大学物理上册作业题

合集下载

大学物理作业学生新版答案

大学物理作业学生新版答案
《大学物理》作业No.1运动的描述
班级________学号_________姓名_________成绩_______
一、选择题
1.一质点在平面上作一般曲线运动,其瞬时速度为 ,瞬时速率为 ,某一段时间内的平均速度为 ,平均速率为 ,它们之间的关系有
[](A) (B)
(C) (D)
2.某物体的运动规律为 ,式中的k为大于零的常数。当t=0时,初速为 ,则速度v与t的函数关系是
(C)顶点a、c处是正电荷,b、d处是负电荷.
(D)顶点a、b、c、d处都是负电荷.
6、下面说法正确的是:
[](A)等势面上,各点场强的大小一定相等;
(B)在电势高处,电势能也一定高;
(C)场强大处,电势一定高;
(D)场强的方向总是从电势高处指向电势低处。
7、两个薄金属同心球壳,半径各为 和 ( ),分别带有电荷 和 ,两者电势分别为 和 (设无穷远处为电势零点),将两球壳用导线连起来,则它们的电势为:
[ ](A) (B)
(C) (D)
3.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距离分别为r1和r2,如图所示。则在电荷移动过程中电场力做的功为
[](A) ;(B) ;
(C) ;(D) 。
4.某电场的电力线分布情况如图所示,一负电荷从M点移到N点。有人根据这个图得出下列几点结论,其中哪点是正确的?
(A)1>2,S=q/0.
(B)1q/0.
(D)1<2,S=q/0
4、关于高斯定理的理解有下面几种说法,其中正确的是()
(A)如果高斯面上 处处为零,则该面内必无电荷;
(B)如果高斯面内无电荷,则高斯面上 处处为零;

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。

当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。

A .a ;B .a 2;C .2c ;D .224c a +。

2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。

3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。

从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。

A .2R ;B .R π;C . 0;D .ωπR 。

4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。

A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。

二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。

质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。

该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。

3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。

4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。

T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。

(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

dt dx dt
dx
K
0
v0 K
K
答案 (1)3°36′;(2)0.078
解析 (1)轮胎不受路面左右方向的力,而法向力应在水平方向上.
因而有 Nsin θ=mv21,Ncos θ=mg,所以 tan θ= v21 ,代入数据可得θ=3°36′.
R
Rg
(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为μN′,这里 N′为该时刻地面对车的支
Rcot α. at
(2)S=1att2=1Rcot α. 22
2-4 2-5
答案
R-b cc
解析 v=s′=b+ct,at=c,an=vR2=(b+Rct)2,令 at=an,得 t=
R-b. cc
答案 北偏东 19.4°,170 km/h
解析 设下标 A 指飞机,F 指空气,E 指地面,由题可知:
v0 v
0
作业 2
ABBCF
2-2
(1)gsin θ;gcos θ;(2)-g;2 3v2;(3)v0+bt; 2 3g
b2+(v0+bt)4;(4)1ct3;2ct;c2t4;(5)69.8 m/s
R2
3
R
2-3 答案 (1) Rcot α;(2)1Rcot α
at
2
解析 (1)物体的总加速度 a 为 a=at+an,tan α=aant=(aattt)2=aRtt2,t= R
解析 (1)dx=vdt,dx=vdt=v,adx=vdv, adx = vdv , (-kx)dx = vdv ,-1kx2=1v2+C,因
dv dv a
22
为质点静止于 x=x0,所以 C=-1kx20,所以 v=± k(x20-x2). 2

大学物理上册试卷及答案(完整版)

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总《大学物理》(上)统考试题一、填空题(52分)1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________;(2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI) 则其切向加速度为t a =__________________________.3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________.4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v=_______.6、一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)8、某理想气体在温度为T = 273 K 时,压强为p =1.0×10-2 atm ,密度ρ = 1.24×10-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.013×105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________.11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.12、折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.13、平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.14、一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.16、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.二、计算题(38分)17、空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)18、3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J .试画出此过程的p -V 图,并求这种气体的比热容比γ = C p / C V 值. (普适气体常量R =8.31J·mol -1·K -1)19、一质量为0.20 kg 的质点作简谐振动,其振动方程为 )215cos(6.0π-=t x (SI).求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力.17、20、一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.21、在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.22、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?三、问答题(5分)23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?《大学物理》(下)物探统考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。

大学物理第一章作业

大学物理第一章作业

at d v / d t g t / v g t 法向加速度方向与 at 垂直,大小为
2 2 0
2 2
an g a
2
2 1/2 t

2 v0 g / v0 g 2t 2
2.一质点沿半径为R的圆周运动.质点所经过的 S bt ct 2 2 ,其中b、c是 弧长与时间的关系为 大于零的常量,求从 t 0 开始到切向加速度与法 向加速度大小相等时所经历的时间. ds 解: v b ct dt 2 则有 dv v 2 at c an b ct / R dt R 根据题意,当 at an 时有 2 c b ct / R 可解得
d r a 2 (1)i (2t ) j dt
2 x 2 y
2
a
-1
y -arctan4 4 ay

则加速度的大小为
ax
x
at 2 s a a 1 4t 17 4.12m s 2
加速度的方向
ay
2 arctan(1 4) y
dv 2 v 2 6x dx
v d v (2 6x )d x
2
两边同时积分,即

