2016苏教版必修3高中数学211《简单随机抽样》课时作业
人教版高中数学-必修3课时作业9 简单随机抽样
第8行:63016378591695556719981050717512867358074439523879
解析:因为从随机数表第8行第7列的数开始向右读取,所以第一个号785保留;第二个号916剔除,第三个号955剔除,第四个号567保留;第五个号199保留;第六个号810剔除,第七个号507保留;第八个号175保留.故最先检测的5袋牛奶的编号依次是785,567,199,507,175.
A. B.
C. D.N
解析:总体中带有标记的比例是 ,则抽取的m个个体中带有标记的个数估计为 .故选A.
答案:A
11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()
A. B.k+m-n
C. D.不能估计
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
A.23 B.09
C.02 D.16
解析:从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的编号依次为21,32,09,16,其中第4个为16,故选D.
C.253 D.007
解析:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四个数,第五个数应为328,故第五个数为328,故选B.
课时作业(九)简单随机抽样
A组 基础巩固
高中数学苏教版必修3 分层测评习题9 简单随机抽样含解析
学业分层测评(九)(建议用时:45分钟)[学业达标]一、填空题1.关于简单随机抽样的特点,有以下几种说法,其中正确的是________.(填序号)①要求总体的个数有限;②从总体中逐个抽取;③它是一种不放回抽样;④每个个体被抽到的机会不一样,与先后有关.【解析】由简单随机抽样的特点可知④不对,①②③对.【答案】①②③2.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用________进行抽样.【解析】由抽签法特点知宜采用抽签法.【答案】抽签法3.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③4.(2015·苏州高一检测)采用抽签法从含有3个个体的总体{a,b,c}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本,所有可能的样本为{a,b},{a,c},{b,c}.【答案】{a,b},{a,c},{b,c}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________. 【导学号:90200035】【解析】简单随机抽样中,每个个体被抽到的机会均等,都为1 10.【答案】1 10,1106.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是________.【解析】根据随机数表法的要求,只有编号时数字位数相同,才能达到随机等可能抽样.故②③正确.【答案】②③7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.【解析】由题意得,30N=25%,∴N=120.【答案】1208.一个总体的60个个体编号为00,01,…,59,现需从中抽取一个容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.95339522001874720018387958693281768026928280842539【解析】读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.【答案】01,47,20,28,17,02二、解答题9.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?【解】(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读(见课本随机数表);(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.10.某合资企业有150名职工,要从中随机地抽出20人去参观学习.请用抽签法和随机数表法进行抽取该样本,并写出过程.【解】(抽签法)先把150名职工编号:1,2,3,…,150,把编号写在小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个样本的号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130,12 5,033.[能力提升]1.为了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.(填序号)①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数表法抽样;⑥每个运动员被抽到的机会相等.【解析】①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.【答案】④⑤⑥2.从一群正在游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续做游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为________.【解析】设参加游戏的小孩有x人,则kx =nm,x=kmn.【答案】km n3.一个总体的个体数为60,编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60【解析】先选取18,向下98不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为18、05、07、35、59、26、39.【答案】18、05、07、35、59、26、394.某电视台举行文艺晚会,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解】第一步先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
江苏省启东中学苏教版高中数学高考必修三专题练习:概率统计 简单随机抽样
必修3概率统计常考题型简单随机抽样【知识梳理】1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.3.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.【常考题型】题型一、简单随机抽样的概念【例1】下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【类题通法】简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.【对点训练】下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.题型二、抽签法及其应用【例2】(1)下列抽样实验中,适合用抽签法的有()A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.[答案] B(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解]第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.【类题通法】1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.【对点训练】现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.题型三、随机数表法的应用【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.[答案]227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)【类题通法】利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.【对点训练】现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.【练习反馈】1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.2.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都=0.2.为20100答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。
苏教版高中数学必修三练习:2.1抽样方法(一)含答案
