《线性代数》每章近10年(1997-2006)的具体考题题型
完整版)《线性代数》
完整版)《线性代数》一、单项选择题1.设矩阵$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,则$A^{-1}$等于(B)A。
$\begin{bmatrix}1&2\\3&4\end{bmatrix}$B。
$\begin{bmatrix}-2&1\\1.5&-0.5\end{bmatrix}$C。
$\begin{bmatrix}-2&1.5\\1&-0.5\end{bmatrix}$D。
$\begin{bmatrix}-2&1\\1&0\end{bmatrix}$2.设$A$是方阵,如有矩阵关系式$AB=AC$,则必有(D)A。
$A=0$B。
$BC$时$A=0$C。
$A$时$B=C$D。
$|A|$时$B=C$3.设$Ax=b$是一非齐次线性方程组,$\eta_1$,$\eta_2$是其任意两个解,则下列结论错误的是(A)A。
$\eta_1+\eta_2$是$Ax=0$的一个解B。
$\eta_1+\eta_2$是$Ax=b$的一个解C。
$\eta_1-\eta_2$是$Ax=0$的一个解D。
$2\eta_1-\eta_2$是$Ax=b$的一个解4.设$\lambda$是矩阵$A$的特征方程的3重根,$A$的属于$\lambda$的线性无关的特征向量的个数为$k$,则必有(A)A。
$k\leq3$B。
$k<3$XXXD。
$k>3$5.下列矩阵中是正定矩阵的为(C)A。
$\begin{bmatrix}1&-2\\-2&4\end{bmatrix}$B。
$\begin{bmatrix}1&2\\2&4\end{bmatrix}$C。
$\begin{bmatrix}2&-1\\-1&2\end{bmatrix}$D。
$\begin{bmatrix}-1&2\\2&4\end{bmatrix}$6.下列矩阵中,(B)不是初等矩阵。
最全线性代数习题及参考答案
第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。
2024考研数学一线性代数历年考题详解
2024考研数学一线性代数历年考题详解线性代数是2024考研数学一科目中的一个重要内容,对于考生来说,掌握线性代数的知识点和解题技巧非常关键。
本文将对2024年考研数学一线性代数部分的历年考题进行详解,帮助考生更好地备考。
一、第一节:向量与矩阵1. 2010年考题考题描述:已知向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性无关,向量\[{\beta}_1, {\beta}_2, {\beta}_3\]可由向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性表示,且\[{\beta}_1 = 2{\alpha}_1 +3{\alpha}_2\],\[{\beta}_2 = 4{\alpha}_1 + 5{\alpha}_2 + {\alpha}_3\],\[{\beta}_3 = 7{\alpha}_1 + 10{\alpha}_2 + 2{\alpha}_3\],则向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为多少?解题思路:根据题意,我们可以建立如下矩阵:\[A =\begin{bmatrix}2 &3 & 0 \\4 &5 & 1 \\7 & 10 & 2 \\\end{bmatrix}\]然后通过对矩阵进行初等行变换,将其化为行最简形。
最后,行最简形的矩阵中非零行的个数即为矩阵的秩。
在本题中,通过计算可知行最简形为:\[\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix}\]因此,向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为3。
2. 2014年考题考题描述:设矩阵\[A =\begin{bmatrix}1 & 0 & 0 \\-2 & 1 & 0 \\3 & 0 & 1 \\\end{bmatrix}\],若矩阵\[B = (A - 2I)^2 - I\],其中\[I\)为单位矩阵,求矩阵\[B\)的秩。
(完整word版)线性代数经典试题4套及答案
线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
(完整)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
线性代数自考试题及答案
线性代数自考试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个不是方阵?A. [1, 2; 3, 4]B. [1, 2]C. [1, 2; 3, 4; 5, 6]D. [1, 2; 3, 4; 5, 6; 7, 8]答案:B2. 对于向量空间中的向量组,线性相关的定义是什么?A. 向量组中的任意向量都可以用其他向量表示B. 向量组中存在非零向量可以表示为零向量C. 向量组中的向量线性组合为零向量D. 向量组中所有向量都是零向量答案:A3. 矩阵的特征值是什么?A. 矩阵对角线上的元素B. 使得方程Ax = λx 成立的标量λC. 矩阵的行数D. 矩阵的列数答案:B4. 对于矩阵 A,下列哪个矩阵是 A 的伴随矩阵?A. A^TB. A^(-1)C. adj(A)D. det(A)答案:C5. 如果一个向量是另一个向量的标量倍,这两个向量是什么关系?A. 线性无关B. 线性相关C. 正交D. 单位向量答案:B二、填空题(每题3分,共15分)6. 矩阵的秩是指_________。
