27.3位似_教案(共2课时)-
人教版九年级数学下册:27.3《位似》教案1
人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
人教版数学九年级下册27.3位似(第2课时)教学设计
(四)课堂练习
1.设计练习题:教师设计具有梯度的练习题,涵盖本节课的知识点,让学生巩固所学。
2.练习过程:学生独立完成练习题,教师巡回指导,针对学生的疑问进行解答。
3.反馈与评价:教师对学生的练习情况进行反馈,指出学生的优点和不足,引导学生自我评价和反思。
3.通过实际操作,让学生体验位似变换在现实生活中的应用,提高学生学以致用的能力。
4.引导学生运用数学方法,如代数运算、几何证明等,解决位似变换相关问题,培养学生严谨的数学思维。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生主动探究、积极思考的学习态度。
2.通过对位似变换的学习,让学生感受数学与现实生活的紧密联系,认识到数学在生活中的重要作用。
2.选做题:
(1)课本习题27.3第4、5题,难度适中,鼓励学有余力的学生挑战,提高解题技巧。
(2)小组合作完成一道拓展题,如研究位似变换在建筑设计、艺术创作等方面的应用,培养学生团队协作能力和创新思维。
3.思考题:
(1)位似变换与相似变换有什么联系和区别?
(2)在实际问题中,如何判断两个图形之间是否存在位似关系?
3.培养学生克服困难的勇气和毅力,增强学生的自信心,使学生体验到数学学习的成就感。
4.引导学生学会欣赏数学美,培养学生的审美情趣,提高学生的综合素质。
二、学情分析
九年级下册的学生已经具备了较为扎实的几何基础知识,对图形的相似、全等有了深入的了解。在此基础上,他们对位似图形的概念和性质的学习将更加得心应手。然而,学生在解决实际问题时,可能会对位似变换的应用感到困惑,需要教师引导和点拨。此外,学生在数学思维和逻辑表达能力方面仍有待提高,需要通过本章节的学习,进一步培养和锻炼。总体来说,学生对本章节的学习充满兴趣,但需要在教师的引导下,将理论知识与实际应用相结合,提高解决问题的能力。在这个过程中,教师要关注学生的个体差异,给予每个学生充分的关注和指导,帮助他们克服学习中的困难,增强自信心。
2019春人教版九年级数学下册教案:27.3位似
2019春人教版九年级数学下册教案:27.3位似一、教学目标1.了解位似的定义和性质。
2.能够判断两个图形是否位似。
3.能够找出两个位似图形的对应顶点。
4.能够利用位似的性质解决实际问题。
二、教学重点1.判断两个图形是否位似。
2.找出两个位似图形的对应顶点。
三、教学难点1.利用位似的性质解决实际问题。
四、教学过程1. 导入新知识引导学生回顾上节课学习的内容,复习相似图形的概念和性质。
2. 学习位似的定义和性质(1) 引入位似的概念•提问:什么是位似?能举个例子吗?•预期回答:位似是指两个图形的对应边平行且对应边的长度之比相等。
•示意图:无(2) 位似的性质•提问:位似的性质有哪些?•预期回答:位似的性质有:对应角相等、对应边平行、对应边的长度之比相等。
•示意图:无3. 判断图形是否位似(1) 实例讲解•示例:已知图形 ABCD 和图形 EFGH,判断是否位似。
•示意图:无(2) 指导学生判断•提问:根据位似的性质,我们应该如何判断两个图形是否位似?•预期回答:判断对应角是否相等、对应边是否平行、对应边的长度之比是否相等。
•示意图:无(3) 练习题•练习题:给定图形 ABCD 和图形 EFGH,判断是否位似。
•示意图:无4. 找出位似图形的对应顶点(1) 实例讲解•示例:已知图形 ABCD 和图形 EFGH 是位似图形,找出它们的对应顶点。
•示意图:无(2) 指导学生找出对应顶点•提问:根据位似的性质,我们应该如何找出位似图形的对应顶点?•预期回答:找出对应边的顶点。
•示意图:无(3) 练习题•练习题:已知图形 ABCD 和图形 EFGH 是位似图形,找出它们的对应顶点。
•示意图:无5. 应用位似解决实际问题(1) 实例讲解•示例:已知一个房屋的图纸,比例为 1:100,某个房间的宽度为 4 米,请计算这个房间在图纸上的宽度。
•示意图:无(2) 指导学生解决实际问题•提问:如何利用位似的性质解决实际问题?•预期回答:可以利用比例和已知长度,求出未知长度。
人教初中数学九下 27.3 位似教案2
教学过程设计
A
8
D6 A' 4
学生练习
B'
2D'
问题的关键是要确定 位似图形各个顶点的
-8 -6 C-4 -2C'
-2
2 4 6 8 坐标.
