四则混合运算(二)
六年级数学分数四则混合运算练习题
分数四则混合运算(一)一、准确计算:65+35×54 85-41×(98÷32) (21-61)×53÷51 61÷【179×(43+32)】 1211-41+103÷53 32÷【(43-21)×54】 52+154-52 76×85+83÷67 (117-83)×88 13—48×(121+161) 54÷3+32×54 52+21×53+107 1312×73+74×1312+1312 分数四则混合运算(二)(87-165)×(95+32) 138÷7+71×136 【1-(41+83)】÷4197÷511+92×115 (61+43-32)×12 2-136÷269-32 99×1009921÷85+41×53 43×52+41÷25 2110×207÷65-41 45×4443(83-41)÷83 83÷(83-41) 65×4-(87+32)5-87-0,125 一个数的109是43,这个数是多少? 43减去43与54的积,所得的差除9,商是几? 二、解决问题:1、计算下列物体的表面积。
21米52米 25米 54米 52米 52米 2、从A 地去B 地,货车需要90分钟,客车需要80分钟。
货车每分钟行35千米,客车每分钟行多少千米?分数四则混合运算(二)一、简便计算:52+154-52 76×85+83÷67 (117-83)×88 13—48×(121+161)54÷3+32×54 52+21×53+107 1312×73+74×1312+1312 二、解决问题:1、一个三角形的面积83平方米,底边长52米。
分数混合运算二教案8篇
分数混合运算二教案8篇分数混合运算二教案篇1一、教材我说课的内容是苏教版小学数学六年级上册第80的内容:分数四则混合运算。
学生对整数、小数四则混合运算的运算挨次已经比拟熟识了,本册教学分数加、减法和分数乘、除法时,已消失过一些两步的混合运算式题。
本课时是在此根底上,教学计算三、四步的分数四则混合运算式题。
因此教材在讲分数四则混合运算时,没有再具体说明运算挨次,而是直接说明与整数四则混合运算的挨次一样。
然后结合例1,让学生说说运算挨次,并让学生自己计算出结果。
把握好这局部的内容将对今后学习分数与小数四则混合运算及其应用题打下良好的根底。
二、教学目标1、学问与技能:学生把握分数四则混合运算的运算挨次,并能正确地进展计算。
2、过程与方法:学生通过“一看、二想、三算、四查”四步骤能正确计算分数四则混合运算,培育学生仔细审题、细心检查等良好学习习惯。
3、情感、态度,价值观:通过计算联系向学生渗透运算的规律性,相互影响地激发学生的求知欲望,让学生在民主、和谐、活泼的课堂气氛中制造性地进展学习。
识与技能:学生把握分数四则混合运算的运算挨次,并能正确地进展计算。
三、重、难点本节课的重点是分数四则混合运算的运算挨次并正确计算,其中含带分数的乘、除法是教学的难点所在。
四、教法、学法围绕以上的教学目标及学生的实际状况,我采纳的教学方法是以“探究—研讨”法为主,形成一种多向沟通的课堂气氛。
以“讲、扶放”的形式进展教学,其中又将算理的讲解与学生自主练习有机地结合起来。
采纳这种教学方法,发挥了教师的主导作用,表达了学生的主体地位,即传授学问、又培育力量。
学生通过计算练习,独立思索和开展小组合作互评活动,完善自己独特的教学方法。
通过敏捷、好玩的练习,提高学生解决问题的力量,同时寻求解题的多种有效方法。
五、教学过程整个教学过程我分四大程序进展教学(一)、复习预备、导入新课1、出示整数、小数四则混合运算题,让学生回忆说说运算挨次。
分数四则混合运算题库
分数四则混合运算题库(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2分数四则混合运算(一)一、准确计算:65+35×54 85-41×(98÷32) (21-61)×53÷5161÷【179×(43+32)】 1211-41+103÷53 32÷【(43-21)×54】 一个数的109是43,这个数是多少43减去43与54的积,所得的差除9,商是几?二、解决问题:1、计算下列物体的表面积。
21米 52米 25米 54米 52米 52米2、从A 地去B 地,货车需要90分钟,客车需要80分钟。
货车每分钟行35千米,客车每分钟行多少千米?分数四则混合运算(二)一、简便计算:352+154-52 76×85+83÷67 (117-83)×88 13—48×(121+161)54÷3+32×54 52+21×53+107 1312×73+74×1312+1312二、解决问题:1、一个三角形的面积83平方米,底边长52米。