答案:矩阵中线性无关的行(或列)的最大数目7. 向量空间的基是指一组_________的向量,它们能生成整个向量空间。
答案:线性无关8. 对于任意矩阵 A,|A| 表示_________。
答案:矩阵 A 的行列式9. 如果矩阵 A 可逆,那么 A 的逆矩阵记作_________。
答案:A^(-1)10. 线性变换 T: R^n → R^m 的标准矩阵是指_________。
答案:线性变换 T 对标准基的坐标表示矩阵三、解答题(共75分)11. (15分)设 A 是一个3×3 的实对称矩阵,证明其特征值都是实数。
答案:略12. (20分)给定两个向量 v1 = [1, 2, 3]^T 和 v2 = [4, 5, 6]^T,求它们的叉积v3 = v1 × v2,并证明 v3 与 v1, v2 都正交。
考研数学真题近十年考题路线分析(高数部分)
考研数学真题近十年考题路线分析(高数部分)以下给出了《高等数学》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。
高等数学(①10年考题总数:117题②总分值:764分③占三部分题量之比重:53%④占三部分分值之比重:60%)第一章函数、极限、连续(①10年考题总数:15题②总分值:69分③占第一部分题量之比重:12%④占第一部分分值之比重:9%)题型 1 求1∞型极限(一(1),2003)题型 2 求0/0型极限(一(1),1998;一(1),2006)题型 3 求∞-∞型极限(一(1),1999)题型 4 求分段函数的极限(二(2),1999;三,2000)题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)题型 6 无穷小的比较或确定无穷小的阶(二(7),2004)题型7 数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006)题型8 求n项和的数列极限(七,1998)题型9 函数在某点连续性的判断(含分段函数)(二(2),1999)第二章一元函数微分学(①10年考题总数:26题②总分值:136分③占第一部分题量之比重:22%④占第一部分分值之比重:17%)题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006)题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005)题型 3 求函数或复合函数的导数(七(1),2002)题型 4 求反函数的导数(七(1),2003)题型 5 求隐函数的导数(一(2),2002)题型 6 函数极值点、拐点的判定或求解(二(7),2003)题型7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)题型8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)题型9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004)题型10 函数单调性的判断或讨论(八(1),2003;二(8),2004)题型11不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004)题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)题型13 方程根的判定或唯一性证明(三(18),2004)题型14 曲线的渐近线的求解或判定(一(1),2005)第三章一元函数积分学(①10年考题总数:12题②总分值:67分③占第一部分题量之比重:10%④占第一部分分值之比重:8%)题型 1 求不定积分或原函数(三,2001;一(2),2004)题型 2 函数与其原函数性质的比较(二(8),2005)题型 3 求函数的定积分(二(3),1997;一(1),2000;三(17),2005)题型4 求变上限积分的导数(一(2),1999;二(10),2004)题型 5 求广义积分(一(1),2002)题型6 定积分的应用(曲线的弧长,面积,旋转体的体积,变力做功等)(七,1999;三,2003;六,2003)第四章向量代数和空间解析几何(①10年考题总数:3题②总分值:15分③占第一部分题量之比重:2%④占第一部分分值之比重:1%)题型 1 求直线方程或直线方程中的参数(四(1),1997)题型2求点到平面的距离(一(4),2006)题型 3 求直线在平面上的投影直线方程(三,1998)题型4 求直线绕坐标轴的旋转曲面方程(三,1998)第五章多元函数微分学(①10年考题总数:19题②总分值:98分③占第一部分题量之比重:16%④占第一部分分值之比重:12%)题型1多元函数或多元复合函数的偏导的存在的判定或求解(二(1),1997;一(2),1998;四,2000;四,2001;二(9),2005;三(18(Ⅰ)),2006)题型 2 多元隐函数的导数或偏导的求解或判定(三,1999;三(19),2004;二(10),2005)题型 3 多元函数连续、可导与可微的关系(二(2),2001;二(1),2002)题型4 求曲面的切平面或法线方程(一(2),2000;一(2),2003)题型5 