从分数到分式教学设计

合集下载

人教版八年级上册15.1.1 从分数到分式 教案

人教版八年级上册15.1.1 从分数到分式 教案

从分数到分式【教学目标】:1、了解分式的概念,理解并掌握分式的有意义、无意义、值为零的条件。

2、类比用数字表示实际问题的数量关系到用字母表示实际问题的数量关系,加强学生用类比转化的思想方法研究解决问题。

3、体会从特殊到一般的数学思想方法,培养学生的推理能力,构建代数模型。

【教学重难点】重点:了解分式的概念,理解分式有意义的条件及值为零的条件.难点:能熟练的求出分式有意义的条件及值为零的条件.【教学过程】一、导入新课、明确目标已知篮球场的面积为450 2m ;长为28m,则宽为____m ;若长方形的面积为S ,长为z,则宽为___ cm ;已知比赛三天共打16场比赛,因赛制不同每队打了m 场比赛,则共有____队;; 教练开车从家到三中,行驶路程为akm ,平均时间为b h ,则他的平均速度为___h km /;若遇大雾天气,在路程不变的情况下,行驶时间增加了m 小时,则他的平均速度为___h km /.二、自主学习、精讲点拨 思考:28450,z S ,m 16,b a ,mb a + 问题1:你能判断出哪些是分数哪些不是分数吗?问题2:这些式子与分数相比有什么相同点?问题3:这些式子与分数相比有什么不同点?分式定义:一般地,如果A,B 表示两个整式,并且B 中含有字母, 那么式子B A 叫做分式. 分式BA 中,A 叫做分子,B 叫做分母. 练习:判断下列式子是否为分式?πa x n m n m x x x x ab x x 2,1,,1212,352,534,31223-++-++-+, 重点:1.判断分式时关键要看分母中是否含有字母.2.判断分式时是从形式上看,即不能约分.3.π表示的是一个具体的数,它不是字母.拼一拼:你能任选两个式子,分别拖到分子 、分母的位置,并使它是分式吗? x ,x -2,π,4,0,2+x ,42-x在分数中,0不能做除数,那在分式中呢?分式的分母能不能为0?请大家阅读书128页思考中的问题及第二自然段。

从分数到分式-教学设计

从分数到分式-教学设计

(2)分式与整式区别是什么?
整式分母不含有字母,分式的分母中含有字母. (3)既然分式是不同于整式的另一类式子,那么它们统称 为什么呢 有理式
小试牛刀
例1.下列各式哪些是整式哪些是分式
2.请你说出一个式子,让你的同桌判断是整式还是分式?
设置小试牛刀这一环节,意在及时巩固刚刚学会的新知识,进行概念的辨析,能区分整式与分式.
提炼方法
归纳小结:1、判断时,注意含有π的式子,π是常数.
2、式子中含有多项时,若其中有一项分母含有字母,则该式也为分式,如:a
11+
. 及时引导学生归纳易错点,提高认识.
探究二
探究二:分式有意义的条件
例2.引例中的问题4 分式2
4
2+-x x ,
(1)当3=x 时,分式的值是多少
当3=x 时,分式值为
12
34
32=+- (2)当2-=x ,能算出来吗? (3)
当2-=x ,分式的分母.0,02)2(,没有意义分母为=+-
(3)当x 为何值时,分式有意义?
2-,02≠≠+x x 即母要使分式有意义,则分
通过给分式中的字母赋值,让学生体会分式比分数更具有一般性,从分式到分数,体现了从一般到特殊的应用过程.同时让学生发现分母为0的情况,通过与分数类比,得出分式有意义的条件,渗透类比的数学思想.
提炼方法
归纳:对于分式
B
A
,当B ≠0时,分式有意义; 当B=0时,分式无意义.
引导学生及时对解题方法进行总结,提高认识.
,75-x ,3b a +,1
1a +,132-x ,
1
22
2-+-x y
xy x ,72,54
c b +.3π。

15.1.1从分数到分式(教案)