2.1抽样方法(一)【新知导读】1.某校期中考试后,为了剖析该校高一年级1000 名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题而言,下边说法正确的选项是( )A.1000 名学生是整体B.每名学生是个体C.每名学生的成绩是个体D.样本的容量是100 人2.某学校有2005 名学生,从中选用20 名参加学生代表大会,采纳简单随机抽样方法进行抽样,是抽签法仍是随机数表法?怎样详细实行?【典范点睛】例 1 .从 100 名学生中抽取 20 名学生进行抽样检查,写出抽取样本的过程.方法评论:当整体个数不多时,适合采纳抽签法.例 2 .某个车间工人已加工一种轴100 件,为了认识这类轴的直径,要从中抽取10 件在同一条件下丈量,怎样采纳简单随机抽样的方法抽取上述样本?方法评论:抽签法和随机数表法是常有的两种简单随机抽样法,详细问题应灵巧使用这两种方法.【课外链接】1.有媒体称:中国记者的均匀死亡年纪为45 岁,这是该媒体由上海市新闻从业人员健康状况抽样检查报告中得出的结论,该检查中统计了 5 年中上海市10 家主流新闻单位中新闻从业人员任职死亡(28 人)的均匀年纪.你对该媒体的这类说法有何见解?【随堂操练】1.对于简单的随机抽样,有以下说法:(1)它要求被抽样本的整体的个数有限,以便对此中各个个体被抽取的概率进行剖析;(2)它是从整体中逐一地进行抽取,以便在抽样实践中进行操作;(3)它是一种不放回抽样;(4)它是一种等概率抽样,不单每次从整体中抽取一个个体时,各个个体被抽取的概率相等,并且在整个抽样过程中,各个个体被抽取的概率也相等,进而保证了这类方法抽样的公正性.此中正确的命题有()A. (1)(2)(3)B. (1)(2)(4)C. (1)(3)(4)D. (1)(2)(3)(4)2.某学校有 30 个班,每班 40 个人 , 每班选派 5 人参加校运动会,在这个问题中,样本容量是 ( ) A. 30B.40 C .150 D .2003. 对总数为 N 的一批部件,抽取一个容量为30 的样本,若每个部件被抽取的概率均为1,则 N 4的值为()A. 150B.200C. 120D.1004.为认识某班 50 名同学的会考及格率,从中抽取10 名进行考察剖析,则在此次考察中,考察的整体内个体总数为__________ ,样本容量为 _________.5.从个体数为 N 的整体中抽取一个容量为k 的样本,采纳简单随机抽样,当整体个数不多时,一般用 __________进行抽样.6.采纳简单随机抽样,从含有 6 个个体的整体中抽取一个容量为 2 的样本,每个个体被抽到的可能性为 ____________ .7.以下抽取样本的方式能否属于简单随机抽样?试说明道理.(1)从无穷多个个体中抽取 100 个个体作为样本;(2)盒子里共有 80 个部件,从中选出 5 个部件进行质量查验.在抽样操作时,从中随意取出一个部件进行质量查验后,再把它放回盒子里.8.采纳简单随机抽样从含有 5 个个体的整体a, b, c, d , e 中抽取一个容量为 3 的样本,样本共有多少个?写出所有样本,每个个体出现多少次?9.某学校高一年级某班共有50 名学生,为了认识这些学生的身高状况,试用抽签法从中抽取一个容量为15 的样本,写出抽样过程.10.从个体总数N= 500 的整体中,抽取一个容量为n20 的样本,试用随机数表法进行抽选,要取三位数,写出你抽得的样本,并写出抽选过程.( 起点在第几行,第几列,详细方法)2.1 抽样方法 ( 一 )【新知导读】1. B2.解:由于学生数较大,制作号签比较麻烦,因此决定采纳随机数表法.实行步骤:(1) 对 2005 名学生进行编号,0000~2004;(2) 在随机数表中随机地确立一个数作为开始,如21 行 45 列的数字9 开始的 4 位: 9706; 挨次向下读数, 5595,4904,...,如到最后一行,转到左侧的四位数字号码,并向上读,凡不在0000~2004范围内的,则跳过,碰到已读过的数也跳过,最后获得的号码为0011,0570, 1449, 1072, 1338, 0076, 1281, 1886,1349 , 0864, 0842, 0161,1839, 0895,1326,1454, 0911, 1642, 0598, 1855.编号为这些号码的学生构成容量为20 的样本.【典范点睛】例 1. (1) 先将 100 名学生进行编号,从 1 编到 100;(2) 把号码写在形状、大小均同样的签上;(3) 将号签放在某个箱子中进行搅拌,而后挨次从箱子中取出20 个号签,按这20 号签上的号码选出样本,即得学生.例 2.方法一:(抽签法)将100 个轴进行编号1,2,...,100,并做好大小、形状同样的号签,分别写上这100 个数,将这些号签放在一同,并进行搅拌,接着连续抽取10 个号签,而后丈量这 10 个号签对应的轴.方法二:(随机数表法)将100 个轴进行编号00,01,...,99,据课本上的随机数表,如从第13 行第一个数开始选用10 个数(碰到重复的数跳过):23,42,40,64,74,82,97,77,81,07.【课外链接】解:媒体的这类说法是片面的.由于任职死亡者的均匀死亡年纪其实不是所有任职者的均匀死亡年纪,这里统计的是任职死亡者的状况,其实不是所有任职者抽样此后察看他们的死亡年纪获得的数据,二者不可以混作一谈.并且还没有对退休记者的死亡年纪进行统计,同时,从上海一地的抽样检查获得的结论,一般状况下其实不可以推行到全国、全球.【随堂操练】11.D 2 .C 3 .C 4.50,105.抽签法6.37.解: (1) 不是,由于样本容量是无穷的,而不是有限的.(2) 不是,由于它是放回抽样.8.解:样本共有10 个,它们是abc, abd,abe, acd,ace,ade,bcd,bce,bde,cde .每个个体出现 6 次.9.解:(1) 先将 50 名学生进行编号,从1编到50;(2)把号码写在形状、大小均同样的签上;(3)将号签放在某个箱子中进行搅拌,而后挨次从箱子中取出15 个号签,按这15 个号签上的号码选出样本,即得学生.10.第一步:给整体中的每个个体编上号码:001,002,003,...500.第二步:从随机数表的第13 行第 3 列的 4 开始向右连续取数字,以 3 个数为一组,碰到右侧线时向下错一行向左持续取.在取录时,碰到大于500 或重复的数时,将它舍弃,再持续向下取.所抽取的样本号码以下:424 064 297 074 140 407 385 075 354 024 352 022 313500 162 290 263 083 042 340.。
苏教版高中数学必修三第1课时6.1.1简单随机抽样(已对).docx
& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷第1课时6.1.1简单随机抽样分层训练1.某校有40个班,每班50人,每班选派3人参加活动,样本容量是 ( ) (A)40 (B)50 (C)120 (D)1502.在简单随机抽样中,某一个个体被抽到的可能性 ( ) (A) 与第几次抽样有关,最后一次抽到的可能性最大(B) 与第几次抽样有关,第一次抽到的可能性最小(C) 与第几次抽样无关,每次抽到的可能性相等 (D) 与第几次抽样无关,每次都是等可能的概率,但各次抽取的可能性不一样3.为了了解某地1200名国家公务员的英语水平状况,从中抽取100名公务员的考试成绩进行统计分析。
在这个问题中,1200名国家公务员的成绩的全体是 ( ) (A)总体 (B)个体 (C)一个样本 (D)样本的容量4.简单随机抽样的常用方法有______和_______.当随机地选定随机数表读数,选定开始读数的数后,读数的方法可以是___________ 5. 采用简单随机抽样,从含有6个个体的总体中抽取一个容量为3的样本,每个个体被抽到的可能性为____________.6.为了了解某班同学会考的及格率,要从该班60个同学中抽取30个进行考查分析,则在这次考查中的总体数为__________,样本容量为________7.用简单随机抽样从个体数为N 的总体中抽取一个容量为n 的样本,那么每个个体被抽到的可能性相等吗?是多少8.从某班48名学生中随机选取10名学生调查他们的上网情况,试用随机数表法抽取样本(随机数表参见教科书41).思考•运用9.下列抽取样本的方式是否属于简单随机抽样?说明道理。
(1)从无限多个个体中抽取100个个体作样本; (2)盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里。
拓展•延伸10.上海某中学从40名学生中选1人作为上海男篮拉拉队成员,采用下面两种选法:选法一:将这40名学生从1~40进行编号,相应的制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽1个号签,与这个号签编号一致的学生幸运入选; 选法二:将39个白球与一个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员。
学案导学高中数学(苏教版,必修三)课时作业与单元检测
