,那么 (a + b + c)/3 大于等于三次根号下(abc) 。
这三个小伙伴一起玩耍,也有它们的规则呢。
基本不等式的变形真的是千变万化,就像孙悟空会七十二变一样。
但只要咱们有一双善于发现的眼睛,就能看穿它们的小把戏。
基本不等式应用题解题技巧
基本不等式应用题解题技巧
1. 嘿,你知道不,遇到基本不等式应用题,咱得先看清题目呀!就像走路得先知道往哪儿走。
好比说,给你个例子,要建个篱笆围个矩形场地,一边靠墙,其他三边用篱笆,篱笆长度一定,问怎么围面积最大。
这时候是不是就得用基本不等式解题技巧啦?
2. 哎呀,一定要抓住关键信息呀!就像抓小偷得知道从哪儿下手。
比如说一个制作盒子的问题,给定材料面积,问怎么制作盒子容积最大。
这里面可藏着好多解题技巧要用起来呢!
3. 嘿呀,注意等量关系呀!这可太重要啦,就像开锁找对钥匙一样。
比如一道买东西算最值的题,总价不能超,问怎么买最合适。
不注意这些咋解题呢!
4. 哇塞,要合理设未知数啊!这可不能马虎,好比给自己选一件合适的衣服。
像那种两个数和一定求积最大的题目,设好未知数不就好解决多啦!
5. 哈哈,分类讨论也很关键呐!这就像走不同的路去目的地。
例如不同条件下用基本不等式求最值,那可得认真探讨呀!
6. 嘿,别忘了检查结果合不合理呀!可不能像没头苍蝇乱撞。
比如说算出来的边长不可能是负数之类的,一定得留意呀!
7. 哎哟喂,多做几道题练练手呀!不然技巧怎么能熟练运用呢。
像是那种生产产品数量和利润的问题,多做几遍不就熟了嘛!
8. 哇哦,和同学讨论讨论也很棒呀!三个臭皮匠还顶个诸葛亮呢!比如那道关于资源分配求最优的题,大家一起讨论肯定思路更广呀!
9. 总之,学会这些基本不等式应用题解题技巧,那解题就像囊中取物一样简单!咱可得好好掌握呀!。
基本不等式使用技巧
基本不等式使用技巧基本不等式有个使用口诀:一正,二定,三相等,和定积大,积定和小。
和定积大:两个正数的和为定值,则它们的乘积小于等于它们相等时的乘积积定和小:两个正数的积为定值,则它们的和大于等于它们相等时的和。
基本不等式简单推导:由a -b 2≥0⇒a 2+b 2-2ab ≥0即a 2+b 2≥2ab (当且仅当a =b 时等号成立),令a =a ,b =b 得a +b ≥2ab 即a +b 2 ≥ab (a >0,b >0,此不等式称为基本不等式,反映了两个正数的算术平均数不小于几何平均数)。
重要变形:a 2+b 2≥2ab ⇒a 2+b 2≥2ab (a ,b 同号)a 2+b 2≥-2ab (a ,b 异号) ;ab ≤a 2+b 22 ;ab ≤a +b 24 (即ab ≤a +b 2 2);a +b ≥2ab (a >0,b >0);a +b ≤-2ab (a <0,b <0);2(a 2+b 2)≥(a +b )2(即a 2+b 22 ≥a +b 2 2),以上各式均是当且仅当a =b 时等号成立。
典型例题:已知x ,y 为实数,4x 2-5xy +4y 2=5,求x 2+y 2的最大值和最小值。
解:∵4x 2-5xy +4y 2=5∴x 2+y 2=54(xy +1)≥2xy (x ,y 同号时)⇒xy ≤53∴x 2+y 2=54 (xy +1)≤54 (53 +1)=103又∵x 2+y 2=54(xy +1)≥2xy (x ,y 异号时)⇒xy ≥-513∴x 2+y 2=54 (xy +1)≥54 (-513 +1)=1013∴x 2+y 2最大值为103 ,x 2+y 2最小值为1013使用技巧:(一).凑项与凑系数例1:已知x >0,y >0且x 2+y 22=1,则x y 2+1 的最小值为_____。