15.1.1从分数到分式(教案)
15.1.1从分数到分式(教案)
一、教学内容
本节课选自《数学》八年级上册第15章《分式》的第一节“15.1.1从分数到分式”。教学内容主要包括以下两部分:
1.分式的定义:通过复习分数的概念,引导学生理解分式的定义,即分母不为零的整式比值称为分式。
2.分式的性质:探讨分式的分子、分母与分式值的关系,总结分式的性质,如分子分母同乘(除)一个非零整式,分式的值不变。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、性质和应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在数学学习和日常生活中灵活运用分式知识。如果有任何疑问或不明白的地方,请随时向我提问。
举例:分式2x/(x+1)与2x*2/(x的简单运算:学会分式的加减乘除运算,掌握运算规律。
举例:分式2x/(x+1)加上分式3/(x+1)时,只需将分子相加,分母保持不变,即(2x+3)/(x+1)。
2.教学难点
(1)分式与分数的区别:理解分式与分数在概念上的联系与区别,特别是分式的整式特性。
4.合作与交流:通过小组讨论、分享心得,培养学生团队合作和沟通交流的能力,促进学生共同成长。
三、教学难点与重点
1.教学重点
(1)分式的定义:理解分式的概念,明确分母不为零的整式比值是分式的核心。
举例:分数5/6可以看作分式,而表达式(2x+1)/(x-3)也是分式,但(x+2)/0不是分式。
(2)分式的性质:掌握分式的基本性质,如分子分母同乘(除)一个非零整式,分式的值不变。

人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例

人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例
(五)作业小结
最后,我会布置一些相关的作业,让学生们能够通过练习来巩固所学的知识。同时,我还会要求学生们在作业中进行小结,反思自己的学习过程,总结学习的经验和教训。
在作业小结环节,我会及时批改学生的作业,给予他们反馈和指导。通过作业小结,让学生们能够进一步提高自己的学习效果,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
本节课的导入,我选择了学生们熟悉的生活实例——分配物品。我会向学生们展示一个场景:有一个袋子里面有10个苹果,需要分给3个人,每个人分得几个苹果?学生们可以通过实际操作来解决这个问题。通过这个实例,学生们能够直观地理解到分数的概念,同时也能够引发他们对分式的思考。
在导入环节,我会引导学生积极参与,鼓励他们提出自己的解决方案。这样不仅能够激发学生的学习兴趣,还能够培养他们的思考能力和问题解决能力。
5.通过课后练习,巩固学生对分式的理解和掌握。
在教学过程中,我注重启发学生思考,引导学生从实际问题中发现和总结分式的规律。同时,我还注重培养学生的团队合作意识,鼓励他们积极参与讨论,提高他们的表达能力和交流能力。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算法则;
2.能够运用分式解决实际问题,提高学生的数学应用能力;
人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例
一、案例背景
本案例背景基于人教版数学八年级数学上册15.1.1从分数到分式的教学内容。在教学过程中,我发现学生们对分数的概念已经较为熟悉,但对其背后的意义和分式的应用却理解不深。因此,我设计了一系列的教学活动,旨在帮助学生从分数到分式的理解和掌握,提高他们的数学思维能力和实际应用能力。
3.培养学生独立思考、合作交流的能力,提高他们的数学素养。

