文科数学立体几何高考题答案
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。
高考文科数学专题5 立体几何 高考文科数学 (含答案)
专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。
高考文科立体几何题汇总(含答案)
19.(本小题满分12分)2008 如图,在四棱锥P ABCD -中,平面PAD ^平面ABCD ,AB DC ∥,P AD △是等边三角形,已知28BD AD ==,245AB DC ==.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ^平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.的体积.18.(本小题满分12分)分) 2009 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点. (1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (2) 证明:平面D 1AC ⊥平面BB 1C 1C. 2010 (20)(本小题满分12分)分)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面^,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面^; (Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A B C M P D EA B C F E 1 A 1 B 1 C 1 D 1 D 2011 19.(本小题满分12分)分)如图,在四棱台1111ABCD A B C D -中,1D D ^平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=Ð60° (Ⅰ)证明:1AA BD ^;(Ⅱ)证明:11CC A BD ∥平面.2012 (19) ( (本小题满分本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =^. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =°,M 为线段AE 的中点,的中点, 求证:DM ∥平面BEC .53238545545523163 ACM PDOEA B C F 1 1 C 1 D 1 D F 1 EC 1 1 C 1 D 1 D 所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,为正三角形, 60BCF Ð=°,△ACF 为等腰三角形,且30ACF Ð=°所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 内且交于点C, 所以AC ⊥平面BB 1C 1C,而AC Ì平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C. 2010 (20)本小题主要考查空间中的线面关系,考查线面垂直、)本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力。
(完整版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)
2012-2018年新课标全国卷Ⅰ文科数学汇编立体几何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是() A .17π B .18π C .20π D .28π【2016,11】平面α过正方体1111ABCD A BC D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为()A .3 B .22C .3D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何?”其意思为:“在屋内墙角处堆放M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为8尺,M 堆的高为5尺,M 堆的体积和堆放的M 各位多少?”已知1斛M 的体积约为1.62立方尺,圆周率约为3,估算出堆放的M 有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A .16+8π B.8+8π C.16+16π D.8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为()A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12π B. 12π C. 8π D. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 。
高三数学专项训练:立体几何解答题(三)(文科)
中,CA CB =,1AB AA =,160BAA Ð=。
(Ⅰ)证明:1AB A C ^;(Ⅱ)若2AB CB ==,16A C =高三数学专项训练:立体几何解答题(三)(文科)1.如图,在.如图,在四棱锥四棱锥A-BCDE 中,侧面∆ADE 是等边三角形,底面BCDE 是等腰是等腰梯形梯形,且CD ∥BE,DE=2BE,DE=2,,CD=4,60CDE Ð=° ,M 是DE 的中点,F 是AC 的中点,且AC=4AC=4,,求证:(1)平面ADE ADE⊥平面⊥平面BCD;BCD;(2)FB (2)FB∥平面∥平面ADE. ADE.2.(本小题满分12分)如图,分)如图,三棱柱三棱柱111ABC A B C -,求三棱柱111ABC A B C -的体积。
45..如图,三棱锥P ABC -中,90ABC °Ð=,PA ABC ^底面(Ⅰ)求证:PAC PBC ^平面平面;(Ⅱ)若AC BC PA ==,M 是PB 的中点,求AM 3.如图,在.如图,在四棱锥四棱锥P -ABCD 中,中,PD PD PD⊥⊥平面ABCD ABCD,,AB AB∥∥DC DC,已知,已知BD BD==2AD 2AD==2PD 2PD==8,AB =2DC 2DC==(Ⅰ)设M 是PC 上一点,证明:平面MBD MBD⊥平面⊥平面PAD PAD;;(Ⅱ)若M 是PC 的中点,求棱锥P -DMB 的体积.4与平面PBC 所成角的所成角的正切正切值5中,CB DA 、是梯形的高,2AE BF ==,22AB =,现将梯形沿CB DA 、折起,使//EF AB ,且2E F A B =如图所示,已知M N P 、、(1)求证://MN6^PA 底面ABCD ,F E ,分别是PB AC ,的中点的中点. . .PFEDC B A(1)求证://EF 平面PCD ;(2)求证:平面^PBD 平面PAC ;(3)若AB PA =,求PD 与平面PAC 所成的角的大小所成的角的大小. . ..如图,在等腰.如图,在等腰梯形梯形CDEF ,得一简单,得一简单组合组合体ABCDEF 分别为,,AF BD EF 的中点平面BCF ;(2)求证:AP ^平面DAE ..如图,.如图,四棱锥四棱锥ABCD P -的底面ABCD 为正方形,7中,2AB BC =,点M 在边CD 上,点F 在边AB 上,且DF AM^,垂足为E ,若将ADM D 沿AM 折起,使点ABCM D -¢.(Ⅰ)求证:F D AM p ,求直线D8.如图,在四棱锥-P .如图,在.如图,在矩形矩形ABCD D 位于D ¢位置,连接B D ¢,C D ¢得四棱锥¢^;(Ⅱ)若3p =¢ÐEF D ,直线F D ¢与平面ABCM 所成角的大小为3A ¢与平面ABCM 所成角的所成角的正弦正弦值.值.ABCD 中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(Ⅰ)求证:PD ∥平面AEC ;(Ⅱ)求证:平面AEC ^平面PBD .-的中点,E 为PA 的中点.的中点.ADO C PBEMNC C 1B 1A 1BA9.如图,在直.如图,在直三棱柱三棱柱ABC ABC--A 1B 1C 1中,点M 是A 1B 的中点,点N 是B 1C 的中点,连接MN MN(Ⅰ)证明:(Ⅰ)证明:MN//MN//MN//平面平面ABC ABC;; (Ⅱ)若AB=1AB=1,,AC=AA 1=3,BC=2BC=2,求二面角,求二面角A —A 1C —B 的余弦值的大小值的大小1010..如图,四棱锥P ABCD 的底面是直角的底面是直角梯形梯形,//AB CD ,AB AD ^,PAB D 和PADD 是两个边长为2的正三角形,4DC =,O 为BD (Ⅰ)求证:PO ^平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求(Ⅲ)求直线直线CB 与平面PDC 所成角的所成角的正弦正弦值.11中,底面ABED 、090ADC Ð=,12BC CD AD ==,PA PD =,,EF .A B C -中,点D 是BC 的中点的中点..(Ⅰ)求证(Ⅰ)求证: : AD ^平面11BCC B ;(Ⅱ)求证(Ⅱ)求证: : 1A C 平面1AB D .A BCDA 1B 1C 1.在.在四棱锥四棱锥P ABCD -为直角为直角梯形梯形,//BC AD 为,AD PC 的中点.(1)求证://PA 平面BEF ;(2)求证:AD PB ^1212.如图,正.如图,正.如图,正三棱柱三棱柱111ABC13.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,AB ∥EF , 902=Ð=EAB EF AB,(1)若G 点是DC )求证:BAF DAF 面面^.(3)若,2,1===AB AD AE ,平面ABCD ABFE 平面^.中点,求证:AED FG 面//.(2求的体积三棱锥AFC D -.∴,3AM DE AM ^=,∵在∆DMC 中,中,DM=1DM=1DM=1,,60CDE Ð=°,CD=4,CD=4,,∴22241241cos6013MC =+-´´×°= ,即MC=13.在∆AMC 中,222222(3)(13)4AM MC AC +=+==∴AM AM⊥⊥MC,MC,又∵,AM DE ^MC DE M = , , ∴∴AM ^平面BCD,BCD,∵AM Í平面ADE, ADE, ∴平面∴平面ADE ADE⊥平面⊥平面BCD.BCD.(2)取DC 的中点N ,连结FN,NB,FN,NB,∵F,N 分别是AC AC,,DC 的中点,∴的中点,∴FN FN FN∥∥AD,AD,由因为由因为FN Ë平面ADE,AD Í平面ADE, ADE, ∴∴FN FN∥平面∥平面ADE,ADE,∵N 是DC 的中点,∴的中点,∴BC=NC=2BC=NC=2BC=NC=2,又,又60CDE Ð=°,∴∆BCN 是等边三角形,∴是等边三角形,∴BN BN BN∥∥DE,DE, 由BN Ë平面ADE,ED Í平面ADE, ADE, ∴∴BN BN∥平面∥平面ADE,ADE,∵FN BN N = , , ∴平面∴平面ADE ADE∥平面∥平面FNB,FNB,∵FB Í平面FNB, FNB, ∴∴FB FB∥平面∥平面ADE.ADE.考点:考点:1.1. 1.直线与平面垂直的判定;直线与平面垂直的判定;直线与平面垂直的判定;2.2.2.平面一平面垂直的判定;平面一平面垂直的判定;平面一平面垂直的判定;3.3.3.直线与平面平行的判定直线与平面平行的判定直线与平面平行的判定..2.(1)取AB 的中点O ,连接1OC O 、1OA O 、1A B ,因为CA=CB CA=CB,所以,所以OC AB ^,由于AB=AA 1,∠,∠BA A BA A 1=600,所以1OA AB ^,所以AB ^平面1OAC ,因为1A C Ì平面1OAC ,所以AB AB⊥⊥A 1C ;(2)因为221A C OC =因为ABC D 为等边三角形,所以3CO =,底面积1232232S =´´=高三数学专项训练:立体几何解答题(三)(文科)参考答案1.(1)证明详见解析;(2)证明详见解析 【解析】【解析】试题分析:(1)首先根据直线与平民啊垂直的)首先根据直线与平民啊垂直的判定定理判定定理证明AM ^平面BCD,BCD,然后再根据平面垂直的判定定理证明平面ADE ADE⊥平面⊥平面BCD BCD;;(2),取DC 的中点N ,首先证FN ∥平面ADE,ADE,然后再证∴然后再证∴然后再证∴BN BN BN∥平面∥平面ADE,ADE,再根据平面与平民啊平行的判定定理证明∴平面再根据平面与平民啊平行的判定定理证明∴平面ADE ∥平面FNB,FNB,最后由面面平行的性质即可最后由面面平行的性质即可最后由面面平行的性质即可..试题解析:(1)∵∆ADE 是等边三角形,,M 是DE 的中点,的中点,,所以,所以体积体积123323V =´´=(Ⅱ)163P DMB V -=. 【解析】【解析】试题分析:试题解析:(I )证明:在ABD D 中,由于4,8,45A D B D A B ===,所以222AD BD AB +=.故AD BD ^。
