现代控制理论论文
自动控制原理论文
自动控制原理论文自动控制原理是现代控制工程的基础理论之一,它研究的是自动控制系统的设计、分析和应用。
自动控制系统是一种能够根据系统的输入和输出自动调节控制对象的状态或行为的系统,它在工业生产、交通运输、航空航天等领域都有着广泛的应用。
本文将从控制系统的基本概念、控制系统的分类、控制系统的性能指标和控制系统的设计方法等方面进行论述。
首先,控制系统是由控制器、执行器和被控对象组成的。
控制器接收输入信号,经过处理后输出控制信号,控制被控对象的状态或行为。
执行器接收控制信号,执行控制指令,改变被控对象的状态或行为。
被控对象是控制系统要控制的对象,其状态或行为受到控制器和执行器的影响。
控制系统的基本概念对于理解控制系统的工作原理和设计方法具有重要意义。
其次,控制系统根据控制对象的性质和控制方式可以分为连续控制系统和离散控制系统。
连续控制系统是指控制对象的状态或行为是连续变化的,控制器和执行器的输入和输出信号也是连续变化的。
离散控制系统是指控制对象的状态或行为是离散变化的,控制器和执行器的输入和输出信号也是离散变化的。
控制系统的分类对于选择合适的控制方法和设计控制系统具有重要意义。
再次,控制系统的性能指标包括稳定性、灵敏度、动态性能和鲁棒性等。
稳定性是指控制系统在受到干扰或参数变化时能够保持稳定的特性。
灵敏度是指控制系统对于输入信号和参数变化的敏感程度。
动态性能是指控制系统对于输入信号的响应速度和抑制能力。
鲁棒性是指控制系统对于模型不确定性和外部干扰的抵抗能力。
控制系统的性能指标对于评价控制系统的性能和改进控制系统的性能具有重要意义。
最后,控制系统的设计方法包括传统控制方法和现代控制方法。
传统控制方法是指基于数学模型和经验法则设计控制系统的方法,如PID控制器和根轨迹法则。
现代控制方法是指基于状态空间理论和优化理论设计控制系统的方法,如状态反馈控制和最优控制。
控制系统的设计方法对于实现控制系统的性能指标和满足控制要求具有重要意义。
现代控制理论课程论文 浙江大学
现代控制理论课程论文现代控制理论综述姓名XXXX学号XXXX学院机械工程学院班级XXXXX专业机械设计及理论学位类型学术型2014年11月21日摘要本文对现代控制理论做了一次完整综述,主要讲了现代控制理论的起源、内容、发展及其特点。
本文简要说明了现代控制理论的主要内容,对系统的状态和状态方程、线性控制系统的能控性和能观性、系统的稳定性分析、线性定常系统的常规综合、最优控制做了简要概述。
最后介绍了一下现代控制技术在21世纪的发展趋势,主要包括信息技术与控制技术的结合、虚拟现实及计算机仿真技术、集成控制技术。
关键词:现代控制理论,综述,主要内容,发展趋势AbstractThis paper made a complete summary modern control theory, concerning the origin, content, development and characteristics of modern control theory. This paper made a brief description of the main elements of modern control theory, including the system's status and state equations, linear control system controllability and observability, the stability analysis, conventional integrated of linear time-invariant systems and optimal control. Finally we made a introduction about the trends of modern control theory in modern control technology of the 21st century, including the combination of information technology and control technology, virtual reality and computer simulation technology and integrated control technology.Key words: Modern control theory, summary, main content, development trend目录第一章绪论 (1)1.1现代控制理论的起源与发展 (1)1.2现代控制理论的特点及主要内容简介 (1)1.3现代控制理论的学习意义 (1)第二章现代控制理论的主要内容 (2)2.1系统的状态和状态方程 (2)2.2线性控制系统的能控性和能观性 (2)2.3系统的稳定性分析 (2)2.4线性定常系统的常规综合 (3)2.5最优控制 (4)第三章现代控制技术在21世纪的发展趋势 (5)3.1信息技术与控制技术的结合 (5)3.2虚拟现实及计算机仿真技术 (6)3.3集成控制技术 (6)第四章总结与展望 (7)参考文献 (8)第一章绪论1.1现代控制理论的起源与发展经典控制理论考虑的对象比较简单,对象为单输入单输出、线性、时不变系统;使用图形化方法,从而依赖于设计人员的经验;不能具有处理多目标,不能揭示系统的内部特性。
现代控制及plc应用技术论文
现代控制及plc应用技术论文现代控制及PLC应用技术论文摘要:随着现代工业的发展,自动化控制系统的应用越来越广泛,从传统的批量控制到现代的数字化控制,控制技术的发展在推动工业自动化水平的提高起到了重要的作用。
本论文主要介绍了现代控制技术以及PLC的应用技术。
一、现代控制技术现代控制技术是指在数字计算机的帮助下进行控制,通过采集、处理和输出信号来实现对被控对象的控制。