15.1.1 从分数到分式 教学设计

15.1.1 从分数到分式  教学设计

15.1.1 从分数到分式教学设计一、教学目标:1.了解分式的概念.2.理解分式有意义的条件及分式值为零、为正、为负的条件.二、教学重、难点:重点:了解分式的概念,确定分式有意义的条件.难点:确定分式有意义的条件,分式的值为零的条件.三、教学过程:复习回顾1.下列两个整数相除如何表示成分数的形式:3÷4= 10÷3= 12÷11= -7÷2=2.在代数式中,整式的除法是否也能类似地表示?试用类似分数的形式表示下列整式的除法:(1) 90÷x 可以用式子( )来表示;60÷(x -6)可以用式子( )来表示.(2) n 公顷麦田共收小麦 m 吨,平均每公顷产量可以用式子 ( )吨来表示. 知识精讲思考:填空:(1)长方形的面积为10cm 2,长为7cm ,则宽为________cm ;长方形的面积为S ,长为a ,宽应为________.(2)把体积为200cm 3的水倒入底面积为33cm 2的圆柱形容器中,则水面高度为________cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,则水面高度为_________.思考:式子aS ,S V ,n m ,x 90,6060-x ,v +3090,v -3060,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子与分数一样都是BA (即A ÷B )的形式. 分数的分子 A 与分母 B 都是整数,而这些式子中的 A , B 都是整式,并且 B 中都含有字母. 分式:一般地,如果 A ,B 表示两个整式,并且 B 中含有字母,那么式子BA 叫做分式. 分式B A 中,A 叫做分子,B 叫做分母. (1)分式是不同于整式的另一类式子.(2)分母中含有字母是分式的一大特点.(3)分式比分数更具有一般性. 例如,分数32仅表示2÷3的商,而分式yx 既可以表示2÷3,又可以表示(-5)÷2,8÷(-9)等.典例解析例1.下列各式中,哪些是整式?哪些是分式?5x -7,3x 2-1,123+-a b ,7)(p n m +,-5,1222-+-x y xy x ,72,c b +54 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓整式 整式 分式 整式 整式 分式 整式 分式3π是分式吗? 11+a 是分式吗? 【点睛】1.判断时,注意含有π的式子,π是常数. 2.式子中含有多项时,若其中有一项分母含有字母,则该式也为分式,如:11+a思考:我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当 B ≠0时,分式BA 才有意义. 例2.下列分式中的字母满足什么条件时分式有意义? (1) x 32 (2) 1-x x (3) b 351- (4) y x y x -+ 解:(1)要使分式x 32有意义,则分母3x ≠0,即x ≠0; (2)要使分式1-x x 有意义,则分母x -1≠0,即x ≠1; (3)要使分式b 351-有意义,则分母5-3b ≠0,即b ≠35; (4)要使分式yx y x -+有意义,则分母x -y ≠0,即x ≠y .如无特别声明,本章出现的分式都有意义.例3.已知分式1(1)(2)x x x ---有意义,则x 应满足的条件是 ( C ) A.x ≠1 B .x ≠2 C.x ≠1且x ≠2 D.以上结果都不对【点睛】分式有意义的条件是分母不为零.如果分母是几个因式乘积的形式,则每个因式都不为零.【针对练习】下列分式中的字母满足什么条件时分式有意义? (1) a 2(2) 11-+x x (3) 232+m m(4) y x -1 (3) b a ba -+32(4) 122-x 解:(1)当分母a ≠0时,分式a 2有意义;(2)当分母x -1≠0,即x ≠1时,分式11-+x x 有意义;(3)当分母3m +2≠0,即m ≠- 时,分式232+m m有意义;(4)当分母x -y ≠0,即x ≠y 时,分式y x -1有意义;(5)当分母3a -b ≠0,即b ≠3a 时,分式b a ba -+32有意义;(6)当分母x 2-1≠0,即x ≠±1时,分式122-x 有意义.例4.当x 为何值时,分式211x x -+的值为零?解:当分子等于零而分母不等于零时,分式的值为零.则x 2-1=0,∴x =±1,而x +1≠0,∴x ≠-1.∴当x =1时分式211x x -+的值为零.【针对练习】1.当 时,分式22x x -+的值为零.2.若2||323x x x ---的值为零,则x = .三、课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

从分数到分式教案

从分数到分式教案

从分数到分式教案教学目标:1.了解分数的定义。

2.掌握从分数到分式的转换方法。

3.能够在实际问题中运用分数和分式进行计算。

4.培养学生的逻辑思维能力和解决问题的能力。

教学准备:1.教师准备黑板、粉笔、教学PPT等教学工具。

2.学生准备笔记本、作业本等学习工具。

教学步骤:Step 1:引入新知1.教师通过展示几个例子,引导学生回忆分数的定义,如"1/2是什么意思?" "2/3又是什么意思?"2.教师与学生一起总结分数的定义,即一个分数由分子和分母组成,分数的分子表示被分成的份数,分母表示将整体分成的份数。

Step 2:从分数到分式的转换1.教师通过例子向学生介绍从分数到分式的转换方法。

2.教师提示学生观察分数和分式之间的联系,并给出几个例子,如"1/3可以写成什么样的分式?" "3/4又可以写成什么样的分式?"3.教师引导学生发现规律,即将一个分数转换成分式时,将分数的分子作为分式的分子,分数的分母作为分式的分母。

Step 3:练习题1.教师出示多个分数,并要求学生将其转换为分式。

2.学生在纸上写出答案,并与同桌对比检查答案。

3.教师随机点名学生回答问题,并给予肯定或指导。

Step 4:应用实际问题1.教师给学生一些实际问题,要求学生利用分数和分式进行计算。

2.学生尝试解决问题,并将解题过程写在纸上。

3.学生展示自己的答案和解题过程,教师给予评价和指导。

Step 5:巩固与拓展1.教师出示一些复杂一些的转换题目,并要求学生解答。

2.学生在纸上解答题目,教师检查并给予指导。

3.学生与同桌交流答案和解题思路。

Step 6:总结和反思1.教师与学生一起总结本节课的内容,巩固学生对从分数到分式的转换的理解。

2.学生回答教师提出的几个问题,如"为什么需要将分数转换为分式?" "从分数到分式有什么规律?"3.学生针对本节课的内容进行反思,写下自己的收获和困惑。

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一节内容,主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。

