2020版高考数学习题:第八篇 平面解析几何(必修2、选修1-1) 第6节 抛物线
高中数学必修二 8 4 1 平面(含答案)
第八章 立体几何初步8.4.1 平面一、基础巩固1.下列命题的符号语言中,不是公理的是( ) A .a α⊥,b a b α⊥⇒∥ B .P α∈,且P l βαβ∈⇒=,且P l ∈C .∈A l ,B l ∈,且A α∈,B l αα∈⇒⊂D .a b ∥,a c b c ⇒∥∥ 【答案】A 【详解】A 不是公理,在B 中,由公理三知:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故B 是公理.在C 中,由公理一知:如果一条直线上的两点在一个平面内,那么这条直线在此平面内,故C 是公理; 在D 中,由平行公理得:平行于同一条直线的两条直线互相平行,故D 是公理; 2.如图所示,用符号语言可表达为( )A .m n A m A n αβα=⊂⊂⊂,,,B .m n A m A n αβα=∈∈∈,,,C .m n m n A αβα=⊂=,,D .m n m n A αβα=∈=,,【答案】C 【详解】结合图形可以得出平面,αβ相交于一条直线m ,直线n 在平面α内,直线,m n 相交于点A ,结合选项可得C 正确;3.如图所示,正方体1111ABCD A B C D -中,,E F 分别为棱1,AB CC 的中点,则在平面11ADD A 内与平面1D EF 平行的直线( )A .不存在B .有1条C .有2条D .有无数条【答案】D 【详解】平面11ADD A 与平面1D EF 有公共点1D ,由公理3知平面11ADD A 与平面1D EF 必有过1D 的交线l , 在平面11ADD A 内与l 平行的直线有无数条, 且它们都不在平面1D EF 内,由线面平行的判定定理可知它们都与平面1D EF 平行. 4.下列说法正确的是( ) A .任意三点确定一个平面 B .梯形一定是平面图形C .平面α和β有不同在一条直线上的三个交点D .一条直线和一个点确定一个平面 【答案】B 【解析】A 选项,不共线的三点确定一个平面,A 错.C 选项,两个平面有公共点,则有一条过该公共点的公共直线,如没有公共点,则两平面平行,C 错.D 选项,一条直线和直线外的一点可以确定一个平面.B 选项,两条平行直线,确定一个平面,梯形中有一组对边平行,故B 对, 5.如图,四棱锥P ABCD -,ACBD O =,M 是PC 的中点,直线AM 交平面PBD 于点N ,则下列结论正确的是( )A .,,,O N P M 四点不共面B . ,,,O N M D 四点共面C . ,,O N M 三点共线D . ,,P N O 三点共线【答案】D 【详解】直线AC 与直线PO 交于点O ,所以平面PCA 与平面PBD 交于点O ,所以必相交于直线PO ,直线AM 在平面PAC 内,点N AM ∈故N ∈面PAC ,故O N P M ,,,四点共面,所以A 错. 点D 若与M,N 共面,则直线BD 在平面PAC 内,与题目矛盾,故B 错.O,M 为中点,所以OM //PA ,ON PA P ⋂=,故ON OM O ⋂=,故C 错.6.下列图形中不一定是平面图形的是( ) A .三角形 B .平行四边形 C .梯形 D .四边相等的四边形【答案】D 【详解】利用公理2可知:三角形、平行四边形、梯形一定是平面图形, 而四边相等的四边形可能是空间四边形不一定是平面图形.7.在空间四边形ABCD 的各边AB BC CD DA 、、、上的依次取点E F G H 、、、,若EH FG 、所在直线相交于点P ,则( )A .点P 必在直线AC 上B .点P 必在直线BD 上C .点P 必在平面DBC 外D .点P 必在平面ABC 内【答案】B 【详解】如图:连接EH 、FG 、BD , ∵EH 、FG 所在直线相交于点P , ∴P ∈EH 且P ∈FG ,∵EH ⊂平面ABD ,FG ⊂平面BCD , ∴P ∈平面ABD ,且P ∈平面BCD , 由∵平面ABD ∩平面BCD =BD , ∴P ∈BD , 故选B .8.平面α上有不共线的三点到平面β的距离相等,则α与β的位置关系为( ) A .平行 B .相交C .平行或相交D .垂直【答案】C 【详解】由题意,若三点分布在平面β的同侧,此时平面//α平面β; 若三点分布于平面β的两侧时,此时平面α与平面β相交, 综上可知,平面α与平面β平行或相交,故选C .9.如图,在正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点1,,A E C 的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )A .B .C .D .【答案】C 【详解】取1DD 中点F ,连接1,AF C F .平面1AFC E 为截面.如下图:10.在正方体1111ABCD A B C D 中,P ,Q ,R 分别是AB ,AD ,11C D 的中点,那么正方体过P ,Q ,R 的截面图是( )A .三角形B .四边形C .五边形D .六边形【答案】D 【详解】解:延长PQ 交CD 的延长线与E ,连ER 交1DD 于T ,则T 为1DD 的中点, 延长TR 交1CC 的延长线与F ,延长QP 交CB 的延长线与G ,连接FG 交1BB 于M ,交11B C 于S ,则易得M ,S 分别为1BB ,11B C 的中点, 连接,,QT RS PM ,则截面为正六边形PQTRSM 为所求截面. 如图所示:11.如图所示,ABCD -A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面【答案】A 【详解】连接A 1C 1,AC ,则A 1C 1∥AC , ∴A 1,C 1,A ,C 四点共面, ∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1, ∴M 在平面ACC 1A 1与平面AB 1D 1的交线上, 同理O 在平面ACC 1A 1与平面AB 1D 1的交线上. ∴A ,M ,O 三点共线.12.下列说法中正确的个数是( )①空间中三条直线交于一点,则这三条直线共面; ②平行四边形可以确定一个平面;③若一个角的两边分别平行于另一个角的两边,则这两个角相等; ④若,A A αβ,且l αβ=,则A 在l 上.A .1B .2C .3D .4【答案】B 【详解】对于①,两两相交的三条直线,若相交于同一点,则不一定共面,故①不正确;对于②,平行四边形两组对边分别平行,则平行四边形是平面图形,故②正确;对于③,若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故③不正确; 对于④,由公理可得,若,,A A l αβαβ∈∈⋂=,则∈A l ,故④正确. 二、拓展提升13.如图所示,在空间四面体ABCD 中,,E F 分别是AB ,AD 的中点,,G H 分别是BC ,CD 上的点,且11,33CG BC CH DC ==.求证:(1),,,E F G H 四点共面; (2)直线FH EG AC ,,共点.【答案】(1)证明见解析;(2)证明见解析. 【详解】(1)连接EF ,GH ,E F ,分别是AB AD ,的中点,EF BD ∴∥.又11,33CG BC CH DC ==,GH BD ∴∥,EF GH ∴,,,,E F G H ∴四点共面.(2)易知FH 与直线AC 不平行,但共面,∴设FH AC M ⋂=,则M ∈平面EFHG ,M ∈平面ABC . ∵平面EFHG ⋂平面ABC EG =,M EG ∴∈,∴直线FH EG AC ,,共点. 14.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 【答案】(1)证明见解析;(2) 45°. 【详解】(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线. (2)解:取CD 的中点G ,连结EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°. 15.如图所示,在正方体1111ABCD A B C D 中,E 为AB 的中点,F 为1AA 的中点.求证:(1)1,,,E C D F 四点共面; (2)1,,CE D F DA 三线共点. 【答案】(1)见证明 (2)见证明 【详解】证明:(1)连接11,,EF A B D C .∵E F ,分别是AB 和1AA 的中点, ∴111,2EF A B EF A B =∥. 又11111111,A D B C BC A D B C BC ∥∥==, ∴四边形11A D CB 是平行四边形, ∴11A BCD ,∴1EF CD ∥,∴EF 与1CD 确定一个平面, ∴1,,,E C D F 四点共面.(2)由(1)知,1EF CD ∥,且112EF CD =, ∴直线1D F 与CE 必相交,设1D FCE P =.∵1D F ⊂平面11AA D D ,1P D F ∈, ∴P ∈平面11AA D D .又CE ⊂平面ABCD ,P EC ∈,∴P ∈平面ABCD ,即P 是平面ABCD 与平面11AA D D 的公共点, 又平面ABCD 平面11AA D D AD =,∴P AD ∈,∴1,,CE D F DA 三线共点.。
2020年高考数学真题分类汇编:平面解析几何
2020年高考数学真题分类汇编:平面解析几何一、单选题(共15题;共30分)1.(2分)(2020·新课标Ⅲ·文)点(0,﹣1)到直线 y =k(x +1) 距离的最大值为( )A .1B .√2C .√3D .2【答案】B【解析】【解答】由 y =k(x +1) 可知直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点 A 到直线 y =k(x +1) 距离最大, 即为 |AP|=√2 . 故答案为:B.【分析】首先根据直线方程判断出直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点A 到直线 y =k(x +1) 距离最大,即可求得结果.2.(2分)(2020·新课标Ⅲ·文)在平面内,A ,B 是两个定点,C 是动点,若 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1 ,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线【答案】A【解析】【解答】设 AB =2a(a >0) ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: A(−a,0),B(a,0) ,设 C(x,y) ,可得: AC →=(x +a,y),BC →=(x −a,y) , 从而: AC →⋅BC →=(x +a)(x −a)+y 2 , 结合题意可得: (x +a)(x −a)+y 2=1 , 整理可得: x 2+y 2=a 2+1 ,即点C 的轨迹是以AB 中点为圆心, √a 2+1 为半径的圆. 故答案为:A.【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.3.(2分)(2020·新课标Ⅲ·理)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为√5.P是C上一点,且F1P⊥F2P.若⊥PF1F2的面积为4,则a=()A.1B.2C.4D.8【答案】A【解析】【解答】∵ca=√5,∴c=√5a,根据双曲线的定义可得||PF1|−|PF2||=2a,S△PF1F2=12|PF1|⋅|PF2|=4,即|PF1|⋅|PF2|=8,∵F1P⊥F2P,∴|PF1|2+|PF2|2=(2c)2,∴(|PF1|−|PF2|)2+2|PF1|⋅|PF2|=4c2,即a2−5a2+4=0,解得a=1,故答案为:A.【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 4.(2分)(2020·新课标Ⅲ·理)若直线l与曲线y= √x和x2+y2= 15都相切,则l的方程为()A.y=2x+1B.y=2x+ 12C.y= 12x+1D.y= 12x+ 12【答案】D【解析】【解答】设直线l在曲线y=√x上的切点为(x0,√x0),则x0>0,函数y=√x的导数为y′=2√x ,则直线l的斜率k=2√x,设直线l的方程为y−√x0=12√x−x0),即x−2√x0y+x0=0,由于直线l与圆x2+y2=15相切,则√1+4x0=1√5,两边平方并整理得5x02−4x0−1=0,解得x0=1,x0=−15(舍),则直线l的方程为x−2y+1=0,即y=12x+12.故答案为:D.【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案. 5.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)【答案】B【解析】【解答】因为直线x=2与抛物线y2=2px(p>0)交于C,D两点,且OD⊥OE,根据抛物线的对称性可以确定 ∠DOx =∠COx =π4 ,所以 C(2,2) , 代入抛物线方程 4=4p ,求得 p =1 ,所以其焦点坐标为 (12,0) ,故答案为:B.【分析】根据题中所给的条件 OD ⊥OE ,结合抛物线的对称性,可知 ∠COx =∠COx =π4 ,从而可以确定出点D 的坐标,代入方程求得P 的值,进而求得其焦点坐标,得到结果.6.(2分)(2020·新课标Ⅲ·文)设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( ) A .72B .3C .52D .2【答案】B【解析】【解答】由已知,不妨设 F 1(−2,0),F 2(2,0) , 则 a =1,c =2 ,因为 |OP|=2=12|F 1F 2| ,所以点 P 在以 F 1F 2 为直径的圆上, 即 △F 1F 2P 是以P 为直角顶点的直角三角形, 故 |PF 1|2+|PF 2|2=|F 1F 2|2 ,即 |PF 1|2+|PF 2|2=16 ,又 ||PF 1|−|PF 2||=2a =2 ,所以 4=||PF 1|−|PF 2||2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|=16−2|PF 1||PF 2| ,解得 |PF 1||PF 2|=6 ,所以 S △F 1F 2P =12|PF 1||PF 2|=3故答案为:B【分析】由 △F 1F 2P 是以P 为直角直角三角形得到 |PF 1|2+|PF 2|2=16 ,再利用双曲线的定义得到 ||PF 1|−|PF 2||=2 ,联立即可得到 |PF 1||PF 2| ,代入 S △F 1F 2P =12|PF 1||PF 2| 中计算即可.7.(2分)(2020·新课标Ⅲ·文)已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1B .2C .3D .4【答案】B【解析】【解答】圆 x 2+y 2−6x =0 化为 (x −3)2+y 2=9 ,所以圆心 C 坐标为 C(3,0) ,半径为 3 ,设 P(1,2) ,当过点 P 的直线和直线 CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2 .故答案为:B.【分析】根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论.8.