多元函数极值的判定或求解(八(2),2002;二(3),2003;三(19),2004;二(10),2006)题型 6 求函数的方向导数或梯度或相关问题(八(1),2002;一(3),2005)题型7 已知一二元函数的梯度,求二元函数表达式(四,1998)第六章多元函数积分学(①10年考题总数:27题②总分值:170分③占第一部分题量之比重:23%④占第一部分分值之比重:22%)题型 1 求二重积分(五,2002;三(15),2005;三(15),2006)题型 2 交换二重积分的积分次序(一(3),2001;二(10),2004;二(8),2006)题型 3 求三重积分(三(1),1997)题型 4 求对弧长的曲线积分(一(3),1998)题型5求对坐标的曲线积分(三(2),1997;六,1998;四,1999;五,2000;六,2001;六(2),2002;一(3),2004;三(19),2006)题型 6 求对面积的曲面积分(八,1999)题型7 求对坐标的曲面积分(三(17),2004;一(4),2005;一(3),2006)题型8 曲面积分的比较(二(2),2000)题型9 与曲线积分相关的判定或证明(六(1),2002;五,2003;三(19(Ⅰ)),2005)题型10 已知曲线积分的值,求曲线积分中被积函数中的未知函数的表达式(六,2000;三(19(Ⅱ)),2005题型11 求函数的梯度、散度或旋度(一(2),2001)题型12 重积分的物理应用题(转动惯量,重心等)(八,2000)第七章无穷级数(①10年考题总数:20题②总分值:129分③占第一部分题量之比重:17%④占第一部分分值之比重:16%)题型1无穷级数敛散性的判定(六,1997;八,1998;九(2),1999;二(3),2000;二(2),2002;二(9),2004;三(18),2004;二(9),2006)题型 2 求无穷级数的和(九(1),1999;五,2001;七(2),2002;四,2003;三(16),2005)题型3求函数的幂级数展开或收敛域或判断其在端点的敛散性(一(2),1997;七,2000;五,2001;四,2003;三(16),2005;三(17),2006)题型 4 求函数的傅里叶系数或函数在某点的展开的傅里叶级数的值(二(3),1999;一(3);2003)第八章常微分方程(①10年考题总数:15题②总分值:80分③占第一部分题量之比重:1%④占第一部分分值之比重:10%)题型1求一阶线性微分方程的通解或特解(六,2000;一(2),2005;一(2),2006;三(18(Ⅱ)),2006)题型 2 二阶可降阶微分方程的求解(一(3),2000;一(3),2002)题型 3 求二阶齐次或非齐次线性微分方程的通解或特解(一(3),1999)题型 4 已知二阶线性齐次或非齐次微分方程的通解或特解,反求微分方程(一(1),2001)题型 5 求欧拉方程的通解或特解(一(4),2004)题型 6 常微分方程的物理应用(三(3),1997;五,1998;八,2001;三(16),2004)题型7 通过求导建立微分方程求解函数表达式或曲线方程(四(2),1997;五,1999)考研数学真题近十年考题路线分析(线代部分)以下给出了《线性代数》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。
线代第一章测试题及答案
线代第一章测试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是线性代数的研究对象?A. 向量空间B. 线性方程组C. 矩阵D. 微分方程答案:D2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行(或列)的最大数目D. 矩阵的元素个数答案:C3. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵答案:B4. 向量空间的基是指:A. 空间中的任意一组向量B. 空间中的一组线性无关的向量C. 空间中的一组线性相关的向量D. 空间中的一组正交向量答案:B二、填空题(每题5分,共20分)1. 矩阵的元素个数称为矩阵的______。
答案:阶数2. 如果一个矩阵的行向量组线性无关,则该矩阵是______矩阵。
答案:满秩3. 向量空间中,一组向量如果满足线性组合的系数全为零,则称这组向量是______的。
答案:线性无关4. 一个n阶方阵的行列式等于______。
答案:0三、简答题(每题10分,共20分)1. 请简述什么是线性方程组的解。
答案:线性方程组的解是指满足方程组中所有方程的未知数的取值。
2. 请解释什么是矩阵的转置。
答案:矩阵的转置是指将矩阵的行向量变成列向量,列向量变成行向量,即交换矩阵的行和列。
四、计算题(每题15分,共40分)1. 计算矩阵A的行列式,其中A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]。
答案:\[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 已知矩阵B = \[\begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求B的逆矩阵。
答案:\[ B^{-1} = \frac{1}{(2)(2) - (1)(4)} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 \\-2 & 1 \end{bmatrix} \]。
99997777年线性代数各校考题分布年线性代数各校考题分...