本节内容是学生学习更高级数学的基础,对于学生理解数学的抽象概念具有重要意义。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除运算也已经熟练掌握。

但是,学生对于分数背后的数学原理可能理解不够深入,对于数学的抽象概念还处于逐步理解的过程中。

三. 教学目标1.了解分数与分式的关系,理解分式的概念。

2.掌握分式的基本性质,能够进行简单的分式运算。

3.培养学生的抽象思维能力,提高学生解决问题的能力。

四. 教学重难点1.分式概念的理解。

2.分式基本性质的掌握。

3.分式运算的熟练运用。

五. 教学方法采用问题驱动法,通过引导学生思考分数与分式的关系,激发学生的学习兴趣,培养学生独立思考的能力。

同时,运用案例分析法,通过具体的例子让学生理解分式的概念和性质。

六. 教学准备1.准备相关的分数和分式的案例。

2.准备分式运算的练习题。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的知识,激发学生的学习兴趣。

例如:“你们知道分数是什么吗?分数有什么特点?”2.呈现(10分钟)通过PPT展示分数与分式的关系,引导学生思考并总结出分式的概念。

例如:“分数可以表示一个数与另一个数的比,那么分式可以表示什么呢?”3.操练(10分钟)让学生通过PPT上的例子,练习分式的基本性质。

例如:“请同学们观察这个例子,分式的分子和分母同时乘以一个数,分式的值会发生什么变化?”4.巩固(10分钟)让学生进行分式运算的练习,巩固所学知识。

例如:“请同学们完成这个分式的运算,并解释你的思路。

”5.拓展(10分钟)引导学生思考分式在实际生活中的应用,拓展学生的知识视野。

例如:“你们能想到分式在实际生活中有哪些应用吗?”6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习重点。

教学设计 15.1.1从分数到分式教案

教学设计 15.1.1从分数到分式教案

15.1.1从分数到分式教案一、 教学目标1、知识与技能目标:(1)了解分式的概念,明确分母不得为零是分式概念的组成部分.(2)能够求出分式有意义的条件.2、过程与方法目标:能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.3、情感与价值目标:提高学生严谨的思维能力.二、重点、难点重点:准确理解分式的意义,明确分母不能为零。

难点:准确理解分式的意义,明确分母不能为零。

三、教学过程:(一)例、习题的分析1、.从引言中的实际问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v v -=+206020100。

2、完成 [思考]依次填出:710,a s ,33200,sv 。

3.观察 以上的式子v+20100,v -2060,a s ,s v ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即B ÷A )的形式。

分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母。

像这样的式子叫做分式。

分式比分数更具有一般性,例如分式BA 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .(二)、讨论分式有意义、无意义、值为零的条件1、问题:分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式BA 才有意义.反之,当B=0时,分式B A 无意义。