第2章 统 计2.1.1 简单随机抽样课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样的定义一般地,从个体数为N 的总体中________________取出n 个个体作为样本(n <N ),如果每个个体____________被取到,那么这样的抽样方法称为__________________.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体____________的情况下是行之有效的.一、填空题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是________.①200个表示发芽天数的数值;②200个球根;③无数个球根发芽天数的数值集合;④无法确定.2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是____________.3.抽签法中确保样本代表性的关键是________.4.下列抽样实验中,用抽签法方便的有________.①从某厂生产的3 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;③从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;④从某厂生产的3 000件产品中抽取10件进行质量检验.5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是________.①1 000名运动员是总体;②每个运动员是个体;③抽取的100名运动员是样本;④样本容量是100.6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是________.7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)二、解答题10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?能力提升12.在简单随机抽样中,某一个个体被抽到的可能性________.①与第几次抽样有关,第一次抽到的可能性大一些;②与第几次抽样无关,每次抽到的可能性相等;③与第几次抽样有关,最后一次抽到的可能性大些;④与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同.13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性如果四个特征有一个不满足就不是简单随机抽样.2.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.3.在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.2.1抽样方法2.1.1简单随机抽样知识梳理1.逐个不放回地都有相同的机会简单随机抽样2.抽签法随机数表法 3.个体数不多作业设计1.①2.120解析由于样本容量即样本的个数,抽取的样本的个数为40×3=120.3.搅拌均匀解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以要求搅拌均匀.4.②解析①总体容量较大,样本容量也较大不适宜用抽签法;②总体容量较小,样本容量也较小可用抽签法;③中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;④总体容量较大,不适宜用抽签法.5.④解析此问题研究的是运动员的年龄情况,不是运动员,故①、②、③错.6.1 10,1107.简单随机抽样解析由简单随机抽样的特点可知,该抽样方法是简单随机抽样.8.抽签法9.①③②10.解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.11.解(1)将元件的编号调整为010,011,012,…,099,100,…600;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.12.②解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.13.解方法一抽签法.(1)将50个轴进行编号01,02, (50)(2)把编号写在大小、形状相同的纸片上作为号签;(3)把纸片揉成团,放在箱子里,并搅拌均匀;(4)依次不放回抽取5个号签,并记下编号;(5)把号签对应的轴组成样本.方法二随机数表法(1)将50个轴进行编号为00,01, (49)(2)在随机数表中任意选定一个数并按向右方向读取;(3)每次读两位,并记下在00~49之间的5个数,不能重复;(4)把与读数相对应的编号相同的5个轴取出组成样本.。
高中数学课时跟踪检测简单随机抽样苏教版
课时跟踪检测(九)简单随机抽样层级一 学业水平达标1.采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,第三次被抽到的机会是________.解析:采用简单随机抽样时,每个个体被抽到的机会相等,与第几次抽取无关.答案:162.下列抽样中是简单随机抽样的是________.①从100个号签中一次取出5个作为样本②某连队从200名党员官兵中,挑选出50名最优秀的官兵参加救灾工作③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出6个号签④从某班56名(30名男生,26名女生)学生中随机抽取2名男生,2名女生参加乒乓球混双比赛解析:①不是逐个抽取,所以不是简单随机抽样;②④不满足等可能抽样,所以不是简单随机抽样;③是简单随机抽样.答案:③3.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.解析:可能性为5100=120. 答案:1204.对于简单随机抽样的下列说法:①它要求被抽取的总体个数有限;②它是从总体中逐个地抽取;③它是一种不放回抽样. 其中正确的序号是________.解析:由简单随机抽样的特点知,①②③均正确.答案:①②③5.从个体总数N =500的总体中抽取一个容量为n =10的样本,使用随机数表法进行抽取,要取三位数.写出你抽得的样本,并写出抽选过程(起点在第几行第几列,具体方法). 解:第一步:将总体中的个体编号(三位数)为000,001,002, (499)第二步:在随机数表中随机地确定一个数作为开始.如第6行第13列的数5开始; 第三步:从数5开始向右读下去,每次读三位,凡不在000~499中的数跳过去,遇到已经读过的数也跳过去,便可依次得到354,378,384,263,491,442,175,331,455,068. 这10个号码就是所需抽取的10个样本个体的号码.层级二 应试能力达标1.为了了解某校高一学生的期末考试情况,要从该年级700名学生中抽取120名学生进行数据分析,则在这次考查中,考查总体数为________,样本容量是________.答案:700 1202.在简单随机抽样中,某一个体被抽到的可能性与顺序________(填“无关”或“有关”).解析:简单随机抽样中,每个个体被抽到的可能性相同,与顺序无关.答案:无关3.在用抽签法抽样时,有下列五个步骤:(1)从箱中每次抽出1个号签,并记录其编号,连续抽取k 次;(2)将总体中的所有个体编号;(3)制作号签;(4)将总体中与抽到的签的编号相一致的个体取出构成样本;(5)将号签放在同一箱中,并搅拌均匀.以上步骤的次序是____________________________________________________. 答案:(2)(3)(5)(1)(4)4.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中逐一抽取了50件,这种抽样法可称为______________.解析:该题总体中个数为1 000,样本容量为50,总体的个数较少,所抽样本的个数也较少,可用简单随机抽样方法抽取.答案:简单随机抽样5.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=110. 答案:1106.下列抽样实验中,适合用抽签法的有________.①从某厂生产3 000件产品中抽取600件进行质量检验②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验③从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验④从某厂生产的3 000件产品中抽取10件进行质量检验解析:①④中总体容量较大,不适合.③中甲、乙两厂生产的产品质量可能差异明显. 答案:②7.某工厂共有n 名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n =________. 解析:∵简单随机抽样为机会均等的抽样,∴20n =15,即n =100. 答案:1008.(江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为______.78166572 0802 6314 0702 4369 9728 0198 32049234 4935 8200 3623 4869 6938 7481解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的数字为08,02,14,07,01,…,故选出的第5个个体的编号为01.答案:019.某班有50名同学,要从中随机抽取6人参加一项活动,请用抽签法进行抽选,并写出过程.解:①将50名学生编号01,02,03, (50)②按编号制签;③将签放入同一个箱里,搅均;④每次从中抽取一个签,连续抽取6次;⑤取出与签号相应的学生,组成样本.10.说出下列抽取样本时运用了哪种抽样方法?并说明原因.设一个总体中的个体数N =345,要抽取一个容量为n =15的样本,现采用如下方法:从随机数表中任意选取三列构成三位数字号码,从中依次取出不同的三位数字号码,当数在001~345之间时,该号码抽入样本;当数在401~745之间时,则该数减去400的号码抽入样本中,其余的000,346~400,746~999的号码都不要;当某号码已抽入样本中,而再次遇到该号码被抽入样本时,只算一次.解:运用了简单随机抽样中的随机数表法.简单随机抽样的要求是给个体编号,逐个不放回抽取,操作的个体数量不宜太多,每个个体被抽取的机会均等,只有符合这些特点才是简单随机抽样.本题虽然取数时,设计了特别的规则,但是从随机数表中任意取数符合简单随机抽样的每个特点,所以本题运用了简单随机抽样法中的随机数表法.。
2016苏教版必修3高中数学212《系统抽样》课时作业
