04greedy算法设计与分析 贪心算法
算法设计与分析中的贪心算法与回溯法
算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。
本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。
一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。
贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。
贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。
例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。
然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。
在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。
因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。
二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。
它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。
回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。
在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。
如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。
回溯法常用于解决一些全排列、子集和组合等问题。
例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。
然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。
因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。
三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。
贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。
它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。
然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。
贪心算法的基本原理
贪心算法的基本原理贪心算法(Greedy Algorithm)是一种常用的算法思想,它在求解最优化问题时通常能够得到较好的近似解。
贪心算法的基本原理是:每一步都选择当前状态下的最优解,从而希望最终能够得到全局最优解。
在实际应用中,贪心算法常常用于解决一些最优化问题,如最小生成树、最短路径、任务调度等。
一、贪心算法的特点贪心算法具有以下特点:1. 简单:贪心算法通常比较简单,易于实现和理解。
2. 高效:贪心算法的时间复杂度通常较低,能够在较短的时间内得到结果。
3. 局部最优:每一步都选择当前状态下的最优解,但不能保证最终能够得到全局最优解。
4. 适用范围:贪心算法适用于一些特定类型的问题,如无后效性、最优子结构等。
二、贪心算法的基本原理贪心算法的基本原理可以概括为以下几个步骤:1. 初始状态:确定问题的初始状态,定义问题的输入和输出。
2. 状态转移:根据当前状态,选择局部最优解,并更新状态。
3. 筛选解:判断当前状态下是否满足问题的约束条件,若满足则保留该解,否则舍弃。
4. 终止条件:重复以上步骤,直至满足终止条件,得到最终解。
三、贪心算法的应用举例1. 找零钱:假设有 25、10、5、1 四种面额的硬币,需要找零 41 元,如何使得找零的硬币数量最少?贪心算法可以先选择面额最大的硬币,然后逐步选择面额较小的硬币,直至找零完毕。
2. 区间调度:给定一组区间,如何选择最多的互不重叠的区间?贪心算法可以先按照区间的结束时间排序,然后依次选择结束时间最早的区间,直至所有区间都被覆盖。
3. 最小生成树:在一个连通的带权无向图中,如何选择边使得生成树的权值最小?贪心算法可以按照边的权值从小到大排序,然后依次选择权值最小且不构成环的边,直至所有顶点都被连接。
四、贪心算法的优缺点1. 优点:贪心算法简单高效,适用于一些特定类型的问题,能够在较短的时间内得到近似最优解。
2. 缺点:贪心算法不能保证一定能够得到全局最优解,可能会出现局部最优解不是全局最优解的情况。
贪心算法在优化问题中的运用
贪心算法在优化问题中的运用贪心算法(Greedy Algorithm)是一种常用的算法思想,它在解决一些优化问题时具有很高的效率和实用性。
贪心算法的核心思想是每一步都选择当前状态下最优的解决方案,以期望最终能够得到全局最优解。
在实际应用中,贪心算法常常被用来解决一些最优化问题,如最短路径问题、背包问题、任务调度等。
本文将介绍贪心算法在优化问题中的运用,并通过具体案例来说明其应用场景和解决方法。
一、贪心算法的基本原理贪心算法是一种在每一步选择当前状态下最优解决方案的算法思想。
它与动态规划不同,贪心算法并不会保存之前的计算结果,而是根据当前状态做出最优选择。
贪心算法的优势在于简单、高效,适用于一些特定类型的问题。
贪心算法的基本原理可以总结为以下几点:1. 每一步都选择当前状态下的最优解决方案;2. 不考虑未来的结果,只关注当前状态的最优选择;3. 最终期望通过每一步的最优选择达到全局最优解。
二、贪心算法在优化问题中的应用1. 最短路径问题最短路径问题是图论中的经典问题,贪心算法可以用来解决一些简单的最短路径问题。
例如,在无权图中,从起点到终点的最短路径可以通过贪心算法来求解,每次选择距离最近的节点作为下一步的目标节点,直到到达终点为止。