从分数到分式教案

从分数到分式教案

从分数到分式教案教案标题:从分数到分式教案目标:1. 理解分数和分式的概念;2. 掌握将分数转化为分式的方法;3. 运用分式解决实际问题。

教学资源:1. 白板、黑板或投影仪;2. 教学课件或PPT;3. 学生练习册或作业本。

教学步骤:引入活动:1. 在黑板或投影仪上展示一些常见的分数,如1/2、3/4等,并请学生回忆并分享自己对分数的理解。

概念解释:2. 通过教学课件或PPT,对分数和分式的概念进行解释。

强调分数是表示部分与整体关系的数,而分式是用分数表示的式子。

示例分析:3. 以一个具体的例子来说明分数和分式的转化过程。

例如,将1/4转化为分式的形式,即1 ÷ 4。

方法讲解:4. 介绍将分数转化为分式的方法。

强调分数的分母可以表示为分式的分母,而分数的分子可以表示为分式的分子。

练习演练:5. 在黑板或投影仪上展示一些分数,要求学生将其转化为分式的形式,并进行练习。

逐步增加难度,让学生逐渐熟练掌握转化方法。

实际应用:6. 提供一些实际问题,要求学生用分式解决。

例如,如果小明每天吃掉1/3个苹果,那么他吃掉几个苹果后会吃完5个苹果?总结回顾:7. 总结分数和分式的概念、转化方法以及实际应用,并与学生一起回顾所学内容。

作业布置:8. 布置相关的作业,要求学生练习将分数转化为分式,并解决一些实际问题。

教学延伸:9. 鼓励学生进一步探索分数和分式的应用领域,如比例、百分比等,并提供相关的资源供学生自主学习。

评估反馈:10. 对学生进行评估,检查他们对分数和分式的理解和应用能力,并提供反馈。

教学拓展:11. 根据学生的学习情况,进行教学拓展,进一步引导学生掌握更复杂的分数和分式问题。

教学注意事项:1. 确保学生对分数的基本概念有一定的理解;2. 鼓励学生积极参与课堂讨论和练习;3. 根据学生的学习进度,适时调整教学内容和难度;4. 提供足够的练习机会,巩固学生的学习成果。

希望这个教案能够对你有所帮助!。

从分数到分式教学设计(共5篇)

从分数到分式教学设计(共5篇)

另一方面,本节课在处理分数与分式的不同时,老师板书到黑板上,引导学生再次发觉“类比”这一思想方法的的好用性,并通过找寻、表述共同点,进一步总结出“分式的意义”。

这样的设计技能培育学生的发散思维,也能训练学生的语言表达实力,更重要的是,学生从中驾驭了对比总结定义的方法。

)练习1:下列各式中哪些是分式?哪些是整式?它们的区分是什么?①1x142a-5xm-n,②,③,④,⑤,⑥,⑦ , 222x33b53x-ym nx22x1c4a2⑧2,⑨ ,⑩ 。

x-2x13(a-b)a分式有:;整式有:。

两类式子的区分是:在学整式时,给出其中字母一个确定值,能够求出整式的值,类比整式,给出其中字母一个确定值,我们也能够求出分式的值,咱们以1为例,请自选一个你喜爱得数,代入分式中x1求值。

由于我们选的数不同,代入到同一个分式中,得到的答案不同,看来分式比分数更具有一般性。

是不是全部的数都能带到分式中来?为什么?接下来咱们再次类比分数有意义的条件再探究分式有意义的条件。

(设计意图:老师在“分式的定义”与“分式有意义的条件”两个环节的过度上特别自然,在“分式比分数更具有一般性”“是不是全部的数都能带到分式中来?为什么?”问题及其学生思维的火花,让“分式有意义的条件”在无意识中总结出来,效果较好。

)二、再探分式有意义的条件,加深理解例1 下列分式中的字母满意什么条件时分式有意义? (1)x yx12.; (2);(3);(4)x yx153b3x学生解答后,小组展示,并总结分式有意义的条件。

老师最终强调分母B的整体性。

(板书:整体性)以上题目,假如不变更解题思路,你还可以怎么问?引出分式无意义的条件(板书:分母=0分式无意义。

)(设计意图:此环节接着以问题作为激活学生思维的刺激因素,激发学生产生合理的认知突变,激发起他们的学习爱好;“以上题目,假如不变更解题思路,你还可以怎么问?”用问题作为探究的前提,引导学生探究的爱好,在探究的基础上获得学问。

数学八年级上册《从分数到分式》教案

数学八年级上册《从分数到分式》教案
初中20 -20 学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课题
15.1.1从分数到分式
课型
教学目标
1.认识分式,理解分式的概念,分式有意义的条件和分式的值,分式与整式的区别。
2.体会运用类比联想的学习方法。
教学重点
正确理解分式的概念
教学难点
分式有意义的条件
教学方法与手段
启发引导、尝试研讨、变式练习及多媒体课件
教学准备
第一课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一.复述回顾(2分钟)
1.在①3x2,② ,③ x+y,④ , ⑤0,⑥ 这几个式子中,单项式有:多项式有:
整式的有:(只填序号)
2.由上题我们发现,由数与字母的组成的式子叫单项式;几个单项式的和叫;单项式和多项式统称。
二二、自助探究
阅读教材p127-128页,完成下列问题:(7分钟)
1.教师问:式子 、 、 、 与分数有什么不同处?他们有什么共同的点?
分式定义:都是的形式,分数的分子A与分母B都是,并且B中都含有_,那么式子叫做_____时,分式 才有意义。
(1) (2) (3) (4)
3、当x的取值范围是时,分式 的值大于0。
当x的取值范围是 时,分式 的值大于0。
五、 课时小结(3分钟)
六、当堂检测(5分钟)
七、分层作业
板书设计:15.1.1从分数到分式
教学小结:
三.自学检测:(5分钟)
1.在代数式 -3x, , , , , ,
中,
是整式的有_________________.