解:方法一:凑项:∵x 2+y 22=1∴x 2+y 2+12 =32∴x 2∙y 2+12 ≤34 ×34(和为定值乘积小于等于相等时的乘积)∴x 2∙(y 2+1)≤98 ∴x y 2+1 ≤32 4 ∴x y 2+1 的最小值为32 4方法二:凑系数:∵x 2+y 22=1∴2x 2+y 2=2∴x y 2+1 =2 2 ×2 x ×y 2+1 ≤2 2 ×(2 x )2+y 2+1 22 (ab ≤a 2+b 22 )=2 2 ×2x 2+y 2+12 =2 2 ×32 =32 4 ∴x y 2+1 的最小值为32 4例2:椭圆E :x 23+y 2=1的上顶点为A ,过点A 的直线l 与E 交于另一点B ,求AB 的最大值?解:①当l 斜率不存在时,易知AB =2②当l 斜率存在时,设l 斜率为k ,则l 方程为:y =kx +1,设A (x 1,y 1),B (x 2,y 2).联立x 23 +y 2=1y =kx +1 ⇒3k 2+1 x 2+6kx =0∴x 1+x 2=-6k 3k 2+1x 1x 2=0 由弦长公式知:AB =1+k 2 ×(x 1+x 2)2-4x 1x 2=1+k 2 ×6k 3k 2+1 =63k 2+1 ×k ×1+k 2 =2 2 ×63k 2+1 ×2 k ×1+k 2 ≤2 2 ×63k 2+1 ×2 k 2+1+k 2 22 (ab ≤a 2+b 22 )=2 2 ×63k 2+1 ×2k 2+1+k 22 =32 2 ∵32 2 >2∴AB 的最大值为32 2.(二).活用常数(活用“1”)例1:已知m >0,n >0且m +n =1,则1m +4n的最小值为?解:∵1m +4n =1m +4n m +n =5+n m +4m n ≥5+2n m ×4m n =9∴1m +4n的最小值为9例2:已知x >-1,y >0且x +2y =1,则1x +1 +2y的最小值为?解:∵x +2y =1∴(x +1)+2y ⋅12=1∴1x +1 +2y =1x +1 +2y∙(x +1)+2y ⋅12 =5+2y x +1 +2(x +1)y ⋅12 ≥5+22y x +1 ×2(x +1)y ⋅12=92 ∴1x +1 +2y 的最小值为92例3:已知a >0,b >0且a -2ab +b =0,则a +4b 的最小值为?解:∵a -2ab +b =0∴a +b =2ab ⇒a +b 2ab =1即(1a +1b)⋅12 =1∴a +4b =a +4b ∙(1a +1b )⋅12 =(5+4b a +a b )⋅12 ≥5+24b a ×a b ⋅12=92 ∴a +4b 的最小值为92例4:已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +9n的最小值为()A.83 B.114 C.145 D.176解:由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 5q 2=a 5q +2a 5,所以q 2-q -2=0,解得q =2或q =-1(舍去).因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24,所以m +n =6.∴1m +9n =(1m +9n )×m +n 16 =16 (10+n m +9m n)≥16 (10+6)=83 当且仅当n m =9m n,即n =3m ,即m =32 ,n =92时等号成立,不合题意(∵m ,n ∈N +)由m +n =6,m ,n ∈N +则m =1n =5 或m =2n =4 或m =3n =3 或m =4n =2 或m =5n =1代入式子1m +9n 知最小值为114,故选B 例5:已知x >0,y >0且x +y =1,(1)求x 2x +1 +y 2y +1的最小值,(2)求12x +y +1x +3y的最小值。
基本不等式的八种变形技巧
基本不等式的八种变形技巧基本不等式是用来求两个正变量和与积的最值的,但有些题目需要用到基本不等式的变形形式才能求最值,或者需要对待求式作适当变形后才能求最值。
下面介绍几种常见的变形技巧。
1.加上一个数或减去一个数使和或积为定值例如,对于函数$f(x)=\frac{x}{3-x}$,当$x<3$时,求$f(x)$的最大值。
因为$x0$,所以$f(x)=\frac{-3+x}{3-x}+3\leq \frac{4}{3-x}\leq -2+\frac{4}{3-x}=2+\frac{2}{3-x}$。
当且仅当$3-x=2$时等号成立,即$x=1$时,$f(x)$的最大值为$-1$。
2.平方后再使用基本不等式一般地,含有根式的最值问题,首先考虑平方后求最值。