高多少米(用方程解)2、一桶油重15千克,倒出52,平均装到8个瓶子里,每个瓶子装多少千克?3、一根绳子,剪去41后,短了5米。
这根绳子长多少米?4、一筐香蕉连筐重42千克,卖出31后,剩下的连筐重29千克。
筐重多少千克?45、甲32小时生产60个零件,乙每小时生产60个零件。
两人合做多少小时生产100个零件?6、甲车每小时行80千米,乙车每小时行70千米,两车同时从两地相对开出,行40分钟相遇。
两地相距多少千米?分数四则混合运算(三)一、怎样简便就怎样算: (87-165)×(95+32) 138÷7+71×136【1-(41+83)】÷41 97÷511+92×115 (61+43-32)×12 2-136÷269-32 99×1009954减32的差乘一个数得72,求这个数。
五年级上册第五单元 四则混合运算(二)2
综 14-20×14÷28 合 =14-280÷28 算 =14-10 式 =4(天)
木匠给图书馆做一批书架,计划 每天做12个,20天做完。第一 天就多做了4个,照这样算,多 少天能做完? 请讨论,要先算什么,再算什么,最后算什么? 先算一共做多少个书架,再算实际每天做多少个… 先算实际每天做多少个,再算一共需要做多少个…
分 12×20=240(个) 步 12+4=16(个) 算 240÷16=15(天) 式
12+4 பைடு நூலகம் 12×20÷ ÷( 12+4) 合 =240÷16 算 =15(天) 式
丫丫买来一本《童话故事》计划每 天看20页,2周看完。照丫丫第一 天看得页数计算,看完这本书比计 划要少用几天? 我太喜欢看书了,第一天就看了28页。 问大家一个问题,2周是几天呢? 14天 请大家讨论讨论,要先算什么,再算什么。
分 20×14=280(页) 步 280÷28=10(天) 算 14-10=4(天) 式
人教版四年级数学下册单元检测(解析) 第一单元《四则运算》(2)
人教版数学四年级下册第一单元四则运算考试时间:90分钟试卷满分:100分一.选择题(共5小题,满分10分,每小题2分)1.(2021春•沁阳市期中)把208+156=364,364÷14=26,13×26=338列成一个综合算式是()A.13×(208+156)÷14 B.13×C.13×(208+156÷14)【思路引导】208+156=364,364÷14=26,13×26=338是先用208加156求出和,再用求出的和除以14得到商,最后用13乘求出的商即可。
【完整解答】解:把208+156=364,364÷14=26,13×26=338列成一个综合算式是13×。
故选:B。
【考察注意点】解决这类题目,要分清楚先算什么,再算什么,根据运算顺序列出综合算式,注意合理利用括号。
2.(2021春•岳池县期中)在一个没有余数的除法里,除数是16,商是28,被除数是()A.463 B.475 C.448【思路引导】根据被除数=除数×商,解答此题即可。
【完整解答】解:16×28=448所以被除数是448。
故选:C。
【考察注意点】熟练掌握被除数、除数和商的关系。
3.(2021春•永吉县期中)已知,下面哪些算式是正确的()A.B.C.【思路引导】根据和﹣一个加数=另一个加数,积÷一个因数=另一个因数进行选择即可。
【完整解答】解:因为,所以。
故选:B。
【考察注意点】本题主要考查了学生对加法和乘法各部分之间关系的掌握情况。
4.(•九龙坡区校级月考)文文在计算3+□×7时,先算加法再算乘法结果是35,正确的结果应该是()A.17 B.21 C.15【思路引导】3+□×7时,先算加法再算乘法,算式就变成了(3+□)×7=35,先用35除以7,求出(3+□)的和,再减去3,求出□,然后把算式按照先算乘法,再算加法的顺序计算出结果。
冀教版五年级数学上册第五单元四则混合运算(二)第4课时 带中括号的四则混合运算
=9.64÷9.64÷2.41
9.64÷[9.64÷(9.82-7.41)]
=1÷2.41
=9.64÷[9.64÷2.41]
≈0.41 ( )
=9.64÷4
改正:
=2.41
辨析:计算小括号里面的算式后,错把中括号直接去掉
提升点
综合运用四则混合运算的知识解决问题
5.甲、乙二人共同完成380个零件的加工任务,已知两人 共同做一天可以加工60个零件,现在甲先做4天后,由 乙接着做8天完成了全部任务,乙每天加工多少个零件?