人教版八年级数学上册15.1从分数到分式优秀教学案例

人教版八年级数学上册15.1从分数到分式优秀教学案例
5.作业小结:教师设计具有挑战性的作业题目,巩固本节课所学的知识。同时,教师及时批改作业,给予学生评价和反馈,帮助学生调整学习方法,提高学习效果。
本节课的案例亮点体现了以学生为中心的教学理念,注重培养学生的自主学习能力、团队协作能力和解决问题的能力。同时,教师关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。这种教学方法不仅有助于提高学生的学习成绩,还能培养学生的综合素质,符合教育现代化的要求。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算方法。
2.培养学生运用分式解决实际问题的能力,提高学生的数学应用意识。
3.引导学生了解分式在生活中的应用,拓宽学生的知识视野,提高学生的学习兴趣。
4.通过对分式的学习,培养学生逻辑思维能力、创新能力和团队协作能力。
(二)过程与方法
1.采用案例教学法,让学生在具体的情境中感受和理解分式的概念和运算方法。
2.运用探究式学习法,引导学生主动发现分式的规律,提高学生的自主学习能力。
3.利用小组讨论法,培养学生的团队协作精神,提高学生的沟通能力。
4.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
3.采用多元化评价方式,既要关注学生的知识与技能掌握情况,也要关注学生在过程中表现出的态度、情感和价值观。
4.教师要关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入分式的概念,如计时、购物等,让学生感受分式在生活中的应用。
2.展示分式的数学问题,引发学生的思考,激发学生的学习兴趣。
3.回顾已学的分数知识,为学生学习分式打下基础。

《15.1.1 从分数到分式》教学设计

《15.1.1 从分数到分式》教学设计

《15.1.1 从分数到分式》教学设计15.1.1 从分数到分式一、教学目标1、以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2、能够通过分式的定义理解和掌握分式有意义的条件.二、教学重难点1、教学重点理解分式有意义的条件及分式的值为零的条件.2、教学难点能熟练地求出分式有意义的条件及分式的值为零的条件.三、教学设计(一)复习引入1.什么是整式?什么是单项式?什么是多项式?2.判断下列各式中,哪些是整式?哪些不是整式?①;②1+x+y2;③;④;⑤;⑥;⑦.(二)探究新知1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v千米/时.轮船顺流航行90千米所用的时间为小时,逆流航行60千米所用时间为小时,所以=.(2)学生完成教材第127页“思考”中的题.观察:以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A,B都是整式,并且B 中都含有字母.归纳:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.学生自学例1.例1 下列分式中的字母满足什么条件时分式有意义?(1);(2);(3);(4).解:(1)要使分式有意义,则分母3x≠0,即x≠0;(2)要使分式有意义,则分母x-1≠0,即x≠1;(3)要使分式有意义,则分母5-3b≠0,即b≠;(4)要使分式有意义,则分母x-y≠0,即x≠y.思考:如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?巩固练习:教材第129页练习第3题.3.补充例题:当m为何值时,分式的值为0?(1);(2);(3).思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零.答案:(1)m=0;(2)m=2;(3)m=1.(三)归纳总结1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义.3.分式的值为零的条件:(1)分母不能为零;(2)分子为零.(四)布置作业教材第133页习题15.1第2,3题.四、教学反思在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.。

人教版初中数学八年级上册15.1.1从分数到分式(教案)