高考文科数学总复习——真题汇编之立体几何含参考答案
高考文科数学总复习——真题汇编之立体几何(含参考答案)一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为 A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是1111ABCD A B C D -E 1CC AE CD 23576.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A .B .C .D .7.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2B .4C .6D .8A B C D ,,,ABC△D ABC俯视图正视图22119.【2018浙江卷8】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ110.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( ) (A )4 (B ) 8(C )12 (D )16二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏卷10】如图所示,正方体的棱长为2,以其所有面的中心为顶点S SA SB SA 30 SAB △8的多面体的体积为 .三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =CPOM3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.4.【2018北京卷18】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.ABCD CD M CD C D AMD ⊥BMC AM P MC ∥PBD6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B 1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C 1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题1.π82.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.2322AC 12AC由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离. 由题设可知OC ==2,CM ==,∠ACB =45°. 所以OM =,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .222OP OB PB +=12AC 23BC 42325sin OC MC ACB OM ⋅⋅∠4545⊂CD ⊂⊄⊂4.解:(Ⅰ)∵PA PD=,且E为AD的中点,∴PE AD⊥.∵底面ABCD为矩形,∴BC AD∥,∴PE BC⊥.(Ⅱ)∵底面ABCD为矩形,∴AB AD⊥.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB PD⊥.又PA PD⊥,∴PD⊥平面PAB,∴平面PAB⊥平面PCD.(Ⅲ)如图,取PC中点G,连接,FG GD.∵,F G分别为PB和PC的中点,∴FG BC∥,且12FG BC=.∵四边形ABCD为矩形,且E为AD的中点,∴1,2ED BC DE BC=∥,∴ED FG∥,且ED FG=,∴四边形EFGD为平行四边形,∴EF GD∥.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.5.解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN ∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DMAD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN在等腰三角形DMN中,MN=1,可得12cosMNDMNDM∠==.所以,异面直线BC与MD(Ⅲ)解:连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=4.在Rt△CMD中,sin CMCDMCD∠==.所以,直线CD与平面ABD.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅==⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin|cos|,|||CCCCCC|θ==⋅⋅==nnn,所以直线CC1与平面AQC1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB===⊥⊥得111AB A B==,所以2221111A B AB AA+=.故111AB A B⊥.由2BC=,112,1,BB CC==11,BB BCCC BC⊥⊥得11B C=,由2,120AB BC ABC==∠=︒得AC=由1CC AC⊥,得1AC=2221111AB B C AC+=,故111AB B C⊥.因此1AB⊥平面111A B C.(Ⅱ)如图,过点1C作111C D A B⊥,交直线11A B于点D,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ===111111cos C AB C A B ∠=∠=,所以1C D =,故111sin C D C AD AC ∠==. 因此,直线1AC 与平面1ABB方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-[来源:学#科#网Z#X#X#K]由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C .(Ⅱ)设直线1AC 与平面1ABB 所成的角为θ.由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB === 设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧=⎪⎨=⎪⎩可取(=n.所以111|sin |cos ,||||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13.9.解:(1)依题意可知:圆锥的高度为322422=-=OP ,所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。
高中数学立体几何试题及答案[1]
立体几何专题训练一、选择题(每题5分,共60分)1.在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )2.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+4.某几何体的三视图如图所示,则它的体积是( )(A )283π-(B )83π- (C )82π- (D )23π5.一个正三棱柱的侧棱长和底面边长相等,体积为的三视图中的俯视图如右图所示.左视图是一个矩形.则这个矩形的面积是( )(A)4 (B)6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )(A )1223,l l l l ⊥⊥⇒1l //2l (B )12l l ⊥,1l //3l ⇒32l l ⊥ (C )1l //2l //3l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面7.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )B.2C.D.68.在空间,下列命题正确的是( ) A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行正视图侧视图俯视图 图19.一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360(C)292 (D)28010.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ) (A)3πa2 (B)6πa2(C)12πa2 (D)24πa211.设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是( )A. V1比V2大约多一半B. V1比V2大约多两倍半C. V1比V2大约多一倍D. V1比V2大约多一倍半12.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( )(A)3 (B)2 (C)1 (D)0二、填空题(每题4分,共16分)13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于_____________.14.一个几何体的三视图如图所示,则这个几何体的体积为.15.已知四棱椎P ABCD-的底面是边长为6 的正方形,侧棱PA⊥底面ABCD,且8PA=,则该四棱椎的体积是。
专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练
专题6立体几何(文科)解答题30题1.(贵州省贵阳市2023届高三上学期8月摸底考试数学(文)试题)如图,在直三棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,M ,N 分别是11A B ,1A A 的中点.(1)求证:1BN C M ⊥;(2)求三棱锥1B BCN -的体积.2.(广西普通高中2023届高三摸底考试数学(文)试题)如图,多面体ABCDEF中,∠=︒,FA⊥平面ABCD,//ED FA,且22 ABCD是菱形,60ABC===.AB FA ED(1)求证:平面BDE⊥平面FAC;(2)求多面体ABCDEF的体积.))如图所示,取中点G ,连接3.(江西省五市九校协作体2023届高三第一次联考数学(文)试题)如图多面体ABCDEF 中,四边形ABCD 是菱形,60ABC ∠=︒,EA ⊥平面ABCD ,//EA BF ,22AB AE BF ===.(1)证明:平面EAC ⊥平面EFC ;(2)求点B 到平面CEF 的距离.(2)设B 到平面CEF 的距离为因为EA ⊥平面ABCD ,AC 因为//EA BF ,EA ⊥平面ABCD 且BC ⊂平面ABCD ,所以BF 因为60ABC ∠=︒,2AB =4.(新疆乌鲁木齐地区2023届高三第一次质量监测数学(文)试题)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,AD BC ∥,且2PA AD CD ===,3BC =,E 是PD 的中点,点F 在PC 上,且2PF FC =.(1)证明:DF ∥平面PAB ;(2)求三棱锥P AEF -的体积.(2)作FG PD ⊥交PD 于点G 因为PA ⊥面ABCD ,所以PA 又AD CD ⊥,PA 与AD 交于点所以CD ⊥面PAD ,CD PD ⊥又FG PD ⊥,所以//FG CD ,所以所以PF FG PC CD =,得43FG =,因为E 为PD 中点,所以P AEF D AEF F ADE V V V ---===5.(新疆阿克苏地区柯坪湖州国庆中学2021-2022学年高二上学期期末数学试题)如图所示,已知AB ⊥平面BCD ,M ,N 分别是AC ,AD 的中点,BC CD ⊥.(1)求证://MN 平面BCD ;(2)求证:CD BM ⊥;【答案】(1)证明见解析;(2)证明见解析.【分析】1)根据中位线定理,可得//MN CD ,即可由线面平行的判定定理证明//MN 平面BCD ;(2)由已知推导出AB CD ⊥,再由CD BC ⊥,得CD ⊥平面ABC ,由此能证明CD BM ⊥;【详解】(1)M ,N 分别是AC ,AD 的中点,//MN CD ∴,MN ⊂/ 平面BCD ,且CD ⊂平面BCD ,//MN ∴平面BCD ;(2)AB ⊥Q 平面BCD ,M ,N 分别是AC ,AD 的中点,AB CD ∴⊥,BC CD ⊥ ,,AB BC B AB BC =⊂ ,平面ABC ,CD \^平面ABC ,BM ⊂ 平面ABC ,CD BM ∴⊥.6.