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【答案】B【解析】【解答】∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±ba x∵直线x=a与双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=b a x,解得{x=ay=b故D(a,b)联立{x=ay=−b a x,解得{x=ay=−b故E(a,−b)∴|ED|=2b ∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x 2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故答案为:B.【分析】因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±ba x,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.9.(2分)(2020·新课标Ⅲ·理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【答案】B【解析】【解答】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a,a),则圆的半径为a,圆的标准方程为(x−a)2+(y−a)2=a2.由题意可得(2−a)2+(1−a)2=a2,可得a2−6a+5=0,解得a=1或a=5,所以圆心的坐标为(1,1)或(5,5),圆心到直线2x−y−3=0的距离均为d=√5=2√55;所以,圆心到直线2x−y−3=0的距离为2√55.故答案为:B.【分析】由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x−y−3=0的距离.10.(2分)(2020·新课标Ⅲ·理)已知⊥M:x2+y2−2x−2y−2=0,直线l:2x+y+2= 0,P为l上的动点,过点P作⊥M的切线PA,PB,切点为A,B,当|PM|⋅|AB|最小时,直线AB的方程为()A.2x−y−1=0B.2x+y−1=0C.2x−y+1=0D.2x+y+1=0【答案】D【解析】【解答】圆的方程可化为(x−1)2+(y−1)2=4,点M到直线l的距离为d=√2+1=√5>2,所以直线l与圆相离.依圆的知识可知,四点A,P,B,M四点共圆,且AB⊥MP,所以|PM|⋅|AB|=2S△PAM=2×12×|PA|×|AM|=4|PA|,而|PA|=√|MP|2−4,当直线MP⊥l时,|MP|min=√5,|PA|min=1,此时|PM|⋅|AB|最小.∴MP:y−1=12(x−1)即y=12x+12,由{y=12x+122x+y+2=0解得,{x=−1y=0.所以以MP为直径的圆的方程为(x−1)(x+1)+y(y−1)=0,即x2+y2−y−1=0,两圆的方程相减可得:2x+y+1=0,即为直线AB的方程.故答案为:D.【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点A,P,B,M共圆,且AB⊥MP,根据|PM|⋅|AB|=2S△PAM=2|PA|可知,当直线MP⊥l时,|PM|⋅|AB|最小,求出以MP为直径的圆的方程,根据圆系的知识即可求出直线AB的方程.11.(2分)(2020·新课标Ⅲ·理)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9【答案】C【解析】【解答】设抛物线的焦点为F,由抛物线的定义知|AF|=x A+p2=12,即12=9+p2,解得p=6.故答案为:C.【分析】利用抛物线的定义建立方程即可得到答案.12.(2分)(2020·天津)设双曲线C的方程为x2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24−y24=1B.x2−y24=1C.x24−y2=1D.x2−y2=1【答案】D【解析】【解答】由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线的斜率为−b,又双曲线的渐近线的方程为y=±b a x,所以−b=−b a,−b×b a=−1,因为a>0,b>0,解得a=1,b=1.故答案为:D.【分析】由抛物线的焦点(1,0)可求得直线l的方程为x+yb=1,即得直线的斜率为-b,再根据双曲线的渐近线的方程为y=±b a x,可得−b=−b a,−b×b a=−1即可求出a,b,得到双曲线的方程.13.(2分)(2020·北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【答案】B【解析】【解答】如图所示:.因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故答案为:B.【分析】依据题意不妨作出焦点在x轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ的垂直平分线经过点P,即求解.14.(2分)(2020·北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【解析】【解答】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C 在线段 OM 上时取得等号, 故答案为:A.【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.15.(2分)(2020·浙江)已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( ) A .√222B .4√105C .√7D .√10【答案】D【解析】【解答】解:点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,可知P 的轨迹是双曲线 x 21−y 23=1 的右支上的点,P 为函数y =3 √4−x 2 图象上的点,即 y 236+x 24=1 在第一象限的点,联立两个方程,解得P ( √132 , 3√32),所以|OP|= √134+274 = √10 .故答案为:D .【分析】求出P 满足的轨迹方程,求出P 的坐标,即可求解|OP|.二、多选题(共1题;共3分)16.(3分)(2020·新高考Ⅲ)已知曲线 C:mx 2+ny 2=1 .( )A .若m>n>0,则C 是椭圆,其焦点在y 轴上B .若m=n>0,则C 是圆,其半径为 √nC .若mn<0,则C 是双曲线,其渐近线方程为 y =±√−m n xD .若m=0,n>0,则C 是两条直线【答案】A,C,D【解析】【解答】对于A ,若 m >n >0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,因为 m >n >0 ,所以1m <1n,即曲线 C 表示焦点在 y 轴上的椭圆,A 符合题意;对于B ,若 m =n >0 ,则 mx 2+ny 2=1 可化为 x 2+y 2=1n ,此时曲线 C 表示圆心在原点,半径为 √n n 的圆,B 不正确;对于C ,若 mn <0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,此时曲线 C 表示双曲线, 由 mx 2+ny 2=0 可得 y =±√−mnx ,C 符合题意; 对于D ,若 m =0,n >0 ,则 mx 2+ny 2=1 可化为 y 2=1n,y =±√nn ,此时曲线 C 表示平行于 x 轴的两条直线,D 符合题意;故答案为:ACD.【分析】结合选项进行逐项分析求解, m >n >0 时表示椭圆, m =n >0 时表示圆, mn <0 时表示双曲线, m =0,n >0 时表示两条直线.三、填空题(共10题;共12分)17.(1分)(2020·新课标Ⅲ·文)设双曲线C : x 2a 2−y 2b2=1 (a>0,b>0)的一条渐近线为y= √2 x ,则C 的离心率为 .【答案】√3【解析】【解答】由双曲线方程 x 2a 2−y 2b2=1 可得其焦点在 x 轴上, 因为其一条渐近线为 y =√2x , 所以 b a =√2 , e =c a =√1+b 2a 2=√3 .故答案为: √3【分析】根据已知可得 b a=√2 ,结合双曲线中 a,b,c 的关系,即可求解.18.(1分)(2020·新课标Ⅲ·理)已知F 为双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】【解答】依题可得, |BF||AF|=3 ,而 |BF|=b 2a , |AF|=c −a ,即 b 2ac−a=3 ,变形得 c 2−a 2=3ac −3a 2 ,化简可得, e 2−3e +2=0 ,解得 e =2 或 e =1 (舍去). 故答案为: 2 .【分析】根据双曲线的几何性质可知, |BF|=b 2a , |AF|=c −a ,即可根据斜率列出等式求解即可.19.(1分)(2020·新高考Ⅲ)斜率为 √3 的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则 |AB| = .【答案】163【解析】【解答】∵抛物线的方程为 y 2=4x ,∴抛物线的焦点F 坐标为 F(1,0) ,又∵直线AB 过焦点F 且斜率为 √3 ,∴直线AB 的方程为: y =√3(x −1) 代入抛物线方程消去y 并化简得 3x 2−10x +3=0 , 解法一:解得 x 1=13,x 2=3所以 |AB|=√1+k 2|x 1−x 2|=√1+3⋅|3−13|=163解法二: Δ=100−36=64>0设 A(x 1,y 1),B(x 2,y 2) ,则 x 1+x 2=103, 过 A,B 分别作准线 x =−1 的垂线,设垂足分别为 C,D 如图所示.|AB|=|AF|+|BF|=|AC|+|BD|=x 1+1+x 2+1=x 1+x 2+2=163故答案为:163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.20.(1分)(2020·新高考Ⅲ)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC⊥DG ,垂足为C ,tan⊥ODC= 35, BH ∥DG ,EF=12 cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.【答案】4+5 2π【解析】【解答】设OB=OA=r,由题意AM=AN=7,EF=12,所以NF=5,因为AP=5,所以∠AGP=45°,因为BH//DG,所以∠AHO=45°,因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r ,DQ=7−√22r,因为tan∠ODC=OQDQ=35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH的面积为S1=12×2√2×2√2=4;扇形AOB的面积S2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S1+S2−12π=4+5π2 .故答案为:4+5π2.【分析】利用tan∠ODC=35求出圆弧AB所在圆的半径,结合扇形的面积公式求出扇形AOB的面积,求出直角 △OAH 的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.21.(1分)(2020·天津)已知直线 x −√3y +8=0 和圆 x 2+y 2=r 2(r >0) 相交于 A,B 两点.若 |AB|=6 ,则 r 的值为 .【答案】5【解析】【解答】因为圆心 (0,0) 到直线 x −√3y +8=0 的距离 d =√1+3=4 , 由 |AB|=2√r 2−d 2 可得 6=2√r 2−42 ,解得 r =5 . 故答案为:5.【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式 |AB|=2√r 2−d 2 ,即可求得 r .22.(1分)(2020·江苏)在平面直角坐标系xOy 中,若双曲线 x 2a2 ﹣ y 25 =1(a >0)的一条渐近线方程为y= √52x ,则该双曲线的离心率是 .【答案】32【解析】【解答】双曲线 x 2a2−y 25=1 ,故 b =√5 .由于双曲线的一条渐近线方程为 y =√52x ,即b a =√52⇒a =2 ,所以c =√a 2+b 2=√4+5=3 ,所以双曲线的离心率为 c a =32 . 故答案为: 32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.23.(1分)(2020·江苏)在平面直角坐标系xOy 中,已知 P(√32,0) ,A ,B 是圆C : x 2+(y −12)2=36 上的两个动点,满足 PA =PB ,则⊥PAB 面积的最大值是 . 【答案】10√5【解析】【解答】 ∵PA =PB ∴PC ⊥AB设圆心 C 到直线 AB 距离为d ,则 |AB|=2√36−d 2,|PC|=√34+14=1所以 S △PAB ≤12⋅2√36−d 2(d +1)=√(36−d 2)(d +1)2令 y =(36−d 2)(d +1)2(0≤d <6)∴y ′=2(d +1)(−2d 2−d +36)=0∴d =4 (负值舍去) 当 0≤d <4 时, y ′>0 ;当 4≤d <6 时, y ′≤0 ,因此当 d =4 时, y 取最大值,即 S △PAB 取最大值为 10√5 , 故答案为: 10√5【分析】根据条件得PC⊥AB,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.24.(2分)(2020·北京)已知双曲线C:x 26−y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.【答案】(3,0);√3【解析】【解答】在双曲线C中,a=√6,b=√3,则c=√a2+b2=3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近线方程为y=±√22x,即x±√2y=0,所以,双曲线C的焦点到其渐近线的距离为3√12+2=√3.故答案为:(3,0);√3.【分析】根据双曲线的标准方程可得出双曲线C的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.25.(1分)(2020·北京)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【解答】−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【分析】根据定义逐一判断,即可得到结果26.(2分)(2020·浙江)设直线l:y=kx+b(k>0),圆C1:x2+y2=1,C2:(x﹣4)2+y2=1,若直线l与C1,C2都相切,则k=;b=.【答案】√33;﹣2√33【解析】【解答】由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1=√1+k2=1,d2=√1+k2=1,则有|b|√1+k2=|4k+b|√1+k2,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1=|b|√1+k2=1,解得k=√33,则b=﹣2√33,故答案为:√33;﹣2√33.【分析】根据直线l与两圆都相切,分别列出方程d1=|b|√1+k2=1,d2=|4k+b|√1+k2=1,解得即可.。
高考数学复习笔记第八章 平面解析几何