2、1、2系统抽样课时目标1、理解系统抽样的概念、特点、2、掌握系统抽样的方法与操作步骤,会用系统抽样法进行抽样、1、系统抽样的概念系统抽样:将总体________分成几个部分,然后按照一泄的规则,从每个部分中抽取________ 个体作为样本,这样的抽样方法称为系统抽样、2、一般地,假设要从容量为”的总体中抽取容量为"的样本,我们可以按下列步骤进行系统抽样:⑴采用随机的方式将总体中的斗个个体__________ ;(2 )将编号按间隔&分段,当错误!就是整数时,取£=错误!:半错误!不就是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数川能被n整除,这时取Q错误!,并将剩下的总体重新编号;(3)在第一段中用___________ 抽样确赵起始的个体编号2;(4)按照一定的规则抽取样本,通常将编号为厶2+A, 2+2A,-U+(n-l)A的个体抽11)3、当总体中个体个数较少时,常采用____________ 抽样;当总体中个体个数较多时,常釆用________ 抽样、一、填空题1、下列抽样问题中最适合用系统抽样法抽样的就是_________ 、①从全班48名学生中随机抽取8人参加一项活动;②一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家、为了掌握各商店的营业情况,要从中抽取一个容量为21的样本:③从参加模拟考试的1 200名髙中生中随机抽取100人分析试题作答情况:④从参加模拟考试的1 200名髙中生中随机抽取10人了解某些情况、2、为了了解参加一次知识竞赛的1 252名学生的成绩,决左采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目就是_________ 、3、某会议室有50排座位,每排有30个座位、一次报告会坐满了听众、会后留下座号为15的所有听众50人进行座谈、这就是运用了_________ 抽样、4、要从已经编号(1〜50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确泄所选取的5枚导弹的编号可能就是________ 、①5, 10, 15, 20, 25;②3, 13,23,33,43;③ 1, 2, 3, 4,5:④2, 4,8, 16,32、5、一个年级有12个班,每个班有50名同学,随机编号1, 2,…,50,为了了解她们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法就是6、总体容咼为524,若采用系统抽样,当抽样的间距为下列_______ 时,不需要剔除个体、(填序号)①3②4③5④67、某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4 的样本,已知3号.29号、42号同学在样本中,那么样本中还有一个同学的学号为8、采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________ ,抽样间隔为 ________ 、9、采用系统抽样从含有8 000个个体的总体(编号为0000, 0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________ ,已知最后一个入样编号就是7894,则开头5个入样编号漑是 ____________________ 、二、解答题10、某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体冇项目的测验、请您制左一个简便易行的抽样方案(写出实施步骤)、11、某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好, 并写出过程、能力提升12、某种体冇彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000^999999, 则用简单随机抽样需要随机抽取____________ 个号码,若要在某晚报上公布获奖号码,约要________ 版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格人而用系统抽样,应该在0~ ___________ 内随机抽取一个数字,个位数就是这个数字的号码中奖、13、下面给出某村委调査本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间^:-^=40;确泄随机数字:取一张人民币,编码的后两位数为12;确左第一样本户:编码的后两位数为12的户为第一样本户;确左第二样本户:12+40=52, 52号为第二样本户;(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改、(3)何处就是用简单随机抽样.1、系统抽样的特点(1)适用于总体中个体数较大且个体差异不明显的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系:(3)就是等可能抽样、每个个体被抽到的可能性相等、2.系统抽样与简单随机抽样之间的关系(1)系统抽样比简单抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本与具体的编号相联系:而简单随机抽样所得样本的代表性与个体的编号无关;(3)系统抽订的实质就是简单随机抽样、(4)系统抽样比简单随机抽样的应用更广泛、3、当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体、但要注意的就是剔除过程必须就是随机的、也就就是总体中的每个个体被剔除的机会均等、剔除几个个体后使总体中剩余的个体数能被样本容虽:整除、2. 1、2系统抽样知识梳理1、平均一个2、(1)编号(3)简单随机3、简单随机系统作业设计1、③解析①中总体容量较小,样本容量也较小,可釆用抽签法;②中总体中的个体有明显的差异,也不适宜釆用系统抽样:④中总体容量较大,样本容量较小也不适用系统抽样、2、2解析由1 252 = 50X25+2知,应随机剔除2个个体.3、系统解析从第1排到第50排每取一个人的间隔人数就是相同的,符合系统抽样的左义、4、②解析由题意知分段间隔为10、只有②中相邻编号的差为10、5、系统抽样6、②解析由于只有524F4没有余数.7、16解析用系统抽样的方法就是等距离的.42-29 = 13,故3+13 = 16、8、3 20解析因为1 003=50X20 + 3,所以应剔除的个体数为3,间隔为20、9、7840〜7999 0054,0214, 0374, 0534, 0694解析因8000宁50=160,所以最后一段的编号为编号的最后160个编号、从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054, 然后逐个加上160 得,0214, 0374, 0534, 0694、10、解该校共有1 500名学生■需抽取容量为1 500X10% = 150的样本、抽样的实施步骤:可将每个班的学生按学号分成5段,每段10名学生、用简单随机抽样的方法在「10 中抽取一个起始号码厶则每个班的1, 10+1, 20+1, 30+1, 40+1(如果1=6,即6, 16, 26, 36, 46)号学生入样,即组成一个容捲为150的样本.11、解总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数表法都不易进行操作,所以,采用系统抽样方法较好、于就是,我们可以用系统抽样法进行抽样、具体步骤就是:(1)将总体中的个体编号为1,2,3.…,8 000;(2)把整个总体分成100段,每段长度为k=错误! = 80;(3)在第一段1〜80中用简单随机抽样确总起始编号1,例如抽到1=25;(4)将编号为1,1+k, l + 2k, l+3k, 即25, 105, 185,7 945)的个体抽岀,得到样本容量为100的样本.12、100 000 40 913、解(1)系统抽样.(2)本题就是对某村各户进行抽样,而不就是对某村人口抽样,抽样间隔为:错误!= 10,其她步骤相应改为确左随机数字:取一张人民币•编码的后两位数为02 (或其她00~09 中的一个),确泄第一样本戸:编号为02的户为第一样本戸:确左第二样本戸:02 + 10 = 12,编号为12的户为第二样本户:…、(3)确泄随机数字用的就是简单随机抽样、取一张人民币,编码的后两位数为02、。
高一数学必修3同步练习:2-1-1简单随机抽样
2-1-1简单随机抽样一、选择题1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100[答案] D[解析]1000名学生的成绩是统计中的总体,每个学生的成绩是个体,被抽取的100名学生的成绩是一个样本,其样本的容量为100.2.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是()A.40 B.50C.120 D.150[答案] C3.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关[答案] D[解析]简单随机抽样,除具有A、B、C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.4.简单随机抽样的结果()A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定[答案] B[解析]据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,∴选B.5.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,用随机抽取的方式确定号码的后四位为270 9的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验[答案] D6.