可得
v
0
vd v 2 6 x 2 d x
x 0
1 2 v 2 x 2 x3 2
v 2 x x
3

1
2
一 选择题 质点作半径为R的变速圆周运动时的加速度大 小为(v表示任一时刻质点的速率) 2 d (A) v d t . (B) v R .
a
ay

4 arctan arctan arctan(4) 104 ax 1

《大学物理习题集》(上)习题解答

《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。

【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。

3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。

5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。

设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。

6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。

当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。

大学物理上册作业题

大学物理上册作业题

大学物理上册作业题(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2014 ~2015学年第二学期 大学物理作业题第1章 质点运动学 作业一、教材:选择题1 ~ 4;计算题:9,13,14,17 二、附加题 (一)、选择题1、某物体的运动规律为d v /dt=-kv 2t ,式中的k 为大于零的常量.当t=0时,初速为v 0,则速度v 与时间t 的函数关系是[ ]A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v +-=2、某质点作直线运动的运动学方程为x =3t-5t 3+6(SI),则该质点作[ ] A 、匀加速直线运动,加速度沿x 轴正方向 B 、匀加速直线运动,加速度沿x 轴负方向 C 、变加速直线运动,加速度沿x 轴正方向 D 、变加速直线运动,加速度沿x 轴负方向3、一质点在t=0时刻从原点出发,以速度v 0沿x 轴运动,其加速度与速度的关系为a =-kv 2,k 为正常数。

这个质点的速度v 与所经路程x 的关系是[ ] A 、kxe v v -=0;B 、)21(200v x v v -=;C 、201x v v -= ;D 、条件不足不能确定4、一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]A 、匀速直线运动B 、变速直线运动C 、抛物线运动D 、一般曲线运动(二)、计算题1一质点在一平面内做运动,其运动方程为: 2=+-r t ti t j()5(10)(SI)试求:(1)质点的轨道方程 (2)质点从t=0到t=5s这段时间的平均速度 (3)质点在第5s末的速度; (4)质点的加速度;2、已知质点沿x轴运动,其加速度和坐标的关系为a = 2+6x2 (SI),且质点在x= 0 处的速率为10m/s,求该质点的速度v与坐标x的关系。

大学物理(上册)期末练习试题和参考答案

大学物理(上册)期末练习试题和参考答案

光发生干涉,如图所示,若薄膜的厚度为e,且n1<n2>n3,
1 为入射光在n1中的波长,则两束反射光的光程差为
(A) 2n2e.
(B) 2n2 e 1 / (2n1).
(C) 2n2 e n1 1 / 2. (D) 2n2 e n2 1 / 2.
[C ]

射 n1 光
反射光 1
n2
反射光 2 e
(D) T1 /2
(E) T1 /4
[D]
7.频率为 100 Hz,传播速度为300 m/s的平面简谐波,波线上
距离小于波长的两点振动的相位差为 π / 3 ,则此两点相距
(A) 2.86 m.
ห้องสมุดไป่ตู้
(B) 2.19 m.
(C) 0.5 m.
(D) 0.25 m.
[C ]
8.单色平行光垂直照射在薄膜上,经上下两表面反射的两束
轮的角加速度分别为 A和 B ,不计滑轮轴的摩擦,则有
(A) A= B (B) A > B (C) A < B (D) 开始时 A= B ,以后 A< B [ C ]
A
B
M
F
5.两容器内分别盛有氢气和氦气,若它们的温度和质量分别
相等,则:
(A) 两种气体分子的平均平动动能相等.
=_____4__t3_-_3_t_2___(_r_a_d_/_s_)________;
切向加速度 at =___1__2_t2_-_6_t___(_m__/_s2_)_______.
12.质量为m的物体,从高出弹簧上端h处由静止自由下落到竖
直放置在地面上的轻弹簧上,弹簧的倔强系数为k,则弹簧被
压缩的最大距离x=_______. x mg ( mg )2 2mgh

大学物理规范作业上册答案全

大学物理规范作业上册答案全

a 16 2m / s
2
7
2.一艘行驶的快艇,在发动机关闭后,有一个与它的速
度方向相反的加速度,其大小与它的速度平方成正
比, 后行驶速度与行驶距离的关系。 解: 作一个变量代换
dv kv 2 ,式中k为正常数,求快艇在关闭发动机 dt
dv dv dx dv a kv v dt dx dt dx dv dv 得 : kv 到 kdx v dx
0.5tdt 3J 2 或 v2 5i 2 j , v4 5i 4 j 1 2 2 A Ek m(v4 v2 ) 3 J 2
4
18
2. 竖直悬挂的轻弹簧下端挂一质量为m的物体后弹簧伸 长y0且处于平衡。若以物体的平衡位置为坐标原点,相 应状态为弹性势能和重力势能的零点,则物体在坐标为 y时系统弹性势能与重力势能之和是【 D 】 m gy mgy2 m gy0 m gy2 0 mgy m gy (A) (B) (C) 2 (D) 2 2 y0 2y
m 1 AG dAG L gydy m gL 32 4 L 1 A外 AG mgL 32
0
m dAG gydy L
22
三、计算题 2 1.一质点在力 F 2 y i 3xj (SI)的作用下,从原点0 出发,分别沿折线路径0ab和直线路径0b运动到b点,
小不变,受到向心力作用,力的方向时刻变化
物体运动一周后,速度方向和大小不变,动量
变化量为0,冲量为0
11
二、填空题 1 .一物体质量为10 kg,受到方向不变的力F=30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于 ________;若物体的初速度为10m·-1,方向与力方 s 140kg.m/s 24m/s 向相同,则在t =2s时物体速度的大小等于________。

大学物理作业答案(上)

大学物理作业答案(上)

