物理化学(程兰征)上海科学技术出版社 第三版 课后习题答案

合集下载

物理化学习题详细答案

物理化学习题详细答案

葛华才等编.《物理化学》(多媒体版)配套部分章节的计算题解.高等教育出版社第一章热力学第一定律第二章热力学第二定律第三章多组分系统第四章化学平衡第五章相平衡第六章化学动力学第七章电化学第八章界面现象第九章胶体化学第十章统计热力学第一章热力学第一定律计算题1. 两个体积均为V 的密封烧瓶之间有细管相连,管内放有氮气。

将两烧瓶均放入100℃的沸水时,管内压力为50kPa。

若一只烧瓶仍浸在100℃的沸水中,将另一只放在0℃的冰水中,试求瓶内气体的压力。

解:设瓶内压力为p′,根据物质的量守恒建立如下关系:(p′V/373.15)+ (p′V/273.15)= 2(pV/373.15)即p′=2×50 kPa/(1+373.15/273.15)=42.26 kPa2. 两个容器A 和B 用旋塞连接,体积分别为1dm3 和3dm3,各自盛有N2 和O2(二者可视为理想气体),温度均为25℃,压力分别为100kPa 和50kPa。

打开旋塞后,两气体混合后的温度不变,试求混合后气体总压及N2 和O2的分压与分体积。

解:根据物质的量守恒建立关系式p 总(V A+V B)/ 298.15=( p A V A /298.15)+ (p B V B /298.15)得p 总= ( p A V A+ p B V B)/ (V A+V B) = (100×1+50×3) kPa/(1+3)=62.5 kPan(N2)= p A V A /RT A= {100000×0.001/(8.315×298.15)}mol = 0.04034 moln(O2)= p B V B /RT B= {50000×0.003/(8.315×298.15)}mol = 0.06051 mol葛华才编.《物理化学》(多媒体版)配套部分章节的计算题解.高等教育出版社-3 y (N 2)= n (N 2)/{ n (N 2)+ n (O 2)}= 0.04034/(0.04034+0.06051)=0.4y (O 2)=1- y (N 2)=1-0.4=0.6分压p (N 2)= y (N 2) p 总 = 0.4×62.5 kPa= 25 kPap (O 2)= y (O 2) p 总 = 0.6×62.5 kPa= 37.5 kPa分体积 V (N 2)= y (N 2) V 总 = 0.4×4 dm 3 = 1.6 dm 3V (O 2)= y (O 2) V 总 = 0.6×4 dm 3 = 2.4 dm 33. 在 25℃,101325Pa 下,采用排水集气法收集氧气,得到 1dm 3 气体。

物理化学习题及答案[精品文档]

物理化学习题及答案[精品文档]

物理化学习题及答案[精品文档]-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章热力学第一定律选择题1.热力学第一定律ΔU=Q+W 只适用于()(A) 单纯状态变化(B) 相变化(C) 化学变化(D) 封闭物系的任何变化答案:D2.关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上(B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B2.关于焓的性质, 下列说法中正确的是()(A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关答案:D。

因焓是状态函数。

3.涉及焓的下列说法中正确的是()(A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。

因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。

4.下列哪个封闭体系的内能和焓仅是温度的函数()(A) 理想溶液 (B) 稀溶液 (C) 所有气体 (D) 理想气体答案:D 5.与物质的生成热有关的下列表述中不正确的是()(A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。

按规定,标准态下最稳定单质的生成热为零。

6.dU=CvdT及dUm=Cv,mdT适用的条件完整地说应当是()(A) 等容过程 (B)无化学反应和相变的等容过程 (C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D7.下列过程中, 系统内能变化不为零的是()(A) 不可逆循环过程 (B) 可逆循环过程 (C) 两种理想气体的混合过程 (D) 纯液体的真空蒸发过程答案:D。

物理化学第三版答案

物理化学第三版答案

物理化学第三版答案【篇一:物理化学核心教程课后答案完整版(第二版学生版)】s=txt>第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。

采用的是气体热胀冷缩的原理。

2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。

试问,这两容器中气体的温度是否相等?答:不一定相等。

根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。

当左球的温度为273 k,右球的温度为293 k时,汞滴处在中间达成平衡。

试问:(1)若将左球温度升高10 k,中间汞滴向哪边移动?(2)若两球温度同时都升高10 k, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两球温度同时都升高10 k,汞滴仍向右边移动。