第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线 解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. (2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB . 考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1,∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb=1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题;(2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,∴⎩⎨⎧2k -1k>0,1-2k >0,得k <0.∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2 (-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k ,即k =-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎢⎡⎦⎥⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π 解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x+13y +5=0.答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x +1ex +2, 因为e x >0,所以e x +1e x ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex+2≥4,故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.(2018·金华四校联考)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3 D.-2或-3解析:选C∵直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,∴2m=m+13≠4-2,解得m=2或-3.2.“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直,得(a+1)(a-1)+3a(a+1)=0,即4a2+3a-1=0,解得a=14或-1,∴“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P的坐标为(x,1-x),x∈R,则动点P的轨迹方程为________,它到原点距离的最小值为________.解析:设点P的坐标为(x,y),则y=1-x,即动点P的轨迹方程为x+y-1=0.原点到直线x+y-1=0的距离为d=|0+0-1|1+1=22,即为所求原点到动点P的轨迹的最小值.答案:x+y-1=02 21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x,y的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-ab +2,-ab -2,由-ab +2·⎝⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎪⎨⎪⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4). 答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题(题点多变型考点——多角探明)[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎨⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧ x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0 解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧ x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎨⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧ b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎨⎧ y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C. 2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3). 3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0 解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上,∵|P Q |=9+1=10,∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎨⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎨⎧ m =35,n =315,故m +n =345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎨⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3). 同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案:2x -y -2=0或2x +3y -18=8.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________.。
2020版数学习题:第八篇 平面解析几何(必修2、选修1-1) 第4节 椭 圆
第4节椭圆【选题明细表】知识点、方法题号椭圆的定义与标准方程1,2,3,7椭圆的几何性质4,6,8,9 直线与椭圆的位置关系5,10,11,12,13基础巩固(时间:30分钟)1.已知椭圆+ =1(m>0)的左焦点为F1(-4,0),则m等于(B)(A)2 (B)3 (C)4 (D)9解析:4= (m>0)⇒m=3,故选B.2.(2018·宝鸡三模)已知椭圆的焦点为F1(-1,0),F2(1,0),P是椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项,则椭圆的方程是(C)(A) + =1 (B) + =1(C) + =1 (D) + =1解析:因为F1(-1,0),F2(1,0),所以|F1F2|=2,因为|F1F2|是|PF1|与|PF2|的等差中项,所以2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,所以点P在以F1,F2为焦点的椭圆上,因为2a=4,a=2,c=1,所以b2=3.所以椭圆的方程是+ =1.故选C.3.已知中心在原点的椭圆C的右焦点为F( ,0),直线y=x与椭圆的一个交点的横坐标为2,则椭圆方程为(C)(A) +y2=1 (B)x2+ =1(C) + =1 (D) + =1解析:依题意,设椭圆方程为+ =1(a>b>0),则有由此解得a2=20,b2=5,因此所求的椭圆方程是+ =1,选C.4.(2018·广西柳州市一模)已知点P是以F1,F2为焦点的椭圆+=1(a>b>0)上一点,若PF1⊥PF2,tan∠PF2F1=2,则椭圆的离心率e等于(A)(A) (B) (C) (D)解析:因为点P是以F1,F2 为焦点的椭圆+ =1(a>b>0)上一点,PF1⊥PF2,tan∠PF2F1=2,所以=2,设|PF2|=x,则|PF1|=2x,由椭圆定义知x+2x=2a,所以x= ,所以|PF2|= ,则|PF1|= ,由勾股定理知|PF2|2+|PF1|2=|F1F2|2,所以解得c= a,所以e= = ,选A.5.过椭圆+ =1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为(B)(A) (B) (C) (D)解析:由题意知椭圆的右焦点F的坐标为(1,0),则直线AB的方程为y=2x-2.联立椭圆方程解得交点为(0,-2),( , ),所以S△OAB= ·|OF|·|y A-y B|= ×1×= ,故选B.6.若椭圆的方程为+ =1,且此椭圆的焦距为4,则实数a=.解析:由题可知c=2. ①当焦点在x轴上时,10-a-(a-2)=22,解得a=4. ②当焦点在y轴上时,a-2-(10-a)=22,解得a=8.故实数a=4或8.答案:4或87.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),则椭圆的方程为.解析:设椭圆方程为mx2+ny2=1(m>0,n>0且m≠n).因为椭圆经过点P1,P2,所以点P1,P2的坐标适合椭圆方程.则得所以所求椭圆方程为+ =1.答案: + =18.(2018·安徽模拟)已知F1,F2是长轴长为4的椭圆C: + =1(a>b>0) 的左右焦点,P是椭圆上一点,则△PF1F2面积的最大值为.解析:F1,F2 是长轴长为4 的椭圆C: + =1(a>b>0) 的左右焦点,a=2,b2+c2=4,P是椭圆上一点,△PF1F2 面积最大时,P在椭圆的短轴的端点,此时三角形的面积最大,S=bc≤=2,当且仅当b=c= 时,三角形的面积最大.答案:2能力提升(时间:15分钟)9.(2018·河南一模)已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(A)(A) (B) (C) (D)解析:设点A(-1,0)关于直线l:y=x+3 的对称点为A′(m,n),则得所以A′(-3,2).连接A′B,则|PA|+|PB|=|PA′|+|PB|≥|A′B|=2 ,所以2a≥2 .所以椭圆C的离心率的最大值为= = .故选A.10.(2018·临沂三模)直线x+4y+m=0交椭圆+y2=1于A,B,若AB中点的横坐标为1,则m等于(A)(A)-2 (B)-1 (C)1 (D)2解析:由题意,设点A(x1,y1),B(x2,y2),则+ =1, + =1两式相减,=- ·,结合直线的斜率为- ,AB中点横坐标为1,所以AB中点纵坐标为,将点(1, )代入直线x+4y+m=0得m=-2.故选A.11.(2018·珠海一模)过点M(1,1)作斜率为- 的直线l与椭圆C:+ =1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为.解析:设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=2,k AB= =- ,+ =1, ①+ =1, ②①-②整理,得=- ·,即= ,所以离心率e= = = .答案:12.(2018·天津卷)设椭圆+ =1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|= .(1)求椭圆的方程;(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2 倍,求k 的值.解:(1)设椭圆的焦距为2c,由已知有= ,又由a2=b2+c2,可得2a=3b.又|AB|= = ,从而a=3,b=2.所以,椭圆的方程为+ =1.(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2) ,由题意知,x2>x1>0,点Q的坐标为(-x1,-y1).由△BPM的面积是△BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2[x1-(-x1)],即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组消去y,可得x2= .由方程组消去y,可得x1= .由x2=5x1,可得=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=- 或k=- .当k=- 时,x2=-9<0,不合题意,舍去;当k=- 时,x2=12,x1= ,符合题意.所以k的值为- .13.(2018·和平区校级一模)已知椭圆C: + =1(a>b>0)的右焦点为( ,0),且经过点(-1,- ),点M是y轴上的一点,过点M的直线l与椭圆C交于A,B两点.(1)求椭圆C的方程;(2)若=2 ,且直线l与圆O:x2+y2= 相切于点N,求|MN|的长.解:(1)由题意知,即(a2-4)(4a2-3)=0,因为a2=3+b2>3,解得a2=4,b2=1,故椭圆C的方程为+y2=1.(2)显然直线l的斜率存在,设M(0,m),直线l:y=kx+m,A(x1,y1),B(x2,y2), 直线l与圆O:x2+y2= 相切,所以= ,即m2= (k2+1), ①由得(1+4k2)x2+8kmx+4(m2-1)=0,由韦达定理,得x1+x2=- ,x1x2= ,由=2 ,有x1=-2x2,解得x1=- ,x2= ,所以- = ,化简得- =m2-1, ②把②代入①可得48k4+16k2-7=0,解得k2= ,m2= ,在Rt△OMN中,可得|MN|= = . 故|MN|的长为.。
2020全国卷高考专题:平面解析几何
10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
精编新版2020高考数学专题训练《平面解析几何初步》完整题(含答案)
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A.[1 B .(,1[1+3,+)-∞∞C .[2-D .(,2[2+22,+)-∞-∞(2012天津理)2.到两坐标轴距离相等的点的轨迹方程是( ) A .x -y=0 B .x+y=0 C .|x|-y=0 D .|x|-|y|=0(2002京皖春文8)3.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4(2001全国文2)4.a=1是直线y=ax+1和直线y=(a-2)x-1垂直的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知直线01=-+by ax (a ,b 不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( ) A .66条 B .72条C .74条D .78条二、填空题6.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.解析:x 2+y 2的几何意义为:动点(x ,y )到原点(0,0)的距离,而动点(x ,y )在直线2x +y +5=0上,所以该问题转化为求原点(0,0)到直线2x +y +5=0的距离问题.所以x 2+y 2 ≥55= 5.7. 过点(1,0)且倾斜角是直线x -2y -1=0的倾斜角的两倍的直线方程是 ▲ .8.空间直角坐标系中,点(4,3,7)P -关于平面xoy 的对称点的坐标为 (4,3,7--) 。
2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理
等于常数2a(2a>|F1F2|)的点的轨
焦点
,两焦点间的距离叫做椭圆
2.椭圆的标准方程及其简单几何性质
标准 方程
焦点在 x 轴上 x2 + y 2 =1(a>b>0) a2 b2
图形
范围 对称性
|x|≤a;|y|≤b
曲线关于 x轴、 y轴、原点 对称
焦点在 y 轴上 y 2 + x2 =1(a>b>0) a2 b2
答案:④⑤
考点专项突破
在讲练中理解知识
考点一 椭圆的定义及其应用
【例1】 (1)已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点
C的轨迹方程为
.