10
20
30
(控制)
97 中原電機
15
20
15
(通訊)
97 中原電子
30
97 元智通訊
2
20
23
5
97 長庚電機
20
30
97 長庚電機 5
3
11
9
6
3
5
8
(A,B)
97 逢甲通訊 10
15
5
20
應數純數類
97 台大數學
15
30
35
20
97 台聯大應 5
5
10
37
15
24
9
數
97 交大應數
12
27
35
15
25
20
97 輔大資工 4
2
35
9
97 淡江資工
4
8
36
4
97 大同資工 9
5
6
6
12
12
97 中原資工 12
7
8
23
97 銘傳資工
25
15
10
97 中華資工
10
20
10
10
97 朝陽資工 10
30
97 義守資工 10
5
5
5
10
5
電機電子電信類
97 台大電機 5
2
6
17
10
10
97 台大電信
10
20
20
20
97 嘉大應數
10
15
10
25
15
15
10
97 高大應數
10
全国自学考试线性代数历年考试真题及答案
全国自学考试线性代数历年考试真题及答案20XX年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。
每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。
每小题2分,共20分)请在每小题的空格中填上正确答案。
错选、不填均无分。
1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题1.B 2.D 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.A二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数20XX年10月自考线性代数试题答案全国20XX 年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。
自考线性代数章节测试题及答案
自考线性代数章节测试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 向量组 {v1, v2, v3} 线性无关的充分必要条件是:A. v1 ≠ 0B. v2 ≠ 0C. v1, v2 不共线D. v1, v2, v3 构成某向量空间的一个基答案:D3. 对于n维向量空间V,下列说法正确的是:A. V中任意两个向量都线性无关B. V中存在一组基,包含n个向量C. V中所有向量都可以用一组基表示D. 以上所有说法都正确答案:D4. 如果A和B是两个m×n矩阵,那么AB的行列式等于:A. |A| * |B|B. |B| * |A|C. |A| + |B|D. 不能直接计算答案:D5. 对于矩阵A,下列哪个矩阵是A的特征矩阵?A. A的转置矩阵B. A的伴随矩阵C. A的逆矩阵D. 存在非零向量v,使得Av=λv的λ构成的对角矩阵答案:D二、填空题(每题3分,共15分)6. 矩阵的秩是指________。
答案:矩阵中最大线性无关组所含向量个数7. 对于任意矩阵A,其迹数(Trace)定义为其主对角线上元素的________。
答案:和8. 线性变换T: R^n → R^m的表示矩阵是________。
答案:T作用在标准基向量上得到的向量构成的矩阵9. 二次型f(x) = x^TAx的规范型是________。
答案:f(y) = y1^2 + y2^2 + ... + yk^210. 线性方程组Ax = b有解的充分必要条件是________。
答案:R(A) = R([A; b])三、解答题(共75分)11. (15分)设A是一个3×3的实对称矩阵,证明A可以表示为A = QDQ^T,其中Q是正交矩阵,D是实对角矩阵。
答案:略(需要详细解答的请告知)12. (20分)给定两个向量v = [1, 2, 3]^T和u = [4, 5, 6]^T,求向量v在向量u上的投影。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
(完整版)全国自考历年线性代数试题及答案
(完整版)全国⾃考历年线性代数试题及答案浙02198# 线性代数试卷第1页(共54页)全国2010年1⽉⾼等教育⾃学考试《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表⽰矩阵A 的转置,αT 表⽰向量α的转置,E 表⽰单位矩阵,|A |表⽰⽅阵A 的⾏列式,A -1表⽰⽅阵A 的逆矩阵,r (A )表⽰矩阵A 的秩.⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共30分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.设⾏列式==1111034222,1111304z y x zy x则⾏列式()A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆⽅阵,则(ABC )-1=() A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=() A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则() A. α1,α2,α3,α4⼀定线性⽆关 B. α1⼀定可由α2,α3,α4线性表出 C.