2. 背包问题背包问题是一个经典的优化问题,贪心算法可以用来解决一些特定类型的背包问题。
例如,在分数背包问题中,每种物品可以取任意比例,贪心算法可以按照单位价值最高的顺序选择物品放入背包,直到背包装满为止。
3. 任务调度问题任务调度问题是一个常见的优化问题,贪心算法可以用来解决一些简单的任务调度问题。
例如,在单处理器任务调度中,每个任务有一个开始时间和结束时间,贪心算法可以按照结束时间的先后顺序对任务进行调度,以最大化处理器的利用率。
三、案例分析:活动选择问题活动选择问题是一个经典的优化问题,通过贪心算法可以高效地解决。
问题描述如下:假设有n个活动,每个活动都有一个开始时间和结束时间,活动之间不能交叉进行,问如何安排活动才能使参加的活动数量最多。
贪心算法程序设计
贪心算法程序设计贪心算法程序设计1. 什么是贪心算法贪心算法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法的核心思想是局部最优解能导致全局最优解。
2. 贪心算法的基本步骤贪心算法的基本步骤如下:1. 定义问题的优化目标。
2. 将问题分解成子问题。
3. 选择当前最优的子问题解,将子问题的解合并成原问题的解。
4. 检查是否达到了问题的优化目标,如果没有达到,则回到第二步,继续寻找下一个最优子问题解。
5. 在所有子问题解合并成原问题解后,得到问题的最优解。
3. 贪心算法的应用场景贪心算法的应用非常广泛,几乎可以用于解决各种优化问题。
以下几个常见的应用场景:1. 零钱找零问题:给定一定面额的纸币和硬币,如何找零使得所需纸币和硬币的数量最小?2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得可以办理的活动数量最大?3. 背包问题:给定一些具有重量和价值的物品,如何选择物品使得背包的总价值最大?4. 最小树问题:给定一个带权无向图,如何找到一棵树,使得它的边权之和最小?5. 哈夫曼编码问题:给定一组字符和相应的频率,如何构造一个满足最低编码长度限制的二进制编码?4. 贪心算法的优缺点贪心算法的优点是简单、高效,可以快速得到一个近似最优解。
而且对于一些问题,贪心算法能够得到全局最优解。
贪心算法的缺点在于它不一定能够得到全局最优解,因为在每一步只考虑局部最优解,无法回溯到之前的选择。
5. 贪心算法的程序设计在使用贪心算法进行程序设计时,通常需要以下几个步骤:1. 定义问题的优化目标。
2. 将问题分解成子问题,并设计子问题的解决方案。
3. 设计贪心选择策略,选择局部最优解。
4. 设计贪心算法的递推或迭代公式。
5. 判断贪心算法是否能够得到全局最优解。
6. 编写程序实现贪心算法。
6.贪心算法是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法知识点总结
贪心算法知识点总结1. 基本原理贪心算法的基本原理是每一步都选择当前状态下的最优解,以期望最终得到全局最优解。
具体来说,贪心算法通常可以分为以下几个步骤:1)从问题的某个初始解出发2)采用一种迭代的方式,逐步将初始解进行优化3)每一步都是基于当前状态的最优选择来进行优化4)直到无法再进行优化,得到问题的最优解由于贪心算法每一步都要选择局部最优解,因此贪心算法通常具有高效性。
然而,贪心算法并不适用于所有问题,其结果不一定是全局最优解。
因此,在使用贪心算法时需要注意问题的特性和约束条件,以免得到错误的结果。
2. 适用情况贪心算法通常适用于满足以下条件的问题:1)问题的最优解满足“最优子结构”性质:即问题的最优解包含了其子问题的最优解2)问题的求解过程具有“贪心选择性”:即每一步都选择当前状态下的最优解,并不需要考虑未来的后果3)问题的约束条件可以通过局部最优选择满足全局最优解:即问题的解空间中存在一些局部最优解,可以通过一系列的局部最优解构建全局最优解在实际应用中,贪心算法通常用于求解最优化问题,如最小生成树、最短路径、任务调度等问题。
由于贪心算法的高效性,它通常能够在较短的时间内得到较为接近最优解的结果。
然而,贪心算法并不适用于所有问题,对于一些问题,贪心算法将得到错误的结果。
因此,在使用贪心算法时需要谨慎选择问题类型和约束条件,以避免错误的结果。
3. 贪心算法实例在下面的部分,我们将介绍一些常见的贪心算法实例,包括背包问题、活动安排问题、霍夫曼编码等。
3.1 背包问题背包问题是一个经典的优化问题,它包括0-1背包问题、分数背包问题等多种类型。
在0-1背包问题中,给定n种物品和一个容量为C的背包,每种物品i的重量为w[i],价值为v[i],求在不超过背包容量的情况下,如何选择物品放入背包,可以使得背包中的总价值最大。
对于0-1背包问题,贪心算法通常不能得到最优解。
然而,在分数背包问题中,贪心算法通常可以得到近似的最优解。
4-贪心法
应用实例
活动安排问题—算法设计与分析
template<class Type> void GreedySelector(int n, Type s[], Type f[], bool A[]) { A[1] = true; int j = 1; for (int i=2;i<=n;i++) { if (s[i]>=f[j]) { A[i]=true; j=i; } else A[i]=false; } }
贪心法的正确性问题
针对具体问题不同,贪心策略的选择可能有多种 ,如何选择合适的贪心策略并证明该策略的正确 性是贪心算法设计中的一个关键问题。 一般可以通过对算法步数的归纳或通过对问题规 模的归纳来证明贪心法的正确性。
应用实例
活动安排问题
有n个活动申请使用同一个礼堂,每项活动有一个开始时间和一 个截止时间,如果任何两个活动不能同时举行,问如何选择这 些活动,从而使得被安排的活动数量达到最多? 设S={1, 2, …, n}为活动的集合,si和fi分别为活动i的开始和截止 时间,i=1, 2, …, n。定义 活动i与j相容:si ≥ fj或sj ≥fi, i≠j 求S最大的两两相容的活动子集。 蛮力法 动态规划方法
若硬币的面值改为一角一分、五分和一分,要找给顾客的 是一角五分,情况如何?