因为左边起始温度低,升高10 k所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。

4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。

请估计会发生什么现象?答:软木塞会崩出。

这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。

如果软木塞盖得太紧,甚至会使保温瓶爆炸。

防止的方法是灌开水时不要太快,且要将保温瓶灌满。

5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。

但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。

而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。

高师《物理化学》第三版习题全解

高师《物理化学》第三版习题全解
功,体系吸热环是放热?Q为多少?
答:(1)ΔUA→B=-100+50=-50J Q=ΔUA→B-W=-50-(-80)=30J
(2)ΔUB→A=-ΔUA→B=50J Q=ΔUB→A-W=50-50=0
体系不吸热也放热
7.已知体系的状态方程式F(T,P,V)=0,由U=f(T,V)写出当压力不变时气体的内
所作功W(不)=-Q(不)=-P2(V2-V1),再经过可逆压缩回到始态,
可逆压缩
B(P2,V2,T1)———=-RTln(V1/V2)(因为可逆压缩环境消耗的功最小)
整个循环过程:
W=W(不)+W'=-P2(V2-V1)-RTln(V1/V2)=-Q
9.“因ΔH=QP,所以只有等压过程才有ΔH。”这句话是否正确?
答:不正确。H是状态函数,H=U+PV,凡是体系状态发生变化,不管经过什么过程,
体系的焓值都可能变化,即ΔH有可能不等于零。
10.因为“ΔH=QP,所以QP也具有状态函数的性质”对吗?为什么?
答:不对,ΔH=QP,只说明QP等于状态函数H的变化值ΔH,仅是数值上相等,并
QV,m=QP,m-∑νB(g)RT=-177.9×10-3-8.314×298=-180.37 KJ·mol-1
QP,m>QV,m
16.“稳定单值的焓值等于零”;“化合物摩尔生成热就是1mol该物质所具有的焓值”
对吗?为什么?
答:不对。稳定单质的焓值并不等于零。但可以说标准状态下稳定单质的规定焓值等
等于0,不一定吸热。例如,绝热容器中H2与O2燃烧,ΔHm>0,但Q=0,
不吸热。
19.“可逆过程一定是循还过程,循还过程一定是可逆过程”这种说法对吗?为什么?
答:不对。可逆过程不一定为循环过程。因为只要体系由A态在无摩擦等消耗效应存在

物理化学课后习题答案

物理化学课后习题答案

1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。

若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。

解:方法一:在题目所给出的条件下,气体的量不变。

并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff ff f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。

(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。

(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。

程兰征版物理化学习题解答

程兰征版物理化学习题解答

程兰征版物理化学习题解答3(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 化学平衡1、气相反应:2SO 3(g)=2SO 2(g)+O 2(g)在1000K 时的平衡常数θc K =×103,求该反应的θK (1000K)和θx K (1000K)。

解:第一问能做,第二问不能做(不知道系统总压)。

解答略。

2、氧化钴(CoO)能被氢或CO 还原为Co ,在721℃、101325Pa 时,以H 2还原,测得平衡气相中H 2的体积分数2H φ=;以CO 还原,测得平衡气相中CO 的体积分数2H φ=。

求此温度下反应CO(g)+H 2O(g)=CO 2(g)+H 2(g) 的平衡常数θK 。

解:CoO(s) + H 2(g) = Co(s) + H 2O (1) θp θp390.025025.0-11==θKCoO(s) + CO(g) = Co(s) + CO 2 (2) θp θp510.01920192.0-12==θK(2)-(1)= CO(g)+H 2O(g)=CO 2(g)+H 2(g) ,所以θθθ123/K K K ==51/39=3、计算加热纯Ag 2O 开始分解的温度和分解温度。

(1)在101325Pa 的纯氧中;(2)在101325Pa 且2O φ=的空气中。

已知反应2Ag 2O(s)=4Ag(s)+O 2(g)的)(T G m r θ∆=(58576-122T/K)J ·mol -1。

解:分解温度即标态下分解的温度。

令)(T G m r θ∆=(58576-122T/K)<0,得T >480K开始分解温度即非标态下分解的温度。

令)(T G m r ∆=(58576-122T/K)+×<0,得T >434K4、已知Ag 2O 及ZnO 在温度1000K 时的分解压分别为240及。

(完整版)大学物理学(第三版)课后习题答案

(完整版)大学物理学(第三版)课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v ρϖϖ-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v ρϖϖ-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量r ϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)同理2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PE ϖd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s ϖϖ,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E ϖϖ)(21210σσε-= 1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+= n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E ϖ,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εεϖϖ)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q pϖϖ=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D S ϖϖd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D εϖϖϖ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-321C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r r Q E εϖϖ=3R r >时 302π4r r Q E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向? 解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2的均匀磁场,方向沿x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB产生 01=B ϖ CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

