2017年中考数学模拟冲刺卷 03(河南卷考试版)

合集下载

2017年中考数学模拟冲刺卷 03(河南卷全解全析)

2017年中考数学模拟冲刺卷 03(河南卷全解全析)

abc 3, ba
故选 D. 10. 【解析】B 【解析】根据表格中的规律可得:①正确,因为 24=16;②错误,因为 55≠25;③正确,因为 2-1= 上,正确运算的标号为①③,故选 B. 11. 【答案】 2 【解析】原式 2 4 4 2 4 2 . 12. 【答案】
3 = 3, 2
数学 第 2 页(共 9 页)
∴ S阴影 S△OAB S扇形OMN
60 ( 3)2 1 × 2× 3 = 3 . 2 2 360
15. 【答案】7
(3 分) 16.【解析】原式 x2 2xy y 2 ( x2 4 y 2 ) x2 2xy y 2 x2 4 y 2 2xy 5 y 2 ,
4. 【答案】A 【解析】选项 A 正确,根据二次根式的运算法则可得原式= 2 2 2 2 ;选项 B 错误,根据乘方的运 算法则可得原式=9; 选项 C 错误, 不是同类项, 不能合并; 选项 D 错误, 根据积的乘方运算可得原式= a6 , 故选 A. 5. 【答案】D 【解析】 对于选项 D, 正确说法为: 函数 y 6. 【答案】C 【解析】根据旋转角的定义,两对应边的夹角就是旋转角,可得旋转角是 CAC 180 30 150 ,故 选 C. 7. 【答案】B 【解析】众数是一组数据中出现次数最多的数据,所以众数是 165;把数据按从小到大顺序排列,可得中 位数=(170+170)÷ 2=170,故选 B. 8. 【答案】D 【解析】根据等腰三角形的性质推出∠A=∠CDA=50° ,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角
17.【解析】 (1) a 16 , b 20 ; (2 分) 该班学生总数为: 12 24% 50 (人) , 则 a 50 8 12 10 4 16 , b

河南省中考模拟数学考试试卷(三)

河南省中考模拟数学考试试卷(三)

河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。

2017年河南省中考数学押题试卷及解析答案word版(三)

2017年河南省中考数学押题试卷及解析答案word版(三)

2017年河南省中考数学押题试卷(三)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.﹣5 B.5 C.﹣ D.2.(3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B. C.D.3.(3分)下列运算正确的是()A.2a2﹣4a2=﹣2 B.(﹣b3)2=﹣b6C.(xy)2÷(﹣xy)=﹣xy D.(m﹣n)2=m2﹣n24.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.(3分)现在网购已经成为人们的一种常用消费方式,在2016年的“双11”网上促销活动中天猫和淘宝的支付交易额突破120700000000元,将120700000000用科学记数法表示为()A.1.207×1012B.12.07×1010C.1.207×1011D.1.207×10106.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°7.(3分)如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF :S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:118.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.9.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B 时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.10.(3分)如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:①;②∠ADF=∠CDB;=5S△BDF,其中正确结论有()个.③点F是GE的中点;④AF=;⑤S△ABCA.2 B.3 C.4 D.5二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算;3﹣1+(π﹣3)0﹣|﹣|=.12.(3分)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.13.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为.14.(3分)已知关于x的不等式组只有5个整数解,则a的取值范围是.15.(3分)如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE的长为.三、解答题(本大题共8小题,共75分)16.(8分)分式化简求值:(1﹣)÷,其中a=2sin60°﹣tan45°,b=1.17.(9分)如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,E是BC的中点,AB交⊙O于D点.(1)直接写出ED和EC的数量关系:;(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;(3)填空:当BC=时,四边形AOED是平行四边形,同时以点O、D、E、C为顶点的四边形是.18.(9分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:请根据以图表信息,解答下列问题:(1)表中m=,n=;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.19.(9分)某校为美化校园,安排甲、乙两个工程队进行绿化.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在各自独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若绿化区域面积为1800m2,学校每天需付给甲队的绿化费用为0.4万元,每天需付给乙队的绿化费用为0.25万元,设安排甲队工作y天,绿化总费用为W万元.①求W与y的函数关系式;②要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?20.(9分)如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)21.(10分)如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2),B(,n).(1)求这两个函数解析式;(2)根据图象直接回答:在第一象限内,当x满足条件时,一次函数大于反比例函数的值;(3)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.22.(10分)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.23.(11分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年河南省中考数学押题试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.﹣5 B.5 C.﹣ D.【解答】解:﹣的倒数是﹣5,故选A2.(3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B. C.D.【解答】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.3.(3分)下列运算正确的是()A.2a2﹣4a2=﹣2 B.(﹣b3)2=﹣b6C.(xy)2÷(﹣xy)=﹣xy D.(m﹣n)2=m2﹣n2【解答】解:(A)原式=﹣2a2,故A错误;(B)原式=﹣b6,故B错误;(D)原式=m2﹣2mn+n2,故D错误;故选(C)4.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B.5.(3分)现在网购已经成为人们的一种常用消费方式,在2016年的“双11”网上促销活动中天猫和淘宝的支付交易额突破120700000000元,将120700000000用科学记数法表示为()A.1.207×1012B.12.07×1010C.1.207×1011D.1.207×1010【解答】解:120700000000=1.207×1011,故选:C.6.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.7.(3分)如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF :S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11【解答】解:∵O为平行四边形ABCD对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,∴DE:EB=1:3,又∵AB∥DC,∴△DFE∽△BAE,∴=()2=,∴S△DEF=S△BAE,∵=,∴S△AOB=S△BAE,∴S△DEF :S△AOB==1:6,故选C.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【解答】解:观察二次函数图象可得出:a>0,﹣>0,c>0,∴b<0.∴反比例函数y=的图象在第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限.故选A.9.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B 时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【解答】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选:B.10.(3分)如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:①;②∠ADF=∠CDB;③点F是GE的中点;④AF=;⑤S=5S△BDF,其中正确结论有()个.△ABCA.2 B.3 C.4 D.5【解答】解:依题意可得BC∥AG,∴△AFG∽△BFC,∴又AB=BC,∴故结论①正确;如右图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,∴△ABG≌△BCD(ASA),∴AG=BD,又BD=AD,∴AG=AD;在△AFG与△AFD中,∴△AFG≌△AFD(SAS),∴∠5=∠2,又∠5+∠3=∠1+∠3=90°,∴∠5=∠1,∴∠1=∠2,即∠ADF=∠CDB.故结论②正确;∵△AFG≌△AFD,∴FG=FD,又△FDE为直角三角形,∴FD>FE,∴FG>FE,即点F不是线段GE的中点.故结论③错误;∵△ABC为等腰直角三角形,∴AC=∵△AFG≌△AFD,∴AG=AD=∵△AFG∽△BFC,∴,∴FC=2AF,∴AF=,故结论④正确;∵AF=,=S△ABC;又D为中点,∴S△BDF=S△ABF,所以S△ABF=S△ABC,即S△ABC=6S△BDF.∴S△BDF故结论⑤错误.综上所述,结论①②④正确,故选B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算;3﹣1+(π﹣3)0﹣|﹣|=1.【解答】解:原式=+1﹣=1,故答案为:112.(3分)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.13.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为=1.【解答】解:由题意得:=1;故答案为:=114.(3分)已知关于x的不等式组只有5个整数解,则a的取值范围是﹣4<a≤﹣3.【解答】解:,解不等式①,得x≥a,解不等式②,得x<2,∵不等式组有5个整数解,即:1,0,﹣1,﹣2,﹣3,∴﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.15.(3分)如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,∴D′B=D′C,∠D′BC=∠D′CB,∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,∴DD′=AD′=AD,∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.三、解答题(本大题共8小题,共75分)16.(8分)分式化简求值:(1﹣)÷,其中a=2sin60°﹣tan45°,b=1.【解答】解:原式=÷,=•=,当a=2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,原式==.17.(9分)如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,E是BC的中点,AB交⊙O于D点.(1)直接写出ED和EC的数量关系:ED=EC;(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;(3)填空:当BC=2时,四边形AOED是平行四边形,同时以点O、D、E、C为顶点的四边形是正方形.【解答】解:(1)连结CD,如图,∵AC是⊙O的直径,∴∠ADC=90°,∵E是BC的中点,∴DE=CE=BE;(2)DE是⊙O的切线.理由如下:连结OD,如图,∵BC为切线,∴OC⊥BC,∴∠OCB=90°,即∠2+∠4=90°,∵OC=OD,ED=EC,∴∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4=90°,即∠ODB=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)当BC=2时,∵CA=CB=2,∴△ACB为等腰直角三角形,∴∠B=45°,∴△BCD为等腰直角三角形,∴DE⊥BC,DE=BC=1,∵OA=DE=1,AO∥DE,∴四边形AOED是平行四边形;∵OD=OC=CE=DE=1,∠OCE=90°,∴四边形OCED为正方形.故答案为ED=EC;2,正方形.18.(9分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:请根据以图表信息,解答下列问题:(1)表中m=120,n=0.2;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.19.(9分)某校为美化校园,安排甲、乙两个工程队进行绿化.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在各自独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若绿化区域面积为1800m2,学校每天需付给甲队的绿化费用为0.4万元,每天需付给乙队的绿化费用为0.25万元,设安排甲队工作y天,绿化总费用为W万元.①求W与y的函数关系式;②要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得﹣=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)①甲队工作y天完成:100y(m2),乙队完成工作所需要:(天)∴w=0.4y+0.25×=9﹣0.1y②当总费用w不超过8万元时,9﹣0.1y≤8解得y≥10答:函数表达式为w=9﹣0.1y,至少应安排甲队工作10天.20.(9分)如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)【解答】解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.21.(10分)如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2),B(,n).(1)求这两个函数解析式;(2)根据图象直接回答:在第一象限内,当x满足条件<x<2时,一次函数大于反比例函数的值;(3)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.【解答】解:(1)把点A(2,2)代入反比例函数y=中,得:k=2×2=4,∴反比例函数解析式为:y=,当x=时,n=4,n=8,∴B(,8),则,解得:,∴一次函数的解析式为:y=﹣4x+10;(2)由图象得:当<x<2时,一次函数大于反比例函数的值;故答案为:<x<2;(3)设平移后的解析式为y=﹣4x+10﹣m与y=图象只有一个交点,则,得:4x2+(m﹣10)x+4=0,∴△=(m﹣10)2﹣4×4×4=0,解得:m=2或18.22.(10分)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.【解答】解:(1)∵点P与点B重合,点B的坐标是(2,1),∴点P的坐标是(2,1).∴PA的长为2;(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.∵点A的纵坐标与点B的横坐标相等,∴OA=AB.∵∠OAB=90°,∴∠AOB=∠ABO=45°.∵∠AOC=90°,∴∠POC=45°.∵PM⊥x轴,PN⊥y轴,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.∵∠APC=90°.∴∠APN=90°﹣∠APM=∠CPM.在△ANP和△CMP中,,∴△ANP≌△CMP.∴PA=PC.∴PA:PC的值为1:1;(3)①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图2所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴.∵∠ACE=∠AEC,∴AC=AE.∵AP⊥PC,∴EP=CP.∵PM∥y轴,∴AF=CF,OM=CM.∴FM=OA.设OA=x,∵PF∥OA,∴△PDF∽△ODA.∴,∵PD=2OD,∴PF=2OA=2x,FM=x.∴PM=x.∵∠APC=90°,AF=CF,∴AC=2PF=4x.∵∠AOC=90°,∴OC=x.∵∠PNO=∠NOM=∠OMP=90°,∴四边形PMON是矩形.∴PN=OM=x.∴PA:PC=PN:PM=x:x=.②若点P在线段OB的反向延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图3所示.同理可得:PM=x,CA=2PF=4x,OC=x.∴PN=OM=OC=x.∴PA:PC=PN:PM=x:x=.综上所述:PA:PC的值为或.23.(11分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【解答】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)如图1,过点E作EN⊥y轴于点N设点E(m,a(m+1)(m﹣3)),y AE=k1x+b1,则,解得:,∴y AE=a(m﹣3)x+a(m﹣3),M(0,a(m﹣3))∵MC=a(m﹣3)﹣a,NE=m=S△ACM+S△CEM=[a(m﹣3)﹣a]+[a(m﹣3)﹣a]m=(m+1)[a(m ∴S△ACE﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知x D﹣x P=x A﹣x Q,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=y D+y Q=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