A在时间t内作匀加速运动,t秒末的速度vA=at.当子弹射入B时,B将加速
而A则以vA的速度继续向右作匀速直线运动.
vA=at=6 m/s
取A、B和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动
量守恒,子弹留在B中后有
mv 0 mAv A (m mB )v B
vB

mv 0 mAv A m mB
量m1=
1m 2
的小球.将右边小球约束,使之不动. 使左边两小球绕竖直轴对称匀速
地旋转, 如图所示.则去掉约束时, 右边小球将向上运动, 向下运动或
保持不动?说明理由.
答:右边小球不动
理由:右边小球受约束不动时,

在左边对任一小球有
1m 2
1
m2
m
m
式中T1为斜悬绳中张 力,这时左边绳竖直
T1 cos m1g 0
质量以及滑轮与其轴之间的摩擦都可忽略不
计,绳子不可伸长,m1与平面之间的摩擦也
可不计,在水平外力F的作用下,物体m1与
F
m1
T
m2
F m2 g
m2的加速度a=___m__1____m__2___,
绳中的张力T=_m__1m__2m__2_(_F____m_1_g_)_.
4.质量相等的两物体A和B,分别固定在弹簧的两端, A 竖直放在光滑水平面C上,如图所示.弹簧的质量 与物体A、B的质量相比,可以忽略不计.若把支持 面C迅速移走,则在移开的一瞬间,
dx dt dx
10 6x2 2 vdv
v
2 vdv
4 (10 6x2 )dx v 13m/ s
dx 0
0
解2:用动能定理,对物体