(内蒙古乌兰浩特第一中学2022届高三全真模拟文科数学试题)如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE 折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.因为PE PD =,F 为ED 因为平面PED ⊥平面BCDE 因为21122PF ⎛⎫=-= ⎪⎝⎭设D 到平面PEB 的距离为7.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA =(1)证明:平面ABCD ⊥平面11BDD B ;(2)求三棱锥11D BCB -的体积.8.(黑龙江省八校2021-2022学年高三上学期期末联合考试数学(文)试题)已知直三棱柱111ABC A B C -中,AC BC =,点D 是AB 的中点.(1)求证:1BC ∥平面1C AD ;(2)若底面ABC 边长为2的正三角形,1BB =11B A DC -的体积.【答案】(1)证明见解析(2)1【分析】(1)连接1AC 交1AC 于点E ,连接DE ,由三角形中位线定理,得1DE BC ∥,进而由线面平行的判定定理即可证得结论;(2)利用等体积转化1111B A DC C A B D V V --=,依题意,高为CD ,再求底面11A B D 的面积,进而求三棱锥的体积.【详解】(1)连接1AC 交1AC 于点E ,连接DE∵四边形11AAC C 是矩形,∴E 为1AC 的中点,又∵D 是AB 的中点,∴1DE BC ∥,又∵DE ⊂平面1C AD ,1BC ⊄平面1C AD ,∴1BC ∥面1C AD .(2)∵AC BC =,D 是AB 的中点,∴AB CD ⊥,9.(青海省西宁市2022届高三二模数学(文)试题)如图,V是圆锥的顶点,O是底面圆心,AB是底面圆的一条直径,且点C是弧AB的中点,点D是AC的中点,2AB=,VA=.2(1)求圆锥的表面积;又D 是AC 的中点,所以OD AC ⊥,又VO OD O ⋂=,VO ⊂平面VOD ,OD ⊂平面VOD所以AC ⊥平面VOD ,又AC ⊂平面VAC ,所以平面VAC ⊥平面VOD .10.(河南省郑州市2023届高三第一次质量预测文科数学试题)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ⊥AB ,AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(1)证明:平面PBC ⊥平面PCD ;(2)求四棱锥E ABCD -的体积;又点E 为棱PC 的中点,BE 由勾股定理得2AC AD =+∵△PAC 为直角三角形,E 111.(江西省部分学校2023届高三上学期1月联考数学(文)试题)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1ACE .(2)求点1C 到平面1ACE 的距离.(2)连接1EC .因为1AA 由正三棱柱的性质可知因为ABC 是边长为2的等边三角形,所以故三棱锥11A CC E -的体积以15A E CE ==,1A E 则1ACE △的面积212S =12.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)在三棱锥-P ABC 中,底面ABC 是边长为2的等边三角形,点P 在底面ABC 上的射影为棱BC 的中点O ,且PB 与底面ABC 所成角为π3,点M 为线段PO 上一动点.(1)证明:BC AM ⊥;(2)若12PM MO =,求点M 到平面PAB 的距离.AO BC ∴⊥,点P 在底面ABC 上的投影为点PO ∴⊥平面ABC , PO BC ∴⊥,13.(广西南宁市第二中学2023届高三上学期第一次综合质检数学(文)试题)如图,D ,O 是圆柱底面的圆心,ABC 是底面圆的内接正三角形,AE 为圆柱的一条母线,P 为DO 的中点,Q 为AE 的中点,(1)若90APC ∠=︒,证明:DQ ⊥平面PBC ;(2)设2DO =,圆柱的侧面积为8π,求点B 到平面PAC 的距离.∴//,AQ PD AQ PD =,∴四边形AQDP 为平行四边形,∴//DQ PA .又∵P 在DO 上,而OD ∴O 为P 在ABC 内的投影,且ABC 是圆内接正三角形∴三棱锥-P ABC 为正三棱锥∴PAB PAC PBC △≌△≌△∴APB APC BPC ∠=∠=∠即,PA PC PA PB ⊥⊥.∵PC PB P = ,,PB PC14.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)如图,在四棱锥P -ABCD 中,AB CD ,12AD CD BC PA PC AB =====,BC PA ⊥.(1)证明:平面PBC ⊥平面PAC ;(2)若PB =D 到平面PBC 的距离.又BC PA ⊥,PA AC A = 所以BC ⊥平面PAC ,又BC (2)因为BC ⊥平面PAC ,由22PB =,BC PC =,得15.(江西省部分学校2023届高三下学期一轮复习验收考试(2月联考)数学(文)试题)如图,在长方体1111ABCD A B C D -中,1AB AD ==,1AA =E 在棱1DD 上,且1AE A D ⊥.(1)证明:1AE A C ⊥;(2)求三棱锥1E ACD -的体积.【答案】(1)证明见解析;)在平面11ADD A 中,由AE ⊥1AD DE AA AD =,所以12112A DE S DE AD =⋅= 16.(新疆兵团地州学校2023届高三一轮期中调研考试数学(文)试题)如图1,在等腰梯形ABCD 中,M ,N ,F 分别是AD ,AE ,BE 的中点,4AE BE BC CD ====,将ADE V 沿着DE 折起,使得点A 与点P 重合,平面PDE ⊥平面BCDE ,如图2.(1)证明:PC∥平面MNF.(2)求点C到平面MNF的距离.17.(宁夏银川市第一中学2023届高三上学期第四次月考数学(文)试题)如图1,在直角梯形ABCD 中,,90,5,2,3AB DC BAD AB AD DC ∠==== ∥,点E 在CD 上,且2DE =,将ADE V 沿AE 折起,使得平面ADE ⊥平面ABCE (如图2).(1)求点B 到平面ADE 的距离;(2)在线段BD 上是否存在点P ,使得CP 平面ADE ?若存在,求三棱锥-P ABC 的体积;若不存在,请说明理由..18.(陕西省汉中市2023届高三上学期教学质量第一次检测文科数学试题)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥ 平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.19.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60PAB PAD BAD ∠=∠=∠= .(1)证明:BD ⊥平面PAC ;(2)若23AB PA ==,,求四棱锥P ABCD -的体积.解:如图,记AC 与BD 的交点为因为底面ABCD 为菱形,故又60PAB PAD BAD ∠=∠=∠=又PO AC O = ,故BD ⊥平面(2)解:因为2,3,AB PA ==∠20.(内蒙古2023届高三仿真模拟考试文科数学试题)如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AD AB ⊥,//AB CD ,22PB CD AB AD ===,PD =,PC DE ⊥,E 是棱PB 的中点.(1)证明:PD ⊥平面ABCD ;(2)若F 是棱AB 的中点,2AB =,求点C 到平面DEF 的距离.,AB AD=AB AD⊥,2BD∴=为棱PB中点,DE PBE∴⊥,又∴⊥平面PBC,又BC⊂平面DE在直角梯形ABCD中,取CD中点 ,DM AB=2CD AB∴=,又DM ∴四边形ABMD为正方形,BM∴∴===,又BC BM AD AB222BD DE⊂平面PBD ,,=BD DE D21.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)如图,在三棱锥-P ABC中,PAB 为等腰直角三角形,112PA PB AC ===,PC ,平面PAB ⊥平面ABC .(1)求证:PA BC ⊥;(2)求三棱锥-P ABC 的体积.∴OP AB ⊥,22OP =,AB =又∵平面PAB ⊥平面ABC ,平面∴OP ⊥平面ABC .22.(山西省太原市2022届高三下学期三模文科数学试题)已知三角形PAD 是边长为2的正三角形,现将菱形ABCD 沿AD 折叠,所成二面角P AD B --的大小为120°,此时恰有PC AD ⊥.(1)求BD 的长;(2)求三棱锥-P ABC 的体积.∵PAD 是正三角形,∴PM AD ⊥,又∴,PC AD PC PM P⊥=I ∴AD ⊥平面PMC ,∴AD MC ⊥,故ACD 为等腰三角形23.(陕西省联盟学校2023届高三下学期第一次大联考文科数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是长方形,22AD CD PD ===,PA 二面角P AD C--为120︒,点E 为线段PC 的中点,点F 在线段AB 上,且12AF =.(1)平面PCD ⊥平面ABCD ;(2)求棱锥C DEF -的高.824.(陕西省榆林市2023届高三上学期一模文科数学试题)如图,在四棱锥P ABCD -中,平面PAD ⊥底面,,60,ABCD AB CD DAB PA PD ∠=⊥ ∥,且2,22PA PD AB CD ====.(1)证明:AD PB ⊥;(2)求点A 到平面PBC 的距离.(2)因为AB CD ,所以∠2222BC BD CD BD CD =+-⋅由222BD BC CD =+,得BC 25.(陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题)如图,在三棱柱111ABC A B C -中,平面11ABB A ⊥平面ABC ,四边形11ABB A 是边长为2的菱形,ABC 为等边三角形,160A AB ∠=︒,E 为BC 的中点,D 为1CC 的中点,P为线段AC上的动点.AB平面PDE,请确定点P在线段AC上的位置;(1)若1//-的体积.(2)若点P为AC的中点,求三棱锥C PDE(2)解:如图,取AB 的中点∵四边形11ABB A 为边长为2∴12A B =,1AA B 为等边三角形,26.(山西省运城市2022届高三上学期期末数学(文)试题)如图,在四棱锥P -ABCD中,底面ABCD 是平行四边形,2APB π∠=,3ABC π∠=,PB =,24PA AD PC ===,点M 是AB 的中点,点N 是线段BC 上的动点.(1)证明:CM⊥平面PAB;(2)若点N到平面PCM BNBC的值.27.(2020届河南省许昌济源平顶山高三第二次质量检测文科数学试题)如图,四棱锥P ABCD -中,//AB CD ,33AB CD ==,2PA PD BC ===,90ABC ∠=︒,且PB PC =.(1)求证:平面PAD ⊥平面ABCD ;(2)求点D 到平面PBC 的距离.因为//AB CD ,33AB CD ==,所以四边形ABCD 为梯形,又M 、E 为AD 、BC 的中点,所以ME 为梯形的中位线,28.(青海省海东市2022-2023学年高三上学期12月第一次模拟数学(文)试题)如图,在直三棱柱111ABC A B C -中,ABC 是等边三角形,14AB AA ==,D 是棱AB 的中点.(1)证明:平面1ACD ⊥平面11ABB A .(2)求点1B 到平面1A CD 的距离.由题意可得11A B D △的面积因为ABC 是边长为4的等边三角形,且29.(河南省十所名校2022-2023学年高三阶段性测试(四)文科数学试题)如图,在四棱锥P —ABCD 中,PC BC ⊥,PA PB =,APC BPC ∠=∠.(1)证明:PC AD ⊥;(2)若AB CD,PD AD ⊥,PC =,且点C 到平面PAB AD 的长.∵PA PB =,APC BPC ∠=∠∴90PCA PCB ∠=∠=︒,即∵PC BC ⊥,AC BC = ∴PC ⊥平面ABCD ,又∵PA PB =,E 为AB 中点∴PE AB ⊥,由(1)知AC BC =,E 为∵PE CE E = ,,PE CE 30.(河南省部分重点中学2022-2023学年高三下学期2月开学联考文科数学试题)如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D ,E 分别是1AA 和1B C 的中点.(1)求证:平面BED ⊥平面11BCC B ;(2)求三棱锥E BCD -的体积.。
高考立体几何文科大题及答案
(III)设平面 的一个法向量为 ,并设 =(
即
取 ,则 , ,从而 =(1,1,3)
取平面 D的一个法向量为
故二面角 的大小为
9、(Ⅰ)证发1:连接BD,由底面是正方形可得AC BD。
SD 平面ABCD, BD是BE在平面ABCD上的射影,
由三垂线定理得AC BE.