河南省中原名校2017届中考数学三模试卷(解析版)

河南省中原名校2017届中考数学三模试卷(解析版)

2017年河南省中原名校中考数学三模试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.计算:﹣〔﹣2〕的倒数是〔〕A.2 B.C.D.±22.计算正确的选项是〔〕A.〔﹣5〕0=0 B.x3+x4=x7C.〔﹣a2b3〕2=﹣a4b6D.2a2•a﹣1=2a3.2016年我省旅游业的总收入为5764亿元,其中5764亿用科学记数法表示为〔〕×103×1011 C.5764×108×10124.实数a,b,c在数轴上的对应点的位置如下图,则正确的结论是〔〕A.﹣a>b B.ab<c C.﹣a>c D.|c|=|a|+|b|5.如图是某个几何体的三视图,该几何体是〔〕A.圆锥B.三棱锥C.四棱锥D.四棱柱6.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少〔〕A.30°B.15°C.18°D.20°7.假设k≠0,b>0,则y=kx+b的图象可能是〔〕A.B.C.D.8.如图,在平面直角坐标系中,点P〔1,5〕,Q〔m,n〕在反比例函数的图象上,过点P分别作x轴、y轴的垂线,垂足为点A,B;点Q为图象上的动点,过点Q分别作x轴、y轴的垂线,垂足分别为点C、D,两垂线相交于点E,随着m的增大,四边形OCQD与四边形OAPB不重合的面积变化为〔〕A.先增大后减小B.先减小后增大C.先减小后增大再减小D.先增大后减小再增大9.在平面直角坐标系xOy中,已知A〔2,3〕,B〔1,0〕,C是y轴上的一个动点,当△ABC的周长最小时,则△ABC的面积为〔〕A.2 B.C.3+D.10.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A 的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y 关于x的函数图象大致是〔〕A.B.C.D.二、填空题〔本大题共5小题,每题3分,共15分〕11.如果分式有意义,那么x的取值范围是.12.在同一时刻,小红测得小亮的影子长为0.8m,教学楼的影长为9m,已知小亮的身高为1.6m,那么教学楼的高度为.13.二次函数y=mx2﹣2x+1,当x时,y的值随x值的增大而减小,则m的取值范围是.14.半径为1的两圆放置位置如下图,一圆的直径恰好是另一圆的切线,圆心均为切点,则阴影部分的面积为.15.如图,在正方形ABCD中,F是CD的中点,连接BF,将△BCF沿BF对折,得到△BPF,延长FP交BA的延长线于点Q,则sin∠BQP的值为.三、解答题〔本大题共8小题,共75分〕16.〔8分〕先化简:〔2﹣〕÷,再选一个你喜欢的整数,代入求值.17.〔9分〕某中学为了了解在校学生对校本课程的喜爱情况,随机调查了九年级学生对A,B,C,D,E五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个统计图.请根据图中所提供的信息,完成以下问题:〔1〕本次被调查的学生的人数为;〔2〕补全条形统计图;〔3〕扇形统计图中,C类所在扇形的圆心角的度数为;〔4〕假设该中学有4000名学生,请估计该校喜爱C,D两类校本课程的学生共有多少名.18.〔9分〕在圆O中,AC是圆的弦,AB是圆的直径,AB=6,∠ABC=30°,过点C作圆的切线交BA的延长线于点P,连接BC.〔1〕求证:△PAC∽△PCB;〔2〕点Q在半圆ADB上运动,填空:①当AQ=时,四边形AQBC的面积最大;②当AQ=时,△ABC与△ABQ全等.19.〔9分〕如图,旗杆AB顶端系一根绳子AP,绳子底端离地面的距离为1m,小明将绳子拉到AQ的位置,测得∠PAQ=25°,此时点Q离地面的高度为1.5m,求旗杆的高度〔结果保留整数.sin25°=0.42,cos25°=0.90,tan25°=0.47〕20.〔10分〕某游泳池一天要经过“注水﹣保持﹣排水”三个过程,如图,图中折线表示的是游泳池在一天某一时间段内池中水量y〔m3〕与时间x〔min〕之间的关系.〔1〕求排水阶段y与x之间的函数关系式,并写出x的取值范围;〔2〕求水量不超过最大水量的一半值的时间一共有多少分钟.21.〔9分〕为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.〔1〕A,B两种型号的自行车的单价分别是多少?〔2〕假设购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.22.〔10分〕已知正方形ABCD的边长为8,点E为BC的中点,连接AE,并延长交射线DC于点F,将△ABE沿着直线AE翻折,点B落在B′处,延长AB′,交直线CD于点M.〔1〕判断△AMF的形状并证明;〔2〕将正方形变为矩形ABCD,且AB=6,BC=8,假设B′恰好落在对角线AC上时,得到图2,此时CF=,=;〔3〕在〔2〕的条件下,点E在BC边上.设BE为x,△ABE沿直线AE翻折后与矩形ABCD重合的面积为y,求y与x之间的函数关系式.23.〔11分〕如图,二次函数y=x2+bx+c的图象经过A〔﹣1,0〕和B〔3,0〕两点,且交y轴于点C,M为抛物线的顶点.〔1〕求这个二次函数的表达式;〔2〕假设将该二次函数图象向上平移m〔m>0〕个单位,使平移后得到的二次函数图象的顶点落在△BOC的内部〔不包含边界〕,求m的取值范围;〔3〕点P是抛物线上一动点,PQ∥BC交x轴于点Q,当以点B,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.2017年河南省中原名校中考数学三模试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.计算:﹣〔﹣2〕的倒数是〔〕A.2 B.C.D.±2【考点】17:倒数.【分析】首先去括号,进而利用倒数的定义得出答案.【解答】解:∵﹣〔﹣2〕=2,∴﹣〔﹣2〕的倒数是:.故选:C.【点评】此题主要考查了倒数的定义,正确去括号是解题关键.2.计算正确的选项是〔〕A.〔﹣5〕0=0 B.x3+x4=x7C.〔﹣a2b3〕2=﹣a4b6D.2a2•a﹣1=2a【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式乘法运算法则以及实数运算法则即可求出答案.【解答】解:〔A〕原式=1,故A错误;〔B〕x3与x4不是同类项,不能进行合并,故B错误;〔C〕原式=a4b6,故C错误;故选〔D〕【点评】此题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,此题属于基础题型.3.2016年我省旅游业的总收入为5764亿元,其中5764亿用科学记数法表示为〔〕×103×1011 C.5764×108×1012【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】×1011.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.实数a,b,c在数轴上的对应点的位置如下图,则正确的结论是〔〕A.﹣a>b B.ab<c C.﹣a>c D.|c|=|a|+|b|【考点】29:实数与数轴.【分析】先根据数轴判定a,b,c的范围,再进行判定即可.【解答】解:由数轴可得:﹣3<c<﹣2,0<a<1,b=3,∴﹣a<b,ab>0>c,﹣a>c,|c|<3<|a|+|b|,故选:C.【点评】此题考查了实数与数轴,解决此题的关键是根据数轴判定a,b,c的范围.5.如图是某个几何体的三视图,该几何体是〔〕A.圆锥B.三棱锥C.四棱锥D.四棱柱【考点】U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为正方形,可得此几何体为正四棱锥,故选C.【点评】此题主要考查了根据三视图判定几何体,关键是熟练掌握三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解答此题的关键.6.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少〔〕A.30°B.15°C.18°D.20°【考点】L3:多边形内角与外角.【分析】∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【解答】解:∵正五边形的内角的度数是×〔5﹣2〕×180°=108°,正方形的内角是90°,∴∠1=108°﹣90°=18°.故选C.【点评】此题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.7.假设k≠0,b>0,则y=kx+b的图象可能是〔〕A.B.C.D.【考点】F3:一次函数的图象.【分析】由k≠0、b>0,即可得出一次函数y=kx+b的图象交y轴于正半轴,再对照四个选项即可得出结论.【解答】解:∵k≠0,b>0,∴一次函数y=kx+b的图象交y轴于正半轴.故选C.【点评】此题考查了一次函数的图象,由b>0找出一次函数图象与y轴的交点在正半轴是解题的关键.8.如图,在平面直角坐标系中,点P〔1,5〕,Q〔m,n〕在反比例函数的图象上,过点P分别作x轴、y轴的垂线,垂足为点A,B;点Q为图象上的动点,过点Q分别作x轴、y轴的垂线,垂足分别为点C、D,两垂线相交于点E,随着m的增大,四边形OCQD与四边形OAPB不重合的面积变化为〔〕A.先增大后减小B.先减小后增大C.先减小后增大再减小D.先增大后减小再增大【考点】G5:反比例函数系数k的几何意义.【分析】根据重合部分是矩形,分成Q在P的左侧和右侧两种情况进行讨论,依据矩形的面积公式即可判断.【解答】解:点Q在点P的左边时,移动的过程中,两矩形重合部分的小矩形的长不变,宽变大,所以面积变大,当Q在P的右侧时,重合部分宽不变,而高减小,因而面积减小.则随着m的增大,四边形OCQD与四边形OAPB不重合的面积变化为先减小后增大.故选B.【点评】此题考查了反比例函数的性质,正确对P进行讨论是关键.9.在平面直角坐标系xOy中,已知A〔2,3〕,B〔1,0〕,C是y轴上的一个动点,当△ABC的周长最小时,则△ABC的面积为〔〕A.2 B.C.3+D.【考点】PA:轴对称﹣最短路线问题;D6:两点间的距离公式.【分析】作点B关于y轴的对称点B′〔﹣1,0〕,连接AB′交y轴于C,此时△ABC的周长最短,由直线AB′的解析式为y=x+1,可得C〔0,1〕,根据S△ABC=S△ABB′﹣S△BB′C计算即可.【解答】解:作点B关于y轴的对称点B′〔﹣1,0〕,连接AB′交y轴于C,此时△ABC的周长最短,∵直线AB′的解析式为y=x+1,∴C〔0,1〕,=S△ABB′﹣S△BB′C=•2•3﹣•2•1=2,∴S△ABC故选A.【点评】此题考查轴对称﹣最短问题、一次函数的应用、三角形的面积等知识,解题的关键是学会利用对称最值问题,学会用分割法求三角形的面积,属于中考常考题型.10.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y 关于x的函数图象大致是〔〕A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据题意设出点P运动的路程x与点P到点A的距离y的函数关系式,然后对x从0到2a+2a时分别进行分析,并写出分段函数,结合图象得出答案.【解答】解:设动点P按沿折线A→B→D→C→A的路径运动,∵正方形ABCD的边长为a,∴BD=a,①当P点在AB上,即0≤x<a时,y=x,②当P点在BD上,即a≤x<〔1+〕a时,过P点作PF⊥AB,垂足为F,∵AB+BP=x,AB=a,∴BP=x﹣a,∵AE2+PE2=AP2,∴〔〕2+[a﹣〔x﹣a〕]2=y2,∴y=,③当P点在DC上,即a〔1+〕≤x<a〔2+〕时,同理根据勾股定理可得AP2=AD2+DP2,y=,④当P点在CA上,即当a〔2+〕≤x≤a〔2+2〕时,y=a〔2+2〕﹣x,结合函数解析式可以得出第2,3段函数解析式不同,得出A选项一定错误,根据当a≤x<〔1+〕a时,P在BE上和ED上时的函数图象对称,故B选项错误,再利用第4段函数为一次函数得出,故C选项一定错误,故只有D符合要求,故选:D.【点评】此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决此题的关键.二、填空题〔本大题共5小题,每题3分,共15分〕11.如果分式有意义,那么x的取值范围是x≥﹣且x≠4.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【解答】解:∵二次根式的被开方数是非负数,∴2x+3≥0,解得x≥﹣.又分母不等于零,∴x≠4,∴x≥﹣且x≠4.故答案是:x≥﹣且x≠4.【点评】此题考查了二次根式有意义的条件和分式有意义的条件,该题属于易错题,同学们往往忽略了分母不等于零这一条件,错解为x≥﹣.12.在同一时刻,小红测得小亮的影子长为0.8m,教学楼的影长为9m,已知小亮的身高为1.6m,那么教学楼的高度为18m.【考点】SA:相似三角形的应用.【分析】设教学楼的高度为h米,再根据同一时刻物髙与影长影长成正比即可得出结论.【解答】解:设教学楼的高度为h米,∵小亮的影子长为0.8m,教学楼的影长为9m,小亮的身高为1.6m,∴=,解得h=18〔米〕.故答案为:18m.【点评】此题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.13.二次函数y=mx2﹣2x+1,当x时,y的值随x值的增大而减小,则m的取值范围是0<m≤3.【考点】H3:二次函数的性质.【分析】根据对称轴的左侧的增减性,可得m>0,根据增减性,可得对称轴大于或等于,可得答案.【解答】解:由当x时,y的值随x值的增大而减小,得抛物线开口向上,m>0,且对称轴≥,解得m≤3,故答案为:0<m≤3.【点评】此题考查了二次函数的性质,利用二次函数的增减性得出抛物线的开口方向且≥是解题关键.14.半径为1的两圆放置位置如下图,一圆的直径恰好是另一圆的切线,圆心均为切点,则阴影部分的面积为﹣.