人教版初中数学八年级上册15.1.1从分数到分式(教案)
-分式的简单运算:讲解如何进行分式的加减乘除,例如$\frac{2x}{3y} + \frac{5x}{6y} = \frac{4x+5x}{6y} = \frac{9x}{6y}$。
2.教学难点
-分式的概念理解:学生可能难以理解从具体的分数到抽象的分式的过渡,特别是分母含有字母时的情况。
-分式的约分与通分:学生在约分和通分时容易出错,如忽略掉分子分母的公因数,或在通分时计算错误。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-分式的性质:掌握分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变;分子分母互换,分式的值取倒数等。
-分式的约分与通分:学会对分式进行约分和通分,掌握其基本方法。
-分式的简单运算:掌握分式的加、减、乘、除等基本运算,并能够熟练运用。
举例解释:
-分式的定义及其结构:例如,分式$\frac{2x}{3y}$,重点讲解分子$2x$、分母$3y$的意义以及分式有意义的条件(分母不为零)。
4.增强数学运算和数据分析能力:在分式的约分、通分等运算过程中,培养学生的数学运算技能,提高数据处理和分析能力。
5.培养数学交流与合作能力:鼓励学生在学习过程中进行讨论、交流,共同解决分式相关问题,提升合作学习能力。
三、教学难点与重点
1.教学重点
-分式的定义及其结构:理解分式的分子、分母以及分式有意义的条件,掌握分式的表示方法。

15.1.1《从分数到分式》教案

15.1.1《从分数到分式》教案

15.1分式15.1.1从分数到分式一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,能熟练地求出分式有意义的条件.二、重点、难点1.重点:理解分式有意义的条件.2.难点:能熟练地求出分式有意义的条件.三、课堂引入1.让学生填写P127[思考],学生自己依次填出:710,a s ,33200,s v . 2.学生看问题:一艘轮船在静水中的最大航速为30 km/h ,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为v km/h.轮船顺流航行90 km 所用的时间为9030v+小时,逆流航行60 km 所用时间6030v-小时,所以9030v +=6030v -. 3. 以上的式子9030v+,6030v -,a s ,s v ,有什么共同点?它们与分数有什么相同点和不同点?四、例题讲解P128例1. 当下列分式中的字母为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母的取值范围.[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1五、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 六、课后练习1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?七、答案: 五、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --221xx x --212312-+x x2.(1)x≠-2 (2)x≠ (3)x≠±2 3.(1)x=-7 (2)x=0 (3)x=-1六、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, ba s + 2.x =3.x=-1课后反思: x 802332。

《从分数到分式》教学设计

《从分数到分式》教学设计

15.1.1 《从分数到分式》教学设计教材分析:本节课选自于人教版八年级下册第十五章《分式》第一节,本小节共3课时,本节课是第一课时,第二课时为分式的基本性质,教材首先以实际问题为背景,列出代数式表示数量,从其中不同于分数的式子引入分式,在小学已经掌握了分数的概念、和分数有意义的概念的基础上,引入分式的概念以及有意义和值为零的条件,所以可引导学生类比分数进行学习。

本节课学生已有的知识储备为整式的概念、整式加减和一元一次方程,在学习了分式的概念之后,为后续学习分式的基本性质通分、约分和分式的计算奠定基础。

设计理念:本设计采用了“问题情境——建立模型——解释应用”的基本模式,通过五个梯次递进的活动,从学生已有的生活经验和认知基础出发,让学生主动地参与活动进行学习,通过观察、归纳、类比、猜想使学生进一步理解概念,灵活的运用所学知识,从而让学生感受到数学来源于生活运用于生活,更好的理解数学知识的意义。

配合使用PPT课件,实现课堂扩容,给学生提供更多的学习机会和思维空间,从而强化教学效果。

学情分析:教学对象是八年级学生,他们在小学学习了分数、在七年级学习了整式;在已有知识的储备下,学生有一定的自主学习能力、观察能力、类比发现能力。

但学生在学习上仍缺乏积极主动性,为此本节课我采用观察、类比的方法“让学生讨论、交流中在获得结论”。

教学中要创造条件和机会,让学生动脑思考、动手计算、发表见解,发挥学生学习的主动性。

教学目标:1.了解分式的定义;掌握分式有意义的条件和值为0的条件。

2.经历用分数类比学习分式的过程,学会与人合作,并获得数学的一些学习方法:类比转化、合情推理、抽象概括等。

3.通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。

教学重难点:重点:分式概念、分式有无意义的条件和分式值为0的条件。

难点:分式值为0的条件。

教学方法:引导、归纳、讲解的方法学法:1.类比分数学习分式2.独立思考,合作交流教学过程:一、发现新知1.创设情境(多媒体展示图片)请学生观察从图片中得什么信息?从而让学生体会学校搞运动会的目的是为了增强学生体质,从而渗透法制教育: 《全民健康条例》第二十一条 学校应当保证学生在校期间每天参加1小时的体育活动。