(II)解法1: SD 平面ABCD,CD 平面ABCD, SD CD.
又底面ABCD是正方形, CD AD,又SD AD=D, CD 平面SAD。
过点D在平面SAD内做DF AE于F,连接CF,则CF AE,
故 CFD是二面角C-AE-D的平面角,即 CFD=60°
在Rt△ADE中, AD= , DE= ,AE= 。
于是,DF=
在Rt△CDF中,由 cot60°=
得 ,即 =3
连接cqdp分别是abae的中点所以所以dcpqpq平面acddc平面acd所以pq平面acdbqaqbcac所以abcq而dc平面abcdcebeb平面abceb平面abe所以平面abe平面abc所以cq平面abe由知四边形dcqp是平行四边形所以cqdp所以dp平面abe所以直线ad在平面abe内的射影是ap所以直线ad与平面abeapdrtdcacadcaqcqdp所以addpdap4解法1四边形abcd是正方形acbdpdabcd底面pdacac平面pdb平面aecpdb平面设acbdo连接oe由知ac平面pdb于oaeo为ae与平面pdb所的角分别为dbpb的中点oepdoepd又pdabcd底面oe底面abcdoeao在rtaoeoepdabao45aoe即ae与平面pdb所成的角的大小为45解法2如图以d为原点建立空间直角坐标系dxyzacdpacdbacdpacdbac平面pdb平面aecpdb平面pdab设acbdo连接oe由知ac平面pdb于oaeo为ae与平面pdb所的角eaeoaeoeaeo45aoe即ae与平面pdb所成的角的大小为45edabcd在线段ad的垂直平分线上同理点f?在线段bc的垂直平分线上
全国通用2020-2022年三年高考数学真题分项汇编专题06立体几何解答题文
06 立体几何(解答题)(文科专用)1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;√3.(2)6403【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CD BD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB≅△CDB,所以∠FBA=∠FBC,由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH//DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析.【解析】 【分析】(1)先证明ABC 为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)由于11BF A B ⊥,11//AB A B ,所以AB BF ⊥, 又AB ⊥BB 1,1BB BF B ⋂=,故AB ⊥平面11BCC B , 则AB BC ⊥,ABC 为等腰直角三角形, 111221222BCE ABC S S ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥, 又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2 【解析】 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD . (2)[方法一]:相似三角形法 由(1)可知AM BD ⊥. 于是∽ABD BMA ,故=AD ABAB BM.因为1,,12===BM BC AD BC AB ,所以2112BC =,即BC =故四棱锥P ABCD -的体积13=⋅⋅=V AB BC PD . [方法二]:平面直角坐标系垂直垂直法由(2)知⊥AM DB ,所以1⋅=-AM BD k k . 建立如图所示的平面直角坐标系,设2(0)BC a a =>.因为1DC =,所以(0,0)A ,(1,0)B ,(0,2)D a ,()1,M a . 从而2020(2)211001--⋅=⨯=⨯-=-=---AM BD a a k k a a a .所以2a =,即DA =. [方法三]【最优解】:空间直角坐标系法 建立如图所示的空间直角坐标系D xyz -,设||=DA t ,所以(0,0,0)D ,(0,1,0)C ,(0,0,1)P ,(,0,0)A t ,(,1,0)B t . 所以,1,02t M ⎛⎫ ⎪⎝⎭,(,1,1)PB t =-,,1,02t AM ⎛⎫=- ⎪⎝⎭.所以2110(1)1022t t PB AM t ⎛⎫⋅=⋅-+⨯+⨯-=-+= ⎪⎝⎭.所以t ,即||=DA . [方法四]:空间向量法由PB AM ⊥,得0PB AM ⋅=. 所以()0++⋅=PD DA AB AM . 即0⋅+⋅+⋅=PD AM DA AM AB AM .又PD ⊥底面ABCD ,AM 在平面ABCD 内, 因此PD AM ⊥,所以0⋅=PD AM . 所以0⋅+⋅=DA AM AB AM ,由于四边形ABCD 是矩形,根据数量积的几何意义,得221||||02-+=DA AB ,即21||102-+=BC .所以||2BC =,即BC =. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积; 方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.【答案】(1)证明见解析;(2【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,AP ==在Rt PAO 中,PO ===∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24. 【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形, 1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN ∴BC ⊥平面1A AMN又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EF AP BC AM =即2AP BC EF AM ⋅=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形, 1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.。
立体几何文-高考文科数学试题专题分类汇编
立体几何1.【2018年浙江卷】已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则A.θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】 D点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】 C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】 C共三个,故选 C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.4.【2018年新课标I卷文】在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】 C点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.5.【2018年新课标I卷文】已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】 B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选 B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.6.【2018年全国卷Ⅲ文】设是同一个半径为4的球的球面上四点,为等边三角形且。
高考数学最新真题专题解析—立体几何(文科)
高考数学最新真题专题解析—立体几何(文科)考向一 线面夹角【母题来源】2022年高考全国甲卷(文科)【母题题文】 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30,则( ) A. 2AB AD =B. AB 与平面11AB C D 所成的角为30C. 1AC CB =D. 1B D 与平面11BB C C 所成的角为45︒ 【答案】D【试题解析】【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,22212B D c a b c ==++2a c =. 对于A ,AB a ,AD b ,2AB AD =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan c BAE a ∠==30BAE ∠≠,B 错误; 对于C ,223AC a b c =+=,2212CB b c c =+=,1AC CB ≠,C 错误; 对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确. 故选:D .【命题意图】本题主要考查直线与平面夹角,是一道容易题.【命题方向】这类试题在考查题型上选择题、填空题、解答题形式出现,试题难度不大,多为中低档题,重点考查线面夹角的求法问题. 【得分要点】(1)找斜线在平面中的射影; (2)求斜线与其射影的夹角; 考向二 线面平行、垂直的证明【母题来源】2022年高考全国乙卷(文科)【母题题文】 如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积. 【试题解析】【小问1详解】由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . 【小问2详解】依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形, 所以2,1,3AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥,由于12AFCS AC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小值.