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】如图,连接AO1,BO1,AO2,BO2,O1O2,AB,于是得到四边形AO1BO2是菱形,△AO1O2是等边三角形,求得∠O1AO2=60°,∠AO1B=120°,根据扇形和三角形的面积公式即可得到结论.【解答】解:如图,连接AO1,BO1,AO2,BO2,O1O2,AB,则四边形AO1BO2是菱形,△AO1O2是等边三角形,∴∠O1AO2=60°,∠AO1B=120°,∴S=S﹣S=﹣××=﹣,∴阴影部分的面积=S﹣2S=﹣2〔﹣〕=﹣;半圆故答案为:﹣;【点评】此题考查了扇形的面积的计算,菱形的判定和性质,正确的作出辅助线是解题的关键.15.如图,在正方形ABCD中,F是CD的中点,连接BF,将△BCF沿BF对折,得到△BPF,延长FP交BA的延长线于点Q,则sin∠BQP的值为.【考点】PB:翻折变换〔折叠问题〕;LE:正方形的性质;T7:解直角三角形.【分析】△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,令PF=k〔k >0〕,则PB=2k,再根据勾股定理进行求解.【解答】解:根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k〔k>0〕,则PB=2k,在Rt△BPQ中,设QB=x,∴x2=〔x﹣k〕2+4k2,∴x=,∴sin∠BQP===.故答案为:.【点评】此题主要考查了翻折变换,正方形的性质以及解直角三角形的运用,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.三、解答题〔本大题共8小题,共75分〕16.先化简:〔2﹣〕÷,再选一个你喜欢的整数,代入求值.【考点】6D:分式的化简求值.【分析】首先化简〔2﹣〕÷,然后选一个喜欢的整数,代入化简后的算式,求出算式的值是多少即可.【解答】解:〔2﹣〕÷=÷=•=当x=3时,原式==2【点评】此题主要考查了分式的化简求值问题,要熟练掌握,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.17.某中学为了了解在校学生对校本课程的喜爱情况,随机调查了九年级学生对A,B,C,D,E五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个统计图.请根据图中所提供的信息,完成以下问题:〔1〕本次被调查的学生的人数为300;〔2〕补全条形统计图;〔3〕扇形统计图中,C类所在扇形的圆心角的度数为108°;〔4〕假设该中学有4000名学生,请估计该校喜爱C,D两类校本课程的学生共有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】〔1〕根据A种类人数及其占总人数百分比可得答案;〔2〕用总人数乘以B的百分比得出其人数,即可补全条形图;〔3〕用360°乘以C类人数占总人数的比例可得;〔4〕总人数乘以C、D两类人数占样本的比例可得答案.【解答】解:〔1〕本次被调查的学生的人数为69÷23%=300〔人〕,故答案为:300;〔2〕喜欢B类校本课程的人数为300×20%=60〔人〕,补全条形图如下:〔3〕扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,故答案为:108°;〔4〕∵4000×=1680,∴估计该校喜爱C,D两类校本课程的学生共有1680名.【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.在圆O中,AC是圆的弦,AB是圆的直径,AB=6,∠ABC=30°,过点C作圆的切线交BA的延长线于点P,连接BC.〔1〕求证:△PAC∽△PCB;〔2〕点Q在半圆ADB上运动,填空:①当AQ=3时,四边形AQBC的面积最大;②当AQ=3或3时,△ABC与△ABQ全等.【考点】MR:圆的综合题.【分析】〔1〕连接OC,由切线的性质得出OC⊥PC,推出∠PCA+∠ACO=90°,由圆周角定理得出∠B+∠CAB=90°,证出∠OAC=∠OCA,推出∠B+∠OCA=90°,得出∠PCA=∠B,即可得出结论;〔2〕①当点Q运动到OQ⊥AB时,四边形AQBC的面积最大;连接AQ、BQ,由线段垂直平分线性质得出OQ=BQ,由圆周角定理得出∠AQB=90°,证出△ABQ 是等腰直角三角形,得出AQ=AB=3,②由直角三角形的性质和圆周角定理得出AC=AB=3,BC=AC=3,分两种情况讨论,由全等三角形的判定即可得出结论.【解答】〔1〕证明:如图1所示,连接OC.∵PC是圆O的切线,OC是半径,∴OC⊥PC,∴∠PCO=90°∴∠PCA+∠ACO=90°,∵AB是直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∵OC=OA,∴∠OAC=∠OCA,∴∠B+∠OCA=90°,∴∠PCA=∠B,又∵∠P=∠P,∴△PAC∽△PCB;〔2〕解:①当点Q运动到OQ⊥AB时,四边形AQBC的面积最大;如图2所示:连接AQ、BQ,∵OA=OB,OQ⊥AB,∴OQ=BQ,∵AB是直径,∴∠AQB=90°,∴△ABQ是等腰直角三角形,∴AQ=AB=3,故答案为:3;②如图3所示:∵∠ACB=90°,∠ABC=30°,∴AC=AB=3,BC=AC=3,分两种情况:a.当AQ=AC=3时,在Rt△ABC和Rt△ABQ中,,∴△ABC≌△ABQ〔HL〕;b.当AQ=BC=3时,同理△ABC≌△BAQ;综上所述:当AQ=3或3时,△ABC与△ABQ全等.【点评】此题是圆的综合题目,考查了圆周角定理、相似三角形的判定与性质、切线的性质、线段垂直平分线的性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的性质、全等三角形的判定与性质等知识;此题综合性强,有一定难度.19.如图,旗杆AB顶端系一根绳子AP,绳子底端离地面的距离为1m,小明将绳子拉到AQ的位置,测得∠PAQ=25°,此时点Q离地面的高度为1.5m,求旗杆的高度〔结果保留整数.sin25°=0.42,cos25°=0.90,tan25°=0.47〕【考点】T8:解直角三角形的应用.【分析】如图,过点Q作QM⊥AP交AP于点M.设AP=x,则AQ=x,AM=x﹣0.5.通过解直角△AMQ求得x的值,则结合图形得到AB=AP+PB=6.【解答】解:如图,过点Q作QM⊥AP交AP于点M.设AP=x,则AQ=x,AM=x﹣0.5.在直角△AMQ中,cos25°===0.9,∴x=5,x+1=6.∴旗杆的高度AB=6.【点评】此题考查了解直角三角形的应用.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.20.〔10分〕〔2017•河南三模〕某游泳池一天要经过“注水﹣保持﹣排水”三个过程,如图,图中折线表示的是游泳池在一天某一时间段内池中水量y〔m3〕与时间x〔min〕之间的关系.〔1〕求排水阶段y与x之间的函数关系式,并写出x的取值范围;〔2〕求水量不超过最大水量的一半值的时间一共有多少分钟.【考点】FH:一次函数的应用.【分析】〔1〕根据函数图象中的数据可以求得排水阶段y与x之间的函数关系式,并写出x的取值范围;〔2〕根据图象可以求出注水阶段的函数解析式,从而可以求得水量不超过最大水量的一半值的时间一共有多少分钟.【解答】解:〔1〕设排水阶段y与x之间的函数关系式是y=kx+b,,得,即排水阶段y与x之间的函数关系式是y﹣100x+30000,当y=2000时,2000=﹣100x+30000,得x=280,即排水阶段y与x之间的函数关系式y=﹣100x+30000〔280≤x≤300〕;〔2〕设注水阶段y与x的函数关系式为y=mx,则30m=1500,得m=50,∴注水阶段y与x的函数关系式为:y=50x,当y=1000时,1000=50x,得x=20,将y=1000代入y=﹣100x+30000,得x=290,∴水量不超过最大水量的一半值的时间一共有:20+〔300﹣290〕=30〔分钟〕,即水量不超过最大水量的一半值的时间一共有30分钟.【点评】此题考查一次函数的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.21.为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.〔1〕A,B两种型号的自行车的单价分别是多少?〔2〕假设购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】〔1〕设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题.〔2〕设购买A型自行车a辆,B型自行车的〔600﹣a〕辆.总费用为w元.构建一次函数,利用一次函数的性质即可解决问题.【解答】解:〔1〕设A型自行车的单价为x元,B型自行车的单价为y元,由题意,解得,∴A型自行车的单价为210元,B型自行车的单价为240元.〔2〕设购买A型自行车a辆,B型自行车的〔600﹣a〕辆.总费用为w元.由题意w=210a+240〔600﹣a〕=﹣30a+144000,∵﹣30<0,∴w随a的增大而减小,∵a≤,∴a≤200,∴当a=200时,w有最小值,最小值=﹣30×200+144000=138000,∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【点评】此题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型.22.〔10分〕〔2017•河南三模〕已知正方形ABCD的边长为8,点E为BC的中点,连接AE,并延长交射线DC于点F,将△ABE沿着直线AE翻折,点B落在B′处,延长AB′,交直线CD于点M.〔1〕判断△AMF的形状并证明;〔2〕将正方形变为矩形ABCD,且AB=6,BC=8,假设B′恰好落在对角线AC上时,得到图2,此时CF=10,=;〔3〕在〔2〕的条件下,点E在BC边上.设BE为x,△ABE沿直线AE翻折后与矩形ABCD重合的面积为y,求y与x之间的函数关系式.【考点】SO:相似形综合题.【分析】〔1〕结论:△AMF是等腰三角形.只要证明∠MAF=∠F即可.〔2〕利用〔1〕中结论CF=AC,用勾股定理求出AC即可,由==sin∠ACB===,即可解决问题.〔3〕分两种情形讨论①如图3中,当0<x≤6时,△ABE翻折后都在矩形内部,所以重合部分面积就是三角形面积.②如图4中,当6<x≤8时,设EB交AD 于M,分别求解即可.【解答】解:〔1〕结论:△AMF是等腰三角形.理由如下:如图1中,∵四边形ABCD是正方形,∴AB∥DF,∴∠BAE=∠F,由翻折可知∠BAE=∠MAE,∴∠F=∠MAE,∴MA=MF,∴△AMF是等腰三角形.〔2〕如图2中,由〔1〕可知△ACF是等腰三角形,AC=CF,在Rt△ABC中,∵AB=6,BC=8,∴AC==10,∴CF=AC=10,∵BE=BE′,∴==sin∠ACB===,故答案为10,.〔3〕①如图3中,当0<x≤6时,△ABE翻折后都在矩形内部,所以重合部分面积就是三角形面积,∴y=•6•x=3x,∴y=3x.②如图4中,当6<x≤8时,设EB交AD于M,∴重叠部分的面积=△ABE的面积减去△AB′M的面积,设B′M=a,则EM=x﹣a,AM=x﹣a,在Rt△AB′M中,由勾股定理可得62+a2=〔x﹣a〕2,∴a=,∴y=3x﹣×6×=x+.综上所述,y=.【点评】此题考查相似三角形综合题、翻折变换、矩形的性质、正方形的性质、锐角三角函数、勾股定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23.〔11分〕〔2017•河南三模〕如图,二次函数y=x2+bx+c的图象经过A〔﹣1,0〕和B〔3,0〕两点,且交y轴于点C,M为抛物线的顶点.〔1〕求这个二次函数的表达式;〔2〕假设将该二次函数图象向上平移m〔m>0〕个单位,使平移后得到的二次函数图象的顶点落在△BOC的内部〔不包含边界〕,求m的取值范围;〔3〕点P是抛物线上一动点,PQ∥BC交x轴于点Q,当以点B,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标.【考点】HF:二次函数综合题.【分析】〔1〕将点A和点B的坐标代入抛物线的解析式求得b、c的值即可;〔2〕先求得抛物线的顶点M的坐标,然后再求得点C的坐标,接下来,再求得直线CB的解析式,将x=1代入直线BC的解析式求得对应的y值为﹣2,由平移后的抛物线的顶点坐标在△△BOC的内部,可得到﹣2<﹣4+m<0,最后解不等组即可;〔3〕当点P在Q的上时,由平行四边形的性质可知点P的纵坐标为3,当点P 在点Q的下方时,由平行四边形的性质可知点P的纵坐标为﹣3,然后分别将y=3和y=﹣3代入抛物线的解析式求得对应的x的值即可.【解答】解:〔1〕将点A和点B的坐标代入得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.〔2〕∵y=x2﹣2x﹣3=〔x﹣1〕2﹣4,∴M〔1,﹣4〕.把x=0代入抛物线的解析式得:y=﹣3,∴C〔0,﹣3〕.设直线BC的解析式为y=kx+b,则,解得:k=1,b=﹣3.∴直线BC的解析式为y=x﹣3.把x=1代入y=x﹣3得:y=﹣2,∵平移后的抛物线的顶点坐标在△△BOC的内部,∴﹣2<﹣4+m<0,解得2<m<4.〔3〕当点P在Q的上时,由平行四边形的性质可知点P的纵坐标为3.把y=3代入抛物的解析式x2﹣2x﹣3=3,解得:x=1+或x=1﹣.∴点P的坐标为〔1+,3〕或〔1﹣,3〕.当点P在点Q的下方时,由平行四边形的性质可知点P的纵坐标为﹣3.把y=﹣3代入抛物的解析式x2﹣2x﹣3=﹣3,解得:x=2或x=0〔舍去〕∴点P的坐标为〔2,﹣3〕.综上所述,当点P的坐标为〔1﹣,3〕或〔1+,3〕或〔2,﹣3〕时,以点B,C,P,Q为顶点的四边形是平行四边形.【点评】此题主要考查的是二次函数的综合应用,解答此题主要应用了待定系数法求一次函数、二次函数的解析式、平行四边形的性质,依据平移后的抛物线的顶点坐标在△△BOC的内部列出关于m的不等式是解答问题〔2〕的关键,依据平行四边形的性质求得P的纵坐标是解答问题〔3〕的关键.。