程兰征版物理化学习题解答7

程兰征版物理化学习题解答7

第七章 电池电动势及极化现象习题解答1、已知0.100mol/kgBaCl 2溶液中,γ±=0.501,求BaCl 2的活度。

解:m ±=34m B =0.1587mol/kg ,a ±=34γ±·m B =0.07953a B = 4(γ±·m B )3=5.03×10-42、在25℃,Ag(s)+0.5Hg 2Cl 2(s)=AgCl(s)+Hg(l)的ΔH θ(298K)=7950J/mol ,又知Ag 、AgCl 、Hg 2Cl 2、Hg 的标准摩尔熵分别为:42.7、96.1、196.0、77.4J ·K -1·mol -1。

求下列电池的标准电动势及其温度系数:Ag(s),AgCl(s)|KCl(aq)|Hg 2Cl 2(s),Hg(l)解:ΔS θ(298K)=96.1+77.4-42.7-0.5×196.0=32.8(J ·K -1·mol -1)ΔG θ(298K)=7950-298×32.8=-1824.4(J/mol )E θ= -1824.4/1×(-96500)=0.01891(V)p )(T E ∂∂=32.8/1×(96500)=3.4×10-4(V/K)3、查标准电极电势表(表7-1),计算下列电池的电动势(25℃)。

(1)Ag,AgBr|Br -(a =0.10)||Cl -(a =0.010)|AgCl,Ag(2)Pt,H 2(p θ)|HCl(a ±=0.10)|Cl 2(p =5066Pa),Pt(3)Pt,H 2(p θ)|HCl(a ±=0.10)|Hg 2Cl 2,Hg(4)K-Hg(a =0.010)|KOH(a ±=0.50)|HgO,Hg(5)Pb,PbSO 4|CdSO 4(0.20mol/kg, γ±=0.11)|| CdSO 4(0.020mol/kg, γ±=0.32)|PbSO 4,Pb (6)Zn|Zn 2+(a =0.01)||Fe 2+(a =0.001),Fe 3+(a =0.10)|Pt 解:(1)AgCl+Br - =AgBr+Cl -E =0.2223-0.0713-10.0010.0lg10592.0=0.2102V (2)0.5 H 2+ 0.5Cl 2=HClE =1.3583-0.0-0.5225)(5066/101310.0lg10592.0=1.4382V(注意:a = a ±2)书上答案不对(3)0.5H 2+ 0.5Hg 2Cl 2=Hg+HClE =0.2799-0.0-110.0lg 10592.02=0.3983V书上答案不对(4)K+0.5HgO+0.5H 2O=Hg+KOHE =0.0986-(-2.924)-010.050.0lg 10592.02=2.9398V[注意:E θ(HgO/Hg)=0.0986V]书上答案不对(5)SO 42-(0.20mol/kg, γ±=0.11) =SO 42-(0.020mol/kg, γ±=0.32)近似:a +=a -= a ±=m ±γ±E =-0.1120.00.32020.0lg20592.0⨯⨯=0.01587V书上答案不对(6)Zn+2Fe 3+=Zn 2++2Fe 2+E =0.770-(-0.7628)-2210.00.01001.0lg20592.0⨯=1.7104V4、电池Pb,PbCl 2|KCl(aq)|AgCl,Ag 在25℃、p θ下的E θ=0.490V (1)写出电极反应和电池反应;(2)求电池反应的θm r S ∆、θm r G ∆、θm r H ∆,已知p )(TE ∂∂=-1.80×10-4V ·K -1解:正极:2AgCl+2e=2Ag+2Cl - ;负极:Pb-2e+2Cl -=PbCl 2电池反应:Pb+2AgCl=PbCl 2+2Agθm r G ∆=-2×96500×0.490=-94570(J/mol)θm r S ∆=2×96500×(-1.80×10-4)=-34.74(J ·K -1·mol -1)θm r H ∆=-94570+298×(-34.74)=-104922.5(J/mol)5、试验测出具有下列电池反应的可逆电池,其电动势与温度的关系式为:Cd(s)+Hg 22+=Cd 2++2Hg(l)E t =[0.6708+1.02×10-4(t/℃-25)-2.4×10-6(t/℃-25)2]V求该反应在40℃时的θm r H ∆、θm r G ∆、θm r S ∆。