贪心算法的基本思想
顾名思义,贪心算法总是作出在当前看来最好的 选择。也就是说贪心算法并不从整体最优考虑, 它所作出的选择只是在某种意义上的局部最优选 择。 贪心算法不能对所有问题都得到整体最优解,但 对许多问题它能产生整体最优解。 在一些情况下,即使贪心算法不能得到整体最优 解,其最终结果却是最优解的很好近似。
4—贪心法 Greedy Approach
贪心算法的概念和适用条件
贪心算法的概念和适用条件什么是贪心算法?贪心算法(Greedy Algorithm)是一种以局部最优解为导向的算法思想,通过每一步选择当前状态下的最佳操作来达到整体最优解的目标。
贪心算法的核心思想是每次都做出当前看来最优的选择,以期望能够达到整体的最优解。
贪心算法通常用于一些问题中,即每一步的选择只依赖于当前状态,而不考虑将来可能出现的情况。
贪心算法的适用条件:1. 贪心选择性质:贪心算法每一步都选择一个当前的最优解,此处的“最优”指的是局部最优。
这种最优选择可以确保问题能够被拆解,并且进行下一步求解。
2. 最优子结构性质:当问题的整体最优解能够通过局部最优解得到时,可以采用贪心算法求解。
这种情况下,问题的最优解可以由子问题的最优解推导出来。
3. 无后效性:贪心算法选择某一步操作时,只考虑当前状态,不会改变以前的操作,并且不关心未来的操作。
这种无后效性使得贪心算法在实际应用中操作简单、效率高。
贪心算法的基本步骤:1. 确定问题的局部最优解:贪心算法的核心是每一步都选择在当前情况下的最优解。
因此,需要确定问题如何拆解以及如何进行局部最优选择。
2. 定义问题的子问题:根据问题的最优子结构性质,将问题拆解为较小规模的子问题。
子问题应该是原问题的一个更小、更简单的实例。
3. 定义贪心选择策略:根据问题的特性,确定当前步骤下的最优选择策略。
这个选择应该是局部最优的,可以在不考虑子问题和整体未来状态的情况下得出。
4. 重复执行步骤2和3,直至求解出全局最优解。
贪心算法的优缺点:贪心算法具有简单易懂、快速高效的特点,适用于许多实际问题。
它可以避免穷举所有可能性,节省了计算时间。
此外,贪心算法常常能够找到近似最优解,尽管不一定能够保证全局最优解。
在实际问题中,近似最优解也往往可以满足实际需求。
然而,贪心算法并非适用于所有问题。
由于贪心算法只考虑当前状态的最优选择,而不考虑未来的影响,因此可能会导致局部最优解与全局最优解不一致。
贪心法
贪心法贪心法(Greedy Approach)又称贪婪法, 在对问题求解时,总是做出在当前看来是最好的选择,或者说是:总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
当然,希望贪心算法得到的最终结果也是整体最优的。
虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。
如单源最短路经问题,最小生成树问题等。
在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
贪心法的设计思想当一个问题具有以下的性质时可以用贪心算法求解:每一步的局部最优解,同事也说整个问题的最优解。
如果一个问题可以用贪心算法解决,那么贪心通常是解决这个问题的最好的方法。
贪婪算法一般比其他方法例如动态规划更有效。
但是贪婪算法不能总是被应用。
例如,部分背包问题可以使用贪心解决,但是不能解决0-1背包问题。
贪婪算法有时也用用来得到一个近似优化问题。
例如,旅行商问题是一个NP难问题。
贪婪选择这个问题是选择最近的并且从当前城市每一步。
这个解决方案并不总是产生最好的最优解,但可以用来得到一个近似最优解。
让我们考虑一下任务选择的贪婪算法的问题, 作为我们的第一个例子。
问题:给出n个任务和每个任务的开始和结束时间。
找出可以完成的任务的最大数量,在同一时刻只能做一个任务。
例子:下面的6个任务:start[] = {1, 3, 0, 5, 8, 5};finish[] = {2, 4, 6, 7, 9, 9};最多可完成的任务是:{0, 1, 3, 4}贪婪的选择是总是选择下一个任务的完成时间至少在剩下的任务和开始时间大于或等于以前选择任务的完成时间。
我们可以根据他们的任务完成时间,以便我们总是认为下一个任务是最小完成时间的任务。