五 四则混合运算(二)
第4课时 带中括号的四则混合运算
JJ 五年级上册
1 课堂探究点
带中括号的三步混合运算的运算顺序
2 课时流程
探索 新知
课堂 小结
当堂 检测
课后 作业
8+6=14 2×14=28 84÷28=3
探究点 带中括号的三步混合运算的运算顺序
下面4个纸箱中装满了大小相同的72个花皮球和 32个绿皮 球。现在要把468个这样的皮球装在 同样的纸箱中,需要多 少个纸箱?
知识点 2 解答稍复杂的实际问题
3.一台粉碎机原来每天加工饲料0.75吨,现在改进了 技术,每天多加工0.2吨,现在用这样的3台粉碎机, 加工45.6吨饲料需要多少天?
45.6÷[(0.75+0.2)×3]=16(天)
易错辨析
4.数学门诊。(下面的计算对吗?不对的请改正)
9.64÷[9.64÷(9.82-7.41)]
(72+32)÷4=26(个) 468÷26= 18 (个)
答:需要( 18 )个纸箱。
468÷[(72+32)÷4] =468÷[104÷4] =468÷26 = 18 (个)
整数、小数四则混合运算练习题二
整数、小数四则混淆运算练习题二【知识重点】娴熟计算不含中括号的三步混淆运算式题。
【课内检测】1、指出下边各题的错误,并更正。
3。
6÷(0。
4-0。
04)+0。
12×(7。
5+2。
5-7。
5+2。
5)=3。
6÷0。
036+0。
1=2×(10 -10)=100。
1=02、用递等式计算。
4。
6÷(1。
8+0。
5)×5 。
14。
8÷(4。
21。
8)×0。
7119÷(42 。
5×1。
6÷3。
4)42。
41+34。
5÷(14 。
75-12。
25)3、把下边的分步算式列成综合算式。
0。
96×5=4。
39-0。
42=8。
5815。
6÷13=1。
22。
4+11。
9=14。
34。
3-1。
2=3。
18。
58÷14。
3=0。
6综合列式综合列式【课外训练】1、与的和,乘以它们的差,2、8个加上除8的商,积是多少?和是多少?第1页3、某机床厂计划整年生产机床480台,实质提早三个月完成整年计划的1。
2倍。
均匀每个月生产多少台?★★4、把一根竹竿直插入水池底,浸润部分1。
8米,掉过头来直插入水池底,只有一半还多1。
4米是干的,这根竹竿长多少米?第2页。
新人教版六年级分数加减混合运算
分数四则混合运算(一)一、准确计算:65+35×54 85-41×(98÷32) (21-61)×53÷5161÷【179×(43+32)】 1211-41+103÷53 32÷【(43-21)×54】二、解决问题:1、计算下列物体的表面积。
52米 25米 54米 52米 52米2、从A 地去B 地,货车需要90分钟,客车需要80分钟。
货车每分钟行35千米,客车每分钟行多少千米?分数四则混合运算(二)一、简便计算:52+154-52 76×85+83÷67 (117-83)×88 13—48×(121+161)54÷3+32×54 52+21×53+107 1312×73+74×1312+1312二、解决问题:1、一个三角形的面积83平方米,底边长52米。
高多少米?(用方程解)2、一桶油重15千克,倒出52,平均装到8个瓶子里,每个瓶子装多少千克?3、一根绳子,剪去41后,短了5米。
这根绳子长多少米?4、一筐香蕉连筐重42千克,卖出31后,剩下的连筐重29千克。
筐重多少千克?5、甲32小时生产60个零件,乙每小时生产60个零件。
两人合做多少小时生产100个零件?6、甲车每小时行80千米,乙车每小时行70千米,两车同时从两地相对开出,行40分钟相遇。