过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪ ⎪⎝⎭,所以34BF BD =. 过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以11133233324F ABC ABCV SFH -=⋅⋅=⨯⨯=【命题意图】本题考查线面平行、垂直的证明.【命题方向】这类试题在考查题型多以解答题形式出现,多为中档题,是历年高考的必考题型. 常见的命题角度有:(1)线面平行的证明;(2)线面垂直的证明;(3)面面平行的证明;(4)面面垂直的证明. 【得分要点】(1)利用线面、面面平行的判定定理与性质定理; (2)利用线面、面面垂直的判定定理与性质定理. 真题汇总及解析 一、单选题1.(2022·内蒙古·乌兰浩特一中模拟预测(文))已知,αβ为空间的两个平面,直线,l ααβ⊄⊥,那么“l ∥α”是“l β⊥”的( )条件 A .必要不充分 B .充分不必要C .充分且必要D .不充分也不必要【答案】A 【解析】 【分析】根据空间线面位置关系,结合必要不充分条件的概念判断即可. 【详解】当直线,l ααβ⊄⊥,l ∥α,则l β//,l 与β相交,故充分性不成立; 当直线l α⊄,且αβ⊥,l β⊥时,l ∥α,故必要性成立, ⸫“l ∥α”是“l β⊥”的的必要不充分条件. 故选:A.2.(2022·贵州·贵阳一中模拟预测(文))在正方体1111ABCD A B C D -中,M 为1A D 的中点,则直线CM 与11A C 所成的角为( ) A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】11AC AC ∥,所求角为ACM∠,利用几何体性质,解CMA 即可【详解】设正方体棱长为1,连接11,,AC AC AC CM ∴与11A C 所成角即是CM 与AC 所成角,22222221162,,1,2222AC AM CM AM CM AC ⎛⎫⎛⎫===++=∴+= ⎪ ⎪⎝⎭⎝⎭,CMA ∴为Rt △,1πsin ,26AM ACM ACM AC ∠∠==∴= 故选:D3.(2022·青海·模拟预测)已知四面体ABCD 的所有棱长都相等,其外接球的6π,则下列结论错误的是( ) A .四面体ABCD 的棱长均为2 B .异面直线AC 与BD 2 C .异面直线AC 与BD 所成角为60︒D .四面体ABCD 的内切球的体积等于6π27【答案】C 【解析】 【分析】对于A, 设该四面体的棱长为a ,表示出高,根据其外接球的体积等于6π,求得外接球半径,即可求得a ,判断A;对于B, 分别取BD,AC 的中点为E,F ,连接EF ,求得EF 的长,即可判断;对于C ,证明线面垂直即可证明异面直线AC 与BD 互相垂直,即可判断;对于D ,利用等体积法求得内切球半径,即可求得内切球体积,即可判断. 【详解】如图示,设该四面体的棱长为a ,底面三角形BCD 的重心为G ,该四面体的外接球球心为O ,半径为R ,连接AG ,GB,OB ,AG 为四面体的高,O 在高AG 上,在Rt AGB △中,2223336,()33BG AG a a ===-, 在Rt OGB △中,22263()()R R =-+,解得6R = , 6π,即34π6π3R ,故336R =故38,2a a == ,故A 正确; 分别取BD,AC 的中点为E,F ,连接EF ,正四面体ABCD 中,AE=EC ,故EF AC ⊥ ,同理EF BD ⊥, 即EF 为AC,BD 的公垂线,而3232CE =⨯= , 则2222(3)12EF CE CF =-=-= ,故B 正确;由于,AE BD CE BD ⊥⊥ , AE CE ⊂,平面ACE ,故BD ⊥平面ACE , 又AC ⊂平面ACE ,所以BD AC ⊥,即异面直线AC 与BD 所成角为90︒ ,故C 错误; 设四面体内切球的半径为r ,而263AG =,故11433BCDBCDSr SAG ⨯⨯⨯=⨯⨯,故646AG r a ==, 所以四面体ABCD 的内切球的体积等于3344666ππ()π3327r a ==,故D 正确, 故选:C4.(2022·湖北·华中师大一附中模拟预测)如图,正方体1111ABCD A B C D -中,P 是1A D 的中点,则下列说法正确的是( )A .直线PB 与直线1A D 垂直,直线PB ∥平面11B DC B .直线PB 与直线1D C 平行,直线PB ⊥平面11AC D C .直线PB 与直线AC 异面,直线PB ⊥平面11ADC B D .直线PB 与直线11B D 相交,直线PB ⊂平面1ABC【答案】A 【解析】 【分析】根据空间的平行和垂直关系进行判定. 【详解】连接11111,,,,DB A B D B D C B C ;由正方体的性质可知1BA BD =,P 是1A D 的中点,所以直线PB 与直线1A D 垂直;由正方体的性质可知1111//,//DB D B A B D C ,所以平面1//BDA 平面11B D C , 又PB ⊂平面1BDA ,所以直线PB ∥平面11B D C ,故A 正确;以D 为原点,建立如图坐标系,设正方体棱长为1,()111,1,,0,1,122PB D C ⎛⎫==- ⎪⎝⎭显然直线PB 与直线1D C 不平行,故B 不正确;直线PB 与直线AC 异面正确,()1,0,0DA =,102PB DA ⋅=≠,所以直线PB 与平面11ADC B 不垂直,故C 不正确;直线PB与直线B D异面,不相交,故D不正确;11故选:A.5.(2022·安徽·合肥市第八中学模拟预测)下列四个命题,真命题的个数为()(1)如果一条直线垂直于一个平面内的无数条直线,则这条直线垂直于该平面;(2)过空间一定点有且只有一条直线和已知平面垂直;(3)平行于同一个平面的两条直线平行;(4)a与b为空间中的两条异面直线,点A不在直线a,b上,则过点A有且仅有一个平面与直线a,b都平行.A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据线面垂直的定义即可判断命题(1);根据线面垂直的性质定理即可判断命题(2);根据空间中线面的位置关系即可判断命题(3);结合图形即可判断命题(4). 【详解】命题(1):由直线垂直平面的定义可知,若直线垂直于一个平面的任意直线,则该直线垂直于该平面,故命题(1)错误;命题(2):由直线与平面垂直的性质定理可知,过空间一定点有且只有一条直线与已知平面垂直,故命题(2)正确;命题(3):平行于同一个平面的两条直线,可能平行,可能相交,也可能异面,故命题(3)错误;命题(4):如图,当点A在如图上底面时,不存在平面同时平行于直线a、b;点A不在异面直线a、b上,若点A在直线a、b之间,则可以确定一个平面同时平行于直线a、b;若点A在直线a、b的外侧,也可以确定一个平面同时平行于直线a、b,故命题(4)错误.故选:B.6.(2022·河南安阳·模拟预测(文))如图,在四面体ABCD中,90BCD AB∠=︒⊥,平面BCD,AB BC CD==,P为AC的中点,则直线BP与AD所成的角为()A.π6B.π4C.π3D.π2【答案】D【解析】【分析】根据给定条件,证明BP⊥平面ACD即可推理计算作答.【详解】在四面体ABCD中,AB⊥平面BCD,CD⊂平面BCD,则AB CD⊥,而90BCD∠=︒,即BC CD⊥,又AB BC B⋂=,,AB BC⊂平面ABC,则有CD⊥平面ABC,而BP⊂平面ABC,于是得CD BP ⊥,因P 为AC 的中点,即AC BP ⊥,而AC CD C =,,AC CD ⊂平面ACD ,则BP ⊥平面ACD ,又AD ⊂平面ACD ,从而得BP AD ⊥, 所以直线BP 与AD 所成的角为π2. 故选:D7.(2022·四川成都·模拟预测)如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,A ,B ,C ,D 是该三棱锥表面上四个点,则直线AC 和直线BD 所成角的余弦为( )A .0B .13C .13-D 22【答案】A 【解析】 【分析】由三视图还原几何体,根据线面垂直的判定有BG ⊥面AGD ,线面垂直的性质可得BG AC ⊥,再由线面垂直的判定和性质得AC BD ⊥,即可得结果. 【详解】由三视图可得如下几何体:BG AG ⊥,BG DG ⊥,AG DG G =,则BG ⊥面AGD ,又AC ⊂面AGD ,则BG AC ⊥,而AC GD ⊥, 由BG GD G ⋂=,则AC ⊥面BGD ,又BD ⊂面BGD , 所以AC BD ⊥,故直线AC 和直线BD 所成角的余弦为0. 故选:A8.(2022·山东潍坊·三模)我国古代数学名著《九章算术》中给出了很多立体几何的结论,其中提到的多面体“鳖臑”是四个面都是直角三角形的三棱锥.若一个“鳖臑”的所有顶点都在球O 的球面上,且该“鳖臑”的高为2,底面是腰长为2的等腰直角三角形.则球O 的表面积为( ) A .12π B .43π C .6π D .26π【答案】A 【解析】 【分析】作出图形,设在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =,证明出该三棱锥的四个面均为直角三角形,求出该三棱锥的外接球半径,结合球体表面积公式可得结果. 【详解】 如下图所示:在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =, 因为AB ⊥平面BCD ,BC 、BD 、CD ⊂平面BCD ,则AB BC ⊥,AB BD ⊥,CD AB ⊥,CD BC ⊥,AB BC B ⋂=,CD平面ABC ,AC ⊂平面ABC ,AC CD ∴⊥,所以,三棱锥A BCD -的四个面都是直角三角形,且2222BD BC CD =+=,2223AD AB BD =+=,设线段AD 的中点为O ,则12OB OC AD OA OD ====, 所以,点O 为三棱锥A BCD -的外接球球心,设球O 的半径为R ,则132R AD ==,因此,球O 的表面积为2412R ππ=. 故选:A. 二、填空题9.(2022·四川成都·模拟预测(理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为________.【答案】816283++ 【解析】 【分析】根据三视图可知这是一个四面体,根据长度即可根据三角形面积公式求每一个面的面积,进而可得表面积. 