1)按照完成时间对任务排序2)选择第一个任务排序数组元素和打印。
3) 继续以下剩余的任务排序数组。
……a)如果这一任务的开始时间大于先前选择任务的完成时间然后选择这个任务和打印。
算法设计与分析第04章 贪心算法PPT课件
4.1 活动安排问题
若被检查的活动i的开始时间Si小于最近选择的活动j 的结束时间fi,则不选择活动i,否则选择活动i加入集 合A中。
贪心算法并不总能求得问题的整体最优解。但对 于活动安排问题,贪心算法greedySelector却总能求 得的整体最优解,即它最终所确定的相容活动集合A的 规模最大。这个结论可以用数学归纳法证明。
•}
6
4.1 活动安排问题
由于输入的活动以其完成时间的非减序排列,所 以算法greedySelector每次总是选择具有最早完成 时间的相容活动加入集合A中。直观上,按这种方法 选择相容活动为未安排活动留下尽可能多的时间。也 就是说,该算法的贪心选择的意义是使剩余的可安排 时间段极大化,以便安排尽可能多的相容活动。
算法greedySelector的效率极高。当输入的活 动已按结束时间的非减序排列,算法只需O(n)的时间 安排n个活动,使最多的活动能相容地使用公共资源。 如果所给出的活动未按非减序排列,可以用O(nlogn) 的时间重排。
7
4.1 活动安排问题
例:设待安排的11个活动的开始时间和结束时间按结 束时间的非减序排列如下:
13
4.2 贪心算法的基本要素
3.贪心算法与动态规划算法的差异
贪心算法和动态规划算法都要求问题具有最优子结构 性质,这是2类算法的一个共同点。但是,对于具有最 优子结构的问题应该选用贪心算法还是动态规划算法 求解?是否能用动态规划算法求解的问题也能用贪心算 法求解?下面研究2个经典的组合优化问题,并以此说 明贪心算法与动态规划算法的主要差别。
11
4.2 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以通 过一系列局部最优的选择,即贪心选择来达到。这是 贪心算法可行的第一个基本要素,也是贪心算法与动 态规划算法的主要区别。
第三章 贪心算法
2021/2/22
5
如果问题改成:砝码的种类分别为11克、5克和1克, 待称的物体是15克。用贪婪算法应先选一个11克的,然 后选四个1克的,共用五个砝码。这不是最优结果,只 要用三个5克的砝码就够了。
贪婪算法虽不能保证得到最优结果,但对于一些除
了“穷举”方法外没有有效算法的问题,用贪婪算法往
往能很快地得出较好的结果,如果此较好结果与最优结 果相差不是很多的话,此方法还是很实用的。
2021/2/22
9
当n不太大时,适当的取k值,此改进方法常常可以得到 最优解,但不能因此就说一般背包问题有多项式算法。 当n增大时,k不能随着n不断的加大,如k随n增大而同 时加大,其复杂性就是指数型而不是多项式型的了,而 如k取值较小,又不能保证得出最优解。
算法分析与设计实验三贪心算法
实验三贪心算法实验目的1. 掌握贪心法的基本思想方法;2. 了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3. 掌握贪心算法复杂性分析方法分析问题复杂性。
预习与实验要求1. 预习实验指导书及教材的有关内容,掌握贪心法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。
实验设备与器材硬件:PC机软件:C++或Java等编程环境实验原理有一类问题是要从所有的允许解中求出最优解,其策略之一是“贪心法”,即逐次实施“贪心选择”:在每个选择步骤上做出的选择都是当前状态下最优的。
贪心选择依赖于在此之前所做出的选择,但不依赖于后续步骤所需要的选择,即不依赖于后续待求解子问题。
显然,这种选择方法是局部最优的,但不是从问题求解的整体考虑进行选择,因此不能保证最后所得一定是最优解。
贪心法是求解问题的一种有效方法,所得到的结果如果不是最优的,通常也是近似最优的。
实验内容以下几个问题选做一项:1. 用贪心法实现带有期限作业排序的快速算法应用贪心设计策略来解决操作系统中单机、无资源约束且每个作业可在等量时间内完成的作业调度问题。