现代控制技术具有以下特点:1. 高度自动化:现代控制技术可以实现对各种设备的自动控制和监测,大大提高了生产效率。
2. 精确性高:现代控制技术可以实现对被控对象的精确控制,可以在很小的误差范围内保持控制对象的稳定性。
3. 灵活性强:现代控制技术可以根据不同的工作需求进行灵活调整和改变,适应多样化的工作环境和工作要求。
4. 可靠性高:现代控制技术采用先进的故障检测和容错机制,大大提高了系统的可靠性和稳定性。
二、PLC的应用技术PLC(Programmable Logic Controller,可编程逻辑控制器)是一种用来控制各种工业生产过程的数字运算器。
它具有以下特点:1. 可编程性强:PLC可以根据不同的工作需求进行编程,实现对各种设备的控制。
2. 高速高效:PLC具有快速的运算能力和高效率的数据处理能力,可以满足工业生产过程中的快速响应和高效率的控制要求。
3. 可靠稳定:PLC具有良好的抗干扰能力和故障容错能力,可以保证生产过程的稳定和可靠性。
4. 灵活可扩展:PLC具有模块化设计和可扩展性,可以根据需要进行灵活的功能扩展和升级。
三、PLC的应用案例PLC已经广泛应用于各个行业,以下是几个典型的应用案例:1. 工业自动化控制:在工业生产过程中,PLC可以实现对各种设备的自动控制,提高生产效率和产品质量。
2. 交通信号灯控制:PLC可以实现对交通信号灯的控制,根据实时交通情况进行信号的切换和调整,提高道路通行效率。
3. 楼宇自动化控制:PLC可以实现对楼宇内各种设备(如照明、空调、电梯等)的自动控制和管理,提高能耗效率和使用舒适度。
现代控制理论论文
单元机组负荷控制解耦方法探讨一、引言近年来,在世界范围内发生了多次的电网事故,如2003年美国东北部和加拿大部分地区发生大面积停电, 2008年,中国的南方雪灾和汶川地震及美国东岸的暴雪灾害导致较大范围电网严重损毁,许多地区出现了较长时间的大面积停电,给社会和人民生活造成了很大影响;2010年,智利大地震,造成了全国范围的停电事故,全国80%人口受到影响;这些大面积停电的事故,不断加深了人们对电力系统的安全性和可靠性给以了高度的关注,加紧制定应对大停电事故的各种措施。
除加强电网建设外,发电厂的机组快速甩负荷(FCB)功能建设已引起了越来越高的关注。
尽管我国许多大机组都有FCB的设计,但在真正意义上100%负荷下成功实现者甚少。
上世纪80年代后,我国引进的部分火电项目配置了FCB的设计.由于种种原因,这些机组很难在满负荷下实现FCB.即使在个别文章所介绍的FCB试验中,似乎能够成功,但这仅是个试验而已,离实用尚有很大的距离.因为,许多类似的试验都事先采取了一系列的措施,试问,在电网突发事故时,是否能事先通知电厂,使其有充分的时间去做FCB的准备?具有完善的自动调节和保护功能,并能够实现快关、快开的所谓超弛控制。
某一电厂600WM机组为例,机组参数: FCB(Fast Cut Back-FCB)是指机组在高于某一负荷之上运行时,由于机组内部故障或外部电网故障而与电网解列,瞬间甩掉全部对外供电负荷,但是并没有发生MFT(master fuel trip主燃料跳闸)并保持锅炉在最低负荷运行,维持发电机带厂用电运行或停机不停炉的自动控制功能。
当机组实现FCB功能后,具备发电机解列带厂用电的能力,有助于电网在可能的最短时间内恢复正常,也有助于发电机组的安全停运。
二、FCB实现的介绍:2.1 FCB实现的条件当汽轮机或发电机跳闸时,机组锅炉中汽包水位低、炉膛火焰丧失、燃料丧失、炉膛压力高、炉膛压力低,以上任一条件满足且负荷大于140MW触发FCB,而此时要求锅炉本身没有发生MFT条件,汽轮机真空正常,高压旁路控制应在自动方式,燃料主控必须在自动方式。
现代控制理论综述—课程论文
论文题目现代控制理论综述姓名 *** 学号 ***学科(专业) ***所在学院机械工程学院任课教师*** 提交日期***目录摘要 (1)Abstract (1)1绪论 (2)现代控制理论 (2)现代控制理论的发展历程 (2)现代控制理论与经典控制理论的异同 (3)2 现代控制理论的基本内容 (5)线性系统理论 (5)非线性系统理论 (5)最优控制理论 (6)最优估计理论 (6)随机控制理论 (6)适应控制理论 (7)2.7 系统辨识理论 (7)3现代控制理论的其他研究方向 (8)智能控制 (8)鲁棒性分析与鲁棒控制 (8)模糊控制 (9)神经网络控制 (9)实时专家控制 (9)分布参数系统控制 (10)预测控制 (10)4 现代控制理论的发展趋势和展望 (11)现代控制理论的发展趋势 (11)现代控制理论的前景展望 (11)5 参考文献 (13)摘要本文首先介绍了现代控制理论的发展历程以及现代控制理论和经典控制理论二者的异同点,然后介绍了现代控制技术的基本内容,之后又对现代控制理论目前研究的一些方向作了简要说明,包括智能控制、鲁棒控制、模糊控制、神经网络控制及实时专家控制等。
最后总结了现代控制技术的发展特点以及发展趋势。
关键词:现代控制理论控制概述发展内容AbstractThe paper introduces the development process of modern control at first. And then it compares the differences and similarities between modern control and classical control . Besides,it introduces the basic content of modern control technology and some new research directions , such us Intelligent control,robust control, fuzzy control, neural network control and real-time expert control ,etc. At last , this paper pointesout the development characteristics and development trend of modern control technology.Keywords: modern control technology control overview development content1绪论1.1现代控制理论现代控制理论是在经典控制理论基础上逐步发展起来的,建立在状态空间法基础上的一种控制理论,研究多输入多输出、变参数、非线性、高精度、高效能等控制系统的分析与设计问题,是自动控制理论的一个主要组成部分。
