第二章 液液萃取
第二章溶剂萃取法
电离平衡: 聚合平衡:
分配比: 分配平衡:
可见:D随[HAc]o 和[H+]w而变!
络合平衡:
分配平衡: 分配比:
可见: D随[ I- ]W而变!
在萃取分离达到平衡时溶质在两相中的浓度比称为? A.浓度比 B.萃取率 C.分配系数 D.萃取回收率
萃取分离中, 在什么情况下, 分配系数K与分配比D相等? A.溶质在两相中的溶解度相同 B.溶质在两相中的存在形式相同 C.溶质在两相中的Ksp相同 D.分配系数K=1
回收器实际上是化工单元操作中的蒸馏设
备。
根据料液与萃取剂的接触方式,萃取操作 流程可分为单级和多级萃取流程,后者又可分 为多级错流萃取流程和多级逆流萃取流程,以 及两者结合进行操作的流程。 各种萃取操作理论收得率的计算,必须符 合有关假定:(1)萃取相和萃余相之间能很快 达到平衡,即每一级都是理论级;(2)两相完 全不互溶,并能完全分离。下面介绍具体方法:
单级萃取 使用一个混合器和一个分离器
多级萃取
萃取设备
乳化与去乳化
乳化属于胶体化学范畴,是一种液体成细小液滴(分 散相)分散在另一不相混合的液体(连续相)中的分散体系, 这种现象称为乳化现象.生成的这种液体称为乳状液或 乳浊液。 在液-液萃取过程中,往往会在两相界面产生乳化现 象,这种现象对于萃取过程的进行通常是不利的,给分 离带来麻烦.即使采用离心机,也很难将两相完全分离。 如萃余的废发酵液中夹带溶剂,收率就会相应的降低; 经萃取的溶剂中夹带发酵液也会给以后的精制造成困难。 因此必须设法破除。 要破除乳化,先要了解乳化现象的本质。
较难实行,最好采用预处理手段,将发酵液中表面活性物 质(蛋白质)除去,消除水相乳化的起因。例如某抗生素发 酵液经酸化预处理后,清液和发酵液物性相比,蛋白质含 量从0.3969%降到0.1810%,其他物性变化甚少,进行清 液萃取时就会不再发生乳化现象。 对萃取溶剂进行酸洗和碱洗。 实例:青霉素G的萃取。 萃取过程一股可分为四个阶段: (1)青霉素G由滤液萃取进入醋酸丁酯或醋酸戊酯或甲基异 丁基酮的有机相 (2)青霉素G从有机相转入缓冲液; (3)青霉素G再从水相转入有机相; (4)从溶剂中制得青霉素, 具体流程如下(见下页):
液液萃取实验报告
液液萃取实验报告液液萃取实验报告一、实验目的:1. 了解液液萃取的原理和操作方法;2. 掌握常见有机化合物的液液萃取方法。
二、实验原理:液液萃取是一种常见的分离和提纯有机化合物的方法,通过溶剂的选择性相溶性使得待提取物质从一个相转移到另一个相中。
常见的液液萃取包括酸碱萃取、溶剂萃取和分区萃取等。
三、实验仪器与试剂:仪器:胶囊漏斗、滴管、温差计、天平、热板、集气瓶。
试剂:苯酚、四氯化铁溶液、水、盐酸、氢氧化钠。
四、实验步骤:1. 准备液液萃取装置,将滤纸放置在胶囊漏斗的滤纸环上;2. 在快慢漏斗中加入苯酚和四氯化铁溶液;3. 调整快慢漏斗中液面的高低,让液面相联系到滴管口;4. 操作人员通气时,快慢漏斗中的液体将可以缓慢地通过滴管;5. 用50%盐酸进行酸化,酸度适中溶解铁络合物,并加热苯酚层10分钟;6. 超过20分钟后,液面平稳,开始排液;7. 用0.1mol/L的氢氧化钠进行碱化,同时用水蒸腾,蒸腾盐酸;8. 收集盐酸水层,再用酸酐除去氢氧化钠;9. 用硫酸将均一苯酚层溶液酸化,与水层失去联系;10. 离心机离心操作,将水层分离出来;11. 回收苯酚。
五、实验结果:1. 在酸化后,铁络合物溶解于水相,苯酚溶于有机相;2. 在碱化后,盐酸溶于水相,苯酚溶于有机相;3. 在酸化后,苯酚溶解于水相,盐酸溶解于有机相。
六、实验讨论:本实验中,通过液液萃取的方法,成功回收和分离了苯酚、四氯化铁和盐酸等化合物。
实验中快慢漏斗的液面调节对于液液萃取的成功与否至关重要,需要根据实际情况进行调整。
在实验中,操作人员应注意观察液面和溶液的变化,及时调节漏斗液面数量,以保证液液萃取的顺利进行。
七、实验结论:通过本实验,我们了解了液液萃取的基本原理和操作方法,并且成功回收和分离了苯酚、四氯化铁和盐酸等化合物。
液液萃取是一种常见的分离和提纯有机化合物的方法,具有简单、快速、效果明显的特点,是化学实验中常用的手段之一。
液液萃取_实验报告
一、实验目的1. 了解液液萃取的基本原理和方法。
2. 掌握液液萃取实验的操作步骤。
3. 通过实验,学习如何根据不同物质的溶解度选择合适的萃取剂,提高萃取效率。
4. 分析实验数据,得出结论。
二、实验原理液液萃取是利用两种互不相溶的溶剂对同一溶质的溶解度差异,通过接触、混合和分离,将溶质从一种溶剂转移到另一种溶剂中的方法。
根据溶质在两种溶剂中的溶解度差异,选择合适的萃取剂,使溶质在萃取剂中的溶解度大于在原溶剂中的溶解度,从而实现溶质的分离。
三、实验器材和药品1. 实验器材:分液漏斗、烧杯、量筒、铁架台(带铁圈)、搅拌棒、滤纸等。
2. 药品:碘水、四氯化碳、酒精、蒸馏水等。
四、实验步骤1. 准备工作:将碘水、四氯化碳、酒精、蒸馏水等药品分别倒入分液漏斗、烧杯、量筒中,备用。
2. 萃取操作:a. 取一个分液漏斗,加入10 mL碘水,再加入10 mL四氯化碳,盖紧漏斗口。
b. 将分液漏斗倒转,充分振荡,使碘水与四氯化碳充分混合。
c. 将振荡后的分液漏斗静置,待液体分层。
d. 将分液漏斗放在铁架台上,打开下端活塞,慢慢放出下层四氯化碳溶液,直至分离层完全放出。