解析:(1)因为△ABC 的周长为 26,顶点 A(-6,0),B(6,0),所以|AB|=12,|AC|+|BC|=2612=14,且 14>12,点 C 到两个定点的距离之和等于定值,所以点 C 的轨迹是椭圆,因为
【跟踪训练 3】
(1)过椭圆 x2 a2
+ y2 b2
=1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2
为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( )
(A) 2 (B) 3 (C) 1
5 55 以 b2≥1,所以 a2-c2≥1,4-c2≥1,解得 0<c≤ 3 ,所以 0< c ≤ 3 ,所以椭圆的离心率
a2 的取值范围为(0, 3 ).故选 A.
2
反思归纳 (1)求椭圆离心率的方法 ①直接求出a,c的值,利用离心率公式直接求解. ②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e 的方程(或不等式)求解. (2)利用椭圆几何性质求值或范围的思路 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、 焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
高考数学第八篇平面解析几何第7节圆锥曲线的综合问题(第3课时)定点、定值、存在性专题文
+1),
由x82+y42=1,
得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
y+2=k(x+1),
设 A(x1,y1),B(x2,y2),则 x1+x2=-4k(1+k-2k22),
y1),B(x2,y2).
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第二十二页,共四十二页。
由x42+y2=1,得(1+4k2)x2+8kmx+4m2-4=0. y=kx+m
则 Δ=(8km)2-4(1+4k2)(4m2-4)=16(1+4k2-m2)>0,x1+x2 =-1+8km4k2,x1x2=41m+2-4k42 ,则 y1y2=(kx1+m)(kx2+m)=m12+-44kk22,
且 x1+x2=4k82k+2 3,x1x2=44kk22-+132.
直线 AE 的方程为 y=x1y-1 2(x-2),
令 x=4,得点 M4,x12-y12,
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第十七页,共四十二页。
直线 AF 的方程为 y=x2y-2 2(x-2), 令 x=4,得点 N4,x22-y22, 所以点 P 的坐标为4,x1y-1 2+x2y-2 2. 所以直线 PF2 的斜率为 k′=x1y-1 2+4-x21y-2 2-0 =13x1y-1 2+x2y-2 2=13·y2xx11x+2-x22y(1-x12+(xy21)++y24)
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第十一页,共四十二页。
(2)由(1)知 F(1,0),设 A(x0,y0)(x0>0),D(xD,0)(xD>0), 因为|FA|=|FD|,则|xD-1|=x0+1, 由 xD>0 得 xD=x0+2,故 D(x0+2,0), 故直线 AB 的斜率为 kAB=-y20, 因为直线 l1 和直线 AB 平行, 故可设直线 l1 的方程为 y=-y20x+b,
2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)
解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,
2022届高考数学一轮复习第八章平面解析几何第6节双曲线课时作业含解析新人教版
第八章 平面解析几何授课提示:对应学生用书第325页[A 组 基础保分练]1.若双曲线C :x 2-y 2b 2=1(b >0)的离心率为2,则b =( ) A .1 B . 2 C. 3 D .2答案:C2.设双曲线C :x 2a 2-y 2b 2=1(a >b >0)的两条渐近线的夹角为α,且cos α=13,则C 的离心率为( ) A.52 B .62C.72D .2答案:B3.在平面直角坐标系中,已知双曲线C 与双曲线x 2-y 23=1有公共的渐近线,且双曲线C 经过点P (-2,3),则双曲线C 的焦距为( ) A. 3 B .2 3 C .3 3 D .4 3 答案:D4.已知双曲线x 24-y 2b 2=1(b >0)的右焦点为(3,0),则该双曲线的焦点到其渐近线的距离等于( ) A. 5 B .3 C .5 D .4 2 答案:A5.已知直线l 与双曲线C :x 2-y 2=2的两条渐近线分别交于A ,B 两点,若AB 的中点在该双曲线上,O 为坐标原点,则△AOB 的面积为( ) A.12 B .1 C .2D .4 解析:由题意得,双曲线的两条渐近线方程为y =±x ,设A (x 1,x 1),B (x 2,-x 2),所以AB 中点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1-x 22,所以⎝ ⎛⎭⎪⎫x 1+x 222-⎝ ⎛⎭⎪⎫x 1-x 222=2,即x 1x 2=2,所以S △AOB=12|OA |·|OB |=12|2x 1|·|2x 2|=|x 1x 2|=2. 答案:C6.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( ) A.32 B .3 C .2 3D .4解析:因为双曲线x 23-y 2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN =90°,则∠MFO =60°.又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2).由⎩⎪⎨⎪⎧y =-3(x -2),y =33x ,得⎩⎨⎧x =32,y =32,所以M ⎝⎛⎭⎫32,32,所以|OM |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3, 所以|MN |=3|OM |=3. 答案:B7.(2020·高考北京卷)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________.解析:双曲线C :x 26-y 23=1,c 2=6+3=9,∴c =3,则C 的右焦点的坐标为(3,0),C 的渐近线方程为y =±36x ,即y =±12x ,即x ±2y =0,则C 的焦点到其渐近线的距离d =33= 3.答案:(3,0)38.(2020·高考全国卷Ⅰ)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________. 解析:如图,A (a,0).由BF ⊥x 轴且AB 的斜率为3,知点B 在第一象限,且B ⎝⎛⎭⎫c ,b2a , 则k AB =b 2a-0c -a =3,即b 2=3ac -3a 2.又∵c 2=a 2+b 2,即b 2=c 2-a 2,∴c 2-3ac +2a 2=0, ∴e 2-3e +2=0.解得e =2或e =1(舍去).故e =2. 答案:29.(2021·八省联考模拟卷)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |. (1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .解析:(1)设双曲线的半焦距为c ,则F (c,0),B ⎝⎛⎭⎫c ,±b2a , 因为|AF |=|BF |,故b 2a =a +c ,故c 2-ac -2a 2=0,即e 2-e -2=0, 故e =2.(2)证明:设B (x 0,y 0),其中x 0>a ,y 0>0. 因为e =2,故c =2a ,b =3a ,故渐近线方程为y =±3x ,所以∠BAF ∈⎝⎛⎭⎫0,π3, ∠BF A ∈⎝⎛⎭⎫0,2π3, 又tan ∠BF A =-y 0x 0-c =-y 0x 0-2a ,tan ∠BAF =y 0x 0+a,所以tan 2∠BAF =2y 0x 0+a1-⎝ ⎛⎭⎪⎫y 0x 0+a 2=2y 0(x 0+a )(x 0+a )2-y 20=2y 0(x 0+a )(x 0+a )2-b 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3a 2⎝⎛⎭⎫x 20a 2-1=2y 0(x 0+a )(x 0+a )2-3(x 20-a 2)=2y 0(x 0+a )-3(x 0-a )=-y 0x 0-2a=tan ∠BF A ,因为∠BF A ∈⎝⎛⎭⎫0,2π3, 故∠BF A =2∠BAF .[B 组 能力提升练]1.(多选题)(2021·山东滨州期末)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-5,0),F 2(5,0),则能使双曲线C 的方程为x 216-y 29=1的条件是( )A .双曲线的离心率为54B .双曲线过点⎝⎛⎭⎫5,94 C .双曲线的渐近线方程为3x ±4y =0 D .双曲线的实轴长为4解析:由题意可得焦点在x 轴上,且c =5.A 选项,若双曲线的离心率为54,则a =4,所以b 2=c 2-a 2=9,此时双曲线的方程为x 216-y 29=1,故A 正确;B 选项,若双曲线过点⎝⎛⎭⎫5,94,则⎩⎪⎨⎪⎧25a 2-8116b 2=1,a 2+b 2=25,得⎩⎪⎨⎪⎧a 2=16,b 2=9,此时双曲线的方程为x 216-y 29=1,故B 正确;C 选项,若双曲线的渐近线方程为3x ±4y =0,可设双曲线的方程为x 216-y 29=m (m >0),所以c 2=16m +9m =25,解得m =1,所以此时双曲线的方程为x 216-y 29=1,故C 正确;D 选项,若双曲线的实轴长为4,则a =2,所以b 2=c 2-a 2=21,此时双曲线的方程为x 24-y 221=1,故D 错误.答案:ABC2.(2021·湖北稳派教育联考)设点F 1,F 2分别是双曲线C :x 2a 2-y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为26,则双曲线C 的渐近线方程为( ) A .y =±3x B .y =±33xC .y =±2xD .y =±22x答案:D3.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是C 上的一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( ) A.2x ±y =0 B .x ±2y =0 C .x ±2y =0 D .2x ±y =0 答案:A4.(多选题)已知双曲线E 与双曲线x 29-y 2=1有相同的渐近线,且双曲线E 过点M (-3,6),则下列结论正确的是( )A .双曲线E 的焦点坐标为(±52,0)B .双曲线E 的标准方程为y 25-x 245=1C .双曲线E 的离心率为10D .圆x 2+(y -52)2=45与双曲线E 的渐近线相切解析:由题意可设双曲线E 的方程为x 29-y 2=λ,∵双曲线E 过点M ()-3,6,∴(-3)29-(6)2=λ,解得λ=-5,∴双曲线E 的标准方程为y 25-x 245=1,∴双曲线E 的焦点坐标为(0,±52),离心率e =525=10,∴A 不正确,B ,C 正确;∵圆x 2+(y -52)2=45的圆心(0,52)到E的渐近线x ±3y =0的距离d =|±3×52|1+9=35,且该圆的半径R =35,∴圆x 2+(y -52)2=45与E 的渐近线相切,D 正确. 答案:BCD5.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交C 于A ,B 两点,若∠AF 2B =2π3,S △AF 2B =23,则C 的虚轴长为________.