八年级数学上册《从分数到分式》教案、教学设计

八年级数学上册《从分数到分式》教案、教学设计
八年级数学上册《从分数到分式》教案、教学设计
一、教学目标
(一)知识与技能
1.理。
2.能够将实际问题转化为分式方程,运用分式方程解决实际问题。
3.学会分析分式的有理化、约分、通分等运算方法,提高运算速度和准确度。
4.能够运用分式解决几何、物理等学科中的问题,增强数学应用的意识。
教学策略:布置拓展性练习,如分式的应用题、分式方程的求解等,引导学生运用所学知识解决问题。
5.信息技术,辅助教学:运用信息技术手段,如PPT、数学软件等,展示分式的运算过程,提高教学效果。
教学策略:利用PPT演示分式的有理化、约分、通分等运算过程,增强学生的直观感受。
6.总结反馈,巩固提高:在教学过程中,及时总结反馈,帮助学生巩固所学知识,提高解题能力。
5.总结与拓展:对本章节的知识点进行总结,布置相关习题,拓展学生的数学思维。
二、学情分析
八年级学生在数学学习上已具备一定的分数运算基础,但在从分数到分式的过渡中,可能会遇到理解上的困难。他们对分式的概念、性质及运算方法尚不熟悉,需要通过具体实例和操作来逐步建立清晰的认识。此外,学生在解决实际问题时,可能缺乏将问题转化为分式方程的能力。因此,在教学过程中,应注重以下几个方面:
2.提问:“大家能否用我们学过的知识来表示这个长和宽的关系呢?”让学生尝试用分数表示。
3.引导学生观察分数与分式的区别和联系,从而引出本节课的主题——从分数到分式。
(二)讲授新知
1.分式的概念:介绍分式的定义,强调分式表示的是两个整式的比。
2.分式的性质:讲解分式的分子、分母的符号规律,以及分式的约分、通分等性质。
(二)过程与方法
1.通过小组合作、讨论、探究的方式,培养学生发现问题、分析问题、解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.当x取何值时,下列分式有意义?
(1) ;(2) 。
解:(1)2x+5≠0∴x≠- 。
(2)x2-9≠0∴x≠±3。
从分数到分式
【教学目标】
1.了解分式的概念,知道分式与整式的区别和联系。
2.了解分式有意义的含义,会根据具体的分式求出分式有意义时字母所满足的条件。
3.理解分式的值为零、为正、为负时,分子分母应具备的条件。
【教学重点】
分式的意义。
【教学难点】
准确理解分式的意义,明确分母不得为零。
【教学过程】
一、创设情景,明确目标。
一艘轮船在静水中的最大航速是20km/h,它沿江以最大船速顺流航行100km所用时间,与以最大航速逆流航行60km所用的时间相等。江水的流速是多少?
提示:顺流速度=水速+静水中的速度;逆流速度=静水中的速度-水速。
二、合作探究,达成目标。
(一)分式的概念。
阅读教材思考问题:式子 , 以及式子 和 有什么共同特点?它们与分数有什么相同点和不同点?
三、总结梳理,内化目标。
1.知识小结。
(1)学习了分式,知道了分式与分数的区别。
(2)知道了分式有意义和值为零的条件。
2.思想方法小结——类比、转化等数学思想。
ห้องสมุดไป่ตู้四、达标检测。
1.下列各式① ,② ,③ ,④ 中,是分式的有(C)
A.①②B.③④C.①③D.①②③④
2.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧 天。
(二)分式有意义的条件。
(1)当x≠0时,分式 有意义;
(2)当x≠1时,分式 有意义;
(3)当b≠ 时,分式 有意义;
(4)x,y满足x≠y时,分式 有意义。
展示点评:教师示范解答的一般步骤,强调分母不为零。
小组讨论:归纳分式有意义的条件。
反思小结:对于任何分式,分母均不能为零,即当分母不为零时,分式有意义;反之,分母为零时,分式无意义。
展示点评:如果A,B表示两个________(整式),并且B中含有________(字母),那么式子 叫做分式。
小组讨论:如何判断一个式子是否为分式?分式与整式有什么区别?
反思小结:判断一个式子是否为分式,可根据:①具有分数的形式;②分子、分母都是整式;③分母中含有字母,分式与整式的区别在于:分式的分母中含有字母,而整式的分母中不含字母。
相关文档
最新文档