e. 将上层碘水溶液收集在烧杯中。
3. 验证萃取效果:a. 将收集到的上层碘水溶液滴在滤纸上,观察滤纸上的颜色变化。
b. 将原碘水溶液滴在另一张滤纸上,对比观察颜色变化。
4. 记录实验数据,分析实验结果。
五、实验现象1. 振荡过程中,碘水与四氯化碳混合均匀,形成紫红色溶液。
2. 静置分层后,上层为无色或浅黄色的四氯化碳溶液,下层为紫红色的碘水溶液。
3. 将上层溶液滴在滤纸上,滤纸呈浅黄色或无色;将原碘水溶液滴在滤纸上,滤纸呈紫红色。
六、实验结论1. 液液萃取实验成功分离了碘水中的碘。
2. 四氯化碳作为萃取剂,能有效地将碘从碘水中萃取出来。
3. 振荡、静置分层、分液等操作步骤对提高萃取效率有重要作用。
七、实验注意事项1. 实验过程中,注意安全,避免接触皮肤和眼睛。
液液萃取
绪论4.1 液液萃取过程4.2 液液相平衡4.3 萃取过程计算4.4 萃取设备4.5 萃取过程的新进展基本概念利用组分在两个互不相溶的液相中的溶解度差而将其从一个液相转移。
到另一个液相的分离过程称为液液萃取,也叫溶剂萃取,简称萃取。
待分离的一相称为被萃相,萃取后成为萃余相,用做分离剂的相称为萃取相。
萃取相中起萃取作用的组分称为萃取剂,起溶剂作用的组分称为稀释剂或溶剂。
具有处理量大、分离效果好、回收率高、可连续操作以及自动控制等特点,因此得到了广泛的应用。
1. 液液萃取过程的特点(1)萃取过程的传质前提是两个液相之间的相互接触;(2)两相的传质过程是分散相液滴和连续相之间相际传质过程。
(3)两相间的有效分散是提高萃取效率的有效手段。
(4)两相的分离需借助两相的密度差来实现。
(5)液液萃取过程可以在多种形式的装置中通过连续或间歇的方式实现。
2. 液液萃取的主要研究内容(1)确定萃取体系包括被萃相体系和萃取相体系的构成,如被萃相的酸碱度、萃取相的稀释剂等。
(2)测定相平衡数据分配系数和分离系数。
(3)确定工艺和操作条件相比、萃取剂和稀释剂用量、被萃物浓度、萃取温度等。
(4)萃取流程的建立完整的萃取和反萃流程。
(5)设备的确定设备形式和结构。
1. 萃取剂的选择(1) 萃取剂应具备的特点①萃取剂中至少要有一个能与被萃物形成萃合物的官能团。
常见的萃取官能团通常是一些包含N、O、P、S的基团。
②萃取剂中还应包含具有较强亲油能力结构或基团,如长链烃、芳烃等,以利于萃取剂在稀释剂中的溶解,并防止被萃相对它的溶解夹带损失。
1. 分配比达到萃取平衡时,被萃物在两相中的浓度比称为被萃物的分配比,也称为分配系数。
D=其中,为被萃物A在萃取相(有机相)中的浓度;为被萃物A在被萃相(水相)中的浓度。
分配比D的值越大,被萃物越容易进入萃取相。
D通常不是常数,要受萃取体系和萃取条件的影响,应根据实验来测定;D=0,表示待萃取物完全不被萃取,D=∞,表示完全被萃取。
液液萃取
液-液萃取第一节 概述利用原料液中各组分在适当溶剂中溶解度的差异而实现混合液中组分分离的过程称为液-液萃取,又称溶剂萃取。
液-液萃取, 它是30年代用于工业生产的新的液体混合物分离技术。
随着萃取应用领域的扩展,回流萃取,双溶剂萃取,反应萃取,超临界萃取及液膜分离技术相继问世, 使得萃取成为分离液体混合物很有生命力的操作单元之一。
一.萃取操作原理萃取是向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质A 由原溶液转移到萃取剂的过程。
在萃取过程中, 所用的溶剂称为萃取剂。
混合液中欲分离的组分称为溶质。
混合液中的溶剂称稀释剂,萃取剂应对溶质具有较大的溶解能力,与稀释剂应不互溶或部分互溶。
右图是萃取操作的基本流程图。
将一定的溶剂加到被分离的混合物中, 采取措施(如搅拌)使原 料液和萃取剂充分混合混合,因溶质在两相间不呈平衡,溶质在萃取相中的平衡浓度高于实际浓度, 溶质乃从混合液相萃取集中扩散,使溶质与混合中的其它组分分离,所以萃取是液、液相间的传质过程。
通常 ,萃取过程在高温下进行,萃取的结果是萃剂 提取了溶质成为萃取相,分离出溶质的混合液成为萃余相。
萃取相时混合物,需要用精馏或取等方法进行分离,得到溶质产品和溶剂,萃取剂供循环使用。
萃取相通常含有少量萃取剂,也需应用适当的分离方法回收其中的萃取剂,然后排放。
用萃取法分离液体混合物时,混合液中的溶质既可以是挥发性物质,也可以是非挥发性物质,(如无机盐类)。
当用于分离挥发性混合物时,与精馏比较,整个萃取过程比较复杂,譬如萃取相中萃取剂的回收往往还要应用精馏操作。
但萃取过程本身具有常温操作,无相变以及选择适当溶剂可以获得较高分离系数等优点,在很多的情况下,仍显示出技术经济上的优势。
一般来说,在以下几种情况下采取萃取过程较为有利:⑴ 溶液中各组分的沸点非常接近,或者说组分之间的相对挥发度接近于一。
⑵ 混合液中的组成能形成恒沸物酸, 用一般的精馏不能得到所需的纯度。
液_液萃取实验报告(3篇)
第1篇一、实验目的1. 理解液液萃取的基本原理和过程。
2. 掌握分液漏斗的使用方法和操作技巧。
3. 通过实验验证萃取分离的效率。
4. 学习如何通过萃取分离混合物中的特定成分。
二、实验原理液液萃取是利用物质在不同溶剂中的溶解度差异,通过混合、振荡、静置分层和分液等步骤,将混合物中的某一组分从另一组分中分离出来的方法。