现代控制理论的论文
第一章经典控制理论和现代控制理论本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
以下是经典控制理论和现代控制理论的比较:1、经典控制理论:(1)理论基础:Evens的根轨迹,Nyquist稳定判据。
(2)研究对象:线性定常SISO系统分析与设计。
(3)分析问题:稳、准、快(4)采用方法:是以频率域中传递函数为基础的外部描述方法。
(5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。
(6)研究方法:时域法、根轨迹法、频率法。
2、现代控制理论:(1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。
(2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性)(3)分析问题:稳、准、快(4)设计(综合)问题:1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。
2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。
3)研究方法:状态空间法(时域法)、频率法。
现代控制理论结课论文
现代控制理论方法综述研电1610 秦晓 1162201332摘要:本文将控制理论方法分为现代控制理论基础,线性最优控制,非线性最优控制三大部分,查阅文献,综述了每一部分中的经典控制方法,以及每种控制方法的优缺点和在工业中的应用,最后提出了目前在现代控制理论中依旧存在的问题。
1.引言电力系统是一个复杂的非线性动态大系统,对于这个规模庞大的系统,研究其运行的动态特性进而构建先进的安全控制系统是极富挑战性的课题。
同时,各种新技术的应用,一方面增强了系统的调控能力和经济效益,另一方面也极大的增加了电网控制的复杂性,对电力系统的安全稳定运行提出了更严格的要求。
因此,改善与提高我国电力系统的动态品质、安全稳定和经济性成为了电力工作者的首要任务。
提高电力系统稳定性的最经济和最有效的手段之一是采用先进的控制理论和方法。
在过去的时间里,电力工作者们为改进与发展电力系统控制技术进行了大量研究。
本文主要梳理总结电力系统在现代控制方面的研究成果,分析了电力系统控制技术的发展趋势,并总结了目前现代控制理论还需要解决的问题。
2.现代控制的基础现代控制理论的基础是经典控制理论,在20世纪20年代到50年代间,为了满足第二次世界大战前后军事技术和工业发展的需求,经典控制理论有了飞速的发展。
经典控制理论主要研究线性时不变、单输入单输出的控制问题。
在分析和设计大型反馈控制系统时,经典控制论主要采用频域法,其中以 Nyquist 判据、Bode 图和根轨迹法最为广泛[1~2]。
经典控制理论的设计目标是使闭环系统特征方程的特征根全部位于左半开平面上。
上述设计目标可以描述为一类无目标函数的优化问题,即约束满足问题。
由于使系统稳定的控制器解并不唯一,所以根据经典控制理论设计的PID 控制器往往带有较大的冗余性[3]。
也正是由于经典控制理论设计目标及方向简单明确,计算方便,特别适合需要依赖工程经验或现场测试进行控制器设计的系统,所以至今仍在工业中广泛应用。
现代控制理论论文
李雅普诺夫稳定性理论李雅普诺夫稳定性理论是近代控制理论中一个重要的组成部分,它在近代控制理论中的最优控制,最优估计,滤波和自适应控制,神经网络等方面发挥了极其重要的作用。
在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础,经典控制理论以拉氏变换为数学工具,以单输入——单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展——对经典理的精确化、数学化及理论化。
俄国数学家和力学家李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。
对于控制系统,稳定性是需要研究的一个基本问题。
在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。
李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。
李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。
李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。
对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。
与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。
第一方法的影响远不及第二方法。
在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。
现代控制理论论文
非线性系统的鲁棒自适应控制Robust Adaptive Control of Uncertain Nonlinear Systems郝仁剑 3120120359摘要:本文以非线性系统的控制问题为背景,介绍了多种经典的非线性系统的控制方法以及研究进展,分析了各种控制方法存在的优点和不足。