两地相距多少千米?分数四则混合运算(三)一、怎样简便就怎样算:(87-165)×(95+32) 138÷7+71×136【1-(41+83)】÷41 97÷511+92×115(61+43-32)×12 2-136÷269-32 99×1009954减32的差乘一个数得72,求这个数。
小学数学冀教版第九册四则混合运算(二)三步四则混合运算-章节测试习题
章节测试题1.【答题】服装厂用一批布料做套装,原计划做230套,平均每套用布2.25米,实际少做了5套,平均每套实际用布______米.【答案】2.3【分析】要求平均每套实际用布多少米,需知道这批布料的总米数和实际做的套数,根据题意,这批布料的总米数是(230×2.25)米,实际做的套数是(230-5)套,用总米数除以实际的套数,由此找出条件列出算式解答即可.【解答】230×2.25÷(230−5)=2.3(米),所以平均每套实际用布2.3米.故此题的答案是2.3.2.【答题】修一条公路,原计划15天完成,实际每天修300米,结果12天就完成了.实际每天比原计划多修______米.【答案】60【分析】先用实际修的米数乘实际完成的天数求出这条路的总长,再用这条路的总长除以原计划修的天数即可求得原计划每天修的米数,最后用实际每天修的米数减去原计划每天修的米数即可解答.【解答】公路的长度为:300×12=3600(米),计划每天修:3600÷15=240(米),实际每天比原计划多修:300-240=60(米).列综合算式为:300-300×12÷15=60(米).所以实际每天比原计划多修60米.故此题的答案是60.3.【答题】某制药厂生产一批药品,计划每天生产36.5吨,18天完成.实际每天比计划多生产7.3吨,实际用了______天.【答案】15【分析】此题考查的是混合运算.【解答】已知计划每天生产36.5吨,18天完成,求总共有多少吨药品,列式计算为:36.5×18=657(吨);实际每天比计划多生产7.3吨,求实际每天生产多少吨,列式计算为:36.5+7.3=43.8(吨);求实际用了多少天,列式计算为:657÷43.8=15(天);列综合算式为:36.5×18÷(36.5+7.3)=15(天).所以实际用了15天.故此题的答案是15.4.【答题】某厂生产一种零件,每个零件用钢材1.5千克.技术革新后,每个零件节约钢材0.3千克,原来做500个这种零件的钢材,现在可以做______个零件.【答案】625【分析】原来每个零件用钢材1.5千克,生产500个零件用钢材的质量是(1.5×500)千克,因技术革新后,每个零件节约钢材0.3千克,现在每个零件用钢的质量是(1.5-0.3)千克,用钢材的总质量除以技术革新后每个零件用钢材的质量,就是现在可以生产的个数,据此解答.【解答】原来做500个这种零件用钢材:1.5×500=750(千克);某厂生产一种零件,每个零件用钢材1.5千克.技术革新后,每个零件节约钢材0.3千克,则革新后每个零件用钢材:1.5-0.3=1.2(千克);求现在可以做多少个零件,列式计算为:750÷1.2=625(个).列综合算式为:1.5×500÷(1.5-0.3)=625(个).所以现在可以做625个零件.故此题的答案是625.5.【答题】一堆煤,原计划每天烧3吨,可以烧96天,由于改建炉灶,每天节约0.6吨,这堆煤可经烧______天.【答案】120【分析】要求这堆煤现在可以烧多少天,就要知道这堆煤的总吨数和每天烧的吨数,这堆煤的吨数可用计划每天烧的吨数乘计划烧的天数来求,而现在每天烧的吨数就用计划每天烧的吨数减每天节约的量来求.再用这堆煤的总吨数除以实际每天烧煤的吨数即可解答.【解答】96×3÷(3-0.6)=120(天);所以这堆煤可以烧120天.故此题的答案是120.6.