答案:2 26.已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是________.解析:对于焦点在x 轴上的双曲线x 2a 2-y 2b 2=1(a >0,b >0),它的焦点(c,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2). 答案:(0,2)[C 组 创新应用练]1.(2021·广东四校联考)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155C .4+155D .22+1解析:设双曲线的右焦点为F 2,连接PF 2(图略),因为|PF 1|-|PF 2|=22,所以|PF 1|=22+|PF 2|,|PF 1|+|PQ |=22+|PF 2|+|PQ |,当且仅当Q ,P ,F 2三点共线,且P 在Q ,F 2之间时,|PF 2|+|PQ |最小,且最小值为点F 2到直线l 的距离.由题意可得直线l 的方程为y =±22x ,焦点F 2(3,0),点F 2到直线l 的距离d =1,故|PQ |+|PF 1|的最小值为22+1. 答案:D2.已知双曲线C :x 23-y 2=1的左焦点为F ,过F 的直线l 交双曲线C 的左、右两支分别于点Q ,P .若|FQ |=t |QP |,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤0,23-36 B.⎝⎛⎦⎥⎤23-36,1C.⎝ ⎛⎦⎥⎤-∞,23-36D.⎝⎛⎦⎥⎤23+36,2 解析:由条件知F (-2,0).设P (x 0,y 0),Q (x 1,y 1),则FQ →=(x 1+2,y 1),QP →=(x 0-x 1,y 0-y 1),则(x 1+2,y 1)=t (x 0-x 1,y 0-y 1),所以x 1=tx 0-21+t ,y 1=ty 01+t.因为点P (x 0,y 0),Q (x 1,y 1)都在双曲线C 上,所以⎩⎪⎨⎪⎧x 20-3y 20=3,(tx 0-2)2-3(ty 0)2=3(1+t )2,消去y 0,得x 0=1-6t 4t .易知x 0≥3,所以1-6t 4t≥3,易知t >0,所以0<t ≤23-36,即实数t 的取值范围是⎝ ⎛⎦⎥⎤0,23-36. 答案:A3.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若|OA |=10,|OB |=12,细绳长为8,则所得双曲线的离心率为( )A.65 B .54C.32D .52解析:设|MB |=t ,则由题意,可得|MO |=12-t ,|MA |=8-t ,有|MO |-|MA |=4<|AO |=10,由双曲线的定义可得动点M 的轨迹为双曲线的一支,且双曲线的焦距2c =10,实轴长2a =4,即c =5,a =2,所以e =c a =52.答案:D。
精编新版2020高考数学专题训练《平面解析几何初步》完整考题(含标准答案)
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.方程y =表示的曲线是( )A、一条射线 B、一个圆 C、两条射线 D、半个圆二、填空题2.过直线x y l 2:=上一点P 作圆()()218:22=-+-y x C 的切线21,l l ,若21,l l 关于直线l 对称,则点P 到圆心C 的距离为 。
【解答】根据平面几何知识可知,因为直线21,l l 关于直线l 对称,所以直线21,l l 关于直线PC 对称并且直线PC 垂直于直线l ,于是点P 到点C 的距离即为圆心C 到直线l 的距离,d ==。
3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的所有的值组成的集合A=4.已知圆:M 22(cos )(sin )1x y θθ++-=,直线:l y kx =,下面四个命题:.A 对任意实数k 与θ,直线l 和圆M 相切;.B 对任意实数k 与θ,直线l 和圆M 有公共点;.C 对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切.D 对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切其中真命题的代号是______________(写出所有真命题的代号)5.以点C (-1,5)为圆心,且与y 轴相切的圆的方程为 ▲ .6.若圆C 的圆心坐标为(2,3)-,且圆C 经过点(1,1)P -,则圆C 的半径为________-7.设(4,9),(6,3)A B ,则以AB 为直径的圆的方程为___________8.已知点P 在直线,042上=+-y x 且到x 轴的距离是到y 轴的距离的32倍,则点P 的坐标是9. 过点(1,0)且倾斜角是直线x -2y -1=0的倾斜角的两倍的直线方程是 ▲ .10.已知点(1,2)(3,4)A B -和点,则线段AB 的垂直平分线l 的点法向式方程是 .11.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60︒,则圆M 的方程为 .12.设圆221x y +=的一条切线与x 轴、y 轴分别交于点A 、B ,则线段AB 长度的最小值为 ▲ .213.经过点)1,2(-,且与直线0132=--y x 垂直的直线方程是 .14.若直线过点(1,2),(4,2+3),则此直线的倾斜角是15.若直线的倾斜角的余弦值为45,则与此直线垂直的直线的斜率为____ __.16.若直线022=+-y a x 与直线01)3(=+-+y a x 平行,则实数a 的值等于 .17.1 .(2013年高考湖北卷(文))已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.18.已知点()()4,2,6,4-B A ,则直线A B 的方程为19.已知直线l 过点P (2,1),且与直线350x y ++=垂直,则直线l 的方程为三、解答题20.已知 A 、B 两地相距2R ,以AB 为直径作一个半圆,在半圆上取一点C ,连接AC 、BC ,在三角形ABC 内种草坪(如图),M 、N 分别为弧AC 、弧BC 的中点,在三角形AMC 、三角形BNC 上种花,其余是空地.设花坛的面积为1S ,草坪的面积为2S ,取ABC θ∠=.(1) 用θ及R 表示1S 和2S ; (2) 求12S S 的最小值.21.已知直线l 过两直线0103=--y x 和02=-+y x 的交点,且直线l 与点)3,1(A 和点)2,5(B 的距离相等,求直线l 的方程。
精选新版2020高考数学专题训练《平面解析几何初步》完整考题(含参考答案)
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是.........................................(C)A.[]2,2- B.(][)+∞⋃-∞-,22,C.[)(]2,00,2⋃- D.()+∞∞-,2. 直线l 过点(-1,2)且与直线垂直,则l 的方程是A .3210x y +-= B.3270x y ++= C. 2350x y -+= D. 2380x y -+=二、填空题3.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是_______________________4.过点M (0,4)、被圆4)1(22=+-y x 截得的线段长为32的直线方程为.5.已知点(2,3),(3,1),(1,3)A B C --,求BC 边上的中线AM 的长。
6.两圆229x y +=和228690x y x y +-++=的位置关系是__________;7.0y +-=截圆224x y +=得到的劣弧所对的圆心角等于_________8.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是___________,最小值是____________________9.在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______ _____10.已知点A (-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线段..AB 没有公共 点时, m 的取值范围是 ▲11.如果圆22()()4x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围 是 .12.直线0632=-+y x 关于点(1,-1)对称的直线方程为________.13.自圆222440x y x y +--+=外一点(0,4)P 向圆引两条切线,切点分别为,A B ,则PA PB ⋅等于 .14.已知111(,)P x y ,222(,)P x y 是以原点O 为圆心的单位圆上的两点,12POP θ∠=(θ为钝角).若π3sin()45θ+=,则1212x x y y +的值为 ▲ . 15.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于16.若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为______▲_______17.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是 .18.圆心在直线20x y +=上,且与直线10x y +-=切于点M (2,-1),则此圆的标准方程为__________;19.已知两条直线12:330,:4610.l ax y l x y +-=+-=若12//l l ,则a = ▲ .20.已知点P 的坐标4(,)1x y x y y x x +≤⎧⎪≥⎨⎪≥⎩满足,过点P 的直线l 与圆22:16C x y +=相交于A 、B 两点,则AB 的最小值为 .22.若圆)0(222>=+r r y x 与圆042:22=-++y x y x C 相切,则r 的值为 _ ___.23.过直线l :2y x =上一点P 作圆C :()()22812x y -+-=的切线12,l l ,若12,l l 关于直线l 对称,则点P 到圆心C 的距离为 .三、解答题24.某风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C 之间设计为直线段小路,在路的两侧..边缘种植绿化带;从点C 到点B 设计为沿弧BC 的弧形小路,在路的一侧..边缘种植绿化带.(注:小路及绿化带的宽度忽略不计) (1)设 ÐBAC =q (弧度),将绿化带总长度表示为q 的函数()s θ;(2)试确定q 的值,使得绿化带总长度最大. 25.(8分)已知以点P 为圆心的圆经过点A (﹣1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD|=4.(1)求直线CD 的方程;(2)求圆P 的方程.26.记直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 相互垂直时m 的取值集合为M ,直线03=++ny x 与直线064=++y nx 平行时n 的取值集合为N ,求N M ⋃。
高中数学--平面解析几何课件ppt
目录
3.直线方程的几种形式
名称
方程的形式
已知条件
局限性
点斜式
_y_-__y_1=__k_(_x-__x_1_)
(x1,y1)为直线上 一定点,k为斜 率
不包括垂直于x轴的 直线
斜截式
___y_=__k_x_+_b____
k为斜率,b是直 线在y轴上的截 距
不包括垂直于x轴的 直线
目录
名 方程的形式
目录
法二:由题意,所求直线的斜率存在且 k≠0, 设直线方程为 y-2=k(x-3), 令 y=0,得 x=3-2k,令 x=0,得 y=2-3k, 由已知 3-2k=2-3k,解得 k=-1 或 k=23, ∴直线 l 的方程为: y-2=-(x-3)或 y-2=23(x-3), 即直线 l 的方程为 x+y-5=0 或 2x-3y=0.