例如,若$x>0$,$y>0$,且$2x^2+y^2=8$,求$x^6+2y^2$的最大值。
由于已知条件式中有关$x$,$y$的式子均为平方式,而所求式中$x$是一次的,且$\sqrt{y}$是二次的,因此考虑平方后求其最值。
设$a=x^2$,则$2a+y^2=8$,所以$y^2=8-2a$,代入$x^6+2y^2=x^6+16-4a$,即要求$a$的最小值。
由于$x>0$,所以$a>0$,所以$2a+y^2>0$,即$8-2a>0$,所以$a<4$。
由基本不等式,$(1+1+1+1+1+1)(a+a+a+y^2+y^2+y^2)\geq (x^6+2y^2)^2$,即$6(6a+3y^2)\geq (x^6+2y^2)^2$。
代入$y^2=8-2a$,整理得$x^6+2y^2\leq 29$,当且仅当$x^2=2$,$y^2=2$时等号成立,所以$x^6+2y^2$的最大值为$29$。
3.展开后求最值对于求多项式积的形式的最值,可以考虑展开后求其最值。
例如,已知$a>0$,$b>0$且$a+b=2$,求$(a+1)(b+1)$的最小值。
数学复习:基本不等式的十大解题技巧
运用凑项或换元法将所给的函数化简为满足基本不等式的形式,运用基本不等式并检验其
等号成立的条件,若等号取不到则,结合函数 y = x + a (a 0) 单调性,并运用其图像与性 x
质求出其函数的最值即可。
【例5】(★★★)函数 y = x2 + 5 的值域为
.
x2 + 4
【答案】
5 2
,
+
【解析】令 x2 + 4 = t(t 2) , 则 y = x2 + 3 = x2 + 4 + 1 = t + 1 (t 2) .
数学复习:基本不等式的十大解题技巧
1. 基本不等式原始形式
(1)若 a,b R ,则 a2 + b2 2ab .
(2)若 a,b R ,则 ab a2 + b2 . 2
2.基本不等式一般形式(均值不等式)
若 a 0,b 0 ,则 a + b 2 ab .
3. 基本不等式的两个重要变形
(1)若 a 0,b 0 则 a + b ab (当且仅当 a = b 时取“ = ”). 2
【答案】 2 3 3
【解析】由 x2 + y2 + xy = 1,得1 = (x + y)2 − xy, (x + y)2 = 1+ xy 1+ (x + y)2 ,解得 4
− 2 3 x + y 2 3 ,又 x 0, y 0 ,所以 0 x + y 2 3 ,因此 x + y 的最大值为 2 3
【例2】(★★)已知 0 x 4 时,则 y = x(8 − 2x) 的最大值为
【答案】8
基本不等式的常见变形技巧
基本不等式的常见变形技巧
基本不等式的常见变形技巧
不等式是数学中最基本也是最重要的思想,在实际生活中应用广泛,而对基本不等式的变形是其重要的技能,重要的技能之一就是求解的过程中,能够从繁杂的不等式中把握着关键因素,做出合理的变形处理。
首先,在变形不等式的时候要注意不改变它原有的等式形式的优势,即不会使原有的不等式的内容有太大变化,要采取合理的手段使不等式变形,而不是破坏不等式的原有形式。
其次,在不等式中要学会分步骤处理,即结果可能过于复杂,可以根据不同方面,将复杂的不等式分解成相对简单的一些不等式,用加减乘除法来变形,最后使它们可以组合在一起形成原有的不等式的形式。
最后,要学会把握变形的方向,在实际中,常常会有变形不等式的限定条件,我们可以借助前后变形比较,把握好变形不等式的方向,从而快速正确的得到最终结论。
变形不等式是基本不等式的重要技巧,只有具备了此技能,才能在正确解答问题时发挥出最大效率,使用此技巧也可以处理一些比较复杂的不等式,从而获得一个正确的答案。
基本不等式十大解题技巧
基本不等式十大解题技巧
基本不等式是数学中的一个重要概念,也是高中数学中的重点和难点之一。
以下是基本不等式解题的十大技巧:
1. 均值不等式法:利用算术平均值与几何平均值的关系,将不等式中的变量转化为平均值的形式,然后利用均值不等式进行证明。
2. 柯西不等式法:利用柯西不等式,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