着重介绍了鲁棒自适应控制在非线性系统中的应用,结合该领域的近期研究进展和实际应用背景,给出对鲁棒自适应控制的进一步研究目标。
关键词:非线性系统鲁棒控制自适应控制1.前言任何实际系统都具有非线性特性,非线性现象无处不在。
严格地说,线性特性只是其中的特例,但是非线性系统与线性系统又具有本质的区别。
由于非线性系统不满足叠加原理,因此非线性特性千差万别,这也给非线性系统的研究带来了很大的困难。
同时,对于非线性系统很难求得完整的解,一般只能对非线性系统的运动情况做出估计。
众所周知,控制理论经历了经典控制理论和现代控制理论两个发展阶段。
在第二次世界大战前后发展起来的经典控制理论应用拉普拉斯变换等工程数学工具来分析系统的品质。
它广泛地应用于单输入单输出、线性、定常、集中参数系统的研究中。
随着控制对象的日益复杂以及人们对控制系统精度的不断提高,经典控制理论的局限性就暴露出来了。
在20世纪50年代,Bellman根据最优原理创立了动态规划。
同时庞特里亚金等学者创立了最大值原理。
后来,Kalman提出了一系列重要的概念,如可观性,可控性,最优线性二次状态反馈,Kalman滤波等。
这些理论和概念的提出大大促进了现代控制理论的发展。
控制系统的设计都需要以被控对象的数学模型为依据,然而对于任何被控对象不可能得到其精确的数学模型,如在建立机器人的数学模型时,需要做一些合理的假设,而忽略一些不确定因数。
不确定性的必然存在也正促使了现代控制理论中另一重要的研究领域——鲁棒控制理论的发展。
Zmaes关于小增益定理的研究以及Kalman关于单输入单输出系统LQ调节器稳定裕量的分析为鲁棒控制理论的发展产生了重要的影响。
现代控制论文
最优控制方法及其应用摘要最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值,使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。
最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
研究最优控制问题有力的数学工具是变分理论,而经典变分理论只能够解决控制无约束的问题,但是工程实践中的问题大多是控制有约束的问题,因此出现了现代变分理论。
现代变分理论中最常用的有两种方法。
一种是动态规划法,另一种是极小值原理。
它们都能够很好的解决控制有闭集约束的变分问题。
值得指出的是,动态规划法和极小值原理实质上都属于解析法。
此外,变分法、线性二次型控制法也属于解决最优控制问题的解析法。
最优控制问题的研究方法除了解析法外,还包括数值计算法和梯度型法。
1目录摘要 (1)第一章古典变分法 (3)1.1 古典变分法的定义 (3)1.2 古典变分法的应用 (3)第二章最大值原理 (6)2.1 最大值原理概述 (6)2.2 最大值原理应用举例 (7)第三章动态规划 (8)3.1动态规划的概述 (8)3.2动态规划的应用 (10)第四章线性二次型 (13)结束语 (15)参考文献 (16)23第一章 古典变分法1.1 古典变分法的定义古典变分法是研究对泛函求极值的一种数学方法。
直接来说,求泛函的极大值或者极小值问题成为变分问题,而求泛函极值的方法就成为变分法。
现代控制理论综述论文
论文题目:现代控制理论综述摘要本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。
本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。
关键词:现代控制;状态方程;稳定性;最优控制;AbstractThis article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department.Keywords: Modern control; State equation;Stability;Optimal control目录摘要 (I)Abstract........................................................... I I一、控制理论的发展历史 (1)二、现代控制理论的基本内容 (2)2.1 控制系统的状态空间表达式 (3)2.2 线性控制系统的能控性和能观性 (3)2.2.1 线性控制系统的能控性 (3)2.2.2 线性控制系统的能观性 (4)2.3 自动控制系统的稳定性 (5)2.4 最优控制 (6)三、控制理论的发展展望 (6)四、总结 (6)参考文献 (8)一、控制理论的发展历史控制理论是关于各种系统的一般性控制规律的科学,它研究如何通过信号反馈来修正动态系统的行为和性能,以达到预期的控制目的。
现代控制理论 modern control theory
奈奎斯特
四 标志阶段
1.1947年控制论的奠基人美国 数学家韦纳(N.Weiner)把控制 论引起的自动化同第二次产业革 命联系起来,并与1948年出版了 《控制论—关于在动物和机器中 控制与通讯的科学》,书中论述 了控制理论的一般方法,推广了 反馈的概念,为控制理论这门学 科奠定了基础。
控制论之父——韦纳
自适应控制:也是现代控制理论中近十几年 来发展比较快的一个活跃的分支。对于控 制对象的结构或参数会随环境条件的变化 而有大的变化的情况,为了保证控制系统 在整个控制过程中都满足某一最优准则, 那么最优控制器的参数就需要随时加以调 节变化才行。换句话说,控制器的参数要 适应环境条件的变化而自动地调整其参数, 使得整个系统仍然满足最优准则。因此, 这类控制系统称为自适应控制系统。
马克斯韦尔
2. 1895年劳斯(Routh)与赫
尔维茨(Hurwitz)把马克 斯韦尔的思想扩展到高阶微 分方程描述的更复杂的系 统中,各自提出了两个著名
的稳定性判据—劳斯判据