其基本原理是:溶质在互不相溶的溶剂中具有不同的溶解度,溶质会从溶解度小的溶剂转移到溶解度大的溶剂中,从而实现分离。
三、实验仪器和药品仪器:- 分液漏斗(梨形)- 铁架台(带铁圈)- 烧杯- 振荡器- 秒表药品:- 混合溶液(含有待萃取的溶质)- 萃取剂(与混合溶液不互溶的溶剂)- 水或无水乙醇(用于洗涤)四、实验步骤1. 准备工作:- 检查分液漏斗是否漏水,确保密封性良好。
- 准备好混合溶液和萃取剂。
2. 加入溶液:- 将混合溶液倒入分液漏斗中,注意不要超过漏斗容积的2/3。
- 向分液漏斗中加入适量的萃取剂。
3. 振荡混合:- 盖好分液漏斗的玻璃塞,轻轻振荡,使混合溶液和萃取剂充分混合。
- 振荡过程中,注意观察两相液体的混合情况,确保充分接触。
4. 静置分层:- 将分液漏斗放置在铁架台上,静置一段时间,等待两相液体分层。
- 观察分层情况,确认两相液体已完全分层。
5. 分液:- 打开分液漏斗下端的活塞,使下层液体(通常为萃取剂层)缓慢流出至烧杯中。
- 待下层液体流尽后,关闭活塞,打开上端玻璃塞,将上层液体(通常为混合溶液层)倒入另一个烧杯中。
6. 洗涤:- 向分液漏斗中加入少量水或无水乙醇,重复振荡、静置分层和分液的步骤,以去除萃取剂层中的残留溶质。
7. 回收萃取剂:- 将萃取剂层倒入烧杯中,加热蒸发,回收萃取剂。
五、实验现象1. 振荡混合过程中,混合溶液和萃取剂充分接触,形成乳白色混合物。
2. 静置分层后,上层液体(混合溶液层)通常颜色较浅,下层液体(萃取剂层)通常颜色较深。
3. 分液过程中,下层液体(萃取剂层)和上层液体(混合溶液层)分离清晰。
液-液萃取法
思考题1 衡量分离效果的因素主要是哪些?2 试述影响萃取效果的主要因素?3 选择萃取溶剂时还应考虑哪些方面?4 请详述产生乳化的原因及消除乳化的具体措施?5 系统分析法中萃取操作中的三部位法和四部位法常用的溶剂各是何物?一液-液萃取法1 液-液萃取原理液-液萃取法即两相溶剂提取,是利用混合物中各组分在两种互不相溶的溶剂中分配系数的不间而达到分离目的的方法。
简单的萃取过程是将萃取剂加入到样品溶液中,使其充分混合,因某组分在萃取剂中的平衡浓度高于其在原样品溶液中的浓度,于是这些组分从样品溶液中向萃取剂中扩散,使这些组分与样品溶液中的其他组分分离。
组分A在两相间的平衡关系可以用平衡常数K来表示:K=CA/C'A。
式中CA: 组分A在苯取剂中的浓度;C'A:组分A在原样品溶液中的浓度。
这就是分配定律。
对于液一液萃取,K通常称为分配系数,可将其近似地看做组分在萃取剂和原样品溶液中的溶解度之比。
物质在萃取剂和原溶液中的溶解度差别越大,K值越大,萃取分离效果越好。
当K≥100时,所用萃取剂的体积与原溶液体积大致相等时,一次简单萃取可将99%以上的该物质萃取至萃取剂中,但这种情况往往很少。
K值取决于温度、溶剂和被萃取物的性质,而与组分的最初浓度、组分与溶剂的质量无关。
萃取过程的分离效果主要表现为被分离物质的萃取率和分离纯度。
萃取率为萃取液中被萃取的物质与原溶液中该物质的溶质的量之比。
萃取率越高,表示萃取过程的分离效果越好。
1.1 影响萃取效果的因素影响分离效果的主要因素包括:萃取剂、被萃取的物质在萃取剂与原样品溶液两相之间的平衡关系(主要表现为被萃取物质在萃取剂与原样品溶液两相中的溶解度差别)、在萃取过程中两相之间的接触情况。
被萃取物质在一定的条件下,主要决定于萃取剂的选择和萃取次数。
1.1.1萃取溶剂的选择萃取剂对萃取效果的影响很大,萃取溶剂选择的主要依据是被萃取的物质的性质,相似相溶原理是萃取剂选择的基本规则。
药物分离技术第二章 药物的液液萃取技术
第二节 分子间作用力与溶剂特性
范得华力包括:
色散力:存在于非极性分子之间。由于非极性分子外围电子不停运动和原子核的不断 震动,可能造成某一瞬间存在偶极矩不为0(即正负电荷中心不重合),造成同极相 吸、异极相斥,这种作用力即为色散力。
大小取决于分子的变形性,半径越大,色散力越强。
产物 青霉素G 红霉素 螺旋霉素 土霉素
萃取溶剂 乙酸丁酯 乙酸丁酯 乙酸丁酯
丁醇
产物 林可霉素 加兰他敏 延胡索乙素 新生霉素
萃取溶剂 丁醇
乙酸乙酯 乙醚 丁醇
主要用于抗生素及天然植物中的有效成分的提取。
四、化学萃取
• 化学萃取则利用萃取剂与溶质之间的化学反应生成复合分子, 向萃取相分配而实现溶质转移。
当溶质—溶质之间作用力和溶剂—溶剂之间的作用力越大时,溶解越困难。 分子间作用力的大小与分子的极性关系:
非极性物质<极性物质<氢键物质<离子型物质 当物质溶解时,溶质结构与溶剂结构相似、彼此间的作用力相似,溶解容易进行, 此为“相似相容”原理。
第二节 分子间作用力与溶剂特性 一、分子间作用力
物质内部作用力:化学键、氢键和分子间作用力。
pKb
pH
可见,弱电解质溶质在有机相中的浓度主要取决于pH值。
弱酸性电解质:pH值越低,分配系数越大;弱碱性正好相反。
• 在一定温度和压力下,分配系数是水中氢离子浓度的函数,调节水相的pH, 使溶质以分子状态↑,进入萃取相↑,分配系数↑,萃取率↑。
红霉素是碱性电解质,在乙酸戊酯和 pH 9.8 的水相之间分配系数为 44.7 ,而水相 pH5.5 时为14.3 。
乳状液是一个不稳定的热力学体系,易聚集分层,成为稳定的两相。 若要形成稳定的乳剂,需要加入稳定剂使其形成稳定的体系,这种稳
液液萃取(溶剂萃取).