-4
-6
-8
8A
6
4C
2
-8 -6 --4
-6
-8
8
2. 如图,△ABC 三个顶点坐标分
6
别为 A(2,-2),B(4,-5), C"
-8
2 4 6 8 9 101112
布置选做内 容,供学有余力学 生学习.
2 B' C
B
-12 -10-9-8
-6
-4B"-2
O -2
2 4 6 8 9 101112
-4
-6
A"
-8
问题与情境
师生行为
设计意图
活动三.例题讲解 例.如图,四边形 ABCD 的坐标分 别为 A(-6 ,6),B(-8,2), C(-4,0),D(-2,4) ,画 出它的一个以原点 O 为位似中
8
6
4
A
2
B'
A'
-8
-6
-4 -2 O
A' -2
B'2
4
6B 8
-4
-6
-8
通过作图复习上 节课内容,通过观 察归纳总结出规 律.
如图,△ABC 三个顶点坐标分别为 A(2,3),B(2,1),C(6,2), 以点 O 为位似中心,相似比为 2, 将△ABC 放大,观察对应顶点坐标 的变化,你有什么发现 ?
的无处不 在,锻炼克服困难的意志,建立学好数学的自信心.
九年级数学下册-27.3位似(第2课时)教案
27.3位似第二课时教案一、【教材分析】教学目标知识技能1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.过程方法通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.情感态度通过学生观察、分析现实生活中的相似现象,使学生进一步体会三角形相似的应用价值和丰富内涵.逐步形成数学思想,认识数学价值,促进审美意识的发展.教学重点用图形的坐标的变化来表示图形的位似变换.教学难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.二、【教学流程】教学环节教学问题设计师生活动二次备课情景创设一、复习引入1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点学生独立完成对应内容.通过创设情景,活跃气氛,激发学习兴趣..的坐标;(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.引入新课,并说明本课要研究的问题.自主探究【探究1】(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为31,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发归纳小结:教师展示问题,学生观察猜想,鼓励学生积极发言讨论.先让学生独立思考,教师给学生一定的时间,尝试探究解决问题,有困难的进行组内交流位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 【探究2】 (教材P 48的探究内容) 归纳小结:位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 【探究3】 例1(教材P 49的例题)分析:略(见教材P 49的例题分析)解:略(见教材P 49的例题解答)问:你还可以得到其他图形吗?请你自己试一试! 解法二:点A 的对应点A ′′的坐标为(-6×)21(-,6×)21(-),即A ′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略) 例2(教材P 50)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略. 讨论.师引导作小结.教师给学生一定的时间组内交流讨论,自主探究的过程,并巡视解题情况.生展示成果,并适当时机进行追问,引发学生思考.生自主完成.师生共同展示.尝试应用1.教材P50.1、22.△ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标学生独立思考解答完成后师生间展评.对教材知识的加固强化运用补偿提高如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.给学生充分时间独立思考解答完成后师生间展评.对内容的升华理解认识小结1.通过本节课的学习你有什么收获?2. 你还有哪些疑惑?学生独立思考,师生梳理本课的知识点及及注意问题.作业1.课本P51第4,5题.2.选做题如图△ABC以G点为位似中心,缩小为原来的一半,得到△A’B’C’,写出前后两个三角形各顶点的坐标.学生课下独立完成,教师批改.三、【板书设计】27.3位似四、【教后反思】位似变换中对应点的坐标的变化规律: 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 例题。
人教版数学九年级下册27.3《位似》教学设计(二)
人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。
本节内容主要介绍位似的定义、性质和运用。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。
但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。