从10个篮球中任取一个,检查其质量,用随机数法抽取样本,则编号应为()A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,9[答案] D7.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 为( )A .150B .200C .100D .120[答案] D[解析] ∵每个个体被抽到机会相等,都是30N=0.25,∴N =120. 8.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性的大小关系是( )A .相等B .“第一次被抽到”的可能性大C .“第二次被抽到”的可能性大D .无法比较[答案] A9.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110 [答案] C[解析] 由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是310.10.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD .N[答案] A[解析] 总体中带有标记的比例是N M,则抽取的m 个个体中带有标记的个数估计为mN M. 二、填空题11.采用简单随机抽样时,常用的方法有________、________.[答案] 抽签法 随机数法12.下列调查方式正确的是________.①为了了解炮弹的杀伤力,采用普查的方式②为了了解全国中学生的睡眠状况,采用普查的方式③为了了解人们保护水资源的意识,采用抽样调查的方式④对载人航天器“神舟飞船”零部件的检查,采用抽样调查的方式[答案] ③[解析] 由于①中的调查具有破坏性,则①不正确;由于全国中学生太多,则②不正确;③正确;④中考虑到安全性,④不正确.13.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步 将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步_____________________________________________;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为_____________________________________.[答案]从袋子中依次抽出6个号签,记录下上面的编号.14.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如下表,且表中下一行接在上一行右边)第10列开始,向右读取,直到取足样本,则抽取样本的号码是________.95339522001874720018387958693281768026928280842539[答案]01,47,20,28,17,02[解析]读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.三、解答题15.(2011~2012.上海高一检测)2011年5月,西部志愿者计划开始报名,上海市闸北区共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[解析]第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,一次取出1个号签,连取6次,并记录其编号.第五步,将对应编号的志愿者选出即可.16.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?[分析]重新编号,使每个号码的位数相同.[解析]第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.17.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?[解析]选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为140.18.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学、两所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?[分析]根据每种调查方案所提供的资料逐一分析,看哪一种调查方案合理.[解析]A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.。
高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)
6. 简单随机抽样的结果( ) A.完全由抽样方式所决定 B.完全由随机性来决定 C.完全由人为因素所决定 D.完全由计算方法所决定 解析:简单随机抽样的结果完全由随机性来决定. 答案:B
7. 为了了解某县中考学生数学成绩的情况,从中抽取20本密封
试卷,每本30份试卷,这个问题中的样本容量是( )
最常用的简单随机抽样方法有两种:
抽签法 随机数法
随机数表法
抽签法
(1)对总体的N个个体进行编号 (2)把N个号码写在同样的号签上 (3)将号签放在一个容器中,搅拌均匀 (4)每次从中抽取一个号签,连续抽取n次 (5)得到一个容量为n的样本 步骤:编号→制签→搅匀→抽签→定样.
例1 某班有50名学生,要从中随机地抽出6人参加一项活动, 请用抽签法进行抽选,并写出过程.
简记为:编号;分段;在第一段确定起始号;加间隔获取样本。
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编号为1,2 ,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体.
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
系统抽样的特点:
(1) 总体容量较大 (2) 属于不放回抽样 (3) 每个个体被抽到的可能性相同(公平性)
系统抽样的步骤
(1)对总体的N个个体进行编号; (2)确定分段间隔k,对编号进行分段,当N/n是整数时, 取k=N/n;当N/n不是整数时,从总体中随机剔除一些个体, 使剩下的总体中个体的个数N′能被n整除,并将剩下的总体重 新编号、分段; (3)在第一段中用简单随机抽样确定起始的个体编号l; (4)将编号为l+k, l+2k, …, l+(n-1)k的个体抽出。
苏教版数学高一必修3试题 简单随机抽样 (2)
2.1.1 简单随机抽样一、填空题1.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取100名运动员抽查.就这个问题,下列说法中正确的是________.①2 000名运动员是总体;②每名运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100.【解析】 2 000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄组成一个样本,样本容量为100.【答案】④2.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③3.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用______进行抽样.【解析】由抽签法特点知易采用抽签法.【答案】抽签法4.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本∴所有可能的样本为{1,3},{1,8},{3,8}.【答案】{1,3},{1,8},{3,8}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.【解析】简单随机抽样中,每个个体被抽取的机会均等,都为110.【答案】1 10,1106.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是________.【解析】采用随机数表编号时,所编号码应位数相同,以保证每个号码被抽到的机率相等.【答案】②③7.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,以每人被抽到的机会为0.02,从该中学学生中抽取一个容量为n的样本,则n=________.【解析】三个年级的总人数为1 400+1 320+1 280=4 000(人),每人被抽到的机会均为0.02,∴n=4 000×0.02=80.【答案】808.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.,所以第5个个体的编号是01.【答案】01二、解答题9.要从北京某中学文艺部30名学生中随机抽取3名参加国庆阅兵仪式,试写出利用抽签法抽样的过程.【解】第一步将30名学生编号为1,2,3, (30)第二步将这30个号码写到形状、大小相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步从箱中每次抽取1个号签,连续抽取3次;第五步抽到的3个号签上的号码对应的3名学生就是参加国庆阅兵仪式的学生.10.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?【解】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.11.某次数学竞赛中要求考生解答的12道题是这样产生的:从30道选择题中随机抽取3道,从50道填空题中随机抽取5道,从40道解答题中随机抽取4道,试确定某考生所要解答的12道题的序号.【解】法一:(抽签法)第一步:将选择题、填空题、解答题编号,号码是1,2,3, (120)第二步:将1~120这120个号码分别写在大小、形状都相同的号签上;第三步:将选择题、填空题、解答题的号签分别放入三个箱子中,都搅拌均匀;第四步:分别从装有选择题、填空题、解答题号签的箱子中逐个抽取3个、5个、4个号签,并且记录所得号签的号码,这就是所要解答的问题的序号.法二:(随机数表法)第一步:对题目编号,选择题编号为001,002,...,030;填空题编号为031,032,...,080;解答题编号为081,082, (120)第二步:在随机数表中任意选择一个数作为开始,任选一个方向作为读数方向,比如,选第15行第6列的数4作为开始,向右读;第三步:从数字4开始向右读下去,每次读三位,凡是不在001~120中的数跳过去不读,遇到已经读过的数也跳过去,从001~030中选3个号码,从031~080中选5个号码,从081~120中选4个号码,依次可以得到038,119,033,099,004,047,094,116,044,068,013,030.第四步:以上号码就是所要解答的问题序号,选择题的序号是4,13,30;填空题的序号是38,33,47,44,68;解答题的序号是119,99,94,116.。