和赫尔维茨判据。基本上 满足了二十世纪初期控制
工程师的需要。
赫尔维茨(Hurwitz)
3.由于第二次世界大战需要 控制系统具有准确跟踪与补 偿能力,1932年奈奎斯特 (H.Nyquist)提出了频域 内研究系统的频率响应法, 为具有高质量的动态品质和 静态 准确度的军用控制系 统提供了所需的分析工具。
这类控制问题十分复杂,采用经典控制 理论难以解决。1958年,苏联科学家Л.С. 庞特里亚金提出了名为极大值原理的综 合控制系统的新方法。在这之前,美国学 者R.贝尔曼于1954年创立了动态规划,并 在1956年应用于控制过程。他们的研究 成果解决了空间技术中出现的复杂控制 问题,并开拓了控制理论中最优控制理 论这一新的领域。
现代控制理论论文
摘要最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
关键词:最优控制;控制规律;最优性能指标;线性二次型AbstractThe optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control.A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value.Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic一绪论1.1背景和意义要求将最优控制问题典型解决方法变分法、极值原理和动态规划及其在时间最短控制问题的应用和线性二次型最优控制问题(包括线性二次型实验及仿真结果)作为主要内容。
控制理论与控制工程毕业论文范文
控制理论与控制工程毕业论文范文一、论文说明本团队专注于毕业论文写作与辅导服务,擅长案例分析、编程仿真、图表绘制、理论分析等,论文写作300起,具体价格信息联系二、论文参考题目现代控制工程基础虚拟实验系统的研究思路:“现代控制工程”是机械类专业的一门必修课程,其中状态空间法的应用,加深了人们对控制领域的一些重要问题的认识,也使人们能较容易的解决多输入—多输出系统的问题,并且提供了将线性定常系统中的结论推广到复杂系统中的手段。
但是在教学中学生很难掌握在其状态空间中的数学模型-状态方程。
因此迫切需要通过实验的方式将抽象的理论可视化,加。
题目:电力建设工程管理公司合同管理控制制度的建立思路:本文是针对国家电力体制改革后,重组成立的电力建设工程管理公司运行中存在着合同管理控制制度不健全的问题,运用内部控制理论并结合企业的具体情况,设计了一套完整的合同管理控制制度框架,为企业提供了合同管理控制的工作制度(标准)和程序,并制定了相应的测试体系,以备定期对企业进行测试(复评),检查对合同管理控制制度的执行情况和合。
题目:工程机械液压系统动力匹配及控制技术研究思路:液压系统动力优化匹配控制技术是现代工程机械重要核心技术之一,它将现代液压控制理轮,自动控制理论,计算机技术及发动机技术等有机地连成一个不可分割的整体。
液压系统动力优化匹配控制技术应用到工程机械上以后,大大地提高了机器的很多性能,如工作效率、节能效果等,提高了机器对各种作业工况和作业环境的适应性,使机器操作、使用及维护更。
题目:基于内部控制理论的贵阳市城市轨道交通项目工程价款结算控制制度研究思路:贵阳市城市轨道交通公司采用DBB平行发包管理模式,这种管理模式工作界面清晰,业主选择承包商的范围较广,可节约投资,但对业主的管理水平要求高,目前公司仅有的《建设工程款拨付管理办法》无法满足工程价款结算控制要求,制定一套DBB模式下适用于贵阳市城市轨道交通项目的工程价款结算控制制度成为一个亟待解决的现实问题。
[工学]现代控制理论论文
最优控制方法及其应用摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。
最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。
而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有变分法、极大值原理和动态规划。
常使用到的主要有时间最短控制问题和线性二次型最优控制问题等。
通过以上知识的了解和应用可以使初学者能够快速掌握最优控制的问题。
关键字:最优化最优控制极值时间最优控制线性二次型目录第一章最优控制的基础 (4)1.1 最优控制理论 (4)1.2 最优控制问题的一般形式 (5)1.3 最优控制方法 (6)第二章变分法 (7)2.1 变分法基础 (7)2.2 变分法应用 (7)第三章极大值原理 (10)3.1 极大值原理的提出和形式 (10)3.2 极大值原理的应用 (11)第四章动态规划方法 (13)4.1 动态规划概念及意义 (13)4.2 动态规划算法的基本思想和结构 (13)4.3 动态规划算法的运用 (14)第五章时间最优控制问题 (16)第六章线性二次型最优控制问题 (20)6.1 线性二次型最优控制问题的提出 (20)6.2 应用MATLAB求解二次型最优控制问题(实验部分) (22)第七章关于倒立摆的最优控制 (34)结束语 (39)参考文献 (39)第一章最优控制的基础§ 1.1 最优控制理论最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。
它是现代控制理论的重要组成部分。
最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。
所谓最优化方法为了达到最优化目的所提出的各种求解方法。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
现代控制理论论文
[3]程鹏,王艳东编著.现代控制理论基础.第二版.北京:北京航空航天大学出版社,2010
学年论文
题目四阶系统稳定性判定
院系
专业
学生姓名
学号
指导教师
二O一二年五月二十日
一.背景介绍