三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。
3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。
2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。
3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。
2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。
同时,配合几何模型,让学生直观地感受位似的特点。
3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。
人教版数学九年级下册教案:27.3位似
对于位似比的判定难点,可以通过设计不同难度的题目,从简单的直接给出对应点位的题目,到需要学生通过观察和分析来判断位似关系的题目,逐步引导学生掌握判定方法。
在位似变换的应用难点上,可以通过实际案例,如建筑设计中图形的缩放、照片的放大缩小等,来帮助学生理解位似变换在实际中的应用。
对于位似性质的综合运用,可以设计一些包含多个几何概念的综合性题目,让学生在解决问题的过程中,学会如何将位似性质与其他知识相结合,形成完整的解题思路。
在小组讨论中,我发现学生们对于位似在实际生活中的应用有很多自己的想法,这让我感到很欣慰。不过,我也观察到他们在分享成果时,表达能力还有待提高。未来,我应该在教学中加入更多口头表达和交流的练习,帮助学生更好地表达自己的思考过程。
另外,教学难点部分的讲解,我感到需要进一步精简语言,用更简洁明了的方式解释位似比的判定和位似变换的应用。或许通过制作一些图表或动画,能够更直观地展示这些难点内容。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了位似的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对位似的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“位似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版数学九年级下册27.3位似(第2课时)优秀教学案例
2.设计具有合作价值的学习任务,引导学生在小组内交流、分享、互助,共同完成任务。
3.教师要关注小组学习过程,适时给予指导,确保每个学生都能积极参与、主动学习。
人教版数学九年级下册27.3位似(第2课时)优秀教学案例
一、案例背景
在我国初中数学教育中,位似图形的概念是九年级下册的重点内容,它既是对以往学习图形变换知识的拓展,也是对初中生空间想象能力的培养。本节教学内容为人教版数学九年级下册27.3位似(第2课时),在前一课时,学生已学习了位似图形的基本概念,了解了位似变换的性质。在此基础上,本节课将深入探讨位似图形在实际问题中的应用,通过生动有趣的生活实例,引导学生运用所学知识解决问题,提高学生的实际操作能力和解决问题的能力。在教学过程中,注重启发式教学,鼓励学生互动交流,发挥学生的主体作用,培养学生团队合作精神,充分体现新课程标准倡导的“以人为本、关注学生发展”的教育理念。
5.注重学习方法和经验的总结
在教学过程中,教师引导学生总结学习方法和经验,提高学生的学习自我监控能力。师生共同总结本节课的学习方法和技巧,有助于学生形成良好的学习习惯,提高学习效率。
4.教师针对学生的疑问和困难,进行解答和指导,确保学生掌握本节课的知识点。
(三)学生小组讨论
1.教师给出几个具有挑战性的问题,要求学生分组讨论,共同解决问题。
2.学生在小组内分享自己的思考,互相交流、互相学习,共同探究位似图形的奥秘。
3.教师巡回指导,关注学生的讨论过程,适时给予提示和引导,确保讨论的有效性。
4.创设轻松愉快的学习氛围,鼓励学生大胆发表自己的观点,尊重学生的个性差异。
人教版数学九年级下册教案27.3《位似》
人教版数学九年级下册教案27.3《位似》一. 教材分析《位似》是人教版数学九年级下册第27章第三节的内容,本节课主要让学生理解位似的性质,学会求位似图形的相似比。
通过本节课的学习,学生能够掌握位似的定义,理解位似与相似的关系,以及位似在实际问题中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的性质,能够求出两相似图形的相似比。
但位似这一概念对学生来说比较抽象,不易理解。
因此,在教学过程中,教师需要利用生活中的实例,引导学生直观地理解位似的含义,并学会求位似图形的相似比。
三. 教学目标1.理解位似的定义,掌握位似图形的性质。
2.学会求位似图形的相似比。
3.能够运用位似知识解决实际问题。
四. 教学重难点1.教学重点:位似的定义,位似图形的性质,求位似图形的相似比。
2.教学难点:位似与相似的关系,位似在实际问题中的应用。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过生活实例引入位似概念,引导学生直观地理解位似;通过具体案例,让学生学会求位似图形的相似比;通过小组合作学习,培养学生运用位似知识解决实际问题的能力。
六. 教学准备1.教学课件:位似的概念、位似图形的性质、求相似比的方法。
2.实例图片:生活中的位似现象。