高中数学 第二章 §2.1.1简单随机抽样配套训练 苏教版必修3
§2.1抽样方法2.1.1 简单随机抽样一、基础过关1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是______.(填序号)①200个表示发芽天数的数值;②200个球根;③无数个球根发芽天数的数值集合.2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是________.3.抽签法中确保样本代表性的关键是________.4.下列抽样实验中,用抽签法方便的是________.(填序号)①从某厂生产的3 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;③从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;④从某厂生产的3 000件产品中抽取10件进行质量检验.5.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.6.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.7.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.8.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?二、能力提升9.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是________.(填序号)①1 000名运动员是总体;②每个运动员是个体;③抽取的100名运动员是样本;④样本容量是100.10.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是________.11.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)12.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.三、探究与拓展13.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.答案1.① 2.120 3.搅拌均匀 4.② 5.简单随机抽样 6.抽签法7.解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.8.解(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.9.④ 10.110,11011.①③②12.解第一步,将32名男生从00到31进行编号;第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号;第三步,将写好的号签放在一个容器内摇匀,不放回地逐个从中抽出10个号签;第四步,相应编号的男生参加合唱;第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.13.解第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
苏教版高中数学必修三课件统计——抽样习题课
•
应用举例
例3某科研单位有科研人员160人,其中具有高级 以上职称的24人,中级职称48人,其余均为初级以下 职称,现要抽取一个容量为20的样本,试确定抽样方 法,并写出抽样过程. 宜采用分层抽样的抽取方法
请归纳系统抽样方法的步骤: 1 编号; 2 确定组距k; 3 在第一组用简单随机抽样方法确定第一个编号x; 4 编号为x 、 x+k、 x+2k、…… 、x +(n-1)k作为样本.
•
应用举例
例2 某校小礼堂举行心理讲座,有500人参加听课, 坐满小礼堂,现从中选取25名同学了解有关情况,选 取怎样的抽样方式更为合适.
A.分层抽样,系统抽样 B.分层抽样,简单随机抽样
C.系统抽样,分层抽样D.简单随机抽样,分层抽样
•
练 习
2. 南京市的某3个区共有高中学生20000人,且3个区的 高中学生人数之比为2:3:5,现在要用分层抽样的方 法从所有学生中抽取一个容量为200的样本,写出据体 的抽样方法与操作步骤。
•
小
(1)按总体与样本容量确定抽取的比例。 (2)由分层情况,确定各层抽取的样本数。 (3)各层的抽取数之和应等于样本容量。 (4)对于不能取整的数,求其近似值。
•
例3.下列问题中,采用怎样的抽样方法较为合理? (1)从10台电冰箱中抽取3台进行质量检查; (2)某电影院有32排座位,每排有40个座位 ,座位号为 1至40。有一次报告会坐满了听众,报告会结束后为听 取意见,需留下32名听众进行座谈; (3)某学校有160名教职工,其中教师120名,行政人员 16名,后勤人员24名,为了了解教职工对学校在校务 公开方面的意见,拟抽取一个容量为20的样本。
苏教高中数必修三课时跟踪检测(一) 简单随机抽样
课时跟踪检测(一) 简单随机抽样1.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样方法从中抽出一个容量为m 的样本,则抽取的m 个个体中带有标记的个数x 估计为( )A .N ·m MB .m ·M NC .N ·M mD .N解析:选A 根据抽样的等可能性知x m =N M ,所以x =m ·N M. 2.某校高一共有10个班,编号为1~10,现用抽签法从中抽取3个班进行调查,每次抽取一个号码,共抽3次,设高一(5)班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110解析:选D 由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故高一(5)班在每次抽取中被抽到的可能性都是110. 3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )C .02D .01 解析:选D 从随机数表第1行的第5列和第6列数字开始从左向右一次选取两个数字,开始向右读,依次是65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,所以选出来的5个个体的编号是08,02,14,07,01,所以第5个个体的编号是01.4.为了了解某校高一学生的期末考试情况,要从该年级700名学生中抽取120名学生进行数据分析,则在这次考查中,考查总体数为________,样本容量是________.★答案★:700 1205.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=1 10.★答案★:1106.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本有________.解析:从总体中任取两个个体即可组成样本,即所有可能的样本为{1,3},{1,8},{3,8}.★答案★:{1,3},{1,8},{3,8}7.某班有50名同学,要从中随机抽取6人参加一项活动,请用抽签法进行抽选,并写出过程.解:①将50名学生编号01,02,03, (50)②按编号制签;③将签放入同一个箱里,搅匀;④每次从中抽取一个签,连续抽取6次;⑤取出与签号相应的学生,组成样本.8.说出下列抽取样本时运用了哪种抽样方法?并说明原因.设一个总体中的个体数N=345,要抽取一个容量为n=15的样本,现采用如下方法:从随机数表中任意选取三列构成三位数字号码,从中依次取出不同的三位数字号码,当数在001~345之间时,该号码抽入样本;当数在401~745之间时,则该数减去400的号码抽入样本中,其余的000,346~400,746~999的号码都不要;当某号码已抽入样本中,而再次遇到该号码被抽入样本时,只算一次.解:运用了简单随机抽样中的随机数表法.简单随机抽样的要求是给个体编号,逐个不放回抽取,操作的个体数量不宜太多,每个个体被抽取的机会均等,只有符合这些特点才是简单随机抽样.本题虽然取数时,设计了特别的规则,但是从随机数表中任意取数符合简单随机抽样的每个特点,所以本题运用了简单随机抽样法中的随机数表法.。
高中数学 2.1.1 简单随机抽样自我小测 苏教版必修3