学易密卷:2017年中考数学模拟冲刺卷 01(河南卷考试版)

学易密卷:2017年中考数学模拟冲刺卷 01(河南卷考试版)

…○………………内…………○………………外………… 学校:_ 1绝密★启用前|试题命制中心【学易密卷】2017年河南中考模拟冲刺卷(一)数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.3-的绝对值是 A .3B .13C .3-D .3±2.当实数有意义时,函数中的取值范围是 A .2y <B .2y ≥C .2y >D .2y ≤3.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学计数法表示(精确到千位)应为 A .3.94×10 4B .3.9×10 4C .39.4×10 3D .4.0×10 44.如图所示,该几何体的俯视图是A .B .C .D .5.下列运算正确的是 A .236x x x ⋅=B .65x x x ÷=C .246()x x -=D .235x x x +=6.不等式331x x -≤+的解集在数轴上表示正确的是 A .B .C .D .7.如图,已知直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数为A .30°B .60°C .120°D .150°8.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是A .25B .33C .34D .509. 已知二次函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围为 A .k ﹥-47B .k ≥-47且k ≠0 C .k ﹤-47D .k ﹥-47且k ≠0 10. 某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图. 则这组数据的众数和中位数分别是x 3y x =-+y……○………………内装………………○………………订………○………………线………………○… 装订不......○..................外装..................○..................订.........○..................线..................○ (2)A .7、7B . 8、7.5C .7、7.5D . 8、6第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11. 如图,已知正方形ABCD 的对角线交于点O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于 .12.已知反比例函数y =6x在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AO =AB ,则AOB S =△ .13.如图,在△ABC 中,∠ACB =80°,∠ABC =60°.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 于点D .则∠ADB 的度数为 °.14. 如图,边长为2的正方形MNEF 的四个顶点在大圆O 上,小圆O 与正方形各边都相切,AB 与CD 是大圆O 的直径,AB ⊥CD ,CD ⊥MN ,则图中阴影部分的面积是 .15. 如图,等边三角形ABC 中,AB =3,点D ,E 分别在AB ,AC 上,且DE ∥BC ,沿直线DE 折叠△ABC ,当点A 的对应点A ′与△ABC 的中心O 重合时,折痕DE 的长为__________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)已知113x y -=,求代数式21422x xy yx xy y----的值. 17.(本小题满分9分)已知△ABC 在平面直角坐标系中的位置如图所示.(1)图中点A 的坐标为 ;点C 的坐标为 ; (2)画出△ABC 绕点C 按顺时针方向旋转90°后的△A ′B ′C ′; (3)求(2)中线段CA 旋转到C ′A ′所扫过的面积.18.(本小题满分9分)某县为了了解2016年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A .读普通高中; B .读职业高中;C .直接进入社会就业; D .其它)进行数据统计,并绘制了两幅不完整的统计图(a )、(b ). 请问:(1)该县共调查了 名初中毕业生; (2)将两幅统计图中不完整的部分补充完整;装………………○装………………○___________班级 3(3)若该县2016年初三毕业生共有5500人,请估计该县今年初三毕业生中读普通高中的学生人数. 19.(本小题满分9分)某公司用480万元购得某种产品的生产技术后,进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x (元),年销售量为y (万件),年获利为w (万元).(年获利=年销售额-生产成本—投资成本)(1)直接写出y 与x 之间的函数关系式;(2)若销售单价定在100元到200元之间,求第一年的年获利w 与x 间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少? (3)若销售单价定在100元到200元之间,该公司希望到第二年底,两年的总盈利不低于1842元(按照第一年获得最大盈利或最小亏损),请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?20.(本小题满分9分)如图,小明同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小强同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 长约为多少?(结果保留根号)21.(本小题满分10分)已知一元二次方程x 2—4x +3=0的两根是m ,n 且m <n .如图,若抛物线2y x bx c =-++的图象经过点A (m ,0)、B (0,n ). (1)求抛物线的解析式;(2)若(1)中的抛物线与x 轴的另一个交点为C.根据图象回答,当x 取何值时,抛物线的图象在直线BC 的上方?(3)点P 在线段OC 上,作PE ⊥x 轴与抛物线交与点E ,若直线BC 将△CPE 的面积分成相等的两部分,求点P 的坐标.22.(本小题满分10分)在正方形ABCD 中,BD 是一条对角线,点E 在直线CD 上(与点C ,D 不重合),连接AE ,平移△ADE ,使点D 移动到点C ,得到△BCF ,过点F 作FG ⊥BD 于点G ,连接AG ,EG .(1)问题猜想:如图1,若点E 在线段CD 上,试猜想AG 与EG 的数量关系是 ,位置关系是 ;(2)类比探究:如图2,若点E 在线段CD 的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明.23.(本小题满分11分)如图,已知抛物线21y ax bx =++经过点(2,6),且与直线211y x =+相交于A ,B 两点,点A 在y 轴上,过点B 作BC ⊥x 轴,垂足为点C (4,0).(1)求抛物线的解析式;(2)若P 是直线AB 上方该抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交AB 于点E ,求线段PE 的最大值;(3)在(2)的条件,设PC 与AB 相交于点Q ,当线段PC 与BE 相互平分时,请求出点Q 的坐标.。