11 液液萃取(溶剂萃取)Liquid-liquid extraction(Solventextraction)11.1 概述一、液液萃取过程:1、液液萃取原理:根据液体混合物中各组分在某溶剂中溶解度的差异,而对液体混合物实施分离的方法,也是重要的单元操作之一。
溶质 A + 萃取剂 S——————〉S+A (B) 萃取相 Extract分层稀释剂 B B + A (S…少量) 萃余相 Raffinate(残液)一般伴随搅拌过程 => 形成两相系统,并造成溶质在两相间的不平衡则萃取的本质:液液两相间的传质过程,即萃取过程是溶质在两个液相之间重新分配的过程,即通过相际传质来达到分离和提纯。
溶剂 extractant(solvent)S 的基本条件:a、S 不能与被分离混合物完全互溶,只能部分互溶;b、溶剂具有选择性,即溶剂对A、B两组分具有不同溶解能力。
即(萃取相内)(萃余相内)最理想情况: B 与 S 完全不互溶 => 如同吸收过程: B 为惰性组分相同:数学描述和计算实际情况:三组分分别出现于两液相内,情况变复杂2 、工业萃取过程:萃取不能完全分离液体混合物,往往须精馏或反萃取对萃取相和萃余相进行分离,而溶剂可循环使用。
实质:将一个难于分离的混合物转变为两个易于分离的混合物举例:稀醋酸水溶液的分离:萃取剂:醋酸乙酯3 、萃取过程的经济性:取决于后继的两个分离过程是否较原液体混合物的直接分离更容易实现( 1 )萃取过程的优势:(与精馏的关系)a、可分离相对挥发度小或形成恒沸物的液体混合物;b、无相变:液体混合物的浓度很低时,精馏过于耗能(须将大量 B 汽化);c、常温操作:当液体混合物中含有热敏性物质时,萃取可避免受热;d、两相流体:与吸附离子交换相比,操作方便。
( 2 )萃取剂的选择——萃取过程的经济性a、分子中至少有一个功能基,可以与被萃取物质结合成萃合物;b、分子中必须有相当长的烃链或芳香环,可使萃取剂和萃合物容易溶解于有机相,一般认为萃取剂的分子量在350-500之间较为合适。
《药物分离与纯化技术2》学习领域教案
酒泉职业技术学院《药物分离与纯化技术》学习领域教案作,也可多级组合操作。
每个萃取级包括混合槽和澄清器两个主要部分。
混合槽中安装搅拌装置,也可采用静态混合器、脉冲或喷射器来实现两相的充分混合。
澄清器的作用是将已接近平衡状态的两液相进行有效分离。
对易于澄清的混合液,可以依靠两相间的密度差进行重力沉降(或升浮)。
对于难分离的混合液,可采用离心式澄清器加速两相分离过程。
操作时,被处理的混合液和萃取剂首先在混合槽内充分混合,再进入澄清器中进行澄清分层。
多级混合-澄清槽是由多个单级萃取单元组合而成。
混合-澄清槽的优点:传质效率高(级效率一般80%以上);操作方便;运转稳定可靠;结构简单;可处理含有悬浮固体的物料。
混合-澄清槽的缺点:水平排列的设备占地面积大;每级内都有搅拌装置;液体在级间流动需泵输送,故能耗多;设备费及操作费较高。
为克服水平排列多级的缺点,可采用箱式和立式混合-澄清萃取设备。
二、塔式萃取设备习惯上,将高径比很大的萃取装置统称为塔式萃取设备。
为了获得满意的萃取效果,塔设备应具有分散装置,以提供两相间较好的混合条件。
同时,塔顶、塔底均有足够的分离段,使两相很好的分层。
由于使两相混合和分离所采用的措施不同,因此出现了不同结构形式的萃取塔。
1、填料萃取塔和脉动填料萃取塔用于萃取的填料塔与用于气-液传质过程的填料塔结构基本相同,即在塔体内支承板上充填一定高度的填料层。
萃取操作时,连续相充满整个塔中,分散相以液滴状通过连续相。
为防止液滴在填料入口处聚结和过早出现液泛,轻相入口管应在支承器之上25~50mm处。
选择填料材质时,除考虑料液的腐蚀性外,还应使填料只能被连续相润湿而不被分散相润湿,以利于液滴的生成和稳定。
当填料层高度较大时,每隔3~5m高度应设置再分布器,以减小轴向返混。
填料尺寸应小于塔径的1/8~1/10,以降低壁效应的影响。
填料塔结构简单,操作方便,特别适合处理腐蚀性料液。
当工艺要求小于三个萃取理论级时,可选用填料塔。
液-液萃取
易聚结,有利于分层;反之,液体易分散而产生乳化现象,使两液相难分离。
但如果界面张力过大时,液体则不易聚结分散,难以式两液相充分混合,降低 萃取效果。因此,在萃取操作中应选择适中的界面张力。
问题: 什么是相界面张力?