【答题】华丰微软公司,制作一批软件,计划30天完成,实际每天制作120件,比原计划提前了5天完成任务.原计划每天制作______件.【答案】100【分析】根据“计划30天完成,实际比原计划提前了5天完成任务”,可求得实际用的天数,即(30-5)天,进而用实际每天制作的件数乘实际用的天数,就是这批软件的总件数,再用总件数除以计划完成用的天数,就是计划每天制作的件数.【解答】120×(30-5)÷30=100(件);所以原计划每天制作100件.故此题的答案是100.7.【答题】服装厂原来做一套儿童服装,用布需要2.2米,现在改进了裁剪方法,每套节约布0.2米,原来做1200套这样的服装所用的布,现在要以做______套.【答案】1320【分析】根据布的总长度=原来每套儿童服装用布的长度×原来做的件数求出布的总长度,再用原来每套儿童服装用布的长度减去0.2米求得现在每套儿童服装用布的长度,最后用布的总长度除以现在每套儿童服装用布的长度即可求得现在可以做多少套.【解答】2.2×1200÷(2.2-0.2)=1320(套),所以现在可以做1320套.故此题的答案是1320.8.【答题】玩具厂购买了一批布,原来做一个玩具熊需要0.8米布,可以做720个,后来改进技术,每个玩具熊节约用布0.2米,这批布现在可以做______个玩具熊.【分析】先根据布的总长度=每个玩具熊需要布的长度×玩具熊个数,求出布的总长度,再求出改进技术后每个玩具熊需要布的长度,最后根据个数=布的总长度÷每个玩具熊需要布的长度即可解答.【解答】720×0.8÷(0.8-0.2)=960(个),所以这批布现在可以做960个玩具熊.故此题的答案是960.9.【答题】工程队铺一条路,如果每天铺0.75千米,12天可以铺完.如果实际每天多铺0.15千米,那么实际______天可以铺完.【答案】10【分析】由题意可知,这条公路的总长度不变,先求出这条公路的总长度,再求出实际每天修的千米数,最后求出实际修完路所需要的天数即可.【解答】0.75×12÷(0.75+0.15)=10(天),所以实际10天可以铺完.故此题的答案是10.10.【答题】六年级办公室买进一包白纸,计划每天用20张,可以用28天.由于注意了节约用纸,实际每天只用了16张,实际比计划多用______天.【答案】7【分析】先求出这包纸的总张数,然后用总张数除以实际每天用的张数求出实际可以用的天数,然后用实际用的天数减去计划的天数即可.【解答】20×28÷16-28=7(天);所以实际比计划多用7天.故此题的答案是7.11.【答题】修一条公路,计划每天修4.2千米,15天修完,实际每天多修2.8千米,实际______天修完.【分析】计划每天修4.2千米,15天修完,实际每天多修2.8千米,用(4.2+2.8)米,求出实际每天修的米数,再根据工作总量=工作效率×工作时间,求出公路的长度,再根据工作时间=工作总量÷工作效率即可解答.【解答】15×4.2÷(4.2+2.8)=9(天),所以实际9天修完.12.【答题】小亮看一本书,计划每天看20页,15天看完,实际提前3天就看完了,实际每天看______页.【答案】25【分析】先用计划每天看的页数乘15天,求出这本书的总页数,然后用计划的天数减去提前的天数求出实际看的天数,再用总页数除以实际看的天数即可求解.【解答】20×15÷(15-3)=25(页),所以实际每天看25页.故此题的答案是25.13.【答题】小明借了一本书,原计划每天看20页,15天看完,现在要提前3天归还,每天必须多看______页.【答案】5【分析】先依据书的总页数=计划每天看的页数×计划看的天数,求出这本书页数,再求出实际看的天数,根据实际每天看的页数=总页数÷实际看的天数求得实际每天看的页数,再减去原计划每天看的页数即可.