1997年7月4日,以太阳能作动力的”逗留者号”漫游车在火星上着陆.漫游车全重10.4kg,可由地球上发出的路径控制信号r(t)实施遥控。漫游车的两组车轮以不同的速度运行,以便实现整个装置的转向。为了进一步探测火星上是否有水,2004年美国国家宇航局又发射了“勇气号”火星探测器。“勇气号”上的装备更为先进。在此,仅仅研究“逗留者号”漫游车的转向控制。
2.控制系统设计
车轮力矩
操纵右C(s)
调速阀门左漫游方向
3.结构图
R(s) + C(s)
预期的_
转动方向
3.仿真
由上可知,可设K1=50,a=0.84。所以
在Matlab中执行以下命令
运行结果为
即状态空间模型为
x +
(1)用MATLAB编程来分析
原系统的能控性、能观测性、稳定性分析,程序如下:
运行结果为:
(2)用MATLAB确定系统的零输入响应曲线
在MATLAB中执行以下命令
运行结果为
(3)用MATLAB分析所设计系统的单位阶跃响应特性
假设作用在小车上的输入为阶跃函数,所有的初始条件为0,确定了反馈增益矩
阵和积分增益常数,小车的转矩对阶跃输入的响应为
运行结果为:
4.控制信号图
5.参考文献
[1]胡寿松主编.自动控制原理.第五版.北京:科学出版社,2007
现代控制理论论文 电机系 1104
卡尔曼滤波器在永磁同步电机无速度传感器控制中的应用田晶晶(华中科技大学湖北武汉 430074)摘要:卡尔曼滤波法是一种最优线性估计方法,其特点是考虑到系统模型误差和测量噪声的统计特性,可以有效的减少随机干扰和测量噪声的影响。
将卡尔曼滤波器应用到非线性永磁同步电机控制系统中,设计一种基于扩展卡尔曼器的无速度传感器控制方案。
对永磁同步电机数学模型进行更新,并经过离散化和线性化后,通过检测电机的端电压和流过定子线圈的电流实时估算出转子位置与转速,同时对定子电流、电机转子位置与转速进行观测,探讨卡尔曼滤波算法在永磁同步电机无速度传感器控制中的状态观测能力。
关键词:卡尔曼滤波;永磁同步电机;无速度传感器The Application of Kalman Filter in Sensorless Control of Permanent Magnet Synchronous MotorTian Jingjing(Huazhong University of Science & Technology Wuhan Hubei 430074)ABSTRACT:Kalman filter method is a method of optimal linear estimation, with the feature of taking into account the statistical characteristics of the system model error and measurement noise , which can effectively reduce the influence of random interference and measurement noise. The Kalman filter is applied to the non-linear permanent magnet synchronous motor control system, in order to design a speed-sensorless control scheme based on extended Kalman filter. Update the mathematical model of permanent magnet synchronous motor , discrete and linearize tne model. The paper research into the state observation capability of Kalman filtering algorithm in PMSM sensorless control, observing the stator current、 rotor position and speed at the same time , by detecting the motor terminal voltage and current flowing through the stator coil and estimateing the real-time rotor position and speed.KEYWORD:Kalman Filter;Permanent Magnet Synchronous Motor;Sensorless Control第1章概述1.1 永磁同步电机简介电机作为一种生产、交换和使用电能的装置,在工农业生产、交通运输和军事国防中都发挥着举足轻重的作用。
现代控制理论论文
实验题目:转速反馈单闭环直流调速系统仿真一.实验目的与要求1.了解直流电机模型2.掌握转速负反馈速系统的静特性方程3. 学会转速负反馈系统稳态分析和相关公式推导二.实验方案直流电机模型框图如下图所示,仿真参数为R=0.6,T l=0.00833,T m=0.045,Ce=0.1925。
本次仿真采用算法为ode45,仿真时间5s。
图1 直流电机模型2、闭环仿真:在上述仿真基础上,添加转速闭环控制器,转速指令为1130rpm,0~2.5s,电机空载,即I d=0;2.5s~5s,电机满载,即I d=55A。
(1)控制器为比例环节:试取不同k p值,画出转速波形,求稳态时n和s并进行比较。
若k p=1空载时的转速n1=948r/min 负载时的转速n2=920r/min 静差率s=(948-920)/948=2.95%若k p=2空载时的转速n1=1031r/min 负载时的转速n2=1016r/min静差率s=(1031-1016)/1031=1.45%(2)控制器为比例积分环节,设计恰当的k p 和k I 值,并与其它不同的k p 和k I 值比较,画出不同控制参数下的转速波形,比较静差率、超调量、响应时间和抗扰性。