大学物理上册习题

大学物理上册习题

大学物理上册习题Last revision on 21 December 2020练习一 位移 速度 加速度一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s, v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s .(B) m/s . (C) m/s .(D) m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图所示,则以下说法正确的是(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D)t 1时刻质点的加速度不等于零.图5. 质点沿XOY平面作曲线运动,其运动方程为:x=2t, y=19-2t2.则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和秒.(B)秒.(C)秒和3秒.(D)0秒和3秒.二. 填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cos t i+B sin t j, A, B ,为常量.则质点的加速度矢量为a= , 轨迹方程为.三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为(斜向上),山坡与水平面成角. (1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s; (2) 如果值与v0值一定,取何值时s最大,并求出最大值s max.练习二圆周运动相对运动一.选择题1. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.4. 质点沿半径R=1m的圆周运动,某时刻角速度=1rad/s,角加速度=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.5. 一抛射体的初速度为v0,抛射角为,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cos ,0 , v02 cos2/g.(B) g cos , g sin, 0.(C) g sin, 0, v02/g.(D) g , g , v 02sin 2 /g . 二.填空题1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 .2. 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是运动; 任意时刻a =0的运动是 运动; 任意时刻a t =0, a n =常量的运动是 运动.3. 已知质点的运动方程为r =2t 2i +cos t j (SI), 则其速度v = ;加速度a = ;当t =1秒时,其切向加速度a t = ;法向加速度a n = . 三.计算题1. 一轻杆CA 以角速度绕定点C 转动,而A 端与重物M 用细绳连接后跨过定滑轮B ,如图.试求重物M 的速度.(已知CB =l为常数,=t,在t 时刻∠CBA =,计算速度时作为已知数代入).2. 升降机以a =2g 的加速度从静止开始上升,机顶有一螺帽在t 0=时因松动而落下,设升降机高为h =,试求螺帽下落到底板所需时间t 及相对地面下落的距离s .练习三 牛顿运动定律一.选择题1. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动; (B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.图2. 如图(A)所示,m A >m B 时,算出m B向右的加速度为a ,今去掉m A 而代之以拉力T = m A g , 如图(B)所示,算出m B 的加速度a ,则(A) a > a . (B) a = a . (C) a < a . (D) 无法判断.3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图所示,斜面与地面之间无摩擦,则(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动.(D) 无法判断斜面是否运动.4. 如图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.5. 如图所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动.图图图 < < < < < 图am 图(C) 立即处于静止状态.(D) 在重力作用下向上作减速运动. 二.填空题1. 如图所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos mg = 0 (1)也有人在沿绳子拉力方向求合力写出T mg cos = 0 (2)显然两式互相矛盾,你认为哪式正确答 . 理由是 .2. 如图所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为,圆盘绕中心轴OO 转动,当其角速度 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为 m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为的匀速圆周运动,如图所示.则l 1, l 2两绳上的张力T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少环与绳之间的摩擦力多大a 2图图A图2. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式;(2) 子弹射入沙土的最大深度.练习四动量与角动量功一.选择题1. 以下说法正确的是(A) 大力的冲量一定比小力的冲量大;(B) 小力的冲量有可能比大力的冲量大;(C) 速度大的物体动量一定大;(D) 质量大的物体动量一定大.2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体(A) 动量守恒,合外力为零.(B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反.(C) 此过程动量守恒,合外力的冲量为零.(D) 此过程前后动量相等,重力的冲量为零.4. 质量为M 的船静止在平静的湖面上,一质量为m 的人在船上从船头走到船尾,相对于船的速度为v ..如设船的速度为V ,则用动量守恒定律列出的方程为(A) MV +mv = 0. (B) MV = m (v +V ). (C) MV = mv .(D) MV +m (v +V ) = 0. (E) mv +(M +m)V = 0. (F) mv =(M +m)V .5. 长为l 的轻绳,一端固定在光滑水平面上,另一端系一质量为m 的物体.开始时物体在A 点,绳子处于松弛状态,物体以速度v 0垂直于OA 运动,AO 长为h .当绳子被拉直后物体作半径为l 的圆周运动,如图所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A) 0, mv 0(h/l -1). (B) 0, 0. (C) mv 0(l -h ), 0. (D) mv 0(l -h , mv 0(h/l -1). 二.填空题1. 力 F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填、、), 两船的速度方向 .3. 一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m . 三.计算题A图m 图1. 一质点作半径为r ,半锥角为的圆锥摆运动,其质量为m ,速度为v 0如图所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五 功能原理 碰撞一.选择题1. 以下说法正确的是(A) 功是标量,能也是标量,不涉及方向问题; (B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒; (D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;图(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.4. 悬挂在天花板上的弹簧下端挂一重物M ,如图所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则(A) A 1 > A 2. (B) A 1 < A 2. (C) A 1 = A 2. (D) 无法确定.5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小; (D) 汽车的动能与它通过的路程成正比. 二.填空题1. 如图所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O 点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O 点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O 点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .<图置图图B2. 己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .3. 如图所示, 一半径R =的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos = mg sin (如图示C 点)答 . 三.计算题1. 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x , 力与伸长x 的关系为F = x + (SI)求:(1) 将弹簧从定长 x 1 = 拉伸到定长x 2 = 时,外力所需做的功.(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为的物体,然后将弹簧拉伸到一定长x 2= ,再将物体由静止释放,求当弹簧回到x 1 = 时,物体的速率.(3) 此弹簧的弹力是保守力吗为什么 2. 如图所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O .整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(=60)处乙球对轨道的压力.练习六 力矩 转动惯量 转动定律一.选择题1. 以下运动形态不是平动的是图(A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动. 2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.3. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为,求摩擦力矩M . 先取微元细杆d r ,其质量d m = d r = (m /l )d r .它受的摩擦力是d f = (d m )g =(mg /l )d r ,再进行以下的计算,(A) M =r d f =⎰lr r lmgd μ=mgl/2.(B) M =(d f )l/2=(⎰l r l mgd μ)l/2=mgl/2. (C) M =(d f )l/3=(⎰l r l mg0d μ)l/3=mgl/3.(D) M =(d f )l =(⎰l r lmg0d μ)l =mgl .4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图所示.宽圆环的质量面密度为 = m /S =m /[ (R 22-R 12)],细圆环的面积为d S =2r d r ,得出微元质量d m = d S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰.图(B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F) I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12) .(G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B .. (B) I A <I B ..(C) 无法确定哪个大. (D) I A =I B . 二.填空题1. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量 I 2 = . 如果M = m , r = R , 则I 1 I 2 .2. 如图所示,两个质量和半径都相同的均匀滑轮,轴处无摩2(填 ) .擦, 1和2分别表示图(1)、图(2)中滑轮的角加速度,则1 3. 如图所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度A :B = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度a t A : a t B = ;法向加速度a n A :a n B = .图(1)(2)图三.计算题1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60角时的角加速度和角速度.2. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为 ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题1. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 2. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大. 3. 质量相同的三个均匀刚体A 、B 、C(如图所示)以相同的角速度绕其对称轴旋转, 己知R A =R C <R B ,若从某时刻起,它们受到相同的阻力矩,则图图(A) A 先停转. (B) B 先停转. (C) C 先停转. (D) A 、C 同时停转.4. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变.(D) 转速可能不变,也可能改变.5. 一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边小于右边. (C) 右边小于左边. (D) 无法判断. 二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8 rad/s ,则主动轮在这段时间内转过了 圈.2. 在OXY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 =2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-图图2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .3. 一薄圆盘半径为R , 质量为m ,可绕AA 转动,如图所示,则此情况下盘的转动惯量I AA = .设该盘从静止开始,在恒力矩M 的作用下转动, t 秒时边缘B 点的切向加速度a t = ,法向加速度a n = . 三.计算题1. 如图所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力2. 飞轮为质量m = 60kg , 半径r = 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图所示, 闸瓦与飞轮的摩擦系数 = , 飞轮的转动惯量可按圆盘计算.(1) 设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转. (2) 欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八 转动中的功和能 对定轴的角动量一.选择题1. 在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能, 以下说法正确的是(A) m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;图图(B) m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒;(C) 只有m 1、m 2组成系统对过O 点轴的角动量守恒; (D) 只有m 1、m 2和地组成系统的机械能守恒;(E) m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒. 2. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小. (B) 自转周期变小,动能增大. (C) 自转周期变大,动能增大. (D) 自转周期变大,动能减小. (E) 自转周期不变,动能减小. 3. 以下说法正确的是:(A) 力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B) 力矩的功与力的功在量纲上不同, 力矩做功使转动动能增大, 力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C) 转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同; (D) 转动动能和平动动能, 力矩的功与力的功在量纲上完全相同. 4. 如图所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足图(A) 1一定大于2.(B) 1一定等于2.(C)1一定小于2.(D) 都不一定.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒.(D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒.二.填空题1. 一辆能进行遥控的电动小汽车(质量m=可在一绕光滑竖直轴转动的水平平台上(平台半径为R=1m,质量M=2kg)作半径为r=的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v=5m/s的匀速圆周运动时,平台转动的角速度为1 = ;当小车急刹车停下来时,平台的角速度= ;当小车从静止开始在平台上运行一周时,平台转动的角度2= .2. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R1速率为v1的圆周运动,今用力F慢慢往下拉绳子,当圆周运动的半径减小到R2时,则小球的速率为 , 力F做的功为.3. 转动着的飞轮转动惯量为J , 在t =0时角速度为0, 此后飞轮经历制动过程,阻力矩M 的大小与角速度的平方成正比, 比例系数为k (k 为大于0的常数), 当 =0/3 时, 飞轮的角加速度= , 从开始制动到 =0/3 所经过的时间t = . 三.计算题1. 落体法测飞轮的转动惯量,如图所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m 的重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2. 如图所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为,求小球击中细棒前的速度值.练习九 力学习题课一.选择题1. 圆盘绕O 轴转动,如图所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度将(A) 增大. (B) 不变. (C) 减小. (D) 无法判断.2. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为(A) 20 .图图(B) 20 . (C) 40 . (D) 0/2 . (E) 0/2.3. 转动惯量相同的两物体m 1、m 2 都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为1和2.则以下说法不正确的是(A) 1可能大于2 ; (B) 1可能小于2 ; (C) 1可能等2 ; (D) 1一定大于2 .4. 一圆锥摆,如图,摆球在水平面内作圆周运动.则 (A) 摆球的动量, 摆球与地球组成系统的机械能都守恒. (B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒.守恒. (C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒. (D) 摆球的动量守恒, 摆球与地球组成系统的机械能不5. 如图,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量、机械能都守恒.图图二.填空题1. 铀238的核(质量为238原子质量单位),放射一个粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,粒子射出时速度大小为×107m/s,则钍核的速度大小为 ,方向为 .2. 如图所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .3. 最大摆角为0的摆在摆动进程中,张力最大在 = 处,最小在 = 处,最大张力为 ,最小张力为 ,任意时刻(此时摆角为, 0≤≤0)绳子的张力为 . 三.计算题1. 如图,一块宽L =、质量M =1kg 的均匀薄木板,可绕水平固定光滑轴OO 自由转动,当木板静止在平衡位置时,有一质量为m =10×10-3kg 的子弹垂直击中木板A 点,A离转轴OO 距离为l =,子弹击中木板前速度为500m·s -1,穿出木板后的速度为200m·s -1.求(1) 子弹给予木板的冲量; (2) 木板获得的角速度.(已知:木板绕OO 轴的转动惯量J =ML 2 / 3)2. 用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,在铁锤击第一次时,能将铁钉击入木板1cm,问击第二次时,能击多深设铁锤两次击钉的速度相同.图图。