3. 均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。
4. 几何平均值不等于算术平均值法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。
5. 利用三角不等式法:利用三角不等式,将不等式中的变量转化为三角形的三边长度,然后利用三角不等式进行证明。
6. 利用柯西不等式的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
7. 利用平均不等式法:利用平均不等式,将不等式中的
变量转化为平均值的形式,然后利用不等式进行证明。
8. 利用柯西不等式法的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
9. 利用均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。
10. 利用几何平均值不等于算术平均值法的逆推法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。
以上是基本不等式解题的十大技巧,掌握这些技巧可以帮助学生更好地理解和应用基本不等式。
不等式的变化规则
不等式的变化规则一、引言不等式是数学中常见的一种表示关系的方式,它描述了数值之间的大小关系。
在解不等式的过程中,我们需要根据不等式的变化规则进行推导和变形,以找到不等式的解集。
本文将介绍不等式的常见变化规则,并通过实例进行说明。
二、加减变换规则1. 加法变换规则:对于不等式a < b,如果两边同时加上一个相同的数c,那么不等式的大小关系不变,即a + c < b + c。
例如,对于不等式2x < 6,我们可以在两边同时加上3,得到2x + 3 < 6 + 3,即2x + 3 < 9。
2. 减法变换规则:对于不等式a < b,如果两边同时减去一个相同的数c,那么不等式的大小关系不变,即a - c < b - c。
例如,对于不等式3x + 2 < 8,我们可以在两边同时减去2,得到3x < 6。
三、乘除变换规则1. 乘法变换规则:对于不等式a < b,如果两边同时乘以一个正数c,那么不等式的大小关系不变,即ac < bc。
例如,对于不等式2x < 8,我们可以在两边同时乘以3,得到6x < 24。
2. 除法变换规则:对于不等式a < b,如果两边同时除以一个正数c,且c > 0,那么不等式的大小关系不变,即a/c < b/c。
例如,对于不等式4x > 12,我们可以在两边同时除以4,得到x > 3。
四、绝对值不等式的变换规则绝对值不等式是包含绝对值符号的不等式。
在解绝对值不等式时,我们需要根据绝对值的性质进行变换。
1. 绝对值的非负性:对于任意实数a,|a| ≥ 0。
即绝对值的值不小于零。
2. 绝对值的定义:对于任意实数a,|a| = a,当a ≥ 0;|a| = -a,当a < 0。
3. 绝对值的逆性:对于任意实数a,|a| > 0当且仅当a ≠ 0。
4. 绝对值的三角不等式:对于任意实数a和b,|a + b| ≤ |a| + |b|。
基本不等式应用利用基本不等式求最值的技巧
基本不等式应用利用基本不等式求最值的技巧————————————————————————————————作者: ————————————————————————————————日期:ﻩ基本不等式应用利用基本不等式求最值的技巧 应用一:求最值例1:求下列函数的值域(1)y =3x 2+\f(1,2x 2) (2)y =x +错误!解:(1)y=3x 2+错误!≥2错误!=错误! ∴值域为[错误!,+∞)(2)当x >0时,y=x +错误!≥2错误!=2;当x<0时, y =x +1x = -(- x -1x)≤-2错误!=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
基本不等式的八种应用技巧
基本不等式的八种应用技巧1. 代入数值验证基本不等式可以通过代入具体数值进行验证。
选择适当的数值,将其代入不等式中,计算结果来判断不等式是否成立。