2017年河南省中考数学模拟试卷及答案

2017年河南省中考数学模拟试卷及答案

2017年河南省中考数学模拟试卷及答案2017年河南省中考数学模拟试卷及答案初三的学生多做中考数学模拟试题可以提高成绩,为了帮助各位考生提升自己的成绩,以下是小编精心整理的2017年河南省中考数学模拟试题及答案,希望能帮到大家!2017年河南省中考数学模拟试题一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.|-2|的值是( )A.-2B.2C.-12D.122.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A.204×103B.20.4×104C.2.04×105D.2.04×1063.观察下列图形,其中既是轴对称又是中心对称图形的是( )4.下列计算正确的是( )A.3x2y+5xy=8x3y2B.(x+y)2=x2+y2C.(-2x)2÷x=4xD.yx-y+xy-x=15.已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则1x1+1x2的值为( )A.2B.-1C.-12D.-26.,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形第6题图第8题图二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-12÷3=.8.,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为.9.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=-1,那么(1+i)•(1-i)= .10.已知某几何体的三视图所示,根据图中数据求得该几何体的表面积为.第10题图第12题图11.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.12.,在平面直角坐标系中,△ABC为等腰直角三角形,点A(0,2),B(-2,0),点D是x轴上一个动点,以AD为一直角边在一侧作等腰直角三角形ADE,∠DAE=90°.若△ABD为等腰三角形,则点E的坐标为.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:3x-1≥x+1,x+4<4x-2.(2),点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.14.先化简,再求值:mm-2-2mm2-4÷mm+2,请在2,-2,0,3当中选一个合适的数代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保留画图痕迹:(1)①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB;(2)②,△ABC中,AB=AC,ED是△AB C的中位线,画出△ABC的BC边上的高.17.所示是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(参考数据:sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)?四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成①,②所示的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 2 …乙复印店收费(元) 0.6 2.4 …(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.20.,一次函数y=-2x+1与反比例函数y= 的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为点E.过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.五、(本大题共2小题,每小题9分,共18分)21.,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.22.在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m六、(本大题共12分)。

2017河南省中考数学模拟试卷

2017河南省中考数学模拟试卷

2017河南省中考数学模拟试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣|﹣2|的倒数是( )A.2B.C.D.﹣22.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( )A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1093.下列计算正确的是( )A.( )﹣2=9B. =﹣2C.(﹣2)0=﹣1D.|﹣5﹣3|=24.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )A. B. C. D.5.分解因式(2x+3)2﹣x2的结果是( )A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)6.下列运算中,计算正确的是( )A.2a•3a=6aB.(3a2)3=27a6C.a4÷a2=2aD.(a+b)2=a2+ab+b27.不等式组的解集在数轴上表示为( )A. B. C. D.8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是( )A.∠2=60°B.∠3=60°C.∠4=120°D.∠5=40°9.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( )A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.510.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A( ,0),B(0,4),则点B2016的横坐标为( )A.5B.12C.10070D.10080二、填空题(本大题共6小题,每小题4分,共24分)11.方程组的解是.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.13.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为.14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.15.如图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y 轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是 .第15题图16.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.三、解答题(本大题共3小题,每题6分共18分)17.计算:( +π)0﹣2|1﹣sin30°|+( )﹣1.18.先化简,再求值:÷(1﹣ )其中x= .19.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.四、解答题(本大题共3小题,每题7分共21分)20.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).21.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论.22.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,(1)求反比例函数解析式;(2)求C点坐标.五、解答题(本大题共3小题,每题9分共27分)23.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣ x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.24.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC 于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.2017河南省中考数学模拟试题答案一.选择题(共10小题)1.﹣|﹣2|的倒数是( )A.2B.C.D.﹣2【分析】先根据绝对值的性质计算出﹣|﹣2|的值,再根据倒数的定义求解即可.【解答】解:因为﹣|﹣2|=﹣2,(﹣2)×(﹣ )=1,所以﹣|﹣2|的倒数是﹣ .故选C.【点评】此题主要考查了倒数的定义及绝对值的性质:(1)若两个数的乘积是1,我们就称这两个数互为倒数.(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( )A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×109【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是( )A.( )﹣2=9B. =﹣2C.(﹣2)0=﹣1D.|﹣5﹣3|=2【分析】根据负整数指数幂、二次根式的化简、零指数幂、绝对值的性质逐一判断即可.【解答】解:A. =9,故本项正确;B. ,故本项错误;C.(﹣2)0=1,故本项错误;D.|﹣5﹣3|=|﹣8|=8,股本项错误,故选:A.【点评】本题考查了负整数指数幂、求算术平方根、零指数幂、绝对值的性质,熟练掌握运算法则及性质是解题的关键.4.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )A. B. C. D.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.分解因式(2x+3)2﹣x2的结果是( )A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:(2x+3)2﹣x2=(2x+3﹣x)(2x+3+x)=(x+3)(3x+3)=3(x+3)(x+1).故选:D.【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.6.下列运算中,计算正确的是( )A.2a•3a=6aB.(3a2)3=27a6C.a4÷a2=2aD.(a+b)2=a2+ab+b2【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【点评】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.7.不等式组的解集在数轴上表示为( )A. B. C. D.【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是( )A.∠2=60°B.∠3=60°C.∠4=120°D.∠5=40°【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a∥b,∠1=60°,∴∠3=∠1=60°,∠2=∠1=60°,∠4=180°﹣∠3=180°﹣60°=120°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣60°=30°.故选D.【点评】本题考查了平行线的性质,解答本题的关键上掌握平行线的性质:两直线平行,同位角相等.9.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( )A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.5【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是 =0.5;这组数据的方差是: [(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣ )2+(x2﹣)2+…+(xn﹣ )2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A( ,0),B(0,4),则点B2016的横坐标为( )A.5B.12C.10070D.10080【分析】由图象可知点B2016在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2016在第一象限,∵OA= ,OB=4,∠AOB=90°,∴AB= = = ,∴B2(10,4),B4(20,4),B6(30,4),…∴B2016(10080,4).∴点B2016纵坐标为10080.故选D.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.二.填空题(共8小题)11.方程组的解是 .【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴ ,故答案为: .【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.12.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.13.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为.【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再求出不等式的非负整数解,即可得出答案.【解答】解:3x﹣2≥4(x﹣1),3x﹣2≥4x﹣4,x≤2,所以不等式的非负整数解为0,1,2,0+1+2=3,故答案为:3.【点评】本题考查了解一元一次不等式,不等式的非负整数解的应用,解此题的关键是能求出不等式的非负整数解,难度适中.14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40 =3x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ= AB=40,BQ= AQ=40 ,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40 =3x,解得:x= .即该船行驶的速度为海里/时;故答案为: .【点评】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.15.如图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y 轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是 .第15题图15.216.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是 .【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.三.解答题(共3小题)17.计算:( +π)0﹣2|1﹣sin30°|+( )﹣1.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+2=2。

(完整版)2017年河南省中考数学试卷(含答案解析版)