【解答】20×15÷(15-3)-20=5(页),所以每天必须多看5页.故此题的答案是5.14.【答题】一堆煤,原计划每天烧4吨,可以烧72天,由于改建炉灶,每天节约0.8吨,现在这堆煤可以烧______天.【分析】要求这堆煤现在可以烧多少天,就要知道这堆煤的总吨数和每天烧的吨数,这堆煤的吨数可用计划每天烧的吨数乘计划烧的天数来求,而现在每天烧的吨数就用计划每天烧的吨数减每天节约的量来求.再用这堆煤的总吨数除以实际每天烧煤的吨数即可解答.【解答】72×4÷(4-0.8)=90(天);所以现在这堆煤可以烧90天.故此题的答案是90.15.【答题】一个筑路队铺一段铁路,原计划每天铺3千米,15天铺完,实际每天比原计划多铺1千米,实际多少天就铺完了这段铁路.下面列式正确的是().A. 3×15÷1B. 3×15÷(3-1)C. 3×15÷(3+1)D. 3×15÷3【答案】C【分析】这条路的总长度不变,所以先用原计划每天铺的长度乘15天,求出不变的总长度;再求出实际每天铺的长度,然后用总长度除以实际每天铺的长度,即可求出实际多少天就铺完了这段铁路.【解答】列式为:3×15÷(3+1),选C.16.【答题】挖一条水渠,原计划20天完成.实际每天挖1.64千米,结果提前5天完成了任务.原计划平均每天挖().A. 1.32千米B. 8.2千米C. 2.13千米D. 1.23千米【答案】D【分析】根据原计划20天完成,结果提前5天完成了任务,也就是实际用了(20-5)天,又实际每天挖1.64千米,用1.64×(20-5)求出这一条水渠的总长,总长除以计划的天数,就可以求出原计划平均每天挖多少千米,据此解答.【解答】1.64×(20-5)÷20=1.23(千米),所以原计划平均每天挖1.23千米.选D.17.【答题】一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完.实际每天比原计划多铺0.8千米,实际多少天就铺完了这段铁路.下面列式正确的是().A. 3.2×15÷0.8B. 3.2×15÷(3.2-0.8)C. 3.2×15÷(3.2+0.8)【答案】C【分析】根据“原计划每天铺3.2千米,15天铺完”,用3.2×15可求出这段铁路的总千米数;再根据“实际每天比原计划多铺0.8千米”,可求出实际每天铺的千米数;进而用这段铁路的总千米数除以实际每天铺的千米数,即得实际铺完所用的天数;据此列式即可.【解答】列式为:3.2×15÷(3.2+0.8);选C.18.【答题】电机厂现在每天烧煤1.2吨,比原计划每天少烧0.1吨,这样原计划烧60天的煤,现在可以烧多少天.算式是().A. (1.2+0.1)×60÷1.2B. 1.2×60÷(1.2-0.1)C. 1.2×60÷(1.2+0.1)D. (1.2-0.1)×60÷1.2【答案】A【分析】先求出原计划每天的烧煤量,再用原计划每天的烧煤量乘计划的天数,求出煤的总量,再用煤的总量除以实际每天的用煤量即可.【解答】实际可以烧的天数是:(1.2+0.1)×60÷1.2;选A.19.【答题】修一条水渠计划每天修0.48千米,15天修完,由于开展劳动竞赛,每天多修0.12千米.修完这条水渠实际用了多少天.正确的列式是().A. 0.48×15÷0.12B. 0.48×15÷(0.48+0.12)C. 0.48×15÷(0.48-0.12)D. 0.48×15×(0.48+0.12)【答案】B【分析】先根据工作总量=工作时间×工作效率,求出这条水渠的长度,再求出实际每天修的长度,最后依据工作时间=工作总量÷工作效率求解.【解答】列式为:0.48×15÷(0.48+0.12),选B.20.