通过验证可以确认不等式是否正确,确定不等式的适用范围。
2. 不等式的加减运算规则基本不等式在加减运算中有一些特殊规则,可以简化计算过程。
例如,不等式两边同时加上或减去一个相同的数值,不等式的关系不变。
对于复杂的不等式,通过使用加减运算规则可以简化计算。
3. 不等式的乘除运算规则基本不等式在乘除运算中也有一些特殊规则,可以简化计算。
例如,不等式两边同时乘以或除以一个正数,不等式的关系不变;但是如果乘以或除以一个负数,则不等式的关系会发生改变。
熟练运用乘除运算规则可以有效处理复杂的不等式。
4. 不等式的倒数规则当基本不等式中的数值取倒数时,不等式的关系会发生改变。
原来大于的不等式变为小于,原来小于的不等式变为大于。
这一规则在处理负数或分数时尤为重要,需要注意倒数规则的运用。
5. 不等式的平方规则基本不等式的平方规则指的是取平方后不等式的关系会发生改变。
当不等式中的数值为正数时,取平方后不等式的关系保持不变;但是当不等式中的数值为负数时,取平方后不等式的关系会发生反转。
在处理含有平方的不等式时需要注意平方规则的运用。
6. 不等式的绝对值规则当基本不等式中出现绝对值时,需要根据绝对值的定义来处理。
根据绝对值的性质,可以将不等式分解为两个不等式来求解。
绝对值规则在处理含有绝对值的不等式时非常有用。
7. 不等式的开方规则当不等式中的数值开方后,不等式的关系可能会发生改变。
对于正数,开方不改变不等式的关系;但是对于负数,则需要特殊处理。
通过熟练掌握开方规则,可以更好地处理带有开方的不等式。
8. 不等式的数轴表示将不等式用数轴表示可以更直观地理解不等式的解集。
通过在数轴上绘制有向线段表示不等式的解集,可以更清晰地描述不等式的范围和解的情况。
数轴表示在不等式的可视化方面起到重要作用。
运用基本不等式必备的变形技巧
1 / 31 / 31 / 3运用基本不等式必备的变形技巧 基本不等式,0,0(2>>≥+b a ab b a 当且仅当a=b 时等号成立)在不等式的证明、求解或者解决其它问题中都起到了十分重要的工具性作用,在利用基本不等式求解函数最值问题时,有些题目可以直接利用公式求解,有些题目必须进行必要的变形才能利用均值不等式求解.下面介绍一些常用的变形技巧.一、配凑1.凑系数例1当0<x<4时,求y=x(8-2x)的最大值.分析 由0<x <4得8-2x>0,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子的积的形式,但其和不是定值.注意到2x+(8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可. 解∵0<x<4,∴ 8-2x>0,∴y=x(8-2x)=2)2282(21)]28(2[21x x x x -+≤-=8, 当且仅当2x=8-2x 即二=2时取等号,∴当x=2时,y=x(8-2x)的最大值为8.点评:本题无法直接运用均值不等式求解,但凑上系数后即可得到和为定值,就可利用均值不等式求得最大值.2. 凑项例2己知x<45,求函数f(x) =4x-2+541-x 的最大值. 分析 由已知4x-5<0,首先调整符号,又(4x-2)·541-x 不是定值,故需对4x-2进行凑项得到定值. 解 ∵x<45,∴5-4x>0, ∴f(x)=4x-2+541-x =-(5-4x+x451-)+3≤-2x x 451)45(-⋅-+3=-2+3=1, 当且仅当5-4x=x451-,即x=1时等号成立. 点评:本题需要调整项的符号,又要配凑项,使其积为定值.3.分离例3求)1(11072-≠+++=x x x x y 的值域. 分析 本题看似无法运用均值不等式,不妨将分子配方凑出(x+1),再将其分离.解 .514)1(14)1(5)1(110722++++=+++++=+++=x x x x x x x x y 当x+1>0, 即x>-1时,514)1(2++⋅+≥x x y =9(当且仅当x=1时取“=”号); 当x+1<0,即x<-1时, 14)1(25+⋅+-≤x x y =1(当且仅当x=-3时取“=”号);2 / 32 / 32 /3 ∴)1(11072-≠+++=x x x x y 的值域为(-∞,1]∪[9,+∞). 