3.练习题:巩固位似知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如相机拍照、放大镜观察等,引导学生直观地认识位似现象。
提问:这些现象中,你们发现了什么共同特点?2.呈现(10分钟)呈现位似的定义,引导学生理解位似的含义。
通过具体案例,让学生学会求位似图形的相似比。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,求出位似图形的相似比。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师讲解答案,巩固位似知识。
5.拓展(10分钟)引导学生运用位似知识解决实际问题,如设计图案、建筑布局等。
学生分组讨论,分享解题过程和答案。
九年级数学下册 27.3 位似教案(二) 新人教版
用图形的坐标的变化来表示图形的位似变换.
教学难点
把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
教学准备
教师
多媒体课件
学生
“五个一”
课堂教学程序设计
设计意图
一、课堂引入
1.如图,△AB C三个顶点坐标分别为A(2,3),B(2, 1),C(6,2),(1)将△ABC向左平移三个单位得到△A1 B1C1,写出 A1、B1、C1三点的坐标;
(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.
2.在前面几册教科书中,我们学 习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
选做
教科书P 65:6、8
教学
反思
2.△ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标.
3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比 .
作业
设计
必做
教科书P64:3
例2(教材P63)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?
分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次 得到的旋转图形;它还可以 看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….
解:答案不惟一,略.
三、课堂练习
教学设计3:27.3 位似(2)
27.3位似(第二课时)教学目标⒈巩固位似图形及其有关概念。
⒉会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律教学重点用图形的坐标的变化来表示图形的位似变换教学难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律。
教法与学法平面上的点与坐标一一对应,图形变换后,坐标也一一对应教学过程集体备课二次备课教学设计师生活动一复习导入(1)什么叫做位似图形、位似中心?(2)位似图形一定是相似图形吗?相似图形一定是位似图形吗?(3)位似图形的性质是什么?(4)哪一组中的每两个图形是位似图形?(5)作出位似图形的位似中心。
二探究新知1、自主学习教师提出问题,学生回忆,思考,并回答.学生独立完成,并展示如图,∆ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2)。
(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.在平面直角坐标系中,我们学习了如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.2、精讲点拨:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为3:1,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,∆ABC三个顶点坐标分别为A(2,3),B(2,1),C (6,2)。
以点O为位似中心,相似比为22,将∆ABC 放大,观察对应顶点坐标的变化,你有什么发现?放给学生,让学生们在组内自己讨论解决问题的步骤,鼓励学生勇于表达,善于表达,乐于表达自己的思想,培养学生独立解决问题的能力.教师出示例题后,先让学生思考解决问题的思路,再请学生板演.【归纳】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或--k.3、例题讲授: 课本p49例题【解析】学生利用刚才的归纳可以容易的得到答案三课堂提升1、△ABC的三个顶点坐标分别为(2,-2),B(4,-5),C(5,-2),以原点O 为位似中心,将这个三角形放大为原来的2倍.试写出放大后三个顶点的坐标(同步学习)。
人教版数学九年级下册教学设计27.3《位似》
人教版数学九年级下册教学设计27.3《位似》一. 教材分析人教版数学九年级下册第27.3节《位似》主要介绍了位似的性质和位似图形的画法。
位似是几何中的一个重要概念,它涉及到图形之间的相似关系,是学生进一步学习几何图形的必要基础。
本节内容通过对位似的探讨,让学生了解位似的定义、性质和应用,提高学生的空间想象力。