目录
【解】 (1)法一:设直线 l 的方程为 y-1=k(x-2)(k<0),
则 A(2-1k,0),B(0,1-2k), ∴S△AOB=12(2-1k)(1-2k)=2+12(-4k-1k)
≥2+12×2
-4k-1k=4,
当且仅当-4k=-1k,即 k=±12时取等号.
∵k<0,∴k=-12,
故所求直线方程为 y-1=-12(x-2), 即 x+2y-4=0.
第八章 平面解析几何
第1课时 直线及其方程
考纲展示
2016高考导航
备考指南
1.在平面直角坐标系中,结合具体图
形,掌握确定直线位置的几何要素. 1.基本公式、直线的斜率、方程以
2.掌握确定直线位置的几何要素,掌 及两直线的位置关系是高考的重
握直线方程的三种形式(点斜式、两 点.
高考理数真题训练08 平面解析几何(解答题)(原卷版)
专题08 平面解析几何(解答题)1.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.【2020年高考全国Ⅰ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.3.【2020年高考全国Ⅰ卷理数】已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.4.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅰ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.5.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.6.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.7.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.9.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |.10.【2019年高考全国Ⅰ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM的斜率之积323AP PB =为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.11.【2019年高考全国Ⅰ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 12.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.13.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.14.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.15.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.16.【2018年高考全国Ⅱ卷理数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.17.【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.18.【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.19.【2018年高考全国Ⅰ卷理数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.20.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为7,求直线l 的方程.21.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.22.【2018年高考天津卷理数】设椭圆22221x y a b+=(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率A 的坐标为(,0)b,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值.。
精选新版2020高考数学专题训练《平面解析几何初步》完整考题(含答案)
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.直线20x +-=与圆224x y +=相交于,A B 两点,则弦AB 的长度等于 ( )A .B .CD .1(2012福建文)2.圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(2006江苏)3.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞4.已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(山东卷11)A .106B .206C .306D .406 二、填空题5.圆2221:4440C x y ax a +++-=和圆2222:210C x y by b +-+-=相内切,若,a b R ∈,且0ab ≠,则2211a b +的最小值为 .6.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为 .7.若方程2224380x y kx y k +++++=表示一个圆,则实数k 的取值范围是 .8. 直线12:(1)3,:22l x a y l x y +-=-=互相垂直,则a 的值为 .9.直线y =x +b 与曲线x =恰有一个交点,则实数的b 的取值范围是____________10.若0x y >>323xy y +-的最小值为 .11.已知线段AB 两个端点A(2,-3),B(-3,-2),直线l 过点P(1,2)且过线段AB 相交,则l 的斜率k 的取值范围为 ▲ .12.圆心是(2,3)-,且经过原点的圆的标准方程为 .13. 圆22:2440C x y x y +--+=的圆心到直线l:3440x y ++=的距离d = 3 。
2020届新高考高三数学试题分项汇编专题8 平面解析几何(原卷版+解析版)
物线上的另一点 B 射出,则 ABM 的周长为( )
71 A. 26
12
B. 9 10
83 C. 26
12
D. 9 26
x2 y2 11.(2020 届山东省菏泽一中高三 2 月月考)已知双曲线 C: 1 ,( a 0 , b 0 )的左、右焦点分别为
a2 b2
F1 , F2 , O 为坐标原点,P 是双曲线在第一象限上的点, PF1 2 PF2 2m ,( m 0 ), PF1 PF2 m2 ,则双曲线
专题 8 平面解析几何
纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方 程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命 题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质, 利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同 曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法 先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置 关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与 系数的关系、弦长问题等. 预测 2021 年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下. 主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.
7
7 A.直线 l 倾斜角的余弦值为
8
4 B.若 F1P F1F2 ,则 C 的离心率 e
3
C.若 PF2 F1F2 ,则 C 的离心率 e 2 D. △PF1F2 不可能是等边三角形
最新版精选2020高考数学专题训练《平面解析几何初步》完整考题(含答案)
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A .[3,1]--B .[1,3]-C .[3,1]-D .(,3][1,)-∞-+∞(2012安徽文)2.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[D .((2008安徽理)3.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为( )A .5)2(22=+-y xB .5)2(22=-+y x C.5)2()2(22=+++y x D .5)2(22=++y x (2005重庆理)4.(2004安徽春季理10)已知直线l :x ―y ―1=0,l 1:2x ―y ―2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x ―2y +1=0B .x ―2y ―1=0C .x +y ―1=0D .x +2y ―1=05.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(3-3)B .(3-,0)∪(0,3)c .[3-3] D .(-∞,3-)∪(3,+∞)(2011年高考江西卷理科9)6.圆x 2+y 2+2x +6y +9=0与圆x 2+y 2-6x +2y +1=0的位置关系是( )A .相交B .相外切C .相离D .相内切7.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A .弧ABB .弧BC C .弧CD D .弧DA ,(上海卷15)二、填空题8.直线1y kx =+与圆220x y kx y ++-=的两个交点恰好关于y 轴对称,则k 等于 .9.△ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),则BC 边所在直线的方程为 .10.已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则实数a 的值是▲11.若直线y x m =-与圆22(2)1x y -+=有两个不同的公共点,则实数m 的取值范围为__________;12.圆心在y 轴上,且与直线y x =相切于点(1,1)的圆的方程为________ ___________.13.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m )x -4my +5m 2-6m =0,直线l 经过点(1,0).若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为 ▲ .14.若对于给定的正实数k ,函数()k f x x=的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为2,则k 的取值范围是 ▲ . 15.无论k 为何实数,直线()2110x k x k ++--=与圆2222240x y ax a a +-+--=恒有公共点,则实数a 的取值范围是 .16.两平行线l 1,l 2分别过点(1,0)与(0,5),设l 1,l 2之间的距离为d ,则d 的取值范围是________.解析:最大距离在两直线与两定点的连线垂直时,此时d 最大=(5-0)2+(0-1)2=26.17.过点023)4,3(=+-y x 且与直线平行的直线的方程是18.若原点O 在直线l 射影为点(2,1)M -,则直线l 的方程为____________19.圆2240x y x +-=在点P 处的切线方程为_____________20.如果直线10x y --=被圆心坐标为(2,1)-的圆所截得的弦长为方程为_____________21.已知向量1(3,1),(2,),2a b ==-直线l 过点(1,2)A 且与向量2a b +垂直,则直线l 的一般方程是____________。
全国通用2020_2022三年高考数学真题分项汇编专题08平面解析几何解答题(含答案及解析)
全国通用2020_2022三年高考数学真题分项汇编:08 平面解析几何(解答题)1.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3.(1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2) 设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.2.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点. (1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程: y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2).联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y −y 2=y 1−y 23y1+6−x 1−x 2(x −x 2),将(0,−2),代入整理得2(x 1+x 2)−6(y 1+y 2)+x 1y 2+x 2y 1−3y 1y 2−12=0, 将(∗)代入,得24k +12k 2+96+48k −24k −48−48k +24k 2−36k 2−48=0, 显然成立,综上,可得直线HN 过定点(0,−2). 【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 3.【2022年新高考1卷】已知点A(2,1)在双曲线C:x 2a 2−y 2a 2−1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan ∠PAQ =2√2,求△PAQ 的面积. 【答案】(1)−1; (2)16√29.【解析】 【分析】(1)由点A(2,1)在双曲线上可求出a ,易知直线l 的斜率存在,设l:y =kx +m ,P (x 1,y 1),Q (x 2,y 2),再根据k AP +k BP =0,即可解出l 的斜率;(2)根据直线AP,AQ 的斜率之和为0可知直线AP,AQ 的倾斜角互补,再根据tan ∠PAQ =2√2即可求出直线AP,AQ 的斜率,再分别联立直线AP,AQ 与双曲线方程求出点P,Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出△PAQ 的面积. (1)因为点A(2,1)在双曲线C:x 2a 2−y 2a 2−1=1(a >1)上,所以4a 2−1a 2−1=1,解得a 2=2,即双曲线C:x 22−y 2=1易知直线l 的斜率存在,设l:y =kx +m ,P (x 1,y 1),Q (x 2,y 2), 联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0, 即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan ∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0, 因为方程有一个根为2,所以x P =10−4√23,y P =4√2−53, 同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.4.【2022年新高考2卷】已知双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x2−y23=1(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由③|AM|=|BM|等价分析得到x0+ky0=8k2k2−3;由直线PM和QM的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率m=3x0y,由②PQ//AB等价转化为ky0=3x0,由①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴ba=√3,∴b=√3a,∴c2=a2+ b2=4a2=4,∴a=1,∴b=√3.∴C的方程为:x2−y23=1;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x 3−x 4)[2x 0−(x 3+x 4)]+(y 3−y 4)[2y 0−(y 3+y 4)]=0, [2x 0−(x 3+x 4)]+y 3−y 4x 3−x 4[2y 0−(y 3+y 4)]=0,即x 0−x N +k (y 0−y N )=0,即x 0+ky 0=8k 2k 2−3;由题意知直线PM 的斜率为−√3, 直线QM 的斜率为√3, ∴由y 1−y 0=−√3(x 1−x 0),y 2−y 0=√3(x 2−x 0), ∴y 1−y 2=−√3(x 1+x 2−2x 0), 所以直线PQ 的斜率m =y 1−y2x 1−x 2=−√3(x 1+x 2−2x 0)x 1−x 2, 直线PM:y =−√3(x −x 0)+y 0,即y =y 0+√3x 0−√3x ,代入双曲线的方程3x 2−y 2−3=0,即(√3x +y)(√3x −y)=3中, 得:(y 0+√3x 0)[2√3x −(y 0+√3x 0)]=3, 解得P 的横坐标:x 1=2√3(y +√3x +y 0+√3x 0),同理:x 2=2√3(y−√3x y 0−√3x 0),∴x 1−x 2=√3(3y0y 02−3x 02+y 0),x 1+x 2−2x 0=−3xy 02−3x 02−x 0,∴m =3x 0y 0,∴条件②PQ//AB 等价于m =k ⇔ky 0=3x 0, 综上所述:条件①M 在AB 上,等价于ky 0=k 2(x 0−2); 条件②PQ//AB 等价于ky 0=3x 0;条件③|AM|=|BM|等价于x 0+ky 0=8k 2k 2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立.5.【2021年甲卷文科】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析 【解析】 【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)方法一:先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-, 20,1120,21OP OQ OP OQ y p p ⊥∴⋅=-=-=∴=,所以抛物线C 的方程为2y x =,()2,0,M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y -+=;(2)[方法一]:设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -=-,又131********A A y y k y x x y y -==∴=-+, 330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切; 若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++, 所以直线12A A 方程为()11121y y x x y y -=-+, 整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=, 直线23A A 的方程为2323()0x y y y y y -++=, 12A A 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-= 所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-⋅=--,M 到直线23A A 的距离为:2123|2|y -+=22121111y y +===+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切.[方法二]【最优解】:设()()()222111113333322222,,,,,,,,A x y y x A x y y x A x y y x ===.当12x x =时,同解法1.当12x x ≠时,直线12A A 的方程为()211121y y y y x x x x --=--,即121212y y x y y y y y =+++. 由直线12A A 与M1=,化简得()121212130y y x x x +--+=,同理,由直线13A A 与M 相切得()131312130y y x x x +--+=.