沿着不相溶的两相(液-固、液-液、液-气) 间界面垂直作用在单位长度液体表面上的表面收 缩力(相界面张力)。
①转筒式离心萃取器 如图所示,转筒式离心萃取器结
构简单,造价相对较低,传质效率高,
易控制,运行可靠。
②卢威式离心萃取器
卢威(Luwesta)式离心萃取器是一种立式
逐级接触式离心萃取设备。
重液
轻液
重液
轻液
如图所示,Luwesta 式离心萃取器的主体
是固定在机壳体上,并随之作高速旋转的环形 盘,壳体中央有固定的垂直空心轴,轴上也装 有圆形盘,盘上开有若干个喷出孔。
3、萃取剂的化学性质: (1)良好的稳定性 (2)不易分解、聚合 (3)有足够的热稳定性和抗氧化稳定性 (4)对设备的腐蚀性小
工业生产中常用的萃取剂分类: 1.有机酸或它们的盐,如脂肪族的一元羧酸、磺酸、 苯酚 2.有机碱的盐,如伯胺盐,仲铵盐、叔铵盐 3.中性溶剂:如水、醇类、酯、醛、酮等。
三、萃取设备
重液
轻液
筛板
降液管
重液呈连续相由塔顶入口进入,横向流过筛板,
并在筛板上与分散相液滴接触、传质,再由降液管流 至下一层筛板;如此重复进行,最后由塔底排出。
轻液
筛板塔构造比较简单,造价低,可有效地减少轴向返混,能 处理腐蚀性料液,因而运用较为广泛。
重液
④转盘萃取塔(RDC塔) 转盘萃取塔的基本构造如图所示。在塔体内壁 的面上按一定间距,安装有若干个环形挡板(固定 环),固定环将塔内分成若干个小空间。两个固定 环之间安装一转盘,转盘固定在中心轴上,转轴由 塔顶电机启动。 萃取操作时,转盘随中心轴高速旋转,液体产
第2章溶剂萃取
常用溶剂的罗氏极性参数
溶剂
正庚烷 正己烷 环戊烷 四氢呋喃
乙酸乙酯 氯仿 甲乙酮 丙酮 乙腈 甲醇 水
P’
ɛ(介电常数)
0.2
1.92
0.1
1.88
-0.2
1.97
4.0
7.6
4.4
6.0
4.1
4.8
4.7
18.5
5.1
5.8
37.8
5.1
32.7
10.2
80
Xe =He/P’ Xd = Hd/P’ Xn= Hn/P’
醋酸
苯酚、氯仿、水
结论
同一个组中的溶剂,具有非常接近的3个选择性 参数,在分离过程中具有类似的选择性,若通过选 择溶剂改善分离,就要选择不同组的溶剂。
溶剂选择一般方法
(1)单一溶剂: 选择与溶质极性尽可能相等的单 一溶剂,使溶质在溶剂中的溶解度达到最大;
在保持溶剂极性不变的前提下,更换溶剂种类, 调整溶剂选择性,使分离选择性达到最佳。
• 极性是一种抽象概念,用以表示分子中电荷不对 称(assymmetry)的程度。
• 表征的参数常有偶极矩、介电常数、油水分配系 数、溶解度参数和罗氏极性参数。
影响分子极性的因素
分子的极性与分子结构及分子大小有关;
——分子结构指分子中所含官能团的种类、数目及 排列方式等综合因素。
——分子大小指分子碳链长度、骨架大小,与分子 量相关。
测定分配系数最常用溶剂系统:正辛醇和水系统, 并用Ko/w或lgP表示分配系数。
KO /W
coctanol c wa te r
lg Ko/ w lg P
典型香味化合物的油水分配系数
第二章液液萃取
2021/4/4
第二章液液萃取
18
• 几种特殊溶剂:醋酸丁酯、丁醇、戊醇、丁酮、甲 基叔丁基醚、这些溶剂在水中或酸性水中溶解度不 大。适用于萃取在酸性水中溶解度大的物质。
• 普通含氧原子的溶剂在酸性溶液中,易与氢离子形 成氢键而易溶于水,而这些含氧的大分子溶剂由于 位阻大,阻碍了氢键的形成,故在水中溶解度小。
③ 溶质质点进入溶剂形成的空穴:溶质分子与溶剂分子相互作 用放出能量,顺序为:均为非极性分子<一为非极性分子、 一为极性分子<均为极性分子<溶质被溶剂溶剂化。
➢ 溶剂化是指一定数目的溶剂分子较牢固的结合在溶质质点上,
有溶剂化能力的溶剂称为溶剂化溶剂,水、醇、丙酮等【溶
2021剂/4/4化溶剂的结构特点?】第。二章液液萃取
kA
yA xA
kB
yB xB
分配系数反映了被萃组分在两个平衡液相中的分配关系,
分配系数的值越大,被萃物越容易进入萃取相,萃取分离
效果越好。k与溶剂的性质和温度有关,在一定的条件下
为常数,应根据实验来测定;k=0,表示待萃取物不被萃
取,k=∞,表示完全被萃取。
2021/4/4
第二章液液萃取
7
2. 选择性系数(分离系数)
➢如果原料液中含有组分A与B,萃取剂对溶质A和B分离能力 的大小,可用选择性系数β表示。 ➢定义为:在同一萃取体系内两种溶质在同样条件下分配系 数的比值。 ➢β值的大小反映了被萃相中两种物质可被某种萃取剂所分离 的难易程度。
yA KA yB
Kb xA xB
➢与精馏中的相对挥发度一样,选择性系数值越远离1,两种 物质越容易分离;反之则不容易。
基本概念基本概念利用组分在两个互不相溶或部分互溶的液相中的溶解度利用组分在两个互不相溶或部分互溶的液相中的溶解度差异而将其从一个液相转移到另一个液相的分离过程称为液差异而将其从一个液相转移到另一个液相的分离过程称为液液萃取也叫溶剂萃取液萃取也叫溶剂萃取
液液萃取原理
液液萃取原理
萃取,又称溶剂萃取或液液萃取,亦称抽提,是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作。
即,是利用物质在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使溶质物质从一种溶剂内转移到另外一种溶剂中的方法。
广泛应用于化学、冶金、食品等工业,通用于石油炼制工业。
另外将萃取后两种互不相溶的液体分开的操作,叫做分液。
液液萃取的原理:利用化合物在两种互不相容(或微容)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。
经过反复多次萃取,将绝大部分化合物提取出来。