图2 转速闭环直流电机调速控制框图待校正的系统传递函数:)10833.00(4.4115)(+=s s s G若采用PI 控制器,其参数的选取:τ=4T 0=0.03332s T=8 K 0T 02=0.064s所以s64.000.03332s 1Gc(s)+=超调量σ%=(1290-1130)/1130=14.16% 响应时间约为:0.17s静差率s=(1130-1128)/1128=0.18%若将PI 控制器改为:s1.00.1s 1Gc(s)+=超调量σ%=(1222.5-1130)/1130=8.18% 响应时间约为:0.55s静差率s=(1130-1127)/1127=0.18%将波形放大后发现第二种比例积分控制器的抗扰性差于第一种。
现代控制理论论文重庆理工大学
三相三电平逆变器的最优控制(重庆理工大学,重庆市,400054)摘要:摘要内容基于近年来三相三电平逆变器在中高压调速领域、交流柔性供电系统的无功补偿中的广泛的应用,本文将针对二极管箝位拓扑型三相三电平逆变器进行研究。
我们首先将对三相三电平逆变器进行状态空间的数学建模,并在此基础上对研究对象的稳定性及能控能观性等一系列控制特性进行了计算和研究;之后,本文采用基于人工智能的免疫算法(IA)来计算相关状态矢量的最优作用时间,进一步产生最优的PWM控制序列,来控制开关管的开通和关断,以进一步改善三相三电平逆变器的输出特性。
本文给出了免疫算法的具体操作步骤和在逆变器最优控制中的具体实施方法,建立了三相三电平逆变器输出波形的数学模型和免疫算法中的各个评价函数。
接着通过编写C程序, 并调用Matlab 进行仿真试验, 实验和仿真结果证明,该算法所产生的最优PWM控制序列与常规空间矢量控制策略相比能有效地减小逆变器输出波形的总谐波畸变率,证明了本算法在逆变器最优控制中应用的可行性和有效性。
关键词:三相三电平逆变器;状态空间;免疫算法;最优空间矢量控制The optimal control of three-phase three-level inverter(Chongqing University of technology, Chongqing, 400054, China)Abstract:Based on the widely use of three-phase three-level inverter in medium-high voltage ac drive systems and FACTS equipments in recent years, in this paper we will do a research of Diode-clam- ped-topological type three phase three-level inverter. Firstly,wo will build a mathematical modeling on state space of the three-phase three-level inverter,and then, the study of the stability and the properties of controllability and observation can proceed with it. After that, this paper based on artificial intelligence immune algorithm (IA) ,we can calculate the optimal effect time of related state vector, further to produce the best PWM control sequence, to control the electronic switch tube to open or shut off, in order to further improve the output characteristics of three-phase three-level inverter. We also give a immune algorithm concrete operation steps and the specific implementation method of optimal control in the inverter application, a mathematics model of output current waveform and evaluation functions in the immune algorithm are also built.Then by programming C language and call Matlab simulation, it is proved that compared with conventional space vector control strategies ,this algorithm has the best PWM control sequence and minimize the THD of inverter output waveform, confirm the feasibility and availability of this algorithm in the optimal control of the inverter applications.Key words:three-phase three-level inverter; state space; immune algorithm; optimal space vector PWM control1引言近年来,随着逆变器在工业领域中的广泛应用,其控制策略已成为了研究的焦点之一,目前应用较多的有单闭环PI(PID)控制[1]、双闭环控制、重复控制[2]、滞环控制[3]、PR控制[4]、智能控制等等,而这些控制方法大多为模拟控制方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北民族学院姓名 XX班级 XX学号 XXXXXXXX摘要最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