假定只能在一台机器上处理N个作业,每个作业均可在单位时间内完成;又假定每个作业i都有一个截止期限di>0(它是整数),当且仅当作业i在它的期限截止以前被完成时,则获得pi的效益。
这个问题的一个可行解是这N个作业的一个子集合J,J中的每个作业都能在各自的截止期限之前完成。
可行解的效益值是J中这些作业的效益之和,即Σp。
具有最大效益值的可行解就是最优解。
2. 实现K元归并树贪心算法两个分别包含n个和m个记录的已分类文件可以在O(n+m)时间内归并在一起而得到一个分类文件。
当要把两个以上的已分类文件归并在一起时,可以通过成对地重复归并已分类的文件来完成。
例如:假定X1,X2,X3,X4是要归并的文件,则可以首先把X1和X2归并成文件Y1,然后将Y1和X3归并成Y2,最后将Y2和X4归并,从而得到想要的分类文件;也可以先把X1和X2归并成Y1,然后将X3和X4归并成Y2,最后归并Y1和Y2而得到想要的分类文件。
greedysoup策略
greedysoup策略在计算机科学中,贪心算法(greedy algorithm)是一种通过每一步都选择当前最优解的策略来求解问题的方法。
与动态规划算法相比,贪心算法通常更加简单高效,但也存在一些问题不能通过贪心算法来解决。
贪心算法的基本思想是,每一步都选择当前最优解,不考虑对后续步骤的影响。
这种局部最优解的选择方式可以保证整体的最优解,从而达到求解问题的目的。
贪心算法通常适用于满足“最优子结构”和“贪心选择性质”的问题。
最优子结构是指问题的最优解可以通过子问题的最优解来构造。
贪心选择性质是指每一步都选择当前最优解,并且这个选择不依赖于后续步骤的选择。
这两个性质是贪心算法能够成功求解问题的关键。
贪心算法的应用非常广泛,常见的问题包括最小生成树、单源最短路径、背包问题等。
下面将通过几个例子来说明贪心算法的应用。
1. 最小生成树问题最小生成树问题是指在一个带权无向图中找到一棵包含所有顶点的生成树,使得树的权值之和最小。
贪心算法可以通过每次选择权值最小的边来构建最小生成树。
2. 单源最短路径问题单源最短路径问题是指在一个带权有向图中,求解从一个顶点到其他所有顶点的最短路径。
贪心算法可以通过每次选择当前距离最短的顶点来更新其他顶点的距离。
3. 背包问题背包问题是指给定一个固定大小的背包和一组物品,每个物品有自己的价值和重量,在背包中放入物品使得总价值最大。
贪心算法可以通过每次选择单位价值最高的物品来求解。
虽然贪心算法具有简单高效的特点,但并不是所有问题都适合使用贪心算法来求解。
贪心算法的局限性在于,它无法回退,一旦做出选择就无法撤销。
因此,在某些情况下,贪心算法求得的结果可能并不是全局最优解。
贪心算法是一种常用的求解问题的方法,通过每一步都选择当前最优解的策略,可以高效地求解一些问题。
然而,贪心算法并不适用于所有问题,需要根据具体情况进行选择。
在实际应用中,我们可以结合其他算法来进一步优化贪心算法的效果,以满足实际需求。
(算法分析与设计)2.贪心算法
n
wixi
vixi
28.2
31
31.5
...
i1
[算法思路]1).将各物体按单位价值由高到低排序.
2).取价值最高者放入背包.
3).计算背包剩余空间.
4).在剩余物体中取价值最高者放入背包.
若背包剩余容量=0或物体全部装入背包为止
算法设计与分析 > 贪心算法
背包问题的贪心算法
print tour, cost }
*该算法不能求得最优解. 算法的最坏时间复杂性为O(n2)
该问题为NP难问题.
算法设计与分析 > 贪心算法
4.7 多机调度问题
问题:设有n个独立的作业{1, 2, …, n}, 由m台相同的机器进行加工 处理. 作业i所需时间为t i. 约定:任何作业可以在任何一台机器上 加工处理, 但未完工前不允许中断处理,任何作业不能拆分成更小 的子作业。要求给出一种作业调度方案,使所给的n 个作业在尽 可能短的时间内 由m台机器加工处理完成。 该问题为NP完全问题.
A complete tree is filled from the left: • all the leaves are on • the same level or • two adjacent ones and • all nodes at the lowest level are as far to the left as possible.