物理化学 答案 第一章_习题解答

物理化学 答案 第一章_习题解答
-
解:题给过程可表示为: n=1mol,理想气体
⎧t3 = 97 C ⎧t1 = 27 C ⎧t2 = t1 ⎪ ⎪ ⎪ 恒温 , 恒外压 恒容 → ⎨ p2 = p (环) ⎯⎯⎯ → ⎨ p3 = 1013.25kPa ⎨ p1 = 101.325kPa ⎯⎯⎯⎯⎯ (1) (2) ⎪V ⎪V ⎪V = V 2 ⎩ 2 ⎩ 1 ⎩ 3
因为 P3V3 = P1V1, 所以 T3 = T1 ΔU = 0 ΔH = 0
n = 10mol , 理想气体
W = W1 + W2 = W2 = − P2 (V3 − V2 ) = −2 × 105 × (10 − 1) × 10−3 J = −1800J Q = ΔU − W = −W = 1800 J
∵ W2 = 0 ∴ W = W1+W2 = W1 = 17.74kJ
整个过程: ΔH = nC p , m (T3 − T1 ) = n(Cv , m + R )(T3 − T1 ) =1×(20.92+8.314)× (97-27)kJ = 2.046kJ
ΔU = nCv , m (T3 − T1 ) = 1 × 20.92 × (92 − 27)kJ = 1.46kJ
η = −Wr / Q1 = (T1 − T2 ) / T1 = (500 − 300) / 600 = 40%
第二个卡诺热机效率
η ′ = −Wr / Q1′ = (T1 − T2′) / T1 = (500 − 250) / 600 = 50%

η =η′
∴两个热机的效率不相同
(2)第一个热机吸收的热量: Q1 =
−Wr = −2.5Wr η 0.4 −Wr −Wr 第二个热机吸收的热量: Q1′ = = = −2Wr η′ 0.5 =

参考答案 物理化学 第三版 (程兰征 章燕豪 著) 上海科学技术出版社 课后答案

参考答案 物理化学 第三版 (程兰征 章燕豪 著) 上海科学技术出版社 课后答案

解:(1) W=-peΔV=-101³103³10³8.314³300³( (2)W=nRTln
p2 101 10 3 =10³8.314³300³10-3ln =57.43(kJ) p1 101 10 4
ww
w.
5、2.00mol 的水蒸气在 100℃、101325Pa 下变为水,求 Q、W、ΔU 及ΔH。已知水的气化 热为 2258J/g。 解:Q=Qp=ΔH=-nΔvapHm=-2³2258³18³10-3=-81.29(kJ) W=-peΔV=peVg=nRT=-2³8.314³373³10-3=6.20(kJ) ΔU=Q+W=-81.29+6.20=-75.09(kJ) 6、 1.00mol 冰在 0℃、 101325Pa 下变为水, 求 Q、 W、 ΔU 及ΔH。 已知冰的熔化热为 335J/g。 -3 冰与水的密度分别为 0.917 及 1.00g/cm 。 解:Q=Qp=ΔH=nΔfusHm=1³335³18³10-3=6.03(kJ) W=-peΔV=-101325³(
系统电池电阻丝水电阻丝电池电阻丝环境水电阻丝水电池电池电阻丝电池有者表示通电后电阻丝及水温皆升高假定电池放电时无热效应310mol的气体设为理想气体压力为1011010101101011032245kj2wnrtln108314300103ln10101101015743kj4在101kpa下气体由100dm1610103606jhqp1255juqw1255606649j5200mol的水蒸气在100101325pa及h
ww
w.
kh

后 答
29.71 ³10-3³(10002-2982)]=9898200+134-535817=23434017(J)=23434(kJ) 2

程兰征版物理化学习题解答5

程兰征版物理化学习题解答5

第五章 相平衡1、指出下面二组分平衡系统中的相数、独立组分数和自由度数。

(1)部分互溶的两个液相成平衡。

(2)部分互溶的两个溶液与其蒸气成平衡。

(3)气态氢和氧在25℃与其水溶液呈平衡。

(4)气态氢、氧和水在高温、有催化剂存在。

解:(1)C=2,φ=2,f=2-2+2=2(2)C=2,φ=3,f=2-3+2=1(3)C=3,φ=2,f=3-2+1=2(4)C=2,φ=1,f=2-1+2=32、固态NH 4HS 和任意量的H 2S 和NH 3相混合,并按下列反应达成平衡:NH 4HS (s )= H 2S(g)+NH 3(g)求(1)独立组分数(2)若将NH 4HS(s)放在抽真空的容器内,达到化学平衡后,独立组分数和自由度数各为若干?解:(1)C=3-1=2,f=2-2+2=2(2)C=3-1-1=1,f=1-2+2=13、右图为CO 2的平衡相图示意图。

是根据该图回答下列问题:(1)使CO 2在0℃时液化需要加多大压力?(2)把钢瓶中的液体CO 2项空气中喷出,大部分成为气体,一部分成为固体(干冰),温度下降到多少度,固体CO 2才能形成?(图略)(3)在空气中(101325Pa 下)温度为多少度可使固体CO 2不经液化而直接升华。