(完整版)2017年河南省中考数学试卷(含答案解析版)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是( )A .2B .0C .﹣1D .﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A .74.4×1012B .7.44×1013C .74.4×1013D .7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是( )A.B.C.D.4.(3分)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.(3分)一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.(3分)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )sA .AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .181614129.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)33310.(3分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )an l l n beA .B .2﹣C .2﹣D .4﹣2π33π332π332π3二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .412.(3分)不等式组的解集是 .{x ‒2≤0x ‒12<x 13.(3分)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图象上,则m2x 与n 的大小关系为 .14.(3分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 .15.(3分)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别2是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 .三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.2217.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x <304B 30≤x <6016C 60≤x <90a D 90≤x <120b Ex ≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a +b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60≤x <120范围的人数.18.(9分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.g o19.(9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°45≈,tan53°≈,≈1.41)3543220.(9分)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于点kx A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围.g21.(10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想 图1中,线段PM 与PN 的数量关系是  ,位置关系是 ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛23物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是( )A.2B.0C.﹣1D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( rA.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D .【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大. 4.(3分)(2017•河南)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=3【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x ﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,1x ‒13x ‒1去分母得:1﹣2(x ﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B.95分,90分C.90分,95分D.95分,85分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD是菱形的只有( )A .AC ⊥BDB .AB=BCC .AC=BD D .∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A 、正确.对角线相等是平行四边形的菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C .【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .18161412【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.41614故选:C .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比. 9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)333【考点】LE :正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=12=,于是得到结论.AD '2‒OA 23【解答】解:∵AD′=AD=2,AO=AB=1,12∴OD′==,AD '2‒OA 23∵C′D′=2,C′D′∥AB ,∴C (2,),3故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣2π33π332π332π3【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.12360⋅π×2236012332π3故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键. 二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .4【考点】22:算术平方根;1E :有理数的乘方.【分析】表示4的算术平方根,值为2.4【解答】解:23﹣=8﹣2=6,4故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单. 12.(3分)(2017•河南)不等式组的解集是 ﹣1<x ≤2 .{x ‒2≤0x ‒12<x 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:{x ‒2≤0①x ‒12<x②解不等式①0得:x ≤2,解不等式②得:x >﹣1,∴不等式组的解集是﹣1<x ≤2,故答案为﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图2x 象上,则m 与n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在2x 每个象限内,y 随x 的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,2x ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .故答案为m <n .【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键. 14.(3分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC ,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:×4×6=1212故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,2点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 +或112212.【考点】PB :翻折变换(折叠问题);KW :等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.2【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+;1212212②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,2∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM ,2∵BC=+1,2d ∴CM +BM=BM +BM=+1,22∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1,12212故答案为:+或1.12212【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.22【考点】4J :整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),然后把x=+1,y=﹣122代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y )=4x 2+4xy +y 2+x 2﹣y 2﹣5x 2+5xy=9xy22当x=+1,y=﹣1时,22原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【考点】VB :扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b ,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A 组所占的百分比是=8%,则m=8.450a +b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C 的圆心角度数是360°×=144°;2050(3)每月零花钱的数额x 在60≤x <120范围的人数是1000×=560(人).2850【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小. 18.(9分)(2017•河南)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt △ADB 中,由勾股定理得:BD==8,102‒62在Rt △BDC 中,由勾股定理得:BC==4.82+425【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)4535432【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作CE ⊥AB 于E .设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,根据tan53°=,可得=,求出x ,再求出BC 、AC ,分别求出A 、B 两船到C 的EC BE 43xx ‒5时间,即可解决问题.【解答】解:如图作CE ⊥AB 于E .g在Rt △ACE 中,∵∠A=45°,∴AE=EC ,设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,∵tan53°=,ECBE ∴=,43x x ‒5解得x=20,∴AE=EC=20,∴AC=20=28.2,2BC==25,ECsin 53°∴A 船到C 的时间≈=0.94小时,B 船到C 的时间==1小时,28.2302525∴C 船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 20.(9分)(2017•河南)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的kx 图象交于点A (m ,3)和B (3,1).th (1)填空:一次函数的解析式为 y=﹣x +4 ,反比例函数的解析式为 y= ;3x (2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B (3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x ,y ),由于点P 在直线AB 上,从而可知PD=y ,OD=x ,由题意可知:1≤x ≤3,从而可求出S 的范围【解答】解:(1)将B (3,1)代入y=,k x ∴k=3,将A (m ,3)代入y=,3x ∴m=1,∴A (1,3),将A (1,3)代入代入y=﹣x +b ,∴b=4,∴y=﹣x +4(2)设P (x ,y ),由(1)可知:1≤x ≤3,∴PD=y=﹣x +4,OD=x ,∴S=x (﹣x +4),12∴由二次函数的图象可知:S 的取值范围为:≤S ≤232故答案为:(1)y=﹣x +4;y=.3x 【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A :二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.【解答】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,{2x +6y =1303x =4y 解得:.{x =20y =15答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,Eb分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 PM=PN ,位置关系是 PM ⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB :几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE ,PN=BD ,进而判断出1212BD=CE ,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出PM=BD ,PN=BD ,即可得出PM=PN ,同(1)的方法即可得出结论;1212(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论.【解答】解:(1)∵点P ,N 是BC ,CD 的中点,∴PN ∥BD ,PN=BD ,12∵点P ,M 是CD ,DE 的中点,∴PM ∥CE ,PM=CE ,12∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∵PN ∥BD ,∴∠DPN=∠ADC ,∵PM ∥CE ,∴∠DPM=∠DCA ,∵∠BAC=90°,∴∠ADC +∠ACD=90°,∴∠MPN=∠DPM +∠DPN=∠DCA +∠ADC=90°,∴PM ⊥PN ,故答案为:PM=PN ,PM ⊥PN ,(2)由旋转知,∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD=∠ACE ,BD=CE ,同(1)的方法,利用三角形的中位线得,PN=BD ,PM=CE ,1212∴PM=PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM=∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC=∠DBC ,∵∠DPN=∠DCB +∠PNC=∠DCB +∠DBC ,∴∠MPN=∠DPM +∠DPN=∠DCE +∠DCB +∠DBC =∠BCE +∠DBC=∠ACB +∠ACE +∠DBC =∠ACB +∠ABD +∠DBC=∠ACB +∠ABC ,∵∠BAC=90°,∴∠ACB +∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2,2在Rt △ABC 中,AB=AC=10,AN=5,2∴MN 最大=2+5=7,222∴S △PMN 最大=PM 2=×MN 2=×(7)2=.121212142492【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE ,PN=BD ,解(2)的关键是判断出△ABD ≌△ACE ,1212解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目. 23.(11分)(2017•河南)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴23交于点B ,抛物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【考点】HF :二次函数综合题.【分析】(1)把A 点坐标代入直线解析式可求得c ,则可求得B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M 点坐标可表示P 、N 的坐标,从而可表示出MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m 的值;②用m 可表示出M 、P 、N 的坐标,由题意可知有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,可分别得到关于m 的方程,可求得m 的值.【解答】解:(1)∵y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,23∴0=﹣2+c ,解得c=2,∴B (0,2),∵抛物线y=﹣x 2+bx +c 经过点A ,B ,43∴,解得,{‒12+3b +c =0c =2{b =103c =2∴抛物线解析式为y=﹣x 2+x +2;43103(2)①由(1)可知直线解析式为y=﹣x +2,23∵M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,∴P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∴PM=﹣m +2,PA=3﹣m ,PN=﹣m 2+m +2﹣(﹣m +2)=﹣m 2+4m ,23431032343∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN ⊥MN ,∴BN=OM=m ,∴=,即=,解得m=0(舍去)或m=2,BN AM PN PM m3‒m ‒43m 2+4m‒23m +2∴M (2,0);当∠NBP=90°时,则有=,PN PA BPMP ∵A (3,0),B (0,2),P (m ,﹣m +2),23∴BP==m ,AP==(3﹣m ),m 2+(‒23m +2‒2)2133(m ‒3)2+(‒23m +2)2133∴=,解得m=0(舍去)或m=,‒43m 2+4m 133(3‒m )133m‒23m +2118∴M (,0);118综上可知当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2,0)或(,0);118②由①可知M (m ,0),P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有2(﹣m +2)=﹣m 2+m +2,解得m=3(三点重2343103合,舍去)或m=;12当M 为线段PN 的中点时,则有﹣m +2+(﹣m 2+m +2)=0,解得m=3(舍去)2343103或m=﹣1;当N 为线段PM 的中点时,则有﹣m +2=2(﹣m 2+m +2),解得m=3(舍去)或2343103m=﹣;14综上可知当M ,P ,N 三点成为“共谐点”时m 的值为或﹣1或﹣.1214【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

2017年河南省中考数学试卷(备用卷)(解析版)

2017年河南省中考数学试卷(备用卷)(解析版)