最大相容活动子集(1, 4, 8, 11), 也可表示为等长n元数组:(1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1)
算法设计与分析 > 贪心算法
活动安排问题贪心算法
template< class Type > void GreedySelector(int n, Type s[ ], Type f[ ], bool A[] ) { A[ 1 ] = true;
贪心算法总结
贪心算法总结什么是贪心算法?贪心算法(Greedy Algorithm)是一种用于求解优化问题的常见算法,其核心思想是在每一步都选择当前最优解,希望最终能够得到全局最优解。
贪心算法在每一步仅考虑局部最优,而不关心全局最优,因此它的计算速度较快。
然而,由于贪心算法没有考虑全局,在某些情况下可能无法得到最优解。
贪心算法并不适用于所有的问题,只适用于一些特殊的问题,例如背包问题、最小生成树问题等。
在实际应用中,需要根据具体问题的特点来判断是否可以使用贪心算法来解决。
贪心算法的基本思路贪心算法的基本思路可以概括为以下几步:1.确定最优解的性质:首先要确定在每一步选择中,能够得到局部最优解。
2.构造贪心选择:根据最优解的性质,每一步都做出一个贪心选择,选择能够获得当前最大或最小收益的方案。
3.确定限制条件:确定问题的限制条件,包括物品的容量、时间限制等。
4.根据限制条件,进行剪枝策略:如果某种选择在限制条件下无法满足要求,则需要进行剪枝,排除该选择。
5.循环执行贪心选择,直到问题得到解决。
贪心算法的优缺点贪心算法具有以下优点:•计算速度快:贪心算法在每一步只考虑局部最优解,不需要对全局进行搜索,因此计算速度较快。
•算法思路简单:贪心算法的思路相对简单,易于理解和实现。
•适用范围广:贪心算法适用于一些特殊问题,如最短路径、最小生成树等。
然而,贪心算法也存在一些缺点:•可能无法得到最优解:由于贪心算法仅考虑局部最优解,而不关心全局最优解,因此可能无法得到最优解。
•需要满足贪心选择性质:贪心算法要求问题具有贪心选择性质,即每一步都能够得到局部最优解。
如果问题不具备这个性质,贪心算法可能不适用。
贪心算法的应用场景贪心算法适用于一些特殊的问题,以下是一些常见的应用场景:1. 最短路径问题最短路径问题是指在一个加权有向图中,找出从一个顶点到另一个顶点的最短路径。
贪心算法可以用来解决一些简单的最短路径问题,如Dijkstra算法。
贪心算法实现背包问题算法设计与分析实验报告
算法设计与分析实验报告实验名称贪心算法实现背包问题评分实验日期年月日指导教师姓名专业班级学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。
可行解一般来说是不唯一的。
那些使目标函数取极值(极大或极小)的可行解,称为最优解。
2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。
在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。
决策一旦作出,就不可再更改。
作出贪心决策的依据称为贪心准则(greedy criterion)。
3.一般方法1)根据题意,选取一种量度标准。
2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容1. 编程实现背包问题贪心算法。
通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。
2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。
3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。
三.程序算法1.背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。
组合优化问题的近似算法设计与分析
组合优化问题的近似算法设计与分析组合优化问题是许多实际问题的数学模型,例如旅行商问题、背包问题、调度问题等。
这些问题的特点是有多种选择方案,但是每个方案都有一定的成本或收益,我们的目的就是找到最优的方案来最小化成本或最大化收益。
然而,这些问题通常是NP难问题,无法在合理的时间内找到最优解。
因此,我们需要设计近似算法来找到接近最优的近似解。
一般来说,近似算法可以分为两类:近似比较好但运行时间很长的精细算法,以及运行时间较短但近似比较差的启发式算法。
在实际应用中,我们需要根据实际问题需求来选择合适的算法。
下面我们来介绍几种常见的近似算法。
1. 贪心算法贪心算法是一种启发式算法,它通常用于优化问题中。
贪心算法的基本思路是,当前时刻做出最优的选择,然后希望这个选择可以导致全局最优的结果。
在贪心算法中,每次选择都是当前状态下的最优选择。
贪心算法的优点是简单易懂,易于实现。
然而,贪心算法并不是所有问题都适用。
对于某些问题而言,贪心算法得到的结果可能会离最优解很远。
2. 动态规划算法动态规划算法是一种精细算法,它常用于解决最优化问题。
动态规划算法的基本思路是将问题分解成若干个子问题,通过求解子问题的最优解来推导出原问题的最优解。
动态规划算法的优点是可以获得最优解,并且可以处理随时间推移问题的最优解。
但是,由于它的时间复杂度往往较高,对于一些问题而言可能并不适用。
3. 近似随机化算法近似随机化算法是一种既简单又高效的处理近似优化问题的方法。
近似随机化算法将精细算法和启发式算法的优点结合起来,通过引入一定程度的随机性来获得比较优的近似解。
近似随机化算法的优点是可以获得比较优的近似解,并且在实际应用中有着较为广泛的应用。
但是,它的缺点是对于问题的复杂度有一定的要求,要求问题的复杂度不能太高。
4. 支持向量机算法支持向量机算法是一种基于凸优化的分类算法。
它通过将高维空间中的数据投影到低维空间来实现分类。
支持向量机算法的优点是在处理高维数据时具有较高的精度。
算法设计与分析-第8章贪心算法
贪心算法
一. 贪心法的基本原理
2. 贪心法的基本思想
贪心算法的几个经典例子: Dijkstra算法:求有向图的单源最短路径(8.2) Kruskal算法:求最小生成树 (8.3) Prim算法:求最小生成树 (8.4)
Huffman树、Huffman编码的算法 (8.5)
贪心算法
一. 贪心法的基本原理
贪心算法
二. 贪心算法设计示例
3. Huffman树 Huffman编码
例:字符集{A, B, C, D, E, F, G, H} , 频数:5, 29, 7, 8, 14, 23, 3, 11.