点评:分式函数求最值,通常化成y=Mg(x)+)(x g A +B(A>0,M>0,g(x)恒正或恒负)的形式,然后运用均值不等式来求最值.二、整体代换 例4 已知a>0,b>0,111=+ba ,求t=a+2b 的最小值. 分析 不妨将a+ 2b 乘以1,将1用b a 11+代换. 解 (a +2b)·=(a+2b)(b a 11+)=3+2232232+=⋅+≥+b a a b b a a b ,当且仅当ba ab =2时取“=”号. 由⎪⎩⎪⎨⎧=+=,111,2ba b a a b 得⎪⎩⎪⎨⎧+=+=,122,12b a 即⎪⎩⎪⎨⎧+=+=,122,12b a 时,t=a+2b 的最小值为223+. 点评:本题巧妙运用“1”的代换,得到t=b a a b ++23,而a b 2与b a 的积为定值,即可用均值不每式求得t=a+2b 的最小值.三、换元例5求函数522++=x x y 的最大值. 分析 变量代换,令t=2+x ,则x=t 2-2(t ≥0)则,t t t ty 121122+=+=,再利用均值不等式即可.解 令t=2+x , x=t 2-2(t ≥0) ,则122+=t ty .当t=0时,y=0;当t >0时,421221121=⋅≤+=t t t t y ,当且仅当2t=t1,即t=22时取“=”号, ∴x=-23时,y max =42. 点评:本题通过变量代换,使问题得到了简化,而且将问题转化成熟悉的分式型函数的最值问题,从3 / 33 / 33 / 3 而为构造积为定值创设了有利条件.四、取平方例6求函数)2521(2512<<-+-=x x x y 的最大值. 分析 注意到2x-1与5-2x 的和为定值.r解 8)25()12(4)25)(12(24)2512(22=-+-+≤--+=-+-=x x x x x x y ,又y>0,∴0<y ≤22,当且仅当2x-1=5-2x.即x=23时取“=”号, ∴y max =22.点评:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件.总之,我们利用均值不等式求最值时,一定要注意“一正、二定、三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为 a>0,b>0,a+b=2,所以 2≥2 ab,所以 ab≤1,所以
1 1 1 +11+ ≥4(当且仅当 a=b=1 时取等号),所 ≥ 1 . 所以 b ab a 1 1 以a+1b+1的最小值是
4.
变形后使用基本不等式 设 a>1,b>1,且 ab-(a+b)=1,那么( A.a+b 有最小值 2( 2+1) B.a+b 有最大值( 2+1)2 C.ab 有最大值 2+1 D.ab 有最小值 2( 2+1) )
应用基本不等式的八种变形技巧
基本不等式的一个主要功能就是求两个正变量和与积的 最值,即所谓“和定积最大,积定和最小”.但有的题目需 要利用基本不等式的变形式求最值,有的需要对待求式作适 当变形后才可求最值.常见的变形技巧有以下几种:
加上一个数或减去一个数使和或积为定值 4 函数 f(x)= +x(x<3)的最大值是( x-3 A.-4 C.5 B.1 D.-1 )
1 2 y 法二:因为 + =1,所以 x= . x y y- 2 因为 x>0,y>0,所以 y-2>0. y2-y (y-2)2+3(y-2)+2 y 所以 x+y= + y= = = y- 2 y- 2 y- 2
2 2 y-2+ +3≥3+2 2当y-2=y-2,即y=2+ 2 y- 2
已知 a>0,b>0 且
[点拨]
1 1 a+b=2,求a+1b+1的最小值.
由于待求式是一个积的形式,因此需将多项式展开
后将积的最小值转化为和的最小值.
【解】 3 ab+1,
1 1 1 1 1 1 a+b 由题得 a+1 b+1 =ab+a+b+1=ab+ ab +1=
[点拨] 根据待求式的特征及 0<x<1 知 x>0,1-x>0.又 1=x
+(1-x),因此可考虑利用“1”的代换法.