2017年河南省中考数学试卷(备用卷)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.(3分)下列各数中比﹣1小的数是()A.﹣2B.﹣1C.﹣D.12.(3分)今年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.3.05×106B.30.5×106C.3.05×107D.3.05×1083.(3分)下列不是正三棱柱的表面展开图的是()A.B.C.D.4.(3分)下列计算正确的是()A.2﹣2=﹣4B.=2C.2a3+3a2=5a5D.(a5)2=a75.(3分)不等式组的所有整数解的和是()A.3B.2C.2D.06.(3分)如图,在横格作业纸(横线等距)上画一条直线,与横格线交于A,B,C三点,则BC:AC等于()A.2:3B.2:5C.3:4D.3:57.(3分)某市5月份连续7天的最高气温如下(单位:℃):32,30,34,36,36,33,37.这组数据的中位数、众数分别为()A.34℃,36℃B.34℃,34℃C.36℃,36℃D.32℃,37℃8.(3分)下列方程中没有实数根的是()A.x2﹣2x+1=0B.x2+x+1=0C.2x2+3x﹣3=0D.x2﹣1=09.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1 10.(3分)如图,把半径为2的⊙O沿弦AB,AC折叠,使和都经过圆心O,则阴影部分的面积为()A.B.C.2D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:|﹣1|+30=.12.(3分)如图,在▱ABCD中,若BA=BD,∠BAD=50°,则∠CBD的度数为.13.(3分)小颖连续5次数学考试成绩与这5次成绩的平均分的差值分别为2,1,﹣1,0,3,则这5次成绩的方差是.14.(3分)如图,在△ABC中,AB=8,AC=12,D为AB的中点,点E为CD上一点,若四边形AGEF为正方形(其中点F,G分别在AC,AB上),则△BEC的面积为.15.(3分)如图,在等边三角形ABC中,AB=2cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),若点B关于直线MN的对称点B'恰好落在等边三角形ABC的边上,则BN的长为cm.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:﹣,其中x=﹣2,y=+2.17.(9分)一个不透明的口袋中装有三个除所标数字外完全相同的小球,小球上分别标有数字﹣1,0,1.从袋中一次随机摸出两个小球,把上面标注的两个数字分别作为点M 的横、纵坐标.(1)请用列表或画树状图的方法列出点M所有可能的坐标;(2)求点M在直线y=﹣x﹣1上的概率.18.(9分)如图,AB为半圆O的直径,点C为半圆上任一点.(1)若∠BAC=30°,过点C作半圆O的切线交直线AB于点P.求证:△PBC≌△AOC;(2)若AB=6,过点C作AB的平行线交半圆O于点D.当以点A,O,C,D为顶点的四边形为菱形时,求的长.19.(9分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE =CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).20.(9分)某服装专卖店计划购进A,B两种型号的精品女装.已知2件A型女装和3件B 型女装共需5600元;1件A型女装和2件B型女装共需3400元.(1)求A,B型女装的单价(2)专卖店购进A,B两种型号的女装共60件,其中A型的件数不少于B型件数的2倍,如果B型女装打八折,那么该专卖店至少需要准备多少贷款?21.(10分)如图,一次函数y=x+b的图象与y轴交于点B(0,2),与反比例函数y=(x<0)的图象交于点D(m,n).以BD为对角线作矩形ABCD,使顶点A,C落在x 轴上(点A在点C的右边),BD与AC交于点E.(1)求一次函数和反比例函数的解析式;(2)求点A的坐标.22.(10分)如图,在等边三角形ABC中,AC=4,点D,E分别是边AC,BC的中点,点D,E同时沿射线DE的方向以相同的速度运动,某一时刻分别运动到点M,N处,连接CM,CN,AM,BN.(1)写出图1中的一对全等三角形;(2)如图2所示,当点M在线段DE延长线上时,画出示意图,判断(1)中所写的一对三角形是否仍然全等,并说明理由;(3)在点D运动的过程中,若△ACM是直角三角形,直接写出此时线段CN的长度.23.(11分)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A (m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年河南省中考数学试卷(备用卷)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.【解答】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、﹣>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.2.【解答】解:3050万=30500000=3.05×107,故选:C.3.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选:D.4.【解答】解:A、2﹣2=,此选项错误;B、=2,此选项正确;C、2a3与3a2不是同类项,不能合并,此选项错误;D、(a5)2=a10,此选项错误;故选:B.5.【解答】解:解不等式①,得:x≥﹣2,解不等式②,得:x<4,则不等式组的解集为﹣2≤x<4,∴不等式组的整数解为:﹣2、﹣1、0、1、2、3.∴所有整数解的和﹣2﹣1+0+1+2+3=3,故选:A.6.【解答】解:如图所示:过点A作平行线的垂线,交点分别为D,E,可得:△ABD∽△ACE,∴==,∴BC:AC=3:4,故选:C.7.【解答】解:把这组数据从小到大排列为30,32,33,34,36,36,37,最中间的数是34,则中位数是34;众数是36;故选:A.8.【解答】解:A、△=(﹣2)2﹣4=0,所以方程有两个相等的实数解,所以A选项错误;B、△=12﹣4=﹣3<0,所以方程没有实数解,所以B选项正确;C、△=32+4×2×3>0,所以方程有两个不相等的实数解,所以C选项错误;D、方程两个的实数解为x1=﹣1,x2=1,所以D选项错误.故选:B.9.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.10.【解答】解:作OD⊥AC于D,连接AO、BO、CO,∵OD=AO==1,AD=AC=,∴∠OAD=30°,∴∠AOC=2∠AOD=120°,同理∠AOB=120°,∴∠BOC=120°,∴阴影部分的面积=2S△AOC=2××2×1=2,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.【解答】解:原式=﹣1+1=.故答案为:.12.【解答】解:∵AB=BD,∴∠A=∠BDA=50°,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CBD=∠ADB=50°,故答案为50°.13.【解答】解:∵小颖连续5次数学考试成绩与这5次成绩的平均分的差值分别为2,1,﹣1,0,3,∴S小颖2=[22+12+(﹣1)2+02+32]=3;故答案为:3.14.【解答】解:∵四边形AGEF是正方形∴EF∥AG,AF=EF=EG=AG∵点D是AB中点∴DB=AD=AB=4∵EF∥AG∴△CEF∽△CDA∴∴∴AF=3∵S△BCE=S△ABC﹣S△ACD﹣S△BDE∴S△BCE=×8×12﹣×12×4﹣×4×3=18故答案为:1815.【解答】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,故答案为:或.三、解答题(本大题8个小题,共75分)16.【解答】解:原式=﹣•=﹣=,当x=﹣2,y=+2时,原式==﹣.17.【解答】解:(1)由题意:列表法可得:点M的坐标为(﹣1,0),(﹣1,1),(0,﹣1),(0,1),(1,﹣1),(1,0);(2)∵(0,﹣1),(﹣1,0)在直线y=﹣x﹣1上,∴P(点M在直线y=﹣x﹣1上)==.18.【解答】解:(1)∵AB为半圆O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠ABC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC,∠OBC=∠BOC=60°,∴∠AOC=∠PBC=120°,∵CP是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∴∠ACO=∠PCB,在△PBC与△AOC中,,∴△PBC≌△AOC(ASA);(2)如图1,连接OD,BD,CD,∵四边形AOCD是菱形,∴OA=AD=CD=OC,则,OA=OD=OC,∴△AOD与△COD是等边三角形,∴∠AOD=∠COD=60°,∴∠BOC=60°,∴的长==π;如图2,同理∠BOC=120°,∴的长==2π,综上所述,的长为π或2π.19.【解答】解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=AC sin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH•tan30°=290×=,答:支撑角钢CD和EF的长度各是45cm,cm.20.【解答】解:(1)设A型女装的单价是x元,B型女装的单价是y元,依题意得:,解得.答:A型女装的单价是1000元,B型女装的单价是1200元;(2)设购进A型女装m件,则购进B型女装(60﹣m)件,根据题意,得m≥2(60﹣m),∴m≥40,设购买A、B两种型号的女装的总费用为w元,w=1000m+1200×0.8×(60﹣m)=40m+57600,∵40>0,∴w随m的增大而增大,∴当m=40时,w最小=40×40+57600=59200.答:该专卖店至少需要准备59200元的贷款.21.【解答】解:(1)∵一次函数y=x+b的图象与y轴交于点B(0,2),∴b=2,∴一次函数的解析式为y=.∵B(0,2),∴OB=2,作DF⊥OB于F.∵四边形ABCD是矩形,∴BE=ED,∵OE∥DF,∴OB=OF=2,∴n=﹣2,∵D(m,﹣2)在y=上,∴m=﹣3,∴D(﹣3,﹣2),∵点D在y=上,∴k=6,∴反比例函数的解析式为y=.(2)由(1)可知:OE=DF=,在Rt△BOE中,BE==,在矩形ABCD中,AE=BE=,∴OA=AE﹣EO=﹣=1,∴A(1,0).22.【解答】解:(1)全等三角形有:△ADM≌△CEN;△CDM≌△BEN;△ACM≌△CBN;(2)全等,以△ADM≌△CEN为例,理由如下:∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∵点D,E分别为AC,BC的中点,∴CD=AD=AC,CE=BC,∴CD=CE=AD,∵∠ACB=60°,∴△CDE是等边三角形,∴∠CDM=∠CED=60°,∴∠ADM=∠CEN=120°,∵BM=EN,AD=CE,∴△ADM≌△CEN(SAS);(3)当△ACM是直角三角形时,当∠ACM=90°时,CN=AM=2;当∠AMC=90°时,CN=AM=2,故综上所述,CN的值为2或2.23.【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n =5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,∴抛物线方程为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:3或;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).。

中考数学模拟试题三扫描版

中考数学模拟试题三扫描版
③借助图象,写出解集:
解:由图2知,不等式x2-2x+1<4的解集是-1<x<3;…………………………7分
(3)解:①当b2-4ac>0时,关于x的不等式ax2+bx+c>0(a>0)
的解集是x> 或x< .…………………………8分
当b2-4ac=0时,关于x的不等式ax2+bx+c>0(a>0)的解集是x≠- ………9分;
(2)【提示】①解:当四边形AOPD的AO边上的高等于半径时有最大面积,
(4÷2)×(4÷2)=2×2=4;
②如图:∵DP∥AB,DP=BO,
∴四边形BPDO是平行四边形,
∵四边形BPDO是菱形,∴PB=BO,
∵PO=BO,∴PB=BO=PO,
∴△PBO是等边三角形,∴∠PBA的度数为60°.
19.(9分)(1)解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,
“E”所对应的圆心角的度数是360°×8%=28.8°,
(3)C组的频数是:……………7分
(4)2000×(28%+8%+40%)=1520(户)
答:估计月信息消费额不少于200元的约有1520户.……………………9分
18.(1)证明:∵PC=PB,D是AC的中点,∴DP∥AB,………1分
20.(9分)(1)解:设购买一个足球需要x元,购买一个篮球需要y元,
根据题意得 ,……………………………………………2分
解得 ,……………………………………………………………4分
∴购买一个足球需要50元,购买一个篮球需要80元.……………5分
(2)方法一:解:设购买a个篮球,则购买(96-a)个足球.…………6分
80a+50(96-a)≤5720,………………………………………………7分

学易密卷:2017年中考数学模拟冲刺卷 02(河南卷全解全析)

学易密卷:2017年中考数学模拟冲刺卷 02(河南卷全解全析)
【解析 】从上面看 共有 2 行,第一行有 3 个正方形,第二行中 间有一个正方 形,故选 C.
5.【答案】B 【解析】过点 A 作 AM⊥x 轴于点 M,过点 F 作 FN⊥x 轴于点 N,如图所示.
设 OA=a,在 Rt△OAM 中,∠AMO=90°,OA=a,sin∠AOB= 4 , 5
可求得 AM OA sinAOB 4 a,OM= 3 a,所以点 A 的坐标为( 3 a, 4 a).
(3)1600× 70 =560(人), 200
答:估计全校选择体育类的学生有 560 人. (9 分)
;(6 分)
(2)∵ HG HC HE HC EC ,∴连接 EC 交 BD 于点 H,此时 HG+HC 最小. (5 分)
作 EM⊥BC 于 M,DN⊥BC 于 N,
在 Rt△EBM 中,∵∠EMB=90°,∠EBM=30°,EB=ED=2 10 ,
在 Rt△EMC 中,∵∠EMC=90°,EM= 10 ,MC=3 10 , ∴EC= EM 2 MC 2 ( 10)2 (3 10)2 =10. ∴ HG HC HE HC EC 10 , ∴HG+HC 的最小值为 10. (9 分)
19.【解析】(1)延长 AB 交海岸线 l 于点 D,过点 B 作 BE⊥海岸线 l 于点 E,过点 A 作 AF⊥l 于 F,如图 所示. (1 分)
根据相似三角形的性质,得到比例式 FD DE ,即 DF 1.2 ,解得 DF= 2 3 ,
AB BE
3 1.8
3
3
则 CF=CD﹣DF= 3 ,所以 CF 3 1 .故选 A.
3
CD 3 3
9.【答案】D
【解析】①正确,由 b a 0 可得 b <0,故该抛物线的对称轴在 y 轴左侧; 2a

中考数学模拟冲刺卷 03(河南卷考试版)

中考数学模拟冲刺卷 03(河南卷考试版)