α1,α2,α3,α4⼀定线性相关D. α1,α2,α3⼀定线性⽆关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为() A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性⽅程组Ax =0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是() A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯⼀解浙02198# 线性代数试卷第2页(共54页)C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =??---496375254,则以下向量中是A 的特征向量的是() A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元⼆次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为()A.??963642321 B.??963640341 C.??960642621 D.??9123042321⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。
考研数学真题近十年考题路线分析【pdf】
考研数学真题近十年考题路线分析(高数部分)以下给出了《高等数学》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。
(高等数学(①10年考题总数:117题②总分值:764分③占三部分题量之比重:53%④占三部分分值之比重:60%)第一章函数、极限、连续(①10年考题总数:15题②总分值:69分③占第一部分题量之比重:12%④占第一部分分值之比重:9%)题型1求1∞型极限(一(1),2003)题型2求0/0型极限(一(1),1998;一(1),2006)题型3求∞-∞型极限(一(1),1999)题型4求分段函数的极限(二(2),1999;三,2000)题型5函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)题型6无穷小的比较或确定无穷小的阶(二(7),2004)题型7数列极限的判定或求解(二(2),2003;六(1),1997;四,2002;三(16),2006)题型8求n项和的数列极限(七,1998)题型9函数在某点连续性的判断(含分段函数)(二(2),1999)第二章一元函数微分学(①10年考题总数:26题②总分值:136分③占第一部分题量之比重:22%④占第一部分分值之比重:17%)题型1与函数导数或微分概念和性质相关的命题(二(7),2006)题型2函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005)题型3求函数或复合函数的导数(七(1),2002)题型4求反函数的导数(七(1),2003)题型5求隐函数的导数(一(2),2002)题型6函数极值点、拐点的判定或求解(二(7),2003)题型7函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)题型8函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)题型9求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004)题型10函数单调性的判断或讨论(八(1),2003;二(8),2004)题型11不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004)题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)题型13方程根的判定或唯一性证明(三(18),2004)题型14曲线的渐近线的求解或判定(一(1),2005)第三章一元函数积分学(①10年考题总数:12题②总分值:67分③占第一部分题量之比重:10%④占第一部题型1求不定积分或原函数(三,2001;一(2),2004)题型2函数与其原函数性质的比较(二(8),2005)题型3求函数的定积分(二(3),1997;一(1),2000;三(17),2005)题型4求变上限积分的导数(一(2),1999;二(10),2004)题型5求广义积分(一(1),2002)题型6定积分的应用(曲线的弧长,面积,旋转体的体积,变力做功等)(七,1999;三,2003;六,2003)第四章向量代数和空间解析几何(①10年考题总数:3题②总分值:15分③占第一部分题量之比重:2%④占第一部分分值之比重:1%)题型1求直线方程或直线方程中的参数(四(1),1997)题型2求点到平面的距离(一(4),2006)题型3求直线在平面上的投影直线方程(三,1998)题型4求直线绕坐标轴的旋转曲面方程(三,1998)第五章多元函数微分学(①10年考题总数:19题②总分值:98分③占第一部分题量之比重:16%④占第一部分分值之比重:12%)题型1多元函数或多元复合函数的偏导的存在的判定或求解(