大学物理习题与答案解析

大学物理习题与答案解析
v d dr tt22i1 j3 (m)/s
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy

a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s

大学物理(上册)参考答案

大学物理(上册)参考答案

大学物理 第一章作业题P21 1.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +==分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即 βωR R =2亦即 t t 18)9(22= 则解得923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1)bt v t sv -==0d dR bt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rba a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a =第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度. 解:2s m 83166-⋅===m f a x x2s m 167-⋅-==mf a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度 1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x --=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t mke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m tk v v d d -=即 ⎰⎰-=vv t m t k v v 00d dmkt e v v -=ln ln 0∴ tm k ev v -=0(2)⎰⎰---===tttm k m ke k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v km m k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m ,方向竖直向下.2.13 作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d,同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量. 解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P88 3.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴ l g23=β(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值;(2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mglω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P145 5.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17mm )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65= 故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程. 解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大.(2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20 于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

(完整版)大学物理上册习题大体答案

(完整版)大学物理上册习题大体答案

第一章1.有一质点沿X 轴作直线运动,t 时刻的坐标为)(25.432SI t t x -=.试求:(1)第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒内的路程. 解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=2.一质点沿X 轴运动,其加速度为)(4SI t a =,已知0=t 时,质点位于m X 100=处,初速度00=v ,试求其位置和时间的关系式.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 004,22t v = 22/t dt dx v ==⎰⎰=xtdt t dx 1022 )(103/23SI t x +=.3.由楼窗口以水平初速度0v ρ射出一发子弹,取枪口为坐标原点,沿0v ρ方向为X轴,竖直向下为Y轴,并取发射时s t 0=,试求:(1) 子弹在任意时刻t 的位置坐标及轨迹方程; (2)子弹在t 时刻的速度,切向加速度和法向加速度.3. 解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =,gt v y =.速度大小为:222022t g v v v v y x +=+=. 与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v ρ同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.一物体悬挂在弹簧上作竖直振动,其加速度为ky a -=,式中k 为常量,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标0y 处的速度为0v ,试求速度v 与坐标y 的函数关系式.4.解:dydv v dt dy dy dv dt dv a =⋅==,又ky a -= dy vdv ky /=-∴⎰⎰=-vdv kydy C v ky +=-222121已知 0y y =,0v v = 则:20202121ky v C --=)(220202y y k v v -+=.5. 一飞机驾驶员想往正北方向航行,而风以h km /60的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为h km /180,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.5.解:选地面为静止参考系S ,风为运动参考系S ',飞机为运动质点P . 度:h km v s p /180=',已知:相对速方向未知; h km v s s /60=', 牵连速度:方向正西;绝对速度:ps v 大小未知,方向正北.理有:s s s p ps v v v ''+=ρρρ,由速度合成定ps v ρ,s p v 'ρ,s s v 'ρ构成直角三角形,可得: h km v v v s s s p ps /170)()(||22=-=''ρρρ014.19)/(=='-ps s s v v tg θ(北偏东04.19航向). 6.一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为)(622SI x a +=,如果质点在原点处的速度为零,试求其在任意位置处的速度.6. 解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x vdx x vdv 020)62(s m x x v /)(22/13+=7.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为030,当火车以s m /35的速率沿水平直线行驶时,发现雨滴下落方向偏向车尾,偏角为045,假设雨滴相对于地的速度保持不变,试计算雨滴相对于地的速度大小.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v ρ大小未知,方向与竖直方向夹030; 牵连速度:s m v s s /35=',方向水平; 相对速度:s p v 'ρ大小未知,方向偏向车后045 由速度合成定理:s p ps v v '=ρρ30sin30sin 00=+'ps s p v v 0030sin 30cos ps s p v v ='ss ''s m v ps /6.25=.第二章3.一人在平地上拉一个质量为M 的木箱匀速地前进,木箱与地面间的摩擦系数6.0=μ,设此人前进时,肩上绳的支撑点距地面高度为m h 5.1=,问绳长l 为多少时最省力?解:设拉力大小为为F ,方向沿绳。

