高中数学必修二平面解析几何知识点梳理
高中数学必修2立体几何常考题型:平面
平面【知识梳理】1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD 、平面AC 或平面BD . 4.平面的基本性质题型一、文字语言、图形语言、符号语言的相互转化【例1】 根据图形用符号表示下列点、直线、平面之间的关系. (1)点P 与直线AB ; (2)点C 与直线AB ; (3)点M 与平面AC ;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解](1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.【类题通法】三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.【对点训练】1.根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A ∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.解:(1)点A在平面α内,点B不在平面α内,如图(1);(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图(2);(3)直线l经过平面α外一点P和平面α内一点Q,如图(3).题型二、点、线共面问题【例2】证明两两相交且不共点的三条直线在同一平面内.[解]已知:如图所示,l∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证法1:(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.证法2:(辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.【类题通法】证明点、线共面问题的理论依据是公理1和公理2,常用方法有(1)先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入法”;(2)先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“同一法”;(3)假设不共面,结合题设推出矛盾,用“反证法”.【对点训练】2.下列说法正确的是()①任意三点确定一个平面②圆上的三点确定一个平面③任意四点确定一个平面④两条平行线确定一个平面A.①②B.②③C.②④D.③④解析:选C不在同一条直线上的三点确定一个平面.圆上三个点不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.当四点在一条直线上时不能确定一个平面,③不正确.根据平行线的定义知,两条平行直线可确定一个平面,故④正确.题型三、共线问题【例3】已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.[证明]法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.【类题通法】点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.【对点训练】3.如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.证明:如下图所示,连接A1B,CD1.显然B∈平面A1BCD1,D1∈平面A1BCD1.∴BD1⊂平面A1BCD1.同理BD1⊂平面ABC1D1.∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q,∴Q∈平面ABC1D1.又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1.∴Q∈BD1,即B,Q,D1三点共线.【练习反馈】1.若点Q在直线b上,b在平面β内,则Q,b,β之间的关系可记作()A.Q∈b∈βB.Q∈b⊂βC.Q⊂b⊂βD.Q⊂b∈β解析:选B∵点Q(元素)在直线b(集合)上,∴Q∈b.又∵直线b(集合)在平面β(集合)内,∴b⊂β,∴Q∈b⊂β.2.两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对解析:选C若三个点在同一直线上,则两平面可能相交;若这三个点不在同一直线上,则这两个平面重合.3.下列对平面的描述语句:①平静的太平洋面就是一个平面;②8个平面重叠起来比6个平面重叠起来厚;③四边形确定一个平面;④平面可以看成空间中点的集合,它当然是一个无限集.其中正确的是________.解析:答案:④4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________. 解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案:C5.将下列符号语言转化为图形语言.(1)a⊂α,b∩α=A,A∉a.(2)α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.解:(1)(2)。
高中数学必修二平面解析几何知识点梳理教学内容
高中数学必修二平面解析几何知识点梳理平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+by a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点.(2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点.(3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点.4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A C By Ax d +++=. 7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221B A C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离2200()()d a x b y =-+-】13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA CBb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是 121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D .18.对称问题:(1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程.(2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、-a+m ) .19.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,. 20.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α两条异面线所成的角︒0α︒90<≤。