高中数学 2.1.1 简单随机抽样自我小测苏教版必修3 1.下列抽样中,是简单随机抽样的是__________.(把正确的序号填在横线上)①为了解全市高三学生的数学成绩,在某重点中学的1 500份试卷中随机抽取100份②某班在竞选班长时,张辉在45名同学中选了李强③某种福利彩票有1 000个有机会中奖的号码(编号为000~999),随机确定261号、981号为中奖号码④为了解某种果树的株产量,从259株树中取最大的50株调查2.现从80件产品中随机抽出10件进行质量检验,下列说法中不正确的序号为__________.①80件产品是总体;②10件产品是样本;③样本容量是80;④样本容量是10.3.用抽签法从10件产品中抽取3件,分三次抽取,则其中甲产品在三次抽取中被抽到的可能性__________.(填“相等”或“不相等”)4.下列抽签法操作步骤中不正确步骤的序号为__________.①将N个个体编号为1~N;②在N个乒乓球上分别标上1~N的数字;③把乒乓球装进一个袋子(不透明),搅拌均匀后,从中一次摸出两个乒乓球,直到摸出的球的个数与样本容量相等;④将个体编号与取出球的号码一致的个体取出,即取得样本.5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是__________.6.简单随机抽样的常用方法有__________和__________.当随机地从随机数表中选定开始读取的数后,读数的方向可以是__________.7.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学、两所初级中学,在这几所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?8.考生在一次英语考试中要回答10道题,是这样产生的:从15道听力题中随机抽出3道题,从20道解答题中随机抽出5道题,从10道口试题中随机抽出2道题.试用抽签法确定某考生所要回答的考题的序号.9.从50名学生中随机抽取10名进行问卷调查,试分别用抽签法和随机数表法进行抽样,并写出抽样过程.10.要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.参考答案1答案:③解析:①选取的样本不具有代表性,而②中张辉选李强不是随机的,同样④也不具有代表性.2答案:①②③解析:总体是80件产品的质量,样本是抽出的10件产品的质量,总体容量是80,样本容量是10,只有④正确.3答案:相等解析:在抽签过程中,每个个体被抽到的可能性都一样.4答案:③解析:用抽签法抽取样本时,只能一次取一个.故第③步有错误.5答案:310,310解析:简单随机抽样中,每个个体被抽取的机会均等,都为3 10.6答案:抽签法随机数表法向上、向下、向左、向右7解:A中少年体校的男子篮球、排球队员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确地反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.8解:(1)先做20个大小相同的标签,上面分别编上号码01,02,03, (20)(2)取01,02,…,10这10个号签放在一个箱子中,均匀搅拌,然后随机抽出两个号签,这两个号签上的编号就是口试题的考题;(3)将刚抽出的两个号签连同11,12,…,15这5张号签再放入上面的箱子里,均匀搅拌,然后随机抽出了3张号签,这3个号签上的编号即为听力题的考题;(4)将刚抽出的3个号签连同16,17,…,20这5张号签再放入上面的箱子里,均匀搅拌,然后随机抽出5个号签,这5个号签上的编号即为解答题的考题.9解:采用抽签法:(1)将50名学生进行编号,号码是1,2,3, (50)(2)将1~50这50个号码分别写在形状、大小均相同的号签上;(3)将写好的号签放入同一个箱子中进行充分搅拌,力求均匀;(4)从箱中每次抽出1个号签,连续抽取10次,并记录上面的编号;(5)与所得号码对应的学生即组成样本.采用随机数表法:(1)将50名学生进行编号,可以编为00,01,02, (49)(2)在随机数表中任选一个数作为开始,如第12行第33列的数作为开始;(3)从选定的数“1”开始向右读,每次读两个数字,选出从00~49中的数,前面读过已经取出的数跳过,所得数依次为14,45,10,23,42,40,07,32,08,36;(4)选取以上号码对应的学生即组成样本.10分析:本题总体容量较小,用随机数表法或抽签法都很方便.解:方法一:(随机数表法)(1)将10架钢琴编号,号码是0,1, (9)(2)在教材附录1中的随机数表中任选一数作为开始,任选一个方向作为读数方向,比如,选第3行第6列数“2”,向右读;(3)从数“2”开始,向右读,每次读取1位,依次可得到2,7,6,5;(4)以上号码对应的4架钢琴就是要抽取的对象.方法二:(抽签法)(1)将10架钢琴编号,号码是0,1, (9)(2)将号码分别写在形状、大小相同的号签上;(3)将得到的号签放入一个不透明的袋子中,并充分搅匀;(4)从袋子中依次抽取4个号签,并记录上面的编号;(5)所得号码对应的4架钢琴就是要抽取的对象.。
高中数学必修三《简单随机抽样及系统抽样》课后练习(含答案)
简单随机抽样及系统抽样课后练习题一:下列说法中正确说法的个数是()①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1B.2 C.3 D.4题二:在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法:抽签取出20个样本.②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本.③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.下列说法中正确的是()A.无论采用哪种方法,这100个零件中每一个被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的题三:在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是() .A.随机抽样B.分层抽样C.系统抽样D.以上都不是题四:(1)某学校为了了解2012年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.问题与方法配对正确的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ题五:一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60题六:设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数法抽取该样本的步骤.随机数表(部分):034743738636964736614699698162 977424676242811457204253323732 167602276656502671073290797853 125685992696966827310503729315 555956356438548246223162430990 162277943949544354821737932378 844217533157245506887704744767 630163785916955567199810507175 332112342978645607825242074428 576086324409472796544917460962 181807924644171658097983861962 266238977584160744998311463224 234240547482977777810745321408 623628199550922611970056763138 378594351283395008304234079688题一:在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.题二:在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为().(A)120(B)1100(C)1002 003(D)12 000题三:为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2B.3C.4 D.5题四:学校为了了解某企业 1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为().(A)40 (B)30.1 (C)30 (D)12题五:要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是().A.5, 10, 15, 20, 25 B.3, 13, 23, 33, 43C.1, 2, 3, 4, 5 D.2, 4, 8, 16, 32题六:用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是().(A)8 (B)6 (C)4 (D)2题一:将参加学校期末考试的高三年级的400名学生编号为001,002,…,400,已知这400名学生到甲乙丙三栋楼去考试,从001到200在甲楼,从201到295在乙楼,从296到400在丙楼;采用系统抽样方法抽取一个容量为50的样本且随机抽得的首个号码为003,则三个楼被抽中的人数依次为___________.题二:采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15题三:一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.题四:一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是________.