二. 学情分析九年级的学生已经掌握了相似的基本知识,具备一定的空间想象力。
但在实际操作中,部分学生可能对位似的理解不够深入,对位似图形的画法不够熟练。
因此,在教学过程中,教师需要注重引导学生理解位似的本质,并通过适量练习,提高学生的实际操作能力。
三. 教学目标1.理解位似的定义,掌握位似的性质。
2.学会位似图形的画法,提高空间想象力。
3.能运用位似知识解决实际问题。
四. 教学重难点1.位似的定义和性质。
2.位似图形的画法。
五. 教学方法1.采用问题驱动法,引导学生探究位似的性质。
2.利用多媒体辅助教学,展示位似图形的画法。
3.运用实例分析法,让学生学会运用位似知识解决实际问题。
4.小组讨论,提高学生的合作能力。
六. 教学准备1.多媒体教学设备。
2.位似图形的相关图片。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似现象,如相似的建筑、生物体的结构等,引导学生关注位似现象,激发学生的学习兴趣。
2.呈现(15分钟)介绍位似的定义,通过示例让学生理解位似的性质。
示例1:两圆的半径之比等于它们面积之比。
示例2:两矩形的边长之比等于它们面积之比。
3.操练(15分钟)让学生动手画一些位似图形,体会位似图形的画法。
1.画出位似比为2:1的两个圆。
2.画出位似比为3:1的两个矩形。
4.巩固(10分钟)通过解答练习题,巩固位似的知识。
1.位似比为2:1的两个圆,半径之比为2:1,面积之比为4:1。
2.位似比为3:1的两个矩形,边长之比为3:1,面积之比为9:1。
5.拓展(10分钟)利用位似知识解决实际问题,如设计图案、建筑物的布局等。
人教版九年级数学下册:27.3《位似》教学设计2
人教版九年级数学下册:27.3《位似》教学设计2一. 教材分析人教版九年级数学下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质和运用。
本节内容通过具体的图形和实例,让学生理解位似的定义,掌握位似图形的性质,以及会运用位似图形解决实际问题。
教材通过丰富的素材,激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质和运用,对图形的相似性有一定的理解。
但位似图形与相似图形既有联系又有区别,学生需要进一步理解和掌握。
学生在学习过程中,可能对位似图形的性质的理解和运用存在一定的困难,需要通过实例和练习进行巩固。
三. 教学目标1.理解位似的定义,掌握位似图形的性质。
2.能运用位似图形解决实际问题,提高空间想象能力和抽象思维能力。
3.培养学生的观察能力,提高学生分析问题和解决问题的能力。
四. 教学重难点1.教学重点:位似图形的性质和运用。
2.教学难点:位似图形性质的理解和运用。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等,引导学生通过观察、思考、讨论、实践等方式,理解和掌握位似图形的性质,提高学生的空间想象能力和抽象思维能力。
六. 教学准备1.教学素材:教材、多媒体课件、练习题。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)通过展示一些生活中的位似图形,如相似的树叶、相似的建筑等,引导学生观察和思考,提出问题:“这些图形有什么共同的特点?”让学生回顾相似图形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)介绍位似的定义,通过具体的图形和实例,让学生理解位似的概念。
呈现位似图形的性质,如对应边成比例、对应角相等等,引导学生观察和思考,总结位似图形的性质。
3.操练(10分钟)让学生通过观察和分析一些位似图形,运用位似图形的性质,解决问题。
如给定一个位似图形,求其对应边的比例和对应角的大小。
引导学生动手操作,培养学生的空间想象能力和抽象思维能力。
人教版九年级数学下册27.3位似教学设计
四、教学内容与过程
(一)导入新课
1.教学内容:通过生活实例,引导学生发现位似现象,激发学生对位似知识的学习兴趣。
教学过程:
-利用多媒体展示一组图片,如放大镜下的昆虫、不同比例的地图等,让学生观察并思考这些图片之间的联系。
-教学设想:根据学生的认知水平和学习风格,设计不同难度的练习题和拓展任务,让每个学生都能在适合自己的层面上得到提高。
4.实践应用,提高解决问题的能力:
-教学设想:结合实际情境,设计综合性的实践项目,如设计公园平面图、制作模型等,让学生在实际操作中运用位似知识,提高解决实际问题的能力。
5.反馈评价,促进持续发展:
1.基础知识巩固题:完成课本第27.3节后的练习题,包括位似图形的判定、位似比的求解以及位似变换的几何作图等。通过这些练习题,帮助学生巩固位似基本概念和性质。
-注意:学生在解题过程中,要注重步骤的规范性和逻辑性,提高解题效率。
2.实践应用题:结合生活实际,设计一道位似知识在实际中的应用题。例如,要求学生利用位似变换原理,设计一幅学校平面图,标注出各个建筑的位似关系和比例尺。
-教学设想:通过引入实际生活中的位似现象,如摄影中的放大缩小、建筑设计中的比例缩放等,让学生感受到位似知识的应用价值,激发学习兴趣。
2.探究学习,促进理解:
-教学设想:采用问题驱动的教学方法,设计一系列探究性问题,引导学生通过自主探究和小组合作,发现位似图形的性质和变换规律。