有机化合物在有机溶剂中一般比在水中溶解度大。
用有机溶剂提取溶解于水的化合物是萃取的“典型实例”。
在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用盐析效应以降低有机物和萃取溶剂在水溶液中的溶解度,一般可提高萃取效果。
要把所需化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。
常用萃取剂:水、苯、四氯化碳、汽油、乙醚、直馏汽油。
液液萃取的原理
液液萃取的原理
液液萃取是一种将萃取剂和被提取物质溶液进行混合,并利用它们在不同溶剂中的溶解度差异进行分离和富集的方法。
该方法的原理基于被提取物质在两种互不相溶的溶剂中的溶解度不同。
通常,有机溶剂(如乙酸乙酯、甲醇)和水是常用的两种溶剂。
被提取物质首先会在两种溶剂中的溶解度不同程度地溶解,使其在两相之间分配。
然后,通过反复抽取、混合和分离,可以实现对被提取物质的有效分离和富集。
液液萃取的原理可通过以下步骤更详细地阐述:
1. 将待处理溶液与适当的有机溶剂混合。
对于液液萃取,通常使用极性较低的有机溶剂。
2. 这两种溶剂之间会发生相互作用,溶解物在两相间分配。
3. 搅拌混合后,两相形成,并通过重力分离。
4. 上相(有机相)和下相(水相)可以通过分液漏斗等工具分离。
5. 分离后的上相和下相可以进一步进行萃取,以实现更高纯度或更高浓度的目标物质。
值得注意的是,液液萃取的有效性取决于涉及的溶剂体系和被提取物质的性质。
实际操作中,还需考虑温度、搅拌时间、料液比、pH值等因素的影响,以优化萃取效果。
天然药物化学 第二章 提取与分离 第二节
提取液
加入试剂
沉淀
降低溶解度 或发生沉淀反应
过滤
(一)乙醇沉淀法
(二)酸碱沉淀法
(三)利用沉淀试剂进行分离
产物
(一)乙醇沉淀法
通过改变溶剂极性而改变成分溶解度的方法
水提液+乙醇 含醇量>80%
极性改变
蛋白质、淀粉、树胶、 粘液质(亲水性成分)改变 (亲脂性成分)
如:黄连中提取小檗碱时加NaCl
五、透析法
半透膜过滤。 如:除去皂苷、多糖中的无机盐、单糖、
双糖等小分子。
课堂练习
(一)单项选择题
与判断化合物纯度无关的是( )
A.熔点的测定 B. 观察结晶的晶形
C. 闻气味
D. 测定旋光度
E. 观察色泽
(二)多项选择题
透析法适用于分离( )
A. 酚酸与羧酸 B. 多糖与单糖
杂质的存在会阻碍或延缓结晶的形成
容易结晶。
欲结晶成分在混合物中的含量越高越
溶液浓度高易于析出结晶。但过高也不好。
低温有利于结晶析出
长时间放置有利于结晶析出,且结晶大而纯。 加入少量晶种有利于结晶析出
四、盐析法
在水提液中,加入无机盐[如:NaCl,Na2SO4 , MgSO4, (NH4)2SO4等]至一定的浓度,可使某些溶解度较小的 成分沉淀出来,而与溶解度大的成分分离。
趁热过滤
沉淀
(不溶性杂质)
热溶液
有效成分 结晶
低温过滤
有效成分 析出结晶
母液
低温放置 (或蒸发出部分 溶剂后低温放置)
1.选择适宜的溶剂。 ①不与欲结晶成分发生化学反应。
②对欲结晶成分热时溶解度大,冷时溶解度小。
③常均对不用杂溶质溶。的剂)溶:解度水非、常冰大或醋者酸非、常小甲(醇冷、热均乙溶或 溶醇解、度非丙常酮大、:杂乙质酸留乙在母酯液、中三。 氯甲烷、 溶四解氯度非化常碳小、:趁石热油过醚滤 等。(选择一种 ④有一定的挥或发性两,种沸及点适以中上。)
液-液萃取
四、液-液萃取工艺过程和基本计算
1.基本概念
1.)萃取理论级:指原料液F与萃取剂S在混合器内充分 接触后,在分离器中分层得到互成平衡的萃取相E和萃 余相R。 2.)萃取因素与萃取率 萃取率(又称理论收率)是指萃取相中溶质的总量占 原料液中溶质总量的百分数。
2.单级接触萃取过程
单级接触萃取是液液萃取中最简单、最基本的操作方式 注意:在单级接触萃取操作中,进行萃取操作时存在 最小萃取剂用量S小和最大萃取剂用量S大。
四、液-液萃取工艺过程和基本计算
3.多级错流萃取流程
相当于多个单级萃取的组合。
特点:可使液相混合物 得到较大程度的分离,但 溶剂消耗量较大,萃取剂 的利用不够合理; 只适用于分离要求不 高,所需级数较少的情况 下。不高的情况下使用。
四、液-液萃取工艺过程和基本计算
4.多级逆流萃取流程
多级逆流萃取流程的特点是料液走向和萃取剂走向 相反,只在最后一级加入新鲜萃取剂。 有逐级逆流操作 和连续逆流操作两种,这两种方式在工业上比较常用。
七、液-液萃取设备
两相接触方式不同分为 分级接触式 微分接触式 设备操作级数不同分为 单级 多级 设备结构形式
外加 1.混合设备 能量 2.分离设备
方式 3.离心萃取机
流动混合器 、搅拌式混合器 重力式澄清器、离心式分离机
是指在一定温度、压力下,溶质分子分布在 两个互不相溶的溶剂里,达到平衡后,它在 两相的浓度之比为一常数K,这个常数称为 分配系数,即:
K = 萃取相浓度/萃余相浓度= X/Y
应用条件: (1) 稀溶液; (2) 溶质对溶剂之互 溶度没有影响;(3)必须是同一种分子类型, 即不发生缔合或离解。
二、液-液萃取过程的理论基础
液-液萃取
多级逆流萃取例题1
在多级逆流萃取装置中,用纯溶剂S处理 含A,B两组分的原料液。原料液流量 F=1000kg/h,其中溶质的质量百分率为 30%,要求最终萃余相中溶质组成不超过 7%。溶剂用量=350kg/h。试求:⑴所需 的理论级数;⑵若将最终萃取相中的溶 剂全部脱除,求最终萃取相的流量E’1和 组成y’1 。 操作条件下的溶解度曲线和辅助曲线如
单级萃取
流程描述(见下页图)
图解关键—试差作图法:在溶解度曲线和 辅助曲线已有情况下,由总混点M求算共 额平衡相E,R的组成点. 计算依据:杠杆规则.