简单随机抽样及系统抽样课后练习参考答案题一:C.详解:①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.题二:A.详解:上述三种方法均是可行的,每个个体被抽到的概率均等于20100=15.故选A.题三:C.详解:由系统抽样的特点——等距,可知C正确.题四:A.详解:通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.题五:18, 00, 38, 58, 32, 26, 25, 39.详解:由随机数表法抽取的规则,所取的数要在00~59之间,且重复出现的仅算一次可得.题六:见详解.详解:第一步,将100名教师进行编号:00,01,02, (99)第二步,在随机数表中任取一数作为开始,如从第12行第9列开始.第三步,依次向右读取(两位、两位读取),75,84,16,07,44,99,83,11,46,32,24,23.以这12个编号对应的教师组成样本.题七:1 6.详解:每一个个体被抽到的概率都是样本容量除以总体,即20120=16.题八:C.详解:采用系统抽样的方法从个体数目为2003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003.题九:A.详解:因为1252=50×25+2,所以应随机剔除2个个体,故选A.题十:C.详解:了解1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,∵1 203除以40不是整数,∴先随机去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k为30.题十一:B.详解:根据系统抽样的特点,可将50枚导弹分成5组(10枚/组),再等距抽取.题十二:B.详解:∵16020=8,∴第1组中号码为126-15×8=6.题一:25, 12, 13.详解:由系统抽样的方法先确定分段的间隔k,k =40050=8,故甲楼被抽中的人数为:2008=25(人).因为95=11×8+7,故乙楼被抽中的人数为12人.故丙楼被抽中的人数为50-25-12=13(人).题二:C.详解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为(k-1)30+9,令451≤(k-1)30+9≤750,而k∈z,解得16≤k≤25,则满足16≤k≤25的整数k有10个,故答案应选C.题三:63.详解:由题意知第7组中的数为“60~69”10个数.由题意知m=6,k=7,故m+k=13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.题四:6, 17, 28, 39, 40, 51, 62, 73, 84, 95.详解:在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6, 17, 28, 39, 40, 51, 62, 73, 84, 95.1、最灵繁的人也看不见自己的背脊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章统计
2、1、1 简单随机抽样
课时目标
1、理解并掌握简单随机抽样的概念、特点与步骤、
2、掌握简单随机抽样的两种方法、
1、简单随机抽样的定义
一般地,从个体数为N 的总体中________________取出n 个个体作为样本(n <N ),如果每个个体____________被取到,那么这样的抽样方法称为__________________、
2、简单随机抽样的分类
简单随机抽样⎩
⎪⎨⎪⎧
3、简单随机抽样的优点及适用类型
简单随机抽样有操作简便易行的优点,在总体____________的情况下就是行之有效的、
一、填空题
1、为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本就是________、
①200个表示发芽天数的数值;
②200个球根;
③无数个球根发芽天数的数值集合;
④无法确定、
2、某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”、在这个问题中样本容量就是____________、
3、抽签法中确保样本代表性的关键就是________、
4、下列抽样实验中,用抽签法方便的有________、
①从某厂生产的3 000件产品中抽取600件进行质量检验;
②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;
③从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验;
④从某厂生产的3 000件产品中抽取10件进行质量检验、
5、为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的就是________、
①1 000名运动员就是总体;
②每个运动员就是个体;
③抽取的100名运动员就是样本;
④样本容量就是100、
6、用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别就是________、
7、要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________、
8、福利彩票的中奖号码就是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法就是________、
9、用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;
③选定随机数表开始的数字,这些步骤的先后顺序应该就是________、(填序号)
二、解答题
10、要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程、
11、现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验、如何用随机数表法设计抽样方案?
能力提升
12、在简单随机抽样中,某一个个体被抽到的可能性________、
①与第几次抽样有关,第一次抽到的可能性大一些;
②与第几次抽样无关,每次抽到的可能性相等;
③与第几次抽样有关,最后一次抽到的可能性大些;
④与第几次抽样无关,每次都就是等可能的抽取,但各次抽取的可能性不同、
13、某车间工人已加工一种轴50件,为了了解这种轴的直径就是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样、
1、判断所给的抽样就是否为简单随机抽样的依据就是随机抽样的特征:
简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性
如果四个特征有一个不满足就不就是简单随机抽样、
2、利用抽签法抽取样本时应注意以下问题:
(1)编号时,如果已有编号(如学号、标号等)可不必重新编号、
(2)号签要求大小、形状完全相同、
(3)号签要搅拌均匀、
(4)要逐一不放回抽取、
3、在利用随机数表法抽样的过程中注意:
(1)编号要求数位相同、
(2)第一个数字的抽取就是随机的、
(3)读数的方向就是任意的,且事先定好的、
2、1 抽样方法
2、1、1 简单随机抽样
知识梳理
1、逐个不放回地 都有相同的机会 简单随机抽样
2、抽签法 随机数表法
3、个体数不多
作业设计
1、①
2、120
解析 由于样本容量即样本的个数,抽取的样本的个数为40×3=120、
3、搅拌均匀
解析 由于此问题强调的就是确保样本的代表性,即要求每个个体被抽到的可能性相等、所以要求搅拌均匀、
4、②
解析 ①总体容量较大,样本容量也较大不适宜用抽签法;②总体容量较小,样本容量也较小可用抽签法;③中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;④总体容量较大,不适宜用抽签法、
5、④
解析 此问题研究的就是运动员的年龄情况,不就是运动员,故①、②、③错、
6、110,110
7、简单随机抽样
解析 由简单随机抽样的特点可知,该抽样方法就是简单随机抽样、
8、抽签法
9、①③②
10、解 利用抽签法,步骤如下:
(1)将30辆汽车编号,号码就是01,02, (30)
(2)将号码分别写在一张纸条上,揉成团,制成号签;
(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;
(4)从袋子中依次抽取3个号签,并记录上面的编号;
(5)所得号码对应的3辆汽车就就是要抽取的对象、
11、解 (1)将元件的编号调整为010,011,012,…,099,100,…600;
(2)在随机数表中任选一数作为开始,任选一方向作为读数方向、比如,选第6行第7列数“9”,向右读;
(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;
(4)以上号码对应的6个元件就就是要抽取的样本、
12、②
解析 由简单随机抽样的特点知与第n 次抽样无关,每次抽到的可能性相等、
13、解 方法一 抽签法、
(1)将50个轴进行编号01,02, (50)
(2)把编号写在大小、形状相同的纸片上作为号签;
(3)把纸片揉成团,放在箱子里,并搅拌均匀;
(4)依次不放回抽取5个号签,并记下编号;
(5)把号签对应的轴组成样本、
方法二 随机数表法
(1)将50个轴进行编号为00,01, (49)
(2)在随机数表中任意选定一个数并按向右方向读取;
(3)每次读两位,并记下在00~49之间的5个数,不能重复;
(4)把与读数相对应的编号相同的5个轴取出组成样本、。