解:(1)3458kPa ;(2)-56.6℃;(3)-78.5℃4、固体CO 2的饱和蒸汽压在-103℃时等于10.226kPa ,在-78.5℃时等于101.325kPa ,求:(1)CO 2的升华热;(2)在-90℃时CO 2的饱和蒸汽压。

解:根据克-克方程(1))5.19411701(314.8H 10.226101.325ln m vap -∆=,解得m vap H ∆=25733(J ·mol -1) (2))5.19411831(314.825733p 101.325ln -=,解得p=37.27(kPa)(书上答案少个0) 5、能否在容量1.4dm 3的坩埚里熔化10kg 锡?已知锡的熔点为232℃,H fus ∆=59.84J/g ,固体锡的密度为7.18g/cm 3,dT/dp=3.26×10-5K/kPa 。

物理化学课后习题答案(全)

物理化学课后习题答案(全)

6. 1mol N2 在 0℃时体积为 70.3cm3,计算其压力,并与实验值 40.5 MPa 比较: (1) 用理想气体状态方程; (2) 用范德华方程; (3) 用压
缩因子图。
解:(1) p = RT Vm
=
⎜⎛ ⎝
8.3145× 273.15 70.3 ×10 −6
⎟⎞ ⎠
Pa
=
32.3 ×10 6
=

1 1672
=
−0.06 %
(3) 1 g 水蒸气的体积
V
=
nRT
=
⎡ ⎢ ⎢
1 18.02
×
8.3145
×
(100
+
273.15)
⎤ ⎥ ⎥
m
3
p⎢
101325

⎢⎣
⎥⎦
= 1.699 ×10−3 m 3 = 1699cm3
[ ] W = − 101325 × (1699 − 1.044) × 10−6 × 18.02 J
及 101325Pa 时 1g 水的体积为 1.044cm3,1 g 水蒸气的体积为 1673cm3。
(1) 试求此过程的功; (2) 假定略去液态水的体积,试求结果的百分误
差; (3) 假定把水蒸气当作理想气体,试求结果的百分误差; (4) 根
据(2)、(3)的假定,证明恒温下若外压等于液体的饱和蒸气压,则物质
Pa
=
32.3
MPa
(2) 由表 1–6 查得, a = 0.141 Pa ⋅ m6 ⋅ mol−2 ,
b = 0.0391 × 10−3 m3 ⋅ mol −1 ,则
p = RT − a Vm − b Vm2

程兰征版物理化学习题解答2

程兰征版物理化学习题解答2

第二章 热力学第二定律一、理想气体在27℃、劣等温膨胀到,试计算下述各进程的 Q 、W 、ΔU 、ΔH 、ΔS 。

〔1〕可逆膨胀;〔2〕自由膨胀;〔3〕对抗恒外压101kPa 膨胀。

解:〔1〕ΔU=ΔH=0;Q=-W=12ln V V nRT =××300×2050ln =4571(J); ΔS=T Q r =3004571=(J ·K -1) 〔2〕Q=0;W=0;ΔU=0;ΔH=0;ΔS=TQ r=12ln V V nR =(J ·K -1)〔3〕ΔU=ΔH=0;Q=-W=101×(50-20) =3030(J);ΔS=TQ r=12ln V V nR =(J ·K -1)二、α-Fe 由25℃加热到850℃,求ΔS 。

C p,m =·mol -1·K -1解:ΔS=dT T⎰112329830.30=×2981123ln=(J ·K -1)3、理想气体由、50℃加热至、100℃,试计算该进程的ΔS 。

C p,m = J ·mol -1·K -1。

解:属于pTV 都改变的进程。

ΔS=105ln 314.80.2323373ln 10.290.2ln ln2112,,⨯⨯+⨯⨯=+p p nR T T nC m p =、N 2从、、474K 恒外压绝热膨胀到平稳,试计算进程的ΔS 。

N 2可看成理想气体。

解:Q=0; ΔU=W,即 nC V,m (T 2-T 1)=-p e (V 2-V 1)将n=474314.81020100.236⨯⨯⨯⨯-=(mol); C V,m =; V 2=62100.1314.815.10⨯⨯T =×10-6代入上式得:××(T 2-474)=×106××10-6T 2-20×10-3) 解得 T 2=该进程属于pTV 都改变的进程,因此ΔS=01023148151047420645315102112..ln ...ln R ..p p ln nR T T lnnC m ,,p ⨯⨯+⨯⨯=+ =+=(J ·K -1)五、计算以下各物质在不同状态时熵的差值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档