二(1),1997;一(2),1998;四,2000;四,2001;二(9),2005;三(18(Ⅰ)),2006)题型2多元隐函数的导数或偏导的求解或判定(三,1999;三(19),2004;二(10),2005)题型3多元函数连续、可导与可微的关系(二(2),2001;二(1),2002)题型4求曲面的切平面或法线方程(一(2),2000;一(2),2003)题型5多元函数极值的判定或求解(八(2),2002;二(3),2003;三(19),2004;二(10),2006)题型6求函数的方向导数或梯度或相关问题(八(1),2002;一(3),2005)题型7已知一二元函数的梯度,求二元函数表达式(四,1998)第六章多元函数积分学(①10年考题总数:27题②总分值:170分③占第一部分题量之比重:23%④占第一部分分值之比重:22%)题型1求二重积分(五,2002;三(15),2005;三(15),2006)题型2交换二重积分的积分次序(一(3),2001;二(10),2004;二(8),2006)题型3求三重积分(三(1),1997)题型4求对弧长的曲线积分(一(3),1998)题型5求对坐标的曲线积分(三(2),1997;六,1998;四,1999;五,2000;六,2001;六(2),2002;一(3),2004;三(19),2006)题型6求对面积的曲面积分(八,1999)题型7求对坐标的曲面积分(三(17),2004;一(4),2005;一(3),2006)题型8曲面积分的比较(二(2),2000)题型9与曲线积分相关的判定或证明(六(1),2002;五,2003;三(19(Ⅰ)),2005)题型10已知曲线积分的值,求曲线积分中被积函数中的未知函数的表达式(六,2000;三(19(Ⅱ)),2005题型11求函数的梯度、散度或旋度(一(2),2001)题型12重积分的物理应用题(转动惯量,重心等)(八,2000)第七章无穷级数(①10年考题总数:20题②总分值:129分③占第一部分题量之比重:17%④占第一部题型1无穷级数敛散性的判定(六,1997;八,1998;九(2),1999;二(3),2000;二(2),2002;二(9),2004;三(18),2004;二(9),2006)题型2求无穷级数的和(九(1),1999;五,2001;七(2),2002;四,2003;三(16),2005)题型3求函数的幂级数展开或收敛域或判断其在端点的敛散性(一(2),1997;七,2000;五,2001;四,2003;三(16),2005;三(17),2006)题型4求函数的傅里叶系数或函数在某点的展开的傅里叶级数的值(二(3),1999;一(3);2003)第八章常微分方程(①10年考题总数:15题②总分值:80分③占第一部分题量之比重:1%④占第一部分分值之比重:10%)题型1求一阶线性微分方程的通解或特解(六,2000;一(2),2005;一(2),2006;三(18(Ⅱ)),2006)题型2二阶可降阶微分方程的求解(一(3),2000;一(3),2002)题型3求二阶齐次或非齐次线性微分方程的通解或特解(一(3),1999)题型4已知二阶线性齐次或非齐次微分方程的通解或特解,反求微分方程(一(1),2001)题型5求欧拉方程的通解或特解(一(4),2004)题型6常微分方程的物理应用(三(3),1997;五,1998;八,2001;三(16),2004)题型7通过求导建立微分方程求解函数表达式或曲线方程(四(2),1997;五,1999)考研数学真题近十年考题路线分析(线代部分)以下给出了《线性代数》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
97年考研线性代数真题
97年考研线性代数真题1997年考研线性代数真题1997年的考研线性代数真题是一道经典的题目,它涉及到了线性代数的基本概念和运算。
本文将对这道题目进行分析和解答,帮助读者更好地理解线性代数的知识。
题目的内容是关于线性方程组的求解。
线性方程组是线性代数中的重要概念,也是解决实际问题的基础。
在这道题目中,我们需要求解一个由三个方程组成的线性方程组。
首先,我们可以将方程组写成矩阵形式,即AX=B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。
接下来,我们需要对矩阵A进行初等行变换,将其化为行最简形。
行最简形是指矩阵中每一行的首个非零元素为1,且该元素所在的列其他元素都为0。
通过初等行变换,我们可以将矩阵A化为行最简形,同时对应地对矩阵X和B进行相同的初等行变换。
在这道题目中,我们可以通过高斯消元法来进行初等行变换。
高斯消元法的基本思想是通过逐行进行操作,将矩阵化为行最简形。
具体操作包括将某一行的倍数加到另一行上,交换两行的位置,以及将某一行的元素乘以一个非零常数。
在对矩阵A进行初等行变换的过程中,我们需要注意一些特殊情况。
首先,如果某一行的首个非零元素为0,则可以将该行与下一行交换位置。
其次,如果某一行的所有元素都为0,则可以将该行删除。
最后,如果矩阵A的某一行的首个非零元素所在的列其他行的对应元素都为0,则可以将该行删除。
通过对矩阵A进行初等行变换,我们可以得到行最简形矩阵。
接下来,我们可以通过回代法求解线性方程组的解。
回代法的基本思想是从最后一行开始,逐行求解未知数的值。
具体操作是将已知的未知数的值代入到上一行的方程中,求解出该行的未知数的值。