大学物理作业本

大学物理作业本

大学物理作业本(上)(总52页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--大学物理作业本(上)姓名班级学号2江西财经大学电子学院2005年10月3质点动力学练习题(一)1.已知质点的运动方程为2t=,式中t以秒计,yx=y,3tx,以米计。

试求:(1)质点的轨道方程,并画出示意图;(2)质点在第2秒内的位移和平均速度;(3)质点在第2秒末的速度和加速度。

452.质点沿半径R=的圆作圆周运动,自A 沿顺时针方向经B 、C 到达D 点,如图示,所需时间为2秒。

试求:(1) 质点2秒内位移的量值和路程; (2) 质点2秒内的平均速率和平均速度的量值。

3.一小轿车作直线运动,刹车时速度为v 0,刹车后其加速度与速度成正比而反向,即a=-kv ,k 为已知常数。

试求:(1) 刹车后轿车的速度与时间的函数关系; (2) 刹车后轿车最多能行多远?A6练习题(二)1.一质点作匀角加速度圆周运动,β=β0,已知t=0,θ= θ0 , ω=ω0 ,求任一时刻t 的质点运动的角速度和角位移的大小。

2.一质点作圆周运动,设半径为R ,运动方程为2021bt t v s -=,其中S 为弧长,v 0为初速,b 为常数。

求:(1) 任一时刻t 质点的法向、切向和总加速度;(2) 当t 为何值时,质点的总加速度在数值上等于b ,这时质点已沿圆周运行了多少圈? (3) (4)3.一飞轮以速率n=1500转/分的转速转动,受到制动后均匀地减速,经t=50秒后静止。

试求:(1)角加速度β;(2)制动后t=25秒时飞轮的角速度,以及从制动开始到停转,飞轮的转数N;(3)设飞轮的半径R=1米,则t=25秒时飞轮边缘上一点的速度和加速度的大小。

质点动力学练习题(三)1、质量为M的物体放在静摩擦系数为μ的水平地面上;今对物体施一与水平方向成θ角的斜向上的拉力。

试求物体能在地面上运动的最小拉力。

大学物理期末考试题上册10套附答案

大学物理期末考试题上册10套附答案

n 3上海电机学院 200_5_–200_6_学年第_二_学期《大学物理 》课程期末考试试卷 1 2006.7开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟考生姓名: 学号: 班级 任课教师一、填充題(共30分,每空格2分)1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 内位移的大小为___________,在该时间内所通过的路程为_____________。

2.如图所示,一根细绳的一端固定,另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________,法向加速度大小为____________。

(210g m s =)。

3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为:2155.010cos(5t )6x p p -=?m 、2113.010cos(5t )6x p p -=?m 。

则其合振动的频率为_____________,振幅为 ,初相为 。

4、如图所示,用白光垂直照射厚度400d nm =的薄膜,若薄膜的折射率为 1.40n =, 且12n n n >>3,则反射光中 nm , 波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。

5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3π,则此两点相距 ___m 。

6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。

二、选择題(共18分,每小题3分)1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。

大学物理-大学物理(上)典型题-53页文档资料

大学物理-大学物理(上)典型题-53页文档资料
回飞出,速率变为 v2= 80m/s。求棒给球的冲量的大小 与方向。若球与棒接触的时间为 t = 0.02s,求棒对球 的平均冲力大小。它是垒球本身重量的几倍?
解:如图,设垒球飞来方向为 x 轴
I
mv2
方向。棒对球的冲量大小为
Im v2m v1
mv1 2v2 22v1v2cos
mv1
x
方向:与x轴夹角
1.69Ns
1158 22'0arcm ta 1 m vn m 2sv2ic vnos
棒对球的平均冲力
F I 16.984N5 t 0.02
此力为垒球本身重量的
F 845 616倍 mg 0.149.8
4. 一人造地球卫星绕地球作椭圆运动, A 、B 分别 为近地点和远地点, A 、B 距地心的距离分别为 r1 、 r2 。 设卫星的质量为 m ,地球的质量为M ,万有 引力常量为 G ,则卫星在A 、B 两点 处的万有引力 势能的差为多少?卫星在A 、B 两点 处的动能差为 多少?
1.66104J
5. 如图所示循环过程,c → a 是绝热过程,pa、Va、Vc 已知, 比热容比为 ,求循环效率。
解:a →b 等压过程
p
Q 1C p,m (T b T a)Cp,m R
pa(Vc Va)
0
吸热
pa a
b
b→c 等容过程
Q 2C V ,m (T c T b)CR V,m(pcVcpbVb) 0 放热
8. 如图,唱机的转盘绕着通过盘心的固定竖直轴转动,
唱片放上去后将受到转盘摩擦力作用而随转盘转动。 设唱片可看成是半径为 R 的均匀圆盘,质量为 m ,唱
片与转盘之间的滑动摩擦系数为k。转盘原来以角速 度 匀速转动,唱片刚放上去时它受到的摩擦力矩是 多大?唱片达到角速度 需要多长时间?在这段时间 内转盘保持角速度 不变,驱动力矩共做了多少功?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014 ~2015学年第二学期 大学物理作业题第1章 质点运动学 作业一、教材:选择题1 ~ 4;计算题:9,13,14,17 二、附加题 (一)、选择题1、某物体的运动规律为d v /dt=-k v 2t ,式中的k 为大于零的常量.当t=0时,初速为v 0,则速度v 与时间t 的函数关系是[ ]A 、0221v kt v +=; B 、0221v kt v +-=; C 、02121v kt v +=; D 、02121v kt v +-=2、某质点作直线运动的运动学方程为x =3t -5t 3+6(SI),则该质点作[ ] A 、匀加速直线运动,加速度沿x 轴正方向 B 、匀加速直线运动,加速度沿x 轴负方向 C 、变加速直线运动,加速度沿x 轴正方向 D 、变加速直线运动,加速度沿x 轴负方向3、一质点在t=0时刻从原点出发,以速度v 0沿x 轴运动,其加速度与速度的关系为a =-k v 2,k 为正常数。