单级萃取例题1
在25℃下以水(S)为萃取剂从醋酸(A) 与氯仿(B)的混合液中提取醋酸。已知 原料液流量为2000kg/h,其中醋酸的质 量百分率为35%,其余为氯仿。用水量为 1600kg/h。操作温度下,E相和R相以质 量百分率表示的平衡数据列于本例附表 中。
萃取塔设备
喷洒塔—结构最简单,萃取效果教差. 填料塔—塔的中段设置填料层,避免轴向 返混,增大相际接触面积.增设脉冲可提 高传质效果. 筛板塔—塔内设置一定间距的开孔塔板, 避免轴向返混,且分散相液滴的多次分散 和重新聚结,可更新液滴表面组成,提高 传质效果.也有时加设脉冲.
多级错流接触萃取
流程描述:每一级均加入新鲜萃取剂,各 级萃余相流入下一级作为原料,各级萃取 相汇集成为最终萃取相,最末一级萃余相 为最终萃余相. 特点:各级新鲜萃取剂用量相同,传质推 动力大. 实际为单级萃取的多次重复.
多级错流接触萃取例题1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/3/12
19
(4)溶剂的回收
➢溶剂的损耗在成本控制中占据很重要的地位,有 的甚至占很大比重。必须回收。 ➢要求萃取剂对其他组分的相对挥发度大,且不形 成恒沸物,如果被萃物不挥发或挥发度很低,而萃 取剂为易挥发组分时,则萃取剂的汽化热要小,以 节省能源。(被萃物为液体和固体两种情况?)
夹带损失。例如:水溶解有机溶剂。
2020/3/12
15
(2) 萃取剂选择要点
① 选择性好:萃取剂对某种组分的溶解能力较大, 对另一种较小,表现为选择性系数大。 ② 萃取容量大:单位体积的萃取剂能萃取大量的目 的物,表现为分配系数大。 ③ 萃取剂与原溶剂的互溶度:二者最好互不溶解, 减少了溶剂分离的步骤。 ④ 萃取剂与原溶剂有较大的密度差,易与原料液相 分层不乳化、不产生第三相。萃取剂密度最好大于 原溶剂(?)
kA
yA xA
kB
yB xB
分配系数反映了被萃组分在两个平衡液相中的分配关系,
分配系数的值越大,被萃物越容易进入萃取相,萃取分离
效果越好。k与溶剂的性质和温度有关,在一定的条件下
为常数,应根据实验来测定;k=0,表示待萃取物不被萃
取,k=∞,表示完全被萃取。
2020/3/12
7
2. 选择性系数(分离系数)
2020/3/12
18
• 几种特殊溶剂:醋酸丁酯、丁醇、戊醇、丁酮、甲 基叔丁基醚、这些溶剂在水中或酸性水中溶解度不 大。适用于萃取在酸性水中溶解度大的物质。
• 普通含氧原子的溶剂在酸性溶液中,易与氢离子形 成氢键而易溶于水,而这些含氧的大分子溶剂由于 位阻大,阻碍了氢键的形成,故在水中溶解度小。
2020/3/12
14
三. 萃取分离的影响因素 1. 萃取剂的选择
(1) 萃取剂结构特点
①一般情况下,萃取剂中至少要有一个能与被萃物
形成萃合物的官能团。常见的萃取官能团通常是
一些包含N、O、P、S、Cl的基团。 思考题:为
什么?
②萃取剂中还应包含具有较强亲油能力的结构或基
团,如长链烃、芳烃等,防止被萃相对它的溶解
3. 磷和硼等无机资源的提取和净化; 4. 制药工业中的中间体及原料药以及多种抗生素和生物
碱的分离提取; 5. 食品工业中有机酸的分离和净化; 6. 环保中有害物质的脱除等。含酚废水、含醛废水等。
2020/3/12
3
1. 基本概念
➢ 利用组分在两个互不相溶(或部分互溶)的液相中的溶解度 差异而将其从一个液相转移到另一个液相的分离过程称为液 液萃取,也叫溶剂萃取。
17
⑶ 常用萃取剂
①中性萃取剂:含磷类、含氧类和含硫类重型萃取剂, 如磷酸三丁酯(TBP)、甲基异丁基酮(MIBK)、二辛基 亚砜(DOSO)等。 ②有机酸萃取剂:有机磷酸、有机磺酸、羧酸等。 ③胺类萃取剂:各种有机胺和胺盐。 ④螯合萃取剂:各种有机螯合物、冠醚等。 ⑤常规溶剂:醋酸丁酯、乙酸乙酯、氯仿、甲苯等。
➢ 缺点:由于有机溶剂使用量大,对设备和安全要求 高,需要各项防火防爆等措施。
➢ 反萃取:将萃取液与反萃取剂(一般为水溶液)相 接触,使某种被萃入有机相的溶质转入水相的过程, 是萃取的逆过程。一般用来进一步提纯产品。
2020/3/12
5
2. 液液萃取过程的特点
① 萃取过程的传质前提是两个液相之间的相互接触; ② 两相的传质过程是分散相液滴和连续相之间相际传质
➢ 萃取相中起萃取作用的组分称为萃取剂S,起溶剂作用的组 分称为稀释剂B或原溶剂。
➢ 待分离的一相称为被萃相,萃取后成为萃余相R,以稀释剂 为主;用做分离剂的相称为萃取相E,以萃取剂为主。
2020/3/12
4
➢ 优点:①操作可连续化,速度快,生产周期短;② 对热敏物质破坏少;③采用多级萃取时,溶质浓缩 倍数大、纯化度高。
第二章 液液萃取
李爱军 教授 河北科技大学化工学院制药工程系
2011.09
2020/3/12
1
一. 概述
➢ 萃取:是分离液体或固体混合物的一种单元操 作。是利用原料中的组分在溶剂中溶解度的差 异,选择一种溶剂做为萃取剂S用来溶解原料 混合液中待分离的组分,其余组分则不溶或少 溶于萃取剂中,这样在萃取操作中原料混合物 中待分离组分(溶质)从一相转移到另一相中, 从而使溶质被分离-传质过程。