3.分层次教学,满足个性化需求:
3.培养学生的创新意识和实践能力,提高解决实际问题的信心。
-学生在探索位似变换的过程中,敢于提出不同的见解和解决方案,培养创新思维。
人教初中数学九年级下册《27-3 位似》(教学设计)
人教初中数学九年级下册《27-3 位似》(教学设计)一. 教材分析《27-3 位似》这一节主要介绍位似的性质和位似图形的画法。
位似是几何中的一个重要概念,它既有相似的性质,也有自己独特的特点。
通过学习位似,学生可以更好地理解图形之间的关系,提高解决问题的能力。
二. 学情分析学生在学习这一节之前,已经掌握了相似图形的性质,他们对相似图形有了一定的认识。
但位似与相似有所不同,学生需要通过学习,理解位似的本质,掌握位似图形的画法。
三. 教学目标1.知识与技能:学生能理解位似的性质,掌握位似图形的画法。
2.过程与方法:通过观察、操作、思考,学生能发现位似的规律,提高解决问题的能力。
3.情感态度与价值观:学生能积极参与学习,对几何图形产生兴趣。
四. 教学重难点1.重点:位似的性质,位似图形的画法。
2.难点:理解位似的本质,灵活运用位似解决问题。
五. 教学方法1.情境教学法:通过实物、图片等引导学生直观地理解位似。
2.启发式教学法:引导学生观察、思考,发现位似的规律。
3.小组合作学习:学生分组讨论,共同完成任务,提高合作能力。
六. 教学准备1.准备相关的实物、图片等教学资源。
2.设计好练习题,以便在课堂上进行操练。
七. 教学过程1.导入(5分钟)教师通过展示实物或图片,引导学生观察,提出问题:“这些实物或图片有什么共同的特点?”让学生思考,引出位似的概念。
2.呈现(10分钟)教师通过PPT或黑板,呈现位似的性质和位似图形的画法。
讲解位似的性质,如位似的定义、位似比、位似中心等。
然后讲解位似图形的画法,如如何确定位似比、如何画出位似图形等。
3.操练(10分钟)教师设计一些练习题,让学生动手操作,巩固位似的性质和位似图形的画法。
如给出两个图形,让学生判断它们是否位似,以及如何画出它们的位似图形。
4.巩固(10分钟)教师继续设计一些练习题,让学生解答,巩固所学知识。
如给出一个图形,让学生找出它的所有位似图形,并画出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂引入1.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2).(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .五、例题讲解例1(教材P63的例题)分析:略(见教材P63的例题分析)解:略(见教材P63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A′′的坐标为(-6×()1-2,6×()1-2),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,……. 解:答案不惟一,略.六、课堂练习1.教材P64.1、22.△ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.七、课后练习1.教材P65.3, P66.5、82.请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限).3.如图,将图中的△ABC以A.为位似中心,放大到1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化.教学反思27. 3 位似(一)一、教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.二、重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.3.难点的突破方法(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.(3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关(如例2),并且同一个位似中心的两侧各有一个符合要求的图形(如例2中的图2与图3).三、例题的意图本节课安排了两个例题,例1是补充的一个例题,通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足两个条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都经过同一点,二者缺一不可.例2是教材P61例题,通过例2 的教学,使学生掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.讲解例2时,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不惟一,这和所作的图形与所确定的位似中心的位置有关(如位似中心O可能选在四边形ABCD外,可能选在四边形ABCD内,可能选在四边形ABCD 的一条边上,可能选在四边形ABCD的一个顶点上).并且同一个位似中心的两侧各有一个符合要求的图形(如例2 中的图2与图3),因此,位似中心的确定是作出图形的关键.