因为方程()1112130y y x x x +--+=同时经过点23,A A ,所以23A A 的直线方程为()1112130y y x x x +--+=,点M 到直线23A A1==.所以直线23A A 与M 相切.综上所述,若直线1213,A A A A 与M 相切,则直线23A A 与M 相切. 【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示,法二是利用相切等条件得到23A A 的直线方程为()1112130y y x x x +--+=,利用点到直线距离进行证明,方法二更为简单,开拓学生思路6.【2021年乙卷文科】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 【答案】(1)24y x =;(2)最大值为13.【解析】 【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,进而可得20025910y x +=,再由斜率公式及基本不等式即可得解. 【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭, 所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法 设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -, 由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++, 当00y =时,0OQ k =; 当00y ≠时,0010925OQ k y y =+, 当00y >时,因为0092530y y +≥=, 此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x . 设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.[方法三]:轨迹方程+换元求最值法同方法一得点Q 的轨迹方程为229525=-y x . 设直线OQ 的斜率为k ,则22229525⎛⎫==- ⎪⎝⎭y k x x x. 令11009⎛⎫=<≤ ⎪⎝⎭t t x ,则2292255=-+k t t 的对称轴为59t =,所以21110,933≤≤-≤≤k k .故直线OQ 斜率的最大值为13.[方法四]:参数+基本不等式法由题可设()24,4(0),(,)>P t t t Q x y .因为(1,0),9=F PQ QF ,所以()24,49(1,)--=--x t y t x y .于是249(1)49x t x y t y ⎧-=-⎨-=-⎩,所以21049104x t y t ⎧=+⎨=⎩则直线OQ的斜率为244194934==≤=++y t x t t t .当且仅当94t t=,即32t =时等号成立,所以直线OQ 斜率的最大值为13.【整体点评】方法一根据向量关系,利用代点法求得Q 的轨迹方程,得到直线OQ 的斜率关于y 的表达式,然后利用分类讨论,结合基本不等式求得最大值;方法二 同方法一得到点Q 的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ 的斜率的最大值,为最优解;方法三同方法一求得Q 的轨迹方程,得到直线OQ 的斜率k 的平方关于x 的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线OQ 斜率的最大值;方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.7.【2021年乙卷理科】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)【解析】 【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y . 所以()()22001453=-+-≤≤-x y y .从而有||==FN=因为053y -≤≤-,所以当03y=-时,min ||4FN . 又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法 抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值 同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .()32221200001111||242222⎛⎫=⋅-=-- ⎪⎝⎭PABSPQ x x x y x y . P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦PABSx y . 故当sin 1α=-时PAB △的面积最大,最大值为 [方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-. 抛物线C 的方程为24x y =,即24x y =,有2x y '=. 则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x x y x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -. 将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+=PABSAB d k b= 其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max=PAB S【整体点评】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PABSPQ x x =⋅-求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;8.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【解析】 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值.【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立 如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩, 化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x -=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=. [方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩, 联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆. 设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为: 221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得: []2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=, 其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=. 【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.9.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,且. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.10.【2020年新课标1卷理科】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)方法一:设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a +=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)[方法一]:设而求点法 证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭ 当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.[方法二]【最优解】:数形结合设(6,)P t ,则直线PA 的方程为(3)9ty x =+,即930-+=tx y t . 同理,可求直线PB 的方程为330--=tx y t .则经过直线PA 和直线PB 的方程可写为(93)(33)0-+--=tx y t tx y t .可化为()22292712180-+-+=txy txy ty .④易知A ,B ,C ,D 四个点满足上述方程,同时A ,B ,C ,D 又在椭圆上,则有2299x y -=-,代入④式可得()2227912180--+=tytxy ty .故()227912180⎡⎤--+=⎣⎦y t y tx t ,可得0y =或()227912180--+=t y tx t .其中0y =表示直线AB ,则()227912180--+=t y tx t 表示直线CD .令0y =,得32x =,即直线CD 恒过点3,02⎛⎫⎪⎝⎭. 【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.第二问的方法一最直接,但对运算能力要求严格;方法二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.11.【2020年新课标2卷理科】已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)[方法四]由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点, 则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x cy cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12; (2)[方法一]:椭圆的第二定义由椭圆的第二定义知20||=-MF e a x c,则有200||⎛⎫=-=- ⎪⎝⎭a MF e x a ex c ,所以0152-=a x ,即0210=-x a . 又由0||5=+=MF x c ,得052=-a x . 从而21052-=-aa ,解得6a=. 所以3,6,6====c a b p .故椭圆1C 与抛物线2C 的标准方程分别是2221,123627+==x y y x .[方法二]:圆锥曲线统一的极坐标公式以(c,0)F 为极点,x 轴的正半轴为极轴,建立极坐标系.由(Ⅰ)知2a c =,又由圆锥曲线统一的极坐标公式2||1cos θ=-cMF ,得255cos θ=-c ,由132||11cos 2θ⨯=+c MF ,得3105cos θ=+c ,两式联立解得3c =. 故1C 的标准方程为2213627x y+=,2C 的标准方程为212y x =.[方法三]:参数方程由(1)知2,a c b ==,椭圆1C 的方程为2222143x yc c+=,所以1C 的参数方程为{x =2c ⋅cosθ,y =√3c ⋅sinθ(θ为参数),将它代入抛物线22:4C y cx =的方程并化简得23cos 8cos 30θθ+-=,解得1cos 3θ=或cos 3θ=-(舍去),所以sin θ=M的坐标为23⎛ ⎝⎭c .又||5MF =,所以由抛物线焦半径公式有5+=M x c ,即253+=cc ,解得3c =. 故1C 的标准方程为2213627x y+=,2C 的标准方程为212y x =.[方法四]【最优解】:利用韦达定理由(1)知2a c =,b =,椭圆1C 的方程为2222143x yc c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=, 解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y+=,曲线2C 的标准方程为212y x =. 【整体点评】(2)方法一:椭圆的第二定义是联系准线与离心率的重要工具,涉及离心率的问题不妨考虑使用第二定义,很多时候会使得问题简单明了.方法二:圆锥曲线统一的极坐标公式充分体现了圆锥曲线的统一特征,同时它也是解决圆锥曲线问题的一个不错的思考方向.方法三:参数方程是一种重要的数学工具,它将圆锥曲线的问题转化为三角函数的问题,使得原来抽象的问题更加具体化.方法四:韦达定理是最常用的处理直线与圆锥曲线位置关系的方法,联立方程之后充分利用韦达定理可以达到设而不求的效果.12.【2020年新课标2卷文科】已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y +=,2C : 28y x =. 【解析】 【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可; 【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中c 不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x ya b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2b a-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±,所以,C D 的纵坐标分别为2c ,2c -,故22||bAB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y+=,2C 的标准方程为28y x =.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.13.【2020年新课标3卷理科】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积. 【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点P 作x 轴垂线,垂足为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,从而求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】 (1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率c e a ===,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)[方法一]:通性通法不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,垂足为M ,设直线6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===,根据两点间距离公式可得:AQ ==,∴APQ 面积为:1522⨯=; ②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ==根据两点间距离公式可得:AQ =∴APQ 面积为: 1522=,综上所述,APQ 面积为:52. [方法二]【最优解】:由对称性,不妨设P ,Q 在x 轴上方,过P 作PE x ⊥轴,垂足为E .设(6,0)D ,由题知,PEB BDQ ≌.故131p BP PE PEPE x QB BD ==⇒=⇒=±, ①因为(3,1),(5,0),(6,2)P A Q -,如图,所以,52APQAQDPEDQ PEAS SS S=--=.②因为(3,1),(5,0),(6,8)P A Q --,如图,所以52APQAQDPEDQ PEASSS S=--=.综上有52APQ S =△ [方法三]:由已知可得()5,0B ,直线,BP BQ 的斜率一定存在,设直线BP 的方程为()5y k x =-,由对称性可设0k <,联立方程22(5),161,2525y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22221161601625250k x k x k +-+⨯-=,由韦达定理得221625255116P k x k ⨯-=+,所以22805116P k x k -=+,将其代入直线BP 的方程得210116P ky k -=+,所以22280510,116116k k P k k ⎛⎫-- ⎪++⎝⎭,则||BP = 因为BP BQ ⊥,则直线BQ 的方程为1(5)y x k=--,则16,,||Q BQ k ⎛⎫-== ⎪⎝⎭ 因为||||BP BQ ==422566810k k -+=, 即()()22641410k k --=,故2164k =或214k =,即18k =-或12k =-.当18k =-时,点P ,Q的坐标分别为(3,1),(6,8),||P Q PQ -=直线PQ 的方程为71093y x =+,点A 到直线PQ故APQ 的面积为1522=.当12k =-时,点P ,Q 的坐标分别为(3,1),(6,2),||P Q PQ =直线PQ 的方程为13y x =,点(5,0)A -到直线PQ故APQ 的面积为1522.综上所述,APQ 的面积为52.[方法四]:由(1)知椭圆的方程为221612525x y +=,(5,0),(5,0)A B -.不妨设()00,P x y 在x 轴上方,如图.设直线:(5)(0)AP y k x k =+>.因为||||,BP BQ BP BQ =⊥,所以00||1,||5Q y BN y BM x ====-.由点P 在椭圆上得201612525x +=,所以209x =.由点P 在直线AP 上得()015k x =+,所以015k x k -=.所以2159k k -⎛⎫= ⎪⎝⎭,化简得216101k k =-. 所以0110155516k x k k k -⎛⎫-=--== ⎪⎝⎭,即(6,16)Q k . 所以,点Q 到直线AP 的距离d ==又)0||5AP x ==+=.故115222APQSAP d =⋅==.即APQ 的面积为52.[方法五]:由对称性,不妨设P ,Q 在x 轴上方,过P 作PC x ⊥轴,垂足为C ,设(6,0)D , 由题知PCB BDQ ≌,所以131p BP PC PCPC x QB BD ==⇒=⇒=±. (1)(3,1),(5,0),(6,2)P A Q -. 则221221115(||||)(||||)|82111|222APQSAP AQ AP AQ x y x y =⋅-⋅=-=⨯-⨯=. (其中()()1122,,,AP x y AQ x y ==). (2)(3,1),(5,0),(6,8)P A Q --. 同理,221221115(||||)()|28111|222APQSAP AQ AP AQ x y x y =-⋅=-=⨯-⨯=. (其中()()1122,,,AP x y AQ x y ==) 综上,APQ 的面积为52.【整体点评】(2)方法一:根据平面几何知识可求得点P 的坐标,从而得出点Q 的坐标以及直线AQ 的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求APQ 的面积,计算上有简化,是本题的最优解;方法三:通过设直线BP 的方程()5y k x =-与椭圆的方程联立,求出点P 的坐标,再根据题目等量关系求出k 的值,从而得出点Q 的坐标以及直线AQ 的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线AP 的方程:(5)(0)AP y k x k =+>,通过平面知识求出点P 的坐标,表示出点Q ,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.14.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【解析】 【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭。
高考数学《平面解析几何》练习题及答案
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
【艺术生专用】2020版高考数学二轮专题复习第八章平面解析几何第6节
__________ .
解析: 设双曲线的方程为 x2- 4y2= λ(λ≠0),焦距 2c= 10, c2= 25,
当 λ>0
时,
x2- λ
y2 λ=
1
,
λ+
λ= 4
25,∴
λ= 20;
4
当 λ<0
时,
y2 - λ-
x2 = -λ
1,-
λ+
-λ 4 =25,
4
∴ λ=- 20.