【详解】该几何体的直观图是正方体中的四面体ABCD ,4,42,43AB AD BD BC CD AC ======,()21113448,44282,44282,42832224ABD ABC ADC DBCS S SS =⨯⨯==⨯⨯==⨯⨯==⨯= 故答案为: 816283++.10.(2022·上海普陀·二模)已知一个圆锥的侧面积为2π,若其左视图为正三角形,则该圆锥的体积为________. 3π3 【解析】 【分析】由圆锥侧面积公式求得底面半径12r =3.【详解】由题设,令圆锥底面半径为r ,则体高为3r ,母线为2r , 所以12222r r ππ⨯⨯=,则12r =,故圆锥的体积为2133324r r ππ⨯⨯=. 故答案为:324π 11.(2022·黑龙江·佳木斯一中模拟预测(理))如图,在正方体1111ABCD A B C D -中,点F 是棱1AA 上的一个动点,平面1BFD 交棱1CC 于点E ,则下列正确说法的序号是___________.①存在点F 使得11A C ∥平面1BED F ; ②存在点F 使得1B D ∥平面1BED F ; ③对于任意的点F ,都有EF BD ⊥;④对于任意的点F 三棱锥1E FDD -的体积均不变. 【答案】①③④ 【解析】 【分析】①,找到点F 为1AA 的中点时,满足11A C ∥平面1BED F ;②,证明出11,BD B D 相交,得到不存在点F 使得1B D ∥平面1BED F ;③,作出辅助线,证明线面垂直,进而得到线线垂直; ④,得到三棱锥1E FDD -的体积等于正方体体积的16,为定值. 【详解】当点F 为1AA 的中点,此时点E 为1CC 的中点,此时连接EF ,可得:11A C EF , 因为11A C ⊄平面1BED F ,EF ⊂1BED F ,所以11A C ∥平面1BED F ,①正确;连接11,BD B D ,因为11//BB DD ,且11BB DD =,所以四边形11BB D D 为平行四边形, 所以11,BD B D 相交, 因为1BD ⊂平面1BED F ,所以不存在点F 使得1B D ∥平面1BED F ,②错误连接AC ,BD ,则AC ⊥BD ,又1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA ⊥BD , 因为1AA AC A =, 所以BD ⊥平面11AAC C ,因为EF ⊂平面11AAC C , 所以BD ⊥EF ,③正确;连接DF ,EF ,ED ,则无论点F 在1A A 的何处,都有1112DFD SDD AD =⋅,是定值,为正方形11ADD A 面积的一半,又高等于CD ,故体积也为定值,为正方体体积的16,④正确.故选:①③④12.(2022·甘肃·武威第六中学模拟预测(文))如图,在长方体1111ABCD A B C D -中,E ,F 是棱CD 上的两个动点,点E 在点F 的左边,且满足122EF DC BC ==,给出下列结论:①11B D ⊥平面1B EF ;②三棱锥11D B EF -的体积为定值; ③1A A //平面1B EF ; ④平面11A ADD ⊥平面1B EF . 其中所有正确结论的序号是______. 【答案】②④ 【解析】 【分析】根据线面位置关系、面面位置关系判断命题①③④,由棱锥体积公式判断②. 【详解】11B D 与11D C 显然不垂直,而11//EF C D ,因此11B D 与EF 显然不垂直,从而11B D ⊥平面1B EF 是错误的,①错;1111D B EF B D EF V V --=,三棱锥11B D EF -中,平面1D EF 即平面11CDD C ,1B 到平面11CDD C 的距离为11B C 是定值,1D EF 中,EF 的长不变,1D 到EF 的距离不变,面积为定值,因此三棱锥体积是定值,②正确;平面1B EF 就是平面11B A DC ,而1AA 与平面11B A DC 相交,③错;长方体中CD ⊥平面11A D DA ,CD ⊂平面11B A DC ,所以平面11A D DA ⊥平面11B A DC ,即平面11A ADD ⊥平面1B EF ,④正确. 故答案为:②④.三、解答题13.(2022·四川成都·模拟预测(文))如图,四棱锥P ABCD -中,四边形ABCD 为直角梯形,,PB PD 在底面ABCD 内的射影分别为,AB AD ,222PA AB AD CD .(1)求证:PC BC ⊥; (2)求D 到平面PBC 的距离. 【答案】(1)证明见解析 3【解析】 【分析】(1)由题意可证AD PA ⊥、AB PA ⊥,则可得PA ⊥面ABCD ,即可知PA BC ⊥,又AC BC ⊥则可得BC ⊥面PAC ,即可证PC BC ⊥.(2)分别计算出BCD S 与PBC S ,再利用等体积法D PBC P BCD V V --=即可求出答案. (1)因为PB 在底面ABCD 内的射影为AB ,所以面PAB ⊥面ABCD , 又因为AD AB ⊥,面PAB ⋂面ABCD AB =,AD ⊂面ABCD 所以AD ⊥面PAB ,又因PA ⊂面PAB 因此AD PA ⊥, 同理AB PA ⊥,又AB AD A ⋂=,AD ⊂面ABCD ,AB 面ABCD 所以PA ⊥面ABCD ,又BC ⊂面ABCD ,所以PA BC ⊥,连接AC ,易得2AC =45BAC ∠=,又2AB =, 故AC BC ⊥,又PA AC A =,PA ⊂面PAC ,PA ⊂面PAC 因此BC ⊥面PAC , 又PC ⊂面PAC 即PC BC ⊥;(2)在RT PAC 中426PC =+=在RT ACB 中422BC =-把D 到平面PBC 的距离看作三棱锥D PBC -的高h , 由等体积法得,D PBC P BCD V V --=,故1133PBC BCD S h S PA ,即123213622BCD PBCS PA h S ,故D 到平面PBC 的距离为33. 14.(2022·青海·海东市第一中学模拟预测(文))如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,22CD AB ==,2AD =,90BAD ADC ∠=∠=︒,M 是棱PC 上一点.(1)若2MC MP =,求证://AP 平面MBD .(2)若MC MP =,求点P 到平面BDM 的距离.【答案】(1)证明见解析22 【解析】【分析】(1)连接AC ,记AC 与BD 的交点为H ,连接MH ,先证明//AP MH ,再由线面平行的判定定理即可证明.(2)由等体积法B DMP P BMD V V --=,即可求出点P 到平面BDM 的距离.(1)连接AC ,记AC 与BD 的交点为H ,连接MH .由90BAD ADC ∠=∠=︒,得//AB CD ,12AB AH CD HC ==,又12PM MC =,则AH PM HC MC =, ∴//AP MH ,又MH ⊂平面MBD ,PA ⊄平面MBD ,∴//AP 平面MBD .(2) 由已知易得3BD DM ==,3BM =,所以在等边BMD 中,BM 边上的高为32h =,所以BMD 的面积为13333224BMD S =⨯⨯=△, 易知三棱锥B PDM -的体积为116132326B DMP V -=⨯⨯⨯⨯=, 又因为B DMP P BMD V V --=,所以点P 到平面BDM 的距离为3223P BMD BMD V d S -==△. 15.(2022·贵州·贵阳一中模拟预测(文))如图,四棱锥P ABCD -中,平面,PAB ABCD ⊥平面,AB CD ∥,AB AD ⊥3,3,2,60AB AD AP CD PAB ====∠=︒.M 是CD 中点,N 是PB 上一点.(1)若3,BP BN =求三棱锥P AMN -的体积;(2)是否存在点N ,使得MN 平面PAD ,若存在求PN 的长;若不存在,请说明理由.【答案】(1)1;(2)存在,73=PN . 【解析】 【分析】 (1)证得点M 到平面PAB 的距离是3AD =,进而可求出结果; (2)证得//MN PE ,进而可证出MN //平面PAD ,从而可求出PN 的长.(1)P AMN M PAN V V --=, 由面PAB ⊥面ABCD 且交线是AB ,又DA AB ⊥,DA ⊂面PAB , 所以DA ⊥平面PAB ,又MD //AB , ∴点M 到平面PAB 的距离是3AD =, 又3BP BN =,则22123sin603332APN APB S S ==⨯⨯⨯⨯=, ∴三棱锥P AME -的体积13313=⨯⨯=. (2)存在.//,3,2AB DC AB CD==,连接BM并延长至于AD交于点E,//DM AB,∴在EAB中:13 EM DMEB AB==,∴在PBE△中:在PB上取点N,使得23 BN BMBP BE==,而13PN PB=,则//MN PE,又MN⊄平面PAD,PE⊂平面PAD,MN∴//平面PAD,在PAB△中,2212322372PB=+-⨯⨯⨯=7PN∴=。
高三数学专项训练:立体几何解答题(文科)(一)
(Ⅱ)求证:EF∥平面PAB;
21.
(本小题满分12分)如图,已知 平面 , 平面 , 为等边三角形, , 为 中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
(3)求直线 与平面 所成角的正弦值.
22.如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
(Ⅰ)求证: 平面 ;
(Ⅱ)求三棱锥 的体积.
11.如图,在三棱锥 中,侧面 与侧面 均为等边三角形, , 为 中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)求异面直线BS与AC所成角的大小.
12.(本题满分12分)
如图,已知AB 平面ACD,DE∥AB,△ACD是正三角形, ,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
44.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形, BCD=60 ,E是CD的中点,PA 底面ABCD,PA=2。
(1)证明:平面PBE 平面PAB;
(2)求PC与平面PAB所成角的余弦值.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积。
15.右图为一组合体,其底面 为正方形, 平面 , ,且
(Ⅰ)求证: 平面 ;
(Ⅱ)求四棱锥 的体积;
(Ⅲ)求该组合体的表面积.