【答题】服装厂要做2600套童装,原计划每套用布1.5米,后来改进设计,每套少用布0.2米.这样原来的布可以做童装().A. 19500套B. 3000套C. 3900套D. 2000套【答案】B【分析】首先根据题意,用原来做一套用布的米数乘2600,求出这批布一共有多少米;然后用原计划每套用布的米数减每套节约的米数,得出改进设计方法后每套用布的米数,再用布的总米数除以改进后每套用布的米数,即可得改进设计方法后可以做多少套这样的童装.【解答】1.5×2600÷(1.5-0.2)=3000(套),所以这样原来的布可以做童装3000套.选B.。
四则混合运算教案(两课时)
四则混合运算教案(两课时)课时安排:两课时教学目标:1. 学生能够理解四则混合运算的概念和规则。
2. 学生能够运用加法、减法、乘法和除法进行混合运算。
3. 学生能够正确计算简单的四则混合运算题目。
教学准备:1. 教学黑板或白板2. 粉笔或白板笔3. 四则混合运算的练习题目4. 计算器(可选)教学过程:第一课时:一、导入(5分钟)教师通过引入日常生活中的实例,如购物、烹饪等,引发学生对四则运算的兴趣,并提问学生是否了解四则混合运算。
二、新课讲解(15分钟)1. 教师讲解四则混合运算的概念,包括加法、减法、乘法和除法。
2. 通过示例,讲解四则混合运算的运算顺序和规则。
3. 引导学生理解和掌握四则混合运算的运算律,如结合律、交换律等。
三、课堂练习(15分钟)1. 教师给出一些简单的四则混合运算题目,要求学生独立计算并展示答案。
2. 教师选取一些学生的答案,进行讲解和解析。
四、总结与布置作业(5分钟)1. 教师对本节课的内容进行总结,强调四则混合运算的规则和注意事项。
2. 布置一些四则混合运算的练习题目,要求学生回家完成。
第二课时:一、复习导入(5分钟)教师通过提问学生是否完成家庭作业,以及学生在作业中遇到的问题,进行复习导入。
二、课堂讲解(15分钟)1. 教师讲解一些复杂的四则混合运算题目,引导学生运用所学的运算规则进行计算。
2. 教师通过示例,讲解四则混合运算在实际生活中的应用,如购物时计算总价等。
三、课堂练习(15分钟)1. 教师给出一些综合性的四则混合运算题目,要求学生独立计算并展示答案。
2. 教师选取一些学生的答案,进行讲解和解析。
四、总结与布置作业(5分钟)1. 教师对本节课的内容进行总结,强调四则混合运算在实际生活中的重要性。
2. 布置一些综合性的四则混合运算题目,要求学生回家完成。
教学评价:1. 课后收集学生的作业,评估学生对四则混合运算的理解和运用能力。
2. 在下一节课开始时,进行小测验,评估学生对上一节课内容的掌握情况。
总复习(数与运算二整数、小数、分数的四则混合运算二
二、复习小学阶段所学过的运算 定律以及它的字母公式:
加法交换律: A+B=B+A 加法结合律: (A+B)+C=A(B+C)
乘法运算定律有: 乘法交换律: AXB=BXA 乘法结合律: (AXB)XC=AX(BXC) 乘法分配律: (A+B)XC=AXC+BXC
你考我,我考你:
1、 同桌互相出题,关于加法交换律 和加法结合律的简便运算。
小数和分数四则混 合运算总复习(2)
一、复习: 分4人小组自主回顾 四则运算的运算顺序。 (3分钟)
先说一说运算顺序再计算:
1、36+300÷12 2、900—600+39 3、972÷(720—21X33) 4、226X13+46X25
360+300÷12 =360+25 =385
900—600+29 =300+29 =329
2、交换计算并四人小组交换批改。
3、互相评价小结。
• 解决实际问题:
课堂总结:
同学们你觉得这堂课最有 趣的是那个环节,你为什么 会印象这么深刻?