要及时强调注意的问题(见难点的突破方法④),及时总结作图的步骤(见例2),并让学生练习找所给图形的位似中心的题目(如课堂练习2),以使学生真正掌握位似图形的概念与作图.四、课堂引入1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?2.问:已知:如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?五、例题讲解例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2(教材P61例题)把图1中的四边形ABCD 缩小到原来的21. 分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得ⅱⅱ1====2OA OB OC OD OA OB OC OD ; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD的反向延长线上取点A ′、B ′、C ′、D ′,使得ⅱⅱ1====2OA OB OC OD OA OB OC OD(4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得ⅱⅱ1====2 OA OB OC ODOA OB OC OD;(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)六、课堂练习1.教材P61.1、22.画出所给图中的位似中心.1.把右图中的五边形ABCDE扩大到原来的2倍.七、课后练习1.教材P65.1、2、42.已知:如图,△ABC,画△A′B′C′,使△A′B′C′∽△ABC,且使相似比为1.5,要求(1)位似中心在△ABC的外部;(2)位似中心在△ABC的内部;(3)位似中心在△ABC的一条边上;(4)以点C为位似中心.教学反思:27. 3 位似(二)一、教学目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.二、重点、难点1.重点:用图形的坐标的变化来表示图形的位似变换.2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.难点的突破方法(1)相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,因此一些特殊的相似(如位似)也可以用图形坐标的变化来表示..(2)带领学生共同探究出位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点..为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.(3)在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的.如:已知:△ABC三个顶点坐标分别为A(1,3),B(2,0),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,根据前面(2)总结的变化规律,点A的对应点A′的坐标为(1×2,3×2),即A′(2,6),或点A的对应点A′′的坐标为(1×(-2),3×(-2)),即A′′(-2,-6).类似地,可以确定其他顶点的坐标.(4)本节课的最后要给学生总结(或让学生自己总结)平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而图形放大或缩小(位似变换)之后是相似的.并让学生练习在所给的图案中,找出平移、轴对称、旋转和位似这些变换.三、例题的意图本节课安排了两个例题,例1是教材P63的例题,它是在引导学生寻找出位似变换中对应点的坐标的变化规律后的一个用图形的坐标的变化来表示图形的位似变换的题目,其目的是巩固新知识,帮助学生加深理解用图形的坐标的变化来表示图形的位似变换知识,此题目应让学生用不同方法作出图形.例2是教材P64的一个问题,它是“平移、轴对称、旋转和位似”四种变换的一个综合题目,所给的图案由于观察的角度不同,答案就会不同,因此应让学生自己来回答,并在顺利完成这个题目基础上,让学生自己总结出这四种变换的异同.四、课堂引入1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2).(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .五、例题讲解例1(教材P63的例题)分析:略(见教材P63的例题分析)解:略(见教材P63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A′′的坐标为(-6×)21(-,6×)21(-),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,……. 解:答案不惟一,略.六、课堂练习4. 教材P64.1、25. △ABO 的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO ,使△EFO 与△ABO 的相似比为2.5∶1,求点E 和点F 的坐标.6. 如图,△AOB 缩小后得到△COD ,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.。