关键词:最优控制;控制规律;最优性能指标;线性二次型AbstractThe optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control.A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value.Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic一绪论1.1背景和意义要求将最优控制问题典型解决方法变分法、极值原理和动态规划及其在时间最短控制问题的应用和线性二次型最优控制问题(包括线性二次型实验及仿真结果)作为主要内容。
其中有关线性二次型的实验要利用MATLAB软件建立数学模型及仿真并作对结果一定的分析。
通过理论与实践操作加深对最优控制这门课程的理解,使之能应用于以后的学习和工作。
1.2主要内容现代控制理论是在经典控制理论基础上逐步发展起来的。
其基本内容包括:线性系统的状态空间理论,最优估计与最优滤波、最优控制理论,系统辨识理论、鲁棒控制、自适应控制。
它以状态空间法为基础,研究多输入多输出、变参数、非线性、高精度、高效能等控制系统的分析与设计问题。
我们这个学期学习的是现代控制理论中一个重要核心部分:最优控制。
在上个世纪50年代初期,就出现了最短时间控制问题研究的论文,为最优控制理论的应用提供了第一批模型。
实际上,任何问题都存在优化问题。
优化问题可以分成两大类:参数最优化问题和最优控制问题。
参数最优化问题也称为静态最优化问题,它可以被抽象为在各种约束条件下的函数求极值的问题。
最优控制问题又称为动态最优化问题,它可以被数学抽象为在各种约束条件下泛函求极值的问题。
泛函求极值世纪上就是变分问题。
经典变分法只能解决一类简单的最优控制问题,因为它只适于研究不带闭域约束而且数学模型要具有足够的可微性的场合。
但实际问题往往具有闭域约束,而且往往不具备所需的可微性。
这样,就需要探索新的理论和新的方法,以便求解各种实际的最优控制问题。
在这些新的方法中,苏联学者庞德里亚金与20世纪50年代提出的“最大值原理”和美国学者贝尔曼与同一时期提出的“动态规划”具有特别重要的意义。
这两种方法从不同的角度发展了经典变分学,完善了最优控制理论,推动了最优控制理论的实际应用。
卡尔曼在60年代初提出和解决的线性系统在二次型性能指标下的最优控制问题,可以构成最优闭环反馈系统,在工程上实用价值很大。
二 线性二次型最优控制2.1 线性二次型问题概述线性二次型最优控制问题,也叫LQ 问题。
它是指线性系统具有二次型性能指标的最优控制问题。
线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。
它能兼顾系统性能指标的多方面因素。
例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。
线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。
2.2 线性二次型问题的提法给定线性时变系统的状态方程和输出方程如下:()()()()()()()()X t A t X t B t U t Y t C t X t ⎧=+⎨=⎩ (2.2.1) )(t X 是n 维状态变量,)(t U 是m 维控制变量,)(t Y 是l 维输出变量,)(t A 是n n ⨯时变矩阵,)(t B 是m n ⨯时变矩阵。
假设n m l ≤≤≤1,)(t U 不受约束。
若)(t Y r 表示预期输出变量,它是l 维向量,则有 )()()(t Y t Y t e r -=称为误差向量。
现在的问题是,选择最优控制)(t U 使下列二次型性能指标11()()[()()()()()()]22f t T TT f f t J e t Se t e t Q t e t U t R t U t dt =++⎰(2.2.2)为最小,这就是线性二次型最优控制问题。
(其中S 是l l ⨯半正定对称常数矩阵,)(t Q 是l l ⨯半正定对称时变矩阵,)(t R 是m m ⨯正定对称时变矩阵,终端时间f t 是固定的,终端状态)(f t X 自由。
2.3 二次型性能指标及其涵义11()()[()()()()()()]22f t T T Tf f t J e t Se t e t Q t e t U t R t U t dt =++⎰(1)终端代价(限制终端误差):1()()2Tf f e t Se t(2)过程代价(限制控制过程误差):01()()()2f t Te t L e t Q t e t =⎰(3)控制代价(限制控制U (t )的幅值及平滑性):1()()()2f t Tu t L U t R t U t =⎰2.4线性二次型最优控制问题的几种特殊情况2.4.1状态调节器问题:若I t C =)((单位矩阵),)(t Y r =0,则 ()()()Y t X t e t ==-。
于是性能指标变为11()()[()()()()()()]22f t T TT f f t J X t SX t X t Q t X t U t R t U t dt =++⎰则问题归结为:用不大的控制能量,使系统状态)(t X 保持在零值附近,因而称为状态调节器问题。
2.4.1.1有限时间状态调节器f t 是给定的终端时刻,)(f t X 是自由的终端状态,控制函数)(t U 不受约束。
要求确定最优控制函数)(*t U ,使性能指标达到最小值。