这个质点的速度v 与所经路程x 的关系是[ ] A 、kxe v v -=0;B 、)21(200v x v v -=;C 、201x v v -= ;D 、条件不足不能确定4、一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r ϖϖϖ22+=(其中a 、b为常量), 则该质点作[ ]A 、匀速直线运动B 、变速直线运动C 、抛物线运动D 、一般曲线运动 (二)、计算题1一质点在一平面做运动,其运动方程为: 2()5(10)(SI)r t ti t j =+-r rr试求:(1)质点的轨道方程 (2)质点从t=0到t=5s 这段时间的平均速度 (3)质点在第5s 末的速度; (4)质点的加速度;2、已知质点沿x 轴运动,其加速度和坐标的关系为 a = 2+6x 2 (SI),且质点 在 x = 0 处的速率为10m/s ,求该质点的速度v 与坐标x 的关系。

3、已知质点作半径为 R =3m 的圆周运动,切向加速度a t =3m·s -2 ,且t =0 时质点的速度为10m/s 。

试求:(1)t =1s 时的速度和加速度(2)第2s 质点所通过的路程。

4、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0,加速度a =ct 2(其中c 为常量),求:1)质点的速度与时间的关系;2)质点的运动学方程。

5、已知一质点在水平面沿一半径为2m 的圆轨道转动,转动的角速度ω与时间t的函数关系为ω=kt 2(k 为常量),已知t =2s 时,该质点的速度值为32m/s,试求t =1s时该质点的速度与加速度的大小。

第2章 牛顿定律 作业一、教材:选择题1~5;计算题:14,18,21,25 二、附加题1、一质点在力F =5m (5-2t ) (SI)作用下,从静止开始(t=0)沿x 轴作直线运动,其中m 为质点的质量,t 为时间,求:(1)该质点的速度v 与时间t 的关系;(2)该质点的的运动学方程.2、质量为m 的质点以初速度v 0沿x 轴作直线运动,起始位置在坐标原点处,所受阻力与其速率成正比,即:F =–k v ,式中k 为正常数,求:(1)该质点的速度v 与时间t 的关系;(2)该质点的的运动学方程.3、一质量为2kg 的质点在xy 平面上运动,受到外力2424F i t j =-r r r 的作用,t =0时,初速度为034(m/s)v i j =+r rr,求t =1s 时质点的速度以及此时受到的法向力的大小和方向。

4、如图所示,一升降机加速上升,升降机里有一固定倾角斜面,斜面上有一物块,与其无摩擦接触。

试求物块运动加速度。

第3章 守恒定律 作业一、教材:选择题1、3、4、5;计算题:10,17,19,20, 30,34二、附加题 (一)、选择题1、一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是[ ]A 、Rg 2B 、Rg 2C 、RgD 、Rg 21 E 、Rg 2212、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统[ ]A 、动量守恒,动能也守恒B 、动量守恒,动能不守恒C 、动量不守恒,动能守恒D 、动量不守恒,动能也不守恒3、质量为m 的质点在外力作用下,其运动方程为:j t B i t A r ρρρωωsin cos +=,式中A 、B 、ω都是正的常量.由此可知外力在t=0到ω2π=t 这段时间所作的功为A 、)(21222B A m +ω; B 、)(222B A m +ω;C 、)(21222B A m -ω;D 、)(21222A B m -ω(二)、计算题1、质量为m =2kg 的质点从静止出发沿直线运动,受力i t F ϖϖ12=(F 以N 为单位,t 以s 为单位),求在前3s ,该力作多少功?2、质量为m =0.5kg 的质点,在xoy 平面运动,其运动方程为 x =5t ,y =0.5t 2(SI),求从t=2s 到t=4s 这段时间,合力对质点所作的功为多少?3、质量为m =0.5kg 的质点,在x o y 平面运动,其运动方程为x =5t ,y =0.5t 2(SI),求从t=2s 到t=4s 这段时间,合力对质点所作的功为多少?4、质量为m 的匀质柔软绳,全长为L ,开始时,下端与地面的距离为h 。

求下落在地面上绳的长度为l (l<L )时,地面所受绳的作用力?第4章 刚体的转动 作业一、教材:选择题1~5;计算题:14,16,27,31 二、附加题 (一)、选择题1、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则J A 和J B 的关系为[ ]A 、J A >JB B 、J A <J BC 、J A =J BD 、无法确定2、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的[ ] A 、角动量守恒,动能也守恒; B 、角动量守恒,动能不守恒 C 、角动量不守恒,动能守恒; D 、角动量不守恒,动量也不守恒 E 、角动量守恒,动量也守恒3、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为013J .此时她转动的角速度变为[ ]A 、013ω B 、031ω C 、03ω D 、03ω4、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度为[ ]A 、ML m v B 、ML m 23v C 、ML m 35v D 、ML m 47v(二)、计算题1、质量分别为m 和2m ,半径分别为r 和2r 的两个均质圆盘,同轴地粘在一起,可绕通过盘心且垂直于盘面的水平光滑轴转动,在大小盘边缘都绕有细绳,绳下端都挂一质量为mv ϖ21v ϖ俯视图盘绳无相对滑动,如图所示,求:1) 圆盘对水平光滑轴的转动惯量;2) 圆盘的角加速度。