贪心算法
二. 贪心算法设计示例
4. 最小生成树(Prim算法)
有关概念: 生成树:设G=(V, E)为连通图,G的生成树是G的包含 其所有顶点的极小连通子图(这里极小的含义是包含的边最 少) 。 一个连通图的生成树不一定唯一。 含n个顶点的连通图的生成树恰含n-1条边。 最小生成树:设G=(V, E)为连通网,G的最小代价的生 成树称为G的最小生成树。
贪心算法
一. 贪心法的基本原理
2. 贪心法和动态规划
贪心法:每一步的选择不依赖于其子问题的解, 选择是局部最优的,但不能保证最终得到最优 解。
动态规划:问题的解依赖于其子问题的解,选 择是全局最优的,可保证最终得到最优解。
贪心算法
二. 贪心算法设计示例
1. 分数背包问题
问题描述:设有一个容量为 C的背包, n个物品
贪心算法
二. 贪心算法设计示例
6. 多机调度问题 该问题的判定问题是一个NP完全问题,该问 题本身是一个NP难问题,目前还未找到有效的
算法,但用贪心算法可得到较好的近似最优解。
《计算机算法设计与分析》PPT第四章贪心算法资料
假设活动已按结束时间的单调非递减顺序排序 f0≤f1≤f2≤… ≤fn<fn+1
则,当i≥j时, Sij=φ。
假设存在一活动ak∈Sij,其中i≥j,则在已排的序列中 ai在aj后面。
因fi≤sk<fk≤sj<fj ,与在已排的序列中ai在aj后面的 假设相矛盾。
所以,设活动按结束时间的单调非递减顺序排序,子 问题空间被用来从sij中选择最大相容活动子集,其中 0≤i<j≤n+1,而且所有其它的sij是空的。
14
步骤2:递归地定义最优解的值 设c[i, j]为Sij中最大相容子集中的活动数。当 Sij=φ时,c[i, j] = 0。对于一个非空子集Sij, 如果ak在Sij的最大相容子集中被使用,则子问 题Sik和Skj的最大相容子集也被使用。从而:
c[i, j] = c[i, k] + c[k, j] + 1
活动安排问题:要在所给的活动集合中选出最大 的相容活动子集合。
10
用动态规划方法求解
步骤1:分析最优解的结构特征 构造子问题空间 Sij={ ak∈S: fi≤sk<fk≤sj} Sij是S中活动的子集,其中每个活动都在活动ai 结束之后开始,且在活动aj开始之前结束。 Sij包含了所有与ai和aj相容的活动,并且与不迟 于ai结束和不早于aj开始的活动相容。此外, 虚构活动a0和an+1,其中f0=0, Sn+1=∞。原 问题即为寻找S0,n+1中最大相容活动子集。
(5)约束函数constraint:检查解集合中加入一 个候选对象是否满足约束条件。例如,在找零钱 问题中,约束函数是每一步选择的货币和已付出 的货币相加不超过应找零钱。
7
贪心算法的一般框架
马丙鹏_计算机算法设计与分析_第四章_1
17
4.2 背包问题
1. 问题的描述
– 问题的形式描述 可行解: 满足上述约束条件的任一集合(x1,x2,…,xn) 都是 问题的一个可行解——可行解可能为多个。 (x1,x2,…,xn)称为问题的一个解向量。 最优解: 能够使目标函数取最大值的可行解是问题的最 优解——最优解也可能为多个。
20
20
4.2 背包问题
2. 贪心策略求解
– (1) 以目标函数作为度量标准 如:若ΔM=2,背包外还剩两件物品i,j,且有(pi= 4,wi=4) 和(pj=3,wj=2),则下一步应选择j而非i 放入背包:pi/2 = 2 < pj= 3 实例分析(例4.1) (p1,p2,p3) = (25,24,15), (w1,w2,w3) = (18,15,10) ∵ p1>p2> p3 ∴ 首先将物品1放入背包,此时x1=1,背包获得p1=25的效 益增量,同时背包容量减少w1=18个单位,剩余空间ΔM=2。 其次考虑物品2和3。就ΔM=2而言有,只能选择物品2或3 的一部分装入背包。
3. 贪心方法的一般策略
– 贪心方法
A(1) A(2) … A(n)
量度标准1
A1(1) … A1(n)
量度标准2
A2(1) … A2(n)
……
量度标准k
Ak(1) … Ak(n)
可行解1 次优解
可行解2 最优解
可行解k 次优解
12
12
4.1 一般方法
按照度量标准,从A中选择一个输 procedure GREEDY(A,n) 入,其值赋予x,并将之从A中删除 //A(1:n)包含n个输入// solution←Φ //将解向量solution初始化为空// for i←1 to n do 判断x是否可以包含在解向量中 x←SELECT(A) if FEASIBLE(solution, x) then solution←UNION(solution, x) endif repeat return (solution) 将x和当前的解向量合并成新 end GREEDY 的解向量,并修改目标函数
算法设计与分析论文(贪心算法)
贪心选择是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪 心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划 算法的主要区别。
贪心选择是采用从顶向下、以迭代的方法做出相继选择,每做一次贪心选择 就将所求问题简化为一个规模更小的子问题。对于一个具体问题,要确定它是否 具有贪心选择的性质,我们必须证明每一步所作的贪心选择最终能得到问题的最 优解。通常可以首先证明问题的一个整体最优解,是从贪心选择开始的,而且作 了贪心选择后,原问题简化为一个规模更小的类似子问题。然后,用数学归纳法 证明,通过每一步贪心选择,最终可得到问题的一个整体最优解。
物品超出背包容量为止。伪代码如下:
public static void DepWePr(double[][] a, double c, int[] ans) { // depend on
// the // weight // and price double[] w = new double[a[0].length]; // the weight of goods System.arraycopy(a[0], 0, w, 0, w.length); // copy the array
贪心算法
——不在贪心中爆发,就在贪心中灭亡 徐晓龙 武汉理工大学计算机科学与技术学院软件 ZY1101 班
摘要
本文介绍贪心算法的基本意义以及算法的使用范围,并通过具体的案例来分 析贪心算法的具体应用,从而指出其特点和存在问题。 关键字:贪心算法,贪心策略,TSP、0/1 背包
引言
我们用了 13 周的时间学完了《算法设计与分析》这本书。这本书中涵盖了 大量的常见算法,包括蛮力法、分治法、动态规划法、贪心算法等等。我最有印 象的就是贪心算法。贪心算法是一种有合理的数据组织和清晰高效的算法,它简 单有效。下面我们来详细解读一下这个算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ex: This schedule uses only 3.
3 2 1
c b a
9 9:30 10 10:30 11
d
f g e h
1 1:30 2 2:30 3 3:30
j
i
11:30
12
12:30
4
4:30
Time
11
Interval Partitioning: Lower Bound on Optimal Solution