16.四棱锥 中,底面 为平行四边形,侧面 底面 , 为 的中点,已知 ,
(Ⅰ)求证: ;
(Ⅱ)在 上求一点 ,使 平面 ;
(Ⅲ)求三棱锥 的体积.
17.(本小题满分12分) 在三棱柱 中,底面是边长为 的正三角形,点 在底面 上的射影 恰是 中点.
全国通用2020_2022三年高考数学真题分项汇编专题05立体几何选择题填空题文(含答案及解析)
全国通用2020_2022三年高考数学真题分项汇编:05 立体几何(选择题、填空题)(文科专用)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8 B.12 C.16 D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=b B 1D,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan ∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin ∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C<90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】 【分析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l +2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1, 因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确; 对于选项B ,如图所示,设11A BB E M =,EF BD N =,则MN 为平面1B EF 与平面1A BD 的交线,在BMN △内,作BP MN ⊥于点P ,在EMN △内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=, 底面正方形ABCD 中,,E F 为中点,则EF BD ⊥, 由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=, 据此可得222PB PG BG +≠,即90BPG ∠≠, 据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误; 对于选项C ,取11A B 的中点H ,则1AHB E ,由于AH 与平面1A AC 相交,故平面1B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A MB F ,由于1A M 与平面11AC D 相交,故平面1B EF 平面11AC D 不成立,选项D 错误;故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则V O−ABCD=13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2021年甲卷文科】在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A .B .C .D .【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D7.【2021年乙卷文科】在正方体1111ABCD A B C D 中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则111112BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D8.【2021年甲卷文科】已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________. 【答案】39π 【解析】 【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. 【详解】∵216303V h ππ=⋅=∴52h =∴132 l==∴136392S rlπππ==⨯⨯=侧.故答案为:39π.9.【2021年乙卷文科】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【解析】【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,B C BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -. 故答案为:③④. 【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.。
高考文科数学_立体几何三视图问题分类解答
高考文科数学:三视图问题分类解答例1、概念问题1、下列几何体各自的三视图中,有且仅有两个视图相同的是.(填序号)①正方体④正四棱锥③三棱台②圆锥2、如图,折线ABC表示嵌在玻璃正方体内的一根铁丝,请把它的三视图补充完整.俯视图左视图正视图CBA3 、已知某个几何体的三视图如下图所示,试根据图中所标出的尺寸(单位:㎝),可得这个几何体的体积是.101020202020正视图左视图俯视图4、已知某个几何体的三视图如下图所示,试根据图中所标出的尺寸(单位:㎝),可得这个几何体的面积是.222233俯视图正视图左视图例2、图形判定问题1、一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( D )A.球 B.三棱锥 C.正方体 D.圆柱2、某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( D )4、某几何体的正视图如左图所示,则该几何体的俯视图不可能的是( C )6、一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为B第5题图①长方形;②正方形;③圆;④椭圆. 其中正确的是(A)①②(B)②③(C)③④(D)①④例3、三视图和几何体的体积相结合的问题1、下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1与3的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于(A )π63 (B )π33 (C )π334 (D )π21答案:A2、一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于 A A .3B .23C .33D .633、设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B.3618π+ C.9122π+ D.9182π+其体积3439+332=18322V ππ=⨯⨯+()。
答案:D4、如图是一个几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( B )43π63π C.12π 3π例4、三视图和几何体的表面积相结合1、一个几何体的三视图如图所示,则该几何体的表面积为_____38___。
高三立体几何习题文科含答案(K12教育文档)
高三立体几何习题文科含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三立体几何习题文科含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三立体几何习题文科含答案(word版可编辑修改)的全部内容。
23正视图 图1侧视图 图22 2图3立几习题21若直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D)1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为A .3.4 C .3.24。
某几何体的三视图如图所示,则它的体积是( )A 。
283π- B.83π-C 。
8-2πD 。
23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD5(本小题满分13分)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,1OA=,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。
(整理)高考文科数学立体几何_(答案详解).
选择题1.(12年四川卷)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的 一点P 满足60BOP ∠=,则A 、P 两点 间的球面距离为 ( )A. RB. 4R πC. RD. 3R π 2.(12年广东卷)某几何体的三视图如图1所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π3.(12年重庆卷)设四面体的六条棱的长分别为1,1,1,1和a 且长为a的棱与长为的棱异面,则a 的取值范围是( )A.B.C.D.4.(12年浙江卷)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ) A.1cm 3 B.2cm 3 C.3cm 3 D.6cm3图1C5.(12年浙江卷)设l 是直线,αβ,是两个不同的平面 ( )A.若l ∥α,l ∥β,则α∥βB. 若l ∥α,l ⊥β,则α⊥βC. 若α⊥β,l ⊥α,则l ⊥βD. 若α⊥β, l ∥α,则l ⊥β6.(12年新课标卷)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( )A .6B .9C .12D .187. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+ B.30+ C.56+ D .60+ 8.(12年福建卷)一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 9.(12年湖南卷)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( )10.(12年江西卷)若一个几何体的三视图如图所示,则此几何体的体积为 ( ) A B C DA .112 B.5 C.4 D. 9211.(12年大纲卷)已知正四棱柱1111ABCD A B C D -中,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2 BCD .1 12.(12年陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )填空题1.(12年湖北卷)已知某几何体的三视图如图所示,则该几何体的体积为 .左视图主视图俯视图侧视图正视图俯视图2.(12年四川卷)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD ,1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________.3.(12年山东卷)如图,正方体1111D C B A ABCD -的棱长为1,E 为线段C B 1上的一点,则三棱锥1DED A -的体积为___________ .4.(12年安徽卷)某几何体的三视图如图所示,该几何体的体积是_____.5.(12年江苏卷)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.NA 1A B CC 1 A 1 侧(左)视图正(主)视图 4俯视图 5 4 26.(12年辽宁卷)一个几何体的三视图如图所示,则该几何体的体积为_______________.7.(12年辽宁卷)已知点P A B C D ,,,,是球O 表面上的点,PA ABCD ⊥平面,四边形ABCD是边长为.若PA =,则OAB ∆的面积为______________. 8.(12年大纲卷)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为 .9.(12年上海卷)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 10.(12年天津卷)一个几何体的三视图如图所示(单位:m ),则该几何体的体积 3m.2.(12年山东卷)(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .3.(12年广东卷)(本小题满分13分)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 6.(12年新课标卷)(本小题满分12分) 如图,三棱柱111ABC A B C -中,侧棱垂直底面,o 90ACB ∠=,112AC BC AA ==,D 是棱1AA 的 中点.(I) 证明:平面BDC ⊥平面1BDC(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.选择题1.【答案】A【分析】由已知可知,AOP CBD ⊥面面,∴cos cos cos AOP AOB BOP =∠∠∠,带入数据得12cos ==224AOP ∠,arccos 4AP R ∴=. 2. 【答案】C【分析】几何体是半球与圆锥叠加而成它的体积为32141π3π330π233V =⨯⨯+⨯⨯= 3.