2、一根长为l,质量为M 的均质细杆,其一端挂在一个光滑的水平轴上,静止在竖直位置。

有一质量为m的子弹以速度v0从杆的中点穿过,穿出速度为v,求:1)杆开始转动时的角速度;2)杆的最大摆角。

3、一半圆形均质细杆,半径为R,质量为M,求半圆形均质4、一绕中心轴转动的圆盘,角速度为ω若将它放在摩擦系数为μ水平桌面上,问经过多长时间停下来?(已知圆盘质量为m半径为R)5、一长为l 质量为m 匀质细杆竖直放置,其下端与一固定铰链O 相接,并可绕其转动。

由于此竖直放置的细杆处于非稳定平衡状态,当其受到微小扰动时,细杆将在重力作用下由静止开始绕铰链O 转动。

试计算细杆转动到与竖直线成θ角时的角加速度和角速度。

第14章 相对论 作业一、教材:选择题1~3;计算题:15,16,20,24 二、附加题 (一)、选择题1、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) [ ]A 、c 54B 、c 53 C 、c 52 D 、c 512、边长为a 的正方形薄板静止于惯性系K 的Oxy 平面,且两边分别与x,y 轴平行.今有惯性系'K 以 0.8c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从'K 系测得薄板的面积为[ ] A 、26.0a B 、28.0a C 、2a D 、6.0/2a3、设某微观粒子的总能量是它的静止能量的k 倍,则其运动速度的大小为(以c 表示真空中的光速)[ ] A 、1c k - BCD、4、质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的[ ]A 、4倍 B 、5倍 C 、6倍 D 、8倍5、在惯性参考系S 中,有两个静止质量都是m 0的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则合成粒子静止质量M 0的值为 (c 表示真空中光速) [ ] A 、02m B 、20)/(12c m υ- C 、20)/(12c m υ- D 、20)/(12c m υ-6、把一个静止质量为m 0的粒子,由静止加速到v =0.6c 为真空中光速)需做的功等于[ ]A 、2018.0c m B 、2025.0c m C 、2036.0c m D 、2025.1c m(二)计算题1、已知π 介子在其静止系中的半衰期为1.8×10-8s 。

今有一束π 介子以v =0.8c 的速度离开加速器,试问,从实验室参考系看来,当π 介子衰变一半时飞越了多长的距离?2、一静止体积为V 0,静止质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动,则观察者A 测得立方体的体积、质量和质量密度为多少?3、已知一粒子的静止质量为m 0,当其动能等于其静止能量时,求粒子的质量、速率和动量。

4、两个静止质量都是m 0的小球,其中一个静止,另一个以v =0.8c 运动,在它们做对心碰撞后粘在一起,求:碰后合成小球的静止质量。

第5章 静电场 作业一、教材:选择题1~3;计算题:10,15,17,26,34 二、附加题 (一)、选择题1、两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ), 所带电荷分别为q a 和q b .设某点与球心相距r ,取无限远处为零电势, 1)当r < R a 时,该点的电势为[ ] A 、r q q b a +⋅π041ε; B 、r q q ba -⋅π041ε; C 、⎪⎪⎭⎫ ⎝⎛+⋅b b a R q r q 041επ; D 、⎪⎪⎭⎫⎝⎛+⋅b b aa R q R q 041επ2)当r > R b 时,该点的电势为[ ]A 、r q q b a +⋅π041ε;B 、rq q b a -⋅π041ε; C 、⎪⎪⎭⎫ ⎝⎛+⋅b b a R q r q 041επ; D 、⎪⎪⎭⎫⎝⎛+⋅b b aa R q R q 041επ3)当R a <r<R b 时,该点的电势为[ ] A 、r q q b a +⋅π041ε; B 、r q q ba -⋅π041ε; C 、⎪⎪⎭⎫ ⎝⎛+⋅b b a R q r q 041επ; D 、⎪⎪⎭⎫⎝⎛+⋅b b aa R q R q 041επ4)当r > R b 时,该点的电场强度的大小为[ ] A 、2041r q q b a +⋅πε; B 、2041r q q ba -⋅πε; C 、⎪⎪⎭⎫ ⎝⎛+⋅22041b b aa R q R q επ; D 、2041r q b⋅πε5)当R a <r<R b 时,该点的电场强度的大小为[ ] A 、2041r q q b a +⋅πε; B 、2041r q q ba -⋅πε; C 、⎪⎪⎭⎫ ⎝⎛+⋅22041b b aa R q R q επ; D 、2041r q a⋅πε2、将一个点电荷放置在球形高斯面的中心,在下列哪一种情况下通过高斯面的电场强度通量会发生变化[ ] A 、将另一点电荷放在高斯面外 B 、将另一点电荷放进高斯面 C 、在球面移动球心处的点电荷,但点电荷依然在高斯面 D 、改变高斯面的半径3、闭合曲面S 包围点电荷Q , 现从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后[ ] A 、曲面S 的电场强度通量不变,曲面上各点电场强度不变 B 、曲面S 的电场强度通量变化,曲面上各点电场强度不变 C 、曲面S 的电场强度通量变化,曲面上各点电场强度变化 D 、曲面S 的电场强度通量不变,曲面上各点电场强度变化 (二)、计算题QSq1、电荷面密度分别为 ±σ 的两块“无限大”均匀带电平行平板,处于真空中.在两板间有一个半径为R 的半球面,如图所示.半球面的对称轴线与带电平板正交.求通过半球面的电场强度通量φe =?2、长为 l 的带电细棒,沿 x 轴放置,棒的一端在原点。

相关文档
最新文档