祝愿同学们学习 愉快。
972÷(720—21X33) =972÷(720—693) =972÷27 =36
226X13+46X25 =2938+1150 =4088
2、把下面的小数化成分数:
• 0.125
•
0.3 0.25
0.5 0.75
• •
0.6
3、把下面的分数化成小数:
下面各题用什么方法进行计算比 较简单?
四则运算 (二)
上午冰雕区有游 人180位,下午270 位,如果每30位游 人需要一名保洁员, 下午比上午多派几 名保洁员?
怎样列式计算呢?
下午比上午多的游人数:270 - 180 = 90(名)
多的游人数所需要的保洁员:90÷ 30 = 3(名)
上午冰雕区有游人180位,下午270位,如果每 30位游人需要一名保洁员,下午比上午多派几名 保洁员? 270÷30 = 9(名) 180÷30 = 6(名) 9 - 6 = 3(名) 270 - 180 = 90(名) 90÷30 = 3(名)
A. 减法、除法、加法 B. 除法、加法、减法 C. 除法、减法、加法
上午冰雕区有游 人180位,下午270 位,如果每30位游 人需要一名保洁员, 下午比上午多派几 名保洁员?
怎样列式计算呢?
下午所需要的保洁员:270÷ 30 = 9(名)
上午所需要的保洁员:180÷ 30 = 6(名)
多派的保洁员: 9 - 6 = 3(名)
A. 加、减法 B. 乘、除法 C. 按从左到右的顺序
2、与37×8 - 216÷6的计算顺序相同的是( A. 36×2÷3×2 B. 348 - 56×4+5 C. 135÷3+45×6
)
3、下列算式中,运算顺序一样的是( A. 15×6÷3和15+6 - 3 B. 80÷8×5和80 - 8×5 C. 65 - 4×9和65×4×9
)
4、运算顺序是从左向右的算式是(
A. 420÷6×5 C. 257 - 38×93
)
B. 56÷2+5×8 D. 62×7+60÷15
5、下列运算中,先算乘、除法,再算加、减法的
是( ) B. 56÷2+5×8 D. 62×7×60÷15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、集体讨论检查列式是否一致
3、抽生回答
4、全班交流,板演计算过程
1、出示例2图:
2、先自主探索怎样正确列式
3、同桌互相说一说。
4、组内交流
大展示
小组展示:
完成P3试一试
小组汇报自己的发现,想法。
指导总结。
反馈测评
1、完成P3试一试
425-40+215 24×3÷8
1、让学生独立答题习
完成练习十五3、4题
课题
四则混合运算(二)
课型
新授课
年级
四年级
执教
课时
第2课时
学习内容
P3例2及算一算、想一想,课堂活动
练习十五3、4题。
学
习
目
标
1、联系生活经验进一步理解两步混合运算顺序。
2、能正确进行两步计算的四则混合运算。
3、感受四则混合运算在实际生活中的应用,体会四则混合运算的价值。
重点
难点
1、运算的顺序和书写格式
2、克服思维定势,防止出现所有的两步混合运算试题都从左到右依次计算。
学
习
过
程
学案
导 案
独
立
尝
试
学习准备:
1、说一说下面各式的运算顺序
32×4+75 217-18×9
237+6×43 249÷3-46
引导学生回顾所学知识,重温没有括号的两步混合运算的运算顺序和书写格式。
小展示
小组合作
小组合作自学:
每个足球比每个篮球多多少元?