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom. Theorem. Greedy algorithm is optimal. Pf. Let d = number of classrooms that the greedy algorithm allocates. Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms. These d jobs each end after sj. Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than sj. Thus, we have d lectures overlapping at time sj + . Key observation all schedules use d classrooms. ▪
job ir+1 finishes before jr+1
Greedy:
i1
i2
ir
ir+1
OPT:
j1
j2
jr
ir+1
...
solution still feasible and optimal, but contradicts maximality of r.
8
4.1 Interval Partitioning
4
Interval Scheduling: Greedy Algorithms
Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.
[Earliest start time] Consider jobs in ascending order of sj. [Earliest finish time] Consider jobs in ascending order of fj. [Shortest interval] Consider jobs in ascending order of fj - sj. [Fewest conflicts] For each job j, count the number of conflicting jobs cj. Schedule in ascending order of cj.
Chapter 4
Greedy Algorithms
Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
1
4.1 Interval Scheduling
Interval Scheduling
Def. The depth of a set of open intervals is the maximum number that contain any given time. Key observation. Number of classrooms needed depth. Ex: Depth of schedule below = 3 schedule below is optimal.
a, b, c all contain 9:30
Q. Does there always exist a schedule equal to depth of intervals?
3 2 1
c b a
9 9:30 10 10:30 11
d
f g e h
1 1:30 2 2:30 3 3:30
j
i
11:30
job ir+1 finishes before jr+1
Greedy:
i1
i2
ir
ir+1
OPT:
j1
j2
jr
jr+1
why not replace job jr+1 with job ir+1?
...
7
Interval Scheduling: Analysis
Theorem. Greedy algorithm is optimal. Pf. (by contradiction) Assume gree39;s see what happens. Let i1, i2, ... ik denote set of jobs selected by greedy. Let j1, j2, ... jm denote set of jobs in the optimal solution with i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.
Implementation. O(n log n). For each classroom k, maintain the finish time of the last job added. Keep the classrooms in a priority queue.
13
Interval Partitioning: Greedy Analysis
a
b c d e
f
g h
0 1 2 3 4 5 6 7 8 9 10 11
Time
3
Interval Scheduling: Greedy Algorithms
Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.
Interval scheduling. Job j starts at sj and finishes at fj. Two jobs compatible if they don't overlap. Goal: find maximum subset of mutually compatible jobs.
Interval Partitioning
Interval partitioning. Lecture j starts at sj and finishes at fj. Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
Ex: This schedule uses 4 classrooms to schedule 10 lectures.
4
e c b a
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30
j g h f
2 2:30 3 3:30
3 2 1
d
i
4 4:30
Time
10
14
4.2 Scheduling to Minimize Lateness
Scheduling to Minimizing Lateness
Minimizing lateness problem. Single resource processes one job at a time. Job j requires tj units of processing time and is due at time dj. If j starts at time sj, it finishes at time fj = sj + tj. Lateness: j = max { 0, fj - dj }. Goal: schedule all jobs to minimize maximum lateness L = max j.
counterexample for earliest start time
counterexample for shortest interval
counterexample for fewest conflicts
5
Interval Scheduling: Greedy Algorithm
Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.
Interval Partitioning