【答案】:A【分析】:如图所示,取,EF 分别为,PC AB 的中点,依题意可得PB BC ⊥,所以 GEAB FCPD H2BE ==.在BEF ∆中,BF BE <,所以2AB BF =<4. 【答案】C【分析】由题意判断出,底面是一个直角三角形,两个直角边分别为1和2,整个棱锥的高由侧视图可得为3,所以三棱锥的体积为11123132⨯⨯⨯⨯=. 5.【答案】B【分析】利用排除法可得选项B 是正确的,∵l ∥α,l ⊥β,则α⊥β.如选项A :l ∥α,l ∥β时,α⊥β或α∥β;选项C :若α⊥β,l ⊥α时,l ∥β或l β⊂;选项D :若α⊥β,l ∥α时,l ∥β或l ⊥β.6. 【答案】B【分析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,底边上高为3的等腰三角形,棱锥的高为3,故其体积为1163332⨯⨯⨯⨯=9,故选B. 7. 【答案】B 【分析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:=10=10=10S S S S 后右左底,,,因此该几何体表面积30S =+,故选B .8. 【答案】D【分析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆.9. 【答案】D【分析】本题是组合体的三视图问题,由几何体的正视图和侧视图均相同,原图下面部分应为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面部分应为中间有条虚线的矩形..10. 【答案】C【分析】通过观察几何体的三视图可知,该几何体是一个底面为六边形(2条对边长为1,其余4),高为1的直棱柱.所以该几何体的体积为112122142V sh ⎛⎫==⨯+⨯⨯⨯⨯= ⎪⎝⎭,故选D.11. 【答案】D【分析】因为底面的边长为2,高为,AC BD ,得到交点为O ,连接EO ,1//EO AC ,则点1C 到平面BDE 的距离等于C 到平面BDE 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三角形OCE 中,利用等面积法,可得1CH =,故选答案D. 12.【答案】B【分析】显然从左边看到的是一个正方形,因为割线1AD 可见,所以用实线表示;而割线1B C 不可见,所以用虚线表示.故选B .填空题1. 【答案】12π【分析】该几何体的左中右均为圆柱体,其中左右圆柱体全等,是底面半径为2,高为1的 圆柱体;中间部分是底面半径为1,高为4的圆柱体,所以所求的体积为:22π212π14=12πV =⨯⨯⨯+⨯⨯.2. 【答案】o 90【分析】方法一:连接D 1M ,易得DN ⊥A 1D 1 ,DN ⊥D 1M ,所以,DN ⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN ⊥A 1M ,故夹角为o 90 方法二:以D 为原点,分别以DA , DC , DD 1为x , y , z 轴,建立空间直角坐标系D —xyz .设正方体边长为2,则D (0,0,0),N (0,2,1),M (0,1,0),A 1(2,0,2)故1(0,2,1)(2,1,2)DN MA ==-, 所以, 111cos ,0DN MA DN MA DN MA <>==,故DN ⊥A 1M ,所以夹角为o 90.3. 【答案】61【分析】求1DED A -的体积,显然为定值,也就是说三棱锥的底面面积与三棱锥的高都为定值,因此,我们需要找一个底面为定值的三角形,三角形1ADD 的面积为21(为定值),而E 点到底面1ADD 的高恰为正方体的高为1(为定值),因此体积为61. 4. 【答案】56 【分析】该几何体是底面是直角梯形,高为4的直四棱柱,几何体的的体积是:()12544562V =⨯+⨯⨯=5. 【答案】6【分析】∵长方体底面ABCD 是正方形 ,∴△ABD 中BD cm ,BD 边上的高(它也是四棱锥11A BB D D -的高)∴四棱锥11A BB D D -的体积为123⨯6. 【答案】12π+【分析】由三视图可知该几何体为一个长方体和一个等高的圆柱的组合体,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,高位1,所以该几何体的体积为3411112ππ⨯⨯+⨯⨯=+7.【答案】【分析】点P A B C D O 、、、、为球内接长方体的顶点,14O OAB ∴∆球心为该长方体对角线的中点,的面积是该长方体对角面面积的,164OAB AB PA S ∆===⨯=8. 【答案】35【分析】首先根据已知条件,连接DF ,则由//DF AE 可知1DFD ∠或其补角为异面直线AE 与1D F 所成的角,设正方体的棱长为2,则可以求解得到112DF D F DD ===,再由余弦定理可得22211115543cos 2255D F DF D D DFD D F DF +-+-∠===⋅⨯.9. 【答案】π6【分析】根据该圆柱的底面周长得底面圆的半径为1=r ,所以该圆柱的表面积为:22π2π4π2π6πS rh r =+=+=.10. 【答案】30【分析】由三视图可知这是一个下面是个长方体,上面是个平躺着的底面为直角梯形的直四棱柱构成的组合体.长方体的体积为24243=⨯⨯,直四棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30.2. 【证明】(Ⅰ)设BD 的中点为O ,连接,OC OE , 则由BC CD CO BD =知垂直 又CE BD ⊥,所以BD OCE ⊥平面 所以BD OE ⊥,即OD 是BE 的垂直平分线BE DE =所以(Ⅱ)取AB 的中点为N ,连接MN ,DN ONM因为M 是AE 的中点,,所以//MN BE 因为ABD ∆是等边三角形,所以DN ⊥AB由o o 12030BCD CBD ∠=∠=知,所以o 90ABC ∠=,即BC ⊥AB所以ND //BC所以平面MND //平面BEC ,故DM //平面BEC3. 【解】(1)AB ⊥平面PAD ,PH ⊂面PAD PH AB ⇒⊥ 又,PH AD ADAB A PH ⊥=⇒⊥面ABCD(2)E 是PB 中点⇒点E 到面BCF 的距离1122h PH ==三棱锥E BCF -的体积1111113326212BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯= (3)过D 作DG PA G ⊥于,连接EG ,易得EG PAD ⊥面 由AB ⊥平面PAD ⇒面PAD ⊥面PAB DG ⇒⊥面PAB E P B E GP A A B P是的中点,⊥,⊥ 11//,//////22EG AB DF AB EG DF DG EF ⇒⇒⇒ 得:EF ⊥平面PAB6. 【解】(Ⅰ)由题设知1BC CC ⊥,BC AC ⊥,1CC AC C =∩,∴BC ⊥面11ACC A又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥,又∵DC BC C =∩,∴1DC ⊥面BDC , ∵1DC ⊂面1BDC ,∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12,由三棱柱111ABC A B C -的体积V =1,精品文档精品文档 ∴11():V V V =1:1,∴平面1BDC 分此棱柱为两部分体积之比为1:1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科数学立体几何高考题答案
1、 解:(1)在等边三角形ABC 中,AD AE =
AD AE
DB EC
∴
=,在折叠后的三棱锥A BCF -中也成立, //DE BC ∴ ,DE ⊄Q 平面BCF , BC ⊂平面BCF ,//DE ∴平面BCF ;
(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12
BF CF ==
.
Q 在三棱锥A BCF -中,2
BC =
,222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥Q 平面;
(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.
111111132323323324F DEG E DFG
V V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭
2、(1)AB ⊥平面PAD ,PH ⊂面PAD PH AB ⇒⊥ 又,PH AD AD AB A PH ⊥=⇒⊥I 面ABCD (2)E 是PB 中点⇒点E 到面BCF 的距离11
22
h PH == 三棱锥E BCF -的体积
11111
13326212
BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯=
(3)取PA 的中点为G ,连接,DG EG
PD AD DG PA =⇒⊥,又AB ⊥平面PAD ⇒面PAD ⊥面
PAB DG ⇒⊥面PAB
点,E G 是棱,PB PA 的中点
11
//
,//////22
EG AB DF AB EG DF DG EF ⇒⇒⇒ 得:EF ⊥平面PAB
3、(Ⅰ)易得:∵1O A C CEE ''''⊥面,2BO C CEE ''⊥面,∴12//O A BO '',∴12,,,O A B O ''共面.
(Ⅱ) ∵2H B O B ''''⊥,H B BB '''⊥,∴2H B O B B '''⊥面,∴2O B H B ''⊥, 延长1AO 至H ,使1O H =1AO ,连结1HO ',1O A ',1O A '交GH '于点I ,显然
211////O B HO O A ''',
在正方形AA H H ''中,tan GH A ''=1tan O A A '=1
2
, ∴1GH A O A A '''∠=∠,
∴1GH A H A O ''''∠+∠=0
190O A A H A O '''∠+∠=,
∴090H IA ''∠=,即1H G A O ''⊥, ∴2O B H G ''⊥, ∴2BO H B G '''⊥面. 4、 (2010)(1)证明:Θ点E 为弧AC 的中点
5、【2009】(1)侧视图同正视图,如下图所示.
C A
E B
D
H
P
G
O
40cm
60cm 20cm
(2)该安全标识墩的体积为:P EFGH ABCD EFGH V V V --== 221
406040203200032000640003
=
⨯⨯+⨯=+=()2cm
(3)如图,连结EG ,HF 及 BD ,EG 与HF 相交于O ,连结PO . 由正四棱锥的性质可知,
PO ⊥平面EFGH , PO HF ∴⊥
6、(2008)解:(1)因为BD 是园的直径,所以90BAD ∠=o
又△ADP ~△BAD . 所以
()()22
3
4sin 604,31
sin 3022
R BD AD DP AD DP R BA AD BA BD R ⨯
====
=⨯o
o (2)在Rt BCD V 中,cos 452CD BD R ==o
因为 2
2
2
2
2
9211PD CD R R R +=+= 所以PD CD ⊥ 又90PDA ∠=o
所以PD ⊥底面ABCD ()113212sin 60452222ABC S AB BC R R ⎛⎫
=
⨯+=⨯⨯+⨯ ⎪ ⎪⎝⎭o o V 23R += 三棱锥P ABC -体积为
23
11313133344
P ABC ABC V S PD R R R -++=⨯⨯=⨯⨯=V
7、(2007)解: 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的
四棱锥V-ABCD ;
P
D
A
B
(1) ()1
864643
V =
⨯⨯⨯= (2) 该四棱锥有两个侧面VAD. VBC 是全等的等腰三角形,且BC 边上的高为
1h ==另两个侧面VAB. VCD 也是全等的等腰三角形,
AB 边上的高为
25h ==
因此
1
1
2(685)4022
S =⨯⨯⨯⨯=+8.(本小题满分12分)
解:(1)证明:111111//,//,//FH B C B C AG FH AG ∴Q -------2分 又1A G ⊂平面1AGE ,FH ⊄平面1
AGE , ∴//FH 平面1A EG -------4分
(2)1AG ⊥Q 平面11ABB A ,AH ⊂平面11ABB A , 1
AH AG ∴⊥ -------5分 又11,ABH A AE HAB EA A ∆≅∆∴∠=∠Q
11190,90A AH HAB A AH EA A ∠+∠=︒∴∠+∠=︒Q ,1AH A E ∴⊥ -------6分
又1
11AG A E A =Q I ,AH ∴⊥平面1A EG , -------7分 EG ⊂Q 平面1A EG ,故AH EG ⊥ -------8分
(3)连结1,,HA HE HG ,由(1)得//FH 平面1A EG ,11H A EG F A EG V V --∴= -------9分 又1111111113114488A EH ABB A A AE A B H EBH S S S S S ∆∆∆∆=---=⨯-
--=,1
1
2
AG = -------10分 111111
11311
338216A EFG F A EG H A EG G A EH A EH V V V V S AG ----∆∴=====⨯⨯=g -------12分
A
A 1
E。