③ 溶质质点进入溶剂形成的空穴:溶质分子与溶剂分子相互作 用放出能量,顺序为:均为非极性分子<一为非极性分子、 一为极性分子<均为极性分子<溶质被溶剂溶剂化。
➢ 溶剂化是指一定数目的溶剂分子较牢固的结合在溶质质点上,
有溶剂化能力的溶剂称为溶剂化溶剂,水、醇、丙酮等【溶
2020剂/3/1化2 溶剂的结构特点?】。
2020/3/12
21
思考题
1. 常用的萃取剂中为何常常含有氧、氮等基团? 2. 用有机溶剂萃取水中的物质时,萃取剂一般包含
具有较强亲油能力的结构或基团,目的为何? 3. 萃取剂与原溶剂为何要有较大的密度差? 4. 萃取剂对某种组分的溶解能力较大,对另一种较
小,表现为()大。单位体积的萃取剂能萃取大 量的目的物,表现为()大。
➢ 包括:固液萃取,液液萃取,反胶团萃取,双 水相萃取,超临界流体萃取,微波萃取,超声 萃取,化学药物固液浸取。
2020/3/12
2
应用领域
1. 炼油和石化工业中石油馏分的分离和精制,如烷烃和 芳烃的分离,润滑油的精制等;
2. 湿法冶金:铀等放射性元素、稀土、铜等有色金属、 金等贵金属的分离和提取;
2020/3/12
11
5. 溶剂的互溶性规律
氢键是由一个氢原子和两个电负性原子结合构成的,是一个
带方向性的强作用力,比范德华力强,形成氢键必须有电子
受体和电子供体。
按照形成氢键的能力,溶剂可分为四种类型:
(1)N型溶剂:不能形成氢键,如烷烃、四氯化碳、苯等,
称为惰性溶剂。
(2)A型溶剂:只有电子受体,如氯仿、二氯甲烷等,能与
电子供体形成氢键。
(3)B型溶剂:只有电子供体,如醛、酮、醚、酯、磷酸三
丁酯、叔胺等。
(4)AB型溶剂:同时具有电子受体和电子供体,可缔合成
202多0/3聚/12 分子,据氢键的结合形式不同可分为三类:
12
AB(1)型:交链氢键缔合溶剂,如水、多元醇、氨基醇、羟基 羧酸、多元羧酸、多酚等。 AB(2)型:直链氢键缔合溶剂,如醇、胺、羧酸等。 AB(3)型:生成内氢键分子,如邻硝基苯酚等,此类溶剂中的 电子受体因形成内氢键而不再起作用,故溶剂性质与N型和B 型溶剂相似(?)。
2020/3/12
22
2. 操作温度的影响
①一般情况下,两相间的分层区面积随温度升 高而缩小:高温时溶剂间互溶度增大,使分 层区面积缩小,萃取效率降低。严重时甚至 使分层区消失,致使萃取分离不能进行。有 时严重时产生乳化现象?
• 此时选择较低的操作温度,但温度过低,使 液体黏度过大,扩散系数减小,不利于传质。
2020/3/12
25
3. pH值的影响
➢青霉素在pH2时,醋酸丁酯萃取液中青霉素可达 12.5%,而在pH3时,降低至4%。红霉素萃取的 pH值选择在10-10.2。
思考题:为什么采用醋酸丁酯?
②pH影响药物的稳定性:尽量选择使产物稳定的范 围内。
2020/3/12
26
4. 盐析作用的影响
① 由于盐析剂(氯化钠、氯化铵及硫酸铵等)与 水分子结合,导致游离水分子减小,降低了被 萃物在水中的溶解度,使其易转入有机相;
② 盐析剂降低有机溶剂在水中的溶解度; ③ 盐析剂增大萃余相比重,有助于分相,尤其是
在乳化时,加入盐析剂利于破乳。 ④ 盐析剂用量适宜,防止杂质进入有机相,考虑
回收。
2020/3/12
27
➢ 提取维生素B12时,加入硫酸铵可促使B12自水 相转移到有机相;
2020/3/12
16
⑤ 被萃物与萃取剂的沸点相差越大越好。 思考题:最好大于50度?如果小于20度,采取何措
施?) ⑥ 化学稳定性强耐酸碱、抗氧化还原、耐热、无腐蚀。 ⑦ 易于反萃或分离便于萃取剂的重复利用。 ⑧ 安全性好,无毒或低毒、不易燃、难挥发、环保。 ⑨ 经济性好,成本低、损耗小。
2020/3/12
2020/3/12
24
3. pH值的影响
① pH影响弱酸、弱碱性或两性化合物的分配系数 及选择性,从而影响萃取收率。
• 差别,若 适度改变pH,可将抗生素自水相转入有机相, 或从有机相再转入水相,这样反复萃取,可以达 到浓缩和提纯的目的。
思考题:如果等于1,怎么办?
2020/3/12
8
3. 溶解的三个过程
① 溶质各个质点的分离:固态或液态的溶质先分离成分子或离 子等单个质点,吸收能量的大小与分子之间的作用力有关, 非极性物质<极性物质<氢键物质<离子型物质;
② 溶剂在溶质作用下形成可容纳质点的空位:吸收能量的大小 与溶剂分子之间的相互作用力有关,非极性物质<极性物质< 氢键物质<离子型物质。该能量还与溶质分子大小有关,如 溶质分子较大,则容纳溶质质点的空穴就要大些,这就要破 坏较多的溶剂分子之间的键或作用力,需要较多的能量;
由形成氢键的情况可推断 溶剂互溶规律:如果两种溶剂混合后形成的氢键比混合前增加 强度更大,则有利于互溶,否则不利于互溶。可根据氢键数 目与强度分析判断。 AB型与N型几乎不容,如水与四氯化碳、煤油、苯不互溶。 A型与B型易互溶,如氯仿与丙酮。
2020/3/12
13
思考
➢ 丙酮与乙醇为什么能够互溶? ➢ 水与苯为什么不互溶? ➢ 分配系数与分离系数有何意义? ➢ 什么分子结构形成内氢键?内氢键有何用途?
2020/3/12