故该双曲线的方程为 x2 -y2= 1 或 y2- x2 = 1.
第八章 第 6 节
1.已知双曲线的离心率为 2,焦点是 (- 4,0), (4,0),则双曲线的方程为 (
)
A. x2- y2 = 1 4 12
C. x2 - y2= 1 10 6
B. x2 -y2= 1 12 4
D.x2- y2 = 1 6 10
解析: A [ 已知双曲线的离心率为 2,焦点是 ( -4,0), (4,0),则 c=4, a= 2,b2= 12,
20 5
5 20
答案: x2 - y2= 1 或 y2- x2 = 1
20 5
5 20
7.(2020 宁·德质检 )已知点 P 是以 F 1,F 2为焦点的双曲线 C:x2- y2= 1 上的一点, 且 |PF1|
=3|PF 2|,则△ PF1F 2 的周长为 ________ . 解析: 根据题意,双曲线 C 的方程为 x 2-y2= 1,则 a= 1, b=1,则 c= 2,
C. 2 解析: C
[ 双曲线 x2- y2= 1 的渐近线方程为 a2 b2
D. 17 y= ±bx,第一象限的点
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6节抛物线
【选题明细表】
知识点、方法题号
抛物线的定义与应用2,3,4,10 抛物线的标准方程及几何性质1,6
直线与抛物线的位置关系5,7,8,11
抛物线的综合应用9,12,13
基础巩固(时间:30分钟)
1.(2018·沈阳质量监测)抛物线y=4ax2(a≠0)的焦点坐标是( C )
(A)(0,a) (B)(a,0)
(C)(0,) (D)(,0)
解析:将y=4ax2(a≠0)化为标准方程得x2=y(a≠0),
所以焦点坐标为(0,),所以选C.
2.(2018·新余一中模拟)动点P到点A(0,2)的距离比它到直线l:
y=-4的距离小2,则动点P的轨迹方程为( D )
(A)y2=4x (B)y2=8x (C)x2=4y (D)x2=8y
解析:因为动点P到A(0,2)点的距离比它到直线l:y=-4的距离小2,所以动点P到点A(0,2)的距离与它到直线y=-2的距离相等,根据抛物线的定义可得点P的轨迹为以A(0,2)为焦点,以直线y=-2为准线的抛物
线,其标准方程为x2=8y,故选D.
3.(2018·云南昆明一中月考)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A为C上一点,以F为圆心,FA为半径的圆交l于B,D两点,若∠BFD=120°,△ABD的面积为2,则p等于( A )
(A)1 (B) (C) (D)2
解析:因为∠BFD=120°,
所以圆的半径|FA|=|FB|=2p,|BD|=2p,
由抛物线定义,点A到准线l的距离d=|FA|=2p,
所以|BD|·d=2p·p=2,
所以p=1,选A.
4.(2018·四川南充二模)抛物线C:y2=8x的焦点为F,准线为l,P是l 上一点,连接PF并延长交抛物线C于点Q,若|PF|=|PQ|,则|QF|等于( C )
(A)3 (B)4 (C)5 (D)6
解析:如图,直线l与x轴的交点为D,
过Q点作QQ′⊥l,Q′为垂足,
设|QF|=d,由抛物线的定义可知
|QQ′|=d,又|PF|=|PQ|,
所以|PF|=4d,|PQ|=5d,
又△PDF∽△PQ′Q,
所以=,解得d=5,
即|QF|=5,故选C.
5.(2018·湖南两市九月调研)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B,交其准线l于点C,若点F是AC的中点,且|AF|=4,则线段AB的长为( C )
(A)5 (B)6
(C)(D)
解析:如图,
过点A作AD⊥l交l于点D,
所以|AF|=|AD|=4,
由点F是AC的中点,
有|AF|=2|MF|=2p.
所以2p=4,解得p=2,
抛物线y2=4x
设A(x1,y1),B(x2,y2),
则|AF|=x1+=x1+1=4.
所以x1=3,A(3,2),F(1,0).
k AF==.
AF:y=(x-1)与抛物线y2=4x,
联立得3x2-10x+3=0,x1+x2=,
|AB|=x1+x2+p=+2=.
故选C.
6.(2018·大庆中学模拟)已知点A(4,0),抛物线C:y2=2px(0<p<4)的准线为l,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则p= .
解析:设焦点为F,由题可得∠PAF=,x P=+⇒x P=,所以4=x P++⇒p=.
答案:
7.(2018·海南省八校联考)已知F是抛物线C:y2=16x的焦点,过F的直线l与直线x+y-1=0垂直,且直线l与抛物线C交于A,B两点,则
|AB|= .
解析:F是抛物线C:y2=16x的焦点,
所以F(4,0),又过F的直线l与直线x+y-1=0垂直.
所以直线l的方程为y=(x-4),代入抛物线C:y2=16x,易得3x2-40x+48=0.
设A=(x1,y1),B=(x2,y2),x1+x2=,|AB|=x1+x2+8=.
答案:
能力提升(时间:15分钟)
8.(2018·吉林百校联盟联考)已知抛物线C:y2=2px(p>0)的焦点F到其准线l的距离为2,过焦点且倾斜角为60°的直线与抛物线交于M,N两点,若MM′⊥l,NN′⊥l,垂足分别为M′,N′,则△M′N′F的面积为( B )
(A)(B) (C)(D)
解析:因为p=2,所以抛物线方程为y2=4x,
直线MN:x=y+1,
由得y2-y-4=0,
则y1+y2=,y1y2=-4,
所以|y1-y2|==.
所以S△M′N′F=××2=.选B.
9.如图,过抛物线y2=4x焦点的直线依次交抛物线和圆(x-1)2+y2=1于A,B,C,D四点,则|AB|·|CD|等于( C )
(A)4 (B)2
(C)1 (D)
解析:法一(特值法)由题意可推得|AB|·|CD|为定值,
所以分析直线与x轴垂直的情况,即可得到答案.
因为圆(x-1)2+y2=1的圆心为抛物线y2=4x的焦点,半径为1,
所以此时|AB|=|CD|=1.
所以|AB|·|CD|=1,故选C.
法二(直接法)设A(x1,y1),D(x2,y2),抛物线的焦点为F,AD的方程为y=k(x-1).
则由
消去y,可得x1x2=1,
而|AB|=|FA|-1=x1+1-1=x1,
|CD|=|FD|-1=x2+1-1=x2,
所以|AB|·|CD|=x1·x2=1.
故选C.
10.(2018·临川二中模拟)如图所示,点F是抛物线y2=8x的焦点,点
A,B分别在抛物线y2=8x及圆(x-2)2+y2=16的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围为.
解析:抛物线的准线l:x=-2,焦点F(2,0),由抛物线定义可得|AF|=x A+2,圆(x-2)2+y2=16的圆心为(2,0),半径为4,所以△FAB的周长为|AF|+|AB|+|BF|=x A+2+(x B-x A)+4=6+x B,由抛物线y2=8x及圆(x-2)2+y2=16可得交点的横坐标为2,所以x B∈(2,6],所以6+x B∈(8,12].
答案:(8,12]
11.(2018·东北三校二模)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则
△BCF与△ACF的面积之比= .
解析:设AB:y=k(x-),代入y2=2x得k2x2-(2k2+2)x+3k2=0,
设A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=3,
而|BF|=2,所以x2+=2.
所以x2=,x1=2.
====.
答案:
12.(2018·全国Ⅱ卷)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
解:(1)抛物线C:y2=4x的焦点为F(1,0),
当直线的斜率不存在时,|AB|=4,不满足;
设直线AB的方程为y=k(x-1),
设A(x1,y1),B(x2,y2),
则整理得k2x2-2(k2+2)x+k2=0,
则Δ=16k2+16>0,
故x1+x2=,x1x2=1,
由|AB|=x1+x2+p=+2=8,
解得k2=1,则k=1,
所以直线l的方程y=x-1.
(2)由(1)可得AB的中点坐标为D(3,2),
则直线AB的垂直平分线方程为
y-2=-(x-3),
即y=-x+5,
设所求圆的圆心坐标为(x0,y0),
则
解得或
因此,所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
13.(2018·东城区二模)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若OA⊥OB,求△AOB面积的最小值.
解:(1)由抛物线C:y2=2px经过点P(2,2)知4p=4,解得p=1,
则抛物线C的方程为y2=2x,
抛物线C的焦点坐标为(,0),准线方程为x=-.
(2)由题知,直线AB不与y轴垂直,设直线AB:x=ty+a.
由消去x,得y2-2ty-2a=0,
设A(x1,y1),B(x2,y2),
则y1+y2=2t,y1y2=-2a,
因为OA⊥OB,所以x1x2+y1y2=0,
即+y1y2=0,
解得y1y2=0(舍)或y1y2=-4,
所以-2a=-4,解得a=2,
所以直线AB:x=ty+2,
所以直线AB过定点(2,0),
S△AOB=×2×|y1-y2|
=
=≥
=4.
当且仅当y1=2,y2=-2或y1=-2,y2=2时,等号成立, 所以△AOB面积的最小值为4.。