在这道题目中,我们可以通过回代法求解出未知数的值。
首先,我们可以从最后一行开始,求解出X3的值。
然后,将求解出的X3的值代入到上一行的方程中,求解出X2的值。
最后,将求解出的X2和X3的值代入到第一行的方程中,求解出X1的值。
通过以上的步骤,我们可以求解出线性方程组的解。
(完整word版)线性代数考试题型及范围【超完整版】
线性代数考试题型及范围:一、填空1、已知矩阵A或B,求A与B之间的运算,如AB,A逆B逆,kA2、已知方阵A,求A的行列式,A的伴随矩阵,A的伴随矩阵的行列式3、求向量组的秩4、求矩阵A的相似矩阵B的行列式5、其次线性方程组有非零解的充要条件二、选择1、同阶方阵A、B的运算性质2、两个相似矩阵A B的性质3、关于向量线性相关性的选择题4、非齐次方程组的特解与其齐次方程组的基础解系之间的关系5、二次型正定性的判定三、计算题1、行列式的计算2、求A的逆矩阵四、解答题1、求向量组的极大线性无关组2、用基础解析求方程组的通解五、给定实对称矩阵A,求可逆阵P,使P-1AP为对角阵六、证明题:(关于矩阵,具体内容未知)记住这些话:第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A *A=|A|E 。
第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
第四句话:若要证明一组向量α1,α2,…,αs线性无关,先考虑用定义再说。
第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
第七句话:若已知A的特征向量p,则先用定义Ap=λp处理一下再说。
第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数
(①10年考题总数:51题②总分值:256分③占三部分题量之比重:23%④占三部分分值之比重:20%)
第一章行列式
(①10年考题总数:5题②总分值:18分③占第二部分题量之比重:9%④占第二部分分值之比重:7%)
题型 1 求矩阵的行列式(十(2),2001;一(5),2004;一(5),2005;一(5),2006)
题型2 判断矩阵的行列式是否为零(二(4),1999)
第二章矩阵
(①10年考题总数:8题②总分值:35分③占第二部分题量之比重:15%④占第二部分分值之比重:13%)
题型 1 判断矩阵是否可逆或求逆矩阵(八,1997)
题型 2 解矩阵方程或求矩阵中的参数(一(4),1997;十,2000;一(4),2001)
题型3 求矩阵的n次幂(十一(3),2000)
题型4 初等矩阵与初等变换的关系的判定(二(11),2004;二(12),2006)
题型5 矩阵关系的判定(二(12),2005)
第三章向量
(①10年考题总数:9题②总分值:33分③占第二部分题量之比重:17%④占第二部分分值之比重:12%)
题型 1 向量组线性相关性的判定或证明(十一,1998;二(4),2000;十一(2),2000;二(4),2003;二(12),2004;二(11),2005;二(11),2006)
题型 2 根据向量的线性相关性判断空间位置关系或逆问题(二(4),1997;二(4),2002)
第四章线性方程组
(共考过约11题,约 67分)
题型 1 齐次线性方程组基础解系的求解或判定(七(1),1997;九,2001)
题型 2 求线性方程组的通解(十二,1998;九,2002;三(20(Ⅲ)),2005)
题型 3 讨论含参数的线性方程组的解的情况,如果方程组有解时求出通解(三(20),2004;三(21),2005)
题型 4 根据含参数的方程组的解的情况,反求参数或其他(一(4),2000;三(20),2006)
题型 5 两个线性方程组的解的情况和它们的系数矩阵的关系的判定(一(5),2003)
题型 6 直线的方程和位置关系的判定(十,2003)
第五章矩阵的特征值和特征向量
(①10年考题总数:13题②总分值:76分③占第二部分题量之比重:25%④占第二部分分值之比重:29%)
题型 1 求矩阵的特征值或特征向量(一(4),1999;十一(2),2000;九,2003;三(21(Ⅰ)),2006)
题型 2 已知含参数矩阵的特征向量或特征值或特征方程的情况,求参数(七(2),1997;三(21),2004)
题型 3 已知伴随矩阵的特征值或特征向量,求矩阵的特征值或参数或逆问题(一(4),1998;十,1999)
题型 4 将矩阵对角化或判断矩阵是否可对角化(七(2),1997;三(21),2004;三(21(Ⅱ)),2006)
题型 5 矩阵相似的判定或证明或求一个矩阵的相似矩阵(二(4),2001;十(1),2001)
题型 6 矩阵相似和特征多项式的关系的证明或判定(十,2002)
第六章二次型
(①10年考题总数:5题②总分值:27分③占第二部分题量之比重:9%④占第二部分分值之比重:10%)
题型 1 化实二次型为标准二次型或求相应的正交变换(三(20(Ⅱ)),2005)
题型 2 已知一含参数的二次型化为标准形的正交变换,反求参数或正交矩阵(十,1998;一(4),2002)
题型 3 已知二次型的秩,求二次型中的参数和二次型所对应矩阵的表达式(三(20(Ⅰ)),2005)
题型 4 矩阵关系合同的判定或证明(二(4),2001)
题型 5 矩阵正定的证明(十一,1999)。