【密卷】河南中考模拟冲刺卷(三)数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.34-的相反数是A.34-B.43-C.34D.4 32.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,数据30000000用科学记数法表示为A.30×104B.3×107 C.0.3×107D.3×1083.下列图形中,既是轴对称图形,又是中心对称图形的是A.B.C.D .4.下列计算正确的是A .822-=B .()236-=C .42232a a a -=D .()235a a -=5.下列说法中不正确的是A .函数y =2x 的图象经过原点B .函数y =1x的图象位于第一、三象限 C .函数31y x =-的图象不经过第二象限 D .函数3y x=-的值随x 的值的增大而增大 6.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是A .90°B .60°C .150°D .120°7.某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人)13222则这10名学生校服尺寸的众数和中位数分别为 A .165,165B .165,170C .170,165D .170,1708.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE 的度数为A .50°B .51°C .51.5°D .52.5°9.已知抛物线2y ax bx c =++(0b a >>)与x 轴最多有一个交点,现有以下四个结论: ①该抛物线的对称轴在y 轴左侧;②关于x 的方程220ax bx c +++=无实数根;③0a b c -+≥; ④a b cb a++-的最小值为3. 其中,正确结论的个数为 A .1个B .2个C .3个D .4个10.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运算 21=2 22=4 23=8 … 31=3 32=9 33=27 … 新运算log 22=1log 24=2log 28=3…log 33=1log 39=2log 327=3…根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③21log 21=-.其中正确的是 A .①②B .①③C .②③D .①②③第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:231|84|()2---=.12.在1,π,3,2, 3.2-这五个数中随机取出一个数,则取出的这个数大于2的概率是. 13.抛物线22221y x x =-+与坐标轴的交点个数是.14.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为.15.如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)已知x,y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式2()(2)(2)x y x y x y--+-的值.17.(本小题满分9分)某市图书馆自开放以来,受到市民的广泛关注.九年级(1)班学生小明对全班同学最近一个月去图书馆的次数做了调查统计,并制成了如图不完整的统计图表.九年级(1)班学生去新图书馆的次数统计表去图书馆的次数0次1次2次3次4次及以上人数8 12 a10 4 请你根据统计图表中的信息,解答下列问题:(1)填空:a=,b=;(2)求扇形统计图中“0次”的扇形所占圆心角的度数;(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.18.(本小题满分9分)如图,⊙O过正方形ABCD顶点B,C,与AD相切于点P,与AB,CD分别相交于点E、F,连接EF,PF,BF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=34,DF5,求EF的长.19.(本小题满分9分)为了维护海洋权益,新组建的国家加大了在南海的巡逻力度.一天,我国的两艘海监船在我国某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域,如图所示.已知60(2)AB=+海里,在B处测得C在北偏6东45º的方向上,A处测得C在北偏西30º的方向上,在海岸线AB上有一灯塔D,测得12062)(AD=-海里.(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)(2)已知在灯塔D周围100海里范围内有暗礁群,我国在A处的海监船沿AC前往C 处盘查,途中有无触礁的危险?(参考数据:2=1.41,3=1.73,6=2.45)20.(本小题满分9分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,假设小明骑自行车速度以及步行速度均匀,且小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分钟);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?21.(本小题满分10分)某商店使用调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x (元)满足一次函数关系,如下表:第1个 第2个 第3个 第4个 … 第n 个 调整前单价x (元) x 1 x 2=6 x 3=72 x 4 … x n 调整后单价y (元)y 1y 2=4y 3=59y 4…y n21世纪教育网21世纪教育网已知这n 个玩具调整后的单价都大于2元. (1)求y 与x 的函数关系式,并确定x 的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n 个玩具调整前、后的平均单价分别为_x ,_y ,猜想_y 与_x 的关系式,并写出推导出过程.22.(本小题满分10分)已知四边形ABCD 中,AB =AD ,AB ⊥AD ,连接AC ,过点A 作AE⊥AC ,且使AE =AC ,连接BE ,过A 作AH ⊥CD 于H 交BE 于F .(1)如图1,当E 在CD 的延长线上时,求证:①△ABC ≌△ADE ;②BF =EF ;(2)如图2,当E 不在CD 的延长线上时,BF =EF 还成立吗?请证明你的结论.23.(本小题满分11分)如图,已知抛物线222141y x x =--+与x 轴交于A 、B 两点,与y轴交于点C .(1)求点A ,B ,C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A ,B ,E ,F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.。

河南省数学中考冲刺模拟试卷含复习资料

河南省数学中考冲刺模拟试卷含复习资料

卷2017年河南中考模拟冲刺数学(考试时间:100 分钟试卷满分:120 分)第Ⅰ卷一、选择题(本大题共10 个小题,每题 3 分,共30 分.在每题给出的四个选项中,只有一个选项是切合题目要求的)1、在﹣,0,﹣2,,1 中,绝对值最大的数为()A、0B、﹣C、﹣2D、2、以下图案中,既是中心对称图形也是轴对称图形的个数为()A、1 个B、2 个C、3 个D、4 个3、我国计划在2020 年左右发射火星探测卫星,据科学研究,火星距离地球的近来距离约为5500 万千米,这个数据用科学记数法可表示为()6 千米B、5.5 ×170千米A、5.5 ×106 千米D、0.55 ×180千米C、55×104、如图,将一副三角板和一张对边平行的纸条按以下方式摆放,两个三角板的向来角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个极点在纸条的另一边上,则∠ 1 的度数是()A、30°B、20°C、15°D、14°5、某校九年级(1)班全体学生2017 年体育考试的成绩统计以下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6依据上表中的信息判断,以下结论中错误的选项是()A、该班一共有40 名同学B、该班学生此次考试成绩的众数是45 分C、该班学生此次考试成绩的中位数是45 分D、该班学生此次考试成绩的均匀数是45 分6、如图,已知直线a∥b∥c,直线m、n 与直线a、b、c 分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A、7B、7.5C、8D、7、小朱要到距家1500 米的学校上学,一天,小朱出发10 分钟后,小朱的爸爸立刻去追小朱,且在距离学校60 米的地方追上了他。

已知爸爸比小朱的速度快100 米/ 分,求小朱的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【密卷】2017年河南中考模拟冲刺卷(三)
数学
(考试时间:100分钟试卷满分:120分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.
3
4
-的相反数是
A.
3
4
-B.
4
3
-C.
3
4
D.4 3
2.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,数据30000000用科学记数法表示为
A.30×104B.3×107 C.0.3×107
D.3×108
3.下列图形中,既是轴对称图形,又是中心对称图形的是
A.B.C.
D .
4.下列计算正确的是
A .822-=
B .()2
36-=
C .42232a a a -=
D .()2
35a a -=
5.下列说法中不正确的是
A .函数y =2x 的图象经过原点
B .函数y =
1
x
的图象位于第一、三象限 C .函数31y x =-的图象不经过第二象限 D .函数3
y x
=-
的值随x 的值的增大而增大 6.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是
A .90°
B .60°
C .150°
D .120°7.某班10名学生校服
尺寸与对应人数如下表所示:
尺寸(cm ) 160 165 170 175 180 学生人数(人)
1
3
2
2
2
则这10名学生校服尺寸的众数和中位数分别为 A .165,165
B .165,170
C .170,165
D .170,170
8.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE 的度数为
A .50°
B .51°
C .51.5°
D .52.5°
9.已知抛物线2y ax bx c =++(0b a >>)与x 轴最多有一个交点,现有以下四个结论: ①该抛物线的对称轴在y 轴左侧;
②关于x 的方程220ax bx c +++=无实数根;
③0a b c -+≥; ④
a b c
b a
++-的最小值为3. 其中,正确结论的个数为 A .1个
B .2个
C .3个
D .4个
10.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运算 21=2 22=4 23=8 … 31=3 32=9 33=27 … 新运算
log 22=1
log 24=2
log 28=3

log 33=1
log 39=2
log 327=3

根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③21log 21=-.其中
正确的是 A .①②
B .①③
C .②③
D .①②③
第Ⅱ卷
二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:231
|84|()2
---=.
12.在1,π,3,2, 3.2-这五个数中随机取出一个数,则取出的这个数大于2的概率是. 13.抛物线22221y x x =-+与坐标轴的交点个数是.
14.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为.
15.如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,
将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为.
三、解答题(本大题共8小题,共75分.解答应写出
文字说明、证明过程或演算步骤)
16.(本小题满分8分)已知x,y满足方程组
52
251
x y
x y
-=-


+=-

,求代数式2
()(2)(2)
x y x y x y
--+-
的值.
17.(本小题满分9分)某市图书馆自开放以来,受到市民的广泛关注.九年级(1)班学生小明对全班同学最近一个月去图书馆的次数做了调查统计,并制成了如图不完整的统计图表.
九年级(1)班学生去新图书馆的次数统计表
去图书馆的次数0次1次2次3次4次及以上
人数8 12 a10 4 请你根据统计图表中的信息,解答下列问题:
(1)填空:a=,b=;
(2)求扇形统计图中“0次”的扇形所占圆心角的度数;
(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.
18.(本小题满分9分)如图,⊙O过正方形ABCD顶点B,C,与AD相切于点P,与AB,CD分别相交于点E、F,连接EF,PF,BF.
(1)求证:PF平分∠BFD.
(2)若tan∠FBC=3
4
,DF=5,求EF的长.
19.(本小题满分9分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度.一天,我国的两艘海监船在我国某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域,如图所示.已知60(2)
AB=+海里,在B处测得C在
6
北偏东45º的方向上,A处测得C在北偏西30º的方向上,在海岸线AB上有一灯塔D,测得12062)
(
AD=-海里.
(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)
(2)已知在灯塔D周围100海里范围内有暗礁群,我国在A处的海监船沿AC前往C 处盘查,途中有无触礁的危险?(参考数据:2=1.41,3=1.73,6=2.45)
20.(本小题满分9分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,假设小明骑自行车速度以及步行速度均匀,且小明骑自行车速度是步行速度的3倍.
(1)求小明步行速度(单位:米/分钟);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
21.(本小题满分10分)某商店使用调低价格的方式促销n个不同的玩具,调整后的单价y
(元)与调整前的单价x (元)满足一次函数关系,如下表:
第1个 第2个 第3个 第4个 … 第n 个 调整前单价x (元) x 1 x 2=6 x 3=72 x 4 … x n 调整后单价y (元)
y 1
y 2=4
y 3=59
y 4

y n
21世纪教育网21世纪教育网已知这n 个玩具调整后的单价都大于2元. (1)求y 与x 的函数关系式,并确定x 的取值范围;
(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?
(3)这n 个玩具调整前、后的平均单价分别为_
x ,_
y ,猜想_
y 与_
x 的关系式,并写出推导出过程.
22.(本小题满分10分)已知四边形ABCD 中,AB =AD ,AB ⊥AD ,连接AC ,过点A 作AE
⊥AC ,且使AE =AC ,连接BE ,过A 作AH ⊥CD 于H 交BE 于F .
(1)如图1,当E 在CD 的延长线上时,求证:①△ABC ≌△ADE ;②BF =EF ; (2)如图2,当E 不在CD 的延长线上时,BF =EF 还成立吗?请证明你的结论.
23.(本小题满分11分)如图,已知抛物线222
141y x x =--+与x 轴交于A 、B 两点,与y
轴交于点C .
(1)求点A ,B ,C 的坐标;
(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A ,B ,E ,F 为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出
点M 的坐标;若不存在,请说明理由.。

相关文档
最新文档