【解】
因为 0<x<1,所以 1-x>0.
a2 b2 a2 b2 a2 b2 所以 + = · 1+ · 1= · [x+(1-x)]+ · [x+(1 x 1-x x x 1-x 1- x -x)]
【答案】 A
f(x) 形如 型函数变形后使用基本不等式 g(x) f ( x) 若 y= 中 f(x)的次数小于 g(x)的次数, 可取倒数后 g(x) 求其最值.
(x+5)(x+2) 求函数 y= (x≠-1)的值域. x+1
[点拨] B 将(x+5)(x+2)用(x+1)来表示再变形为 f(x)=Ax+ x
≤
y2 2 2 92 y 3 2x +1+ 3 2 2 3· =3×2 .当且仅当 2x =1+ 3 ,即 x=2,y 2 42 9 2 = 时,等号成立.故 x 6+2y 的最大值为 3. 2 2
展开后求最值 对于求多项式积的形式的最值,可以考虑展开后求其最 值.
2 y 若 x>0,y>0,且 2x2+ =8,求 x 6+2y2的最大值. 3
[点拨]
由于已知条件式中有关 x,y 的式子均为平方式,而
所求式中 x 是一次的,且根号下 y 是二次的,因此考虑平方 后求其最值.
【解】
(x
6+2y2 )2 = x2(6 + 2y2) =
2 y 3· 2x2 1+ 3
时取等号,此时x= 2+1.
a b 求以形如或可化为 + =1 型为条件的 cx+dy(a,b,c,d 都 x y 1 2 不为 0)的最值可利用“1”的代换求乘法. 本题中的条件x+ y = 1 也可化为 2x+y-xy=0.
a2 b2 若 a,b 为常数,且 0<x<1,求 f(x)= x + 的最小 1-x 值.
用“1”的代换法求最值
1 2 已知x+y =1,且 x>0,y>0,求 x+y 的最小值.
【解】
法一:因为 x>0,y>0,所以 x+y=(x+y)· 1=(x+ y 2x x·y =3+2 2.
1 2 y 2x y)·x+ y =3+x+ y ≥3+2
y 2x 1 2 当且仅当x= y ,且x+ y =1,即 x= 2+1,y=2+ 2时,上 式等号成立.故 x+y 的最小值是 3+2 2.
【解析】
因为 x<3,所以 3-x>0,所以 f(x)= 4 · (3-x)+ 3=- 1. 当 3-x
4 - 3-x+(3-x) + 3≤- 2
4 且仅当 =3-x,即 x=1 时等号成立,所以 f(x)的最大值 3-x 是- 一般地,含有根式的最值问题,首先考虑平方后求最值.
+C 的形式,然后运用基本不等式求解.
【解】
(x+5)(x+2) x2+7x+10 因为 y= = x+1 x+1
(x+1)2+5(x+1)+4 4 = =x+1+ +5, x+1 x+1 当 x+1>0 时, 即 x>-1 时, y≥ 2 且仅当 x=1 时取等号); 当 x+1<0,即 x<-1 时,y≤5-2 仅当 x=-3 时取等号). 所以函数的值域为(-∞,1]∪[9,+∞). 4 (x+1)· =1(当且 x+ 1 4 (x+1)· +5=9(当 x+ 1
2 2 a ( 1 - x ) b x 2 2 2 2 2 =a + + + b ≥ a + b + 2 ab = ( a + b ) . x 1-x
【解析】
a+b 2 因为 ab-(a+b)=1,ab≤( ), 2 a+b 的一元二次不等式,
a+b 2 所以 2 -(a+b)≥1,它是关于
解得 a+b≥2( 2+1)或 a+b≤2(1- 2)(舍去), 所以 a+b 有最小值 2( 2+1). 又因为 ab-(a+b)=1,a+b≥2 ab, 所以 ab-2 ab≥1,它是关于 ab的一元二次不等式, 解得 ab≥ 2+1 或 ab≤1- 2(舍去), 所以 ab≥3+2 2,即 ab 有最小值 3+2 2.