高中数学解析几何知识点总结
高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
高中数学平面解析几何知识点总结
高中数学平面解析几何知识点总结归纳目录第一部分直线与方程知识点总结第二部分圆与方程知识点总结第三部分圆锥曲线知识点总结1.椭圆知识点总结2.双曲线知识点总结3.抛物线知识点总结第一部分直线与方程知识点总结一、直线的方程1、倾斜角定义:直线与x轴正方向所成的角α,α∈[0,π)。
2、倾斜角的斜率:k=tanx(x≠90°),tan是sin比cos。
(1)过点P1(X1,Y1),和点P2(X2,Y2)的直线斜率公式:k=(y2-y1)÷(X2-X1)。
(2)已知直线的一般方程式Ax+By+C=0,则斜率k=-A÷B(B≠0)。
3、直线方程的几种形式斜截式:y=kx+b一般方程式:Ax+By+C=0点斜式:y-y₀=k(x-x0), 不能表示平行于y轴的直线截距式:x/a+y/b=1(a≠0且b≠0),不能表示过原点的直线两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)二、直线的特殊位置关系(以斜截式:y=kx+b举例)直线L1与L2垂直,k1×k2=-1直线L1与L2平行,k1=k2,b1≠b2(垂直和平行这两种情况重点记)直线L1与L2重合,k1=k2,b1=b2直线L1与L2相交,k1≠k2三、点与直线的公式1.中点公式:中点坐标的横坐标=(x1+x2)/ 2,纵坐标=(y1+y2)/ 2。
2.两点之间的距离公式:d = √[(x2 - x1)² + (y2 - y1)²]3.点到直线Ax+By+C=0的距离d公式:4.两条平行直线间的距离公式:若两直线分别为Ax+By+C1=0和Ax+By+C2=0,则距离为|C1-C2|/√ (A²+B²)。
第二部分圆与方程知识点总结一、圆的三种方程(1)圆的标准方程公式:(x-a)²+(y-b)²=r²,圆心:(a,b),半径:r。
高中数学解析几何知识点总结
高中数学解析几何知识点总结解析几何是数学中的一个重要分支,它是几何和代数的结合,通过代数方法研究几何问题。
在高中数学学习中,解析几何是一个重要的知识点,它涉及到直线、圆、曲线等图形的性质和相关定理。
下面将对高中数学解析几何的知识点进行总结。
一、直线的方程。
1.点斜式方程。
点斜式方程是解析几何中直线的一种常见方程形式,它的形式为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率。
利用点斜式方程,可以方便地确定直线的位置和性质。
2.一般式方程。
一般式方程是直线的另一种常见方程形式,它的形式为Ax+By+C=0,其中A、B、C为常数且A和B不同时为0。
一般式方程可以直接得到直线的斜率和截距,方便进行直线的分析和运算。
二、圆的方程。
1.标准方程。
圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
通过标准方程,可以直接得到圆的圆心和半径,方便进行圆的性质和位置分析。
2.一般方程。
圆的一般方程是x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
一般方程可以通过配方和化简得到圆的标准方程,也可以直接得到圆的圆心坐标和半径长度。
三、曲线的方程。
1.抛物线的方程。
抛物线的一般方程为y=ax²+bx+c,其中a、b、c为常数且a≠0。
抛物线是解析几何中的重要曲线,通过抛物线的方程可以确定抛物线的开口方向、顶点坐标等重要性质。
2.椭圆的方程。
椭圆的一般方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a、b分别为椭圆在x轴和y轴上的半轴长度。
椭圆是解析几何中的另一种重要曲线,通过椭圆的方程可以确定椭圆的中心、长短轴长度等重要性质。
综上所述,高中数学解析几何知识点总结包括直线的方程、圆的方程和曲线的方程。
通过对这些知识点的学习和掌握,可以帮助学生更好地理解和运用解析几何知识,提高数学解题能力。
高中数学平面解析几何知识点归纳
高中数学平面解析几何知识点归纳推荐文章高中数学知识点全总结热度:高中数学知识点全总结最全版热度:高中数学全部知识点提纲整理热度:高中数学函数知识点归纳热度:高中数学立体几何知识点大全热度:高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。
直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。
②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。
③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。
空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。
解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
最新高二数学解析几何知识点
最新高二数学解析几何知识点解析几何是高中数学中的一个重要分支,主要研究平面和空间中的点、线、面以及它们之间的关系。
下面是最新高二数学解析几何的16个知识点。
1.二维坐标系:介绍平面直角坐标系,直线的斜率和距离等概念。
2.直线的性质:解析直线的斜截式、截距式、一般式等表达方式,并介绍直线的平行、垂直等性质。
3.直线的方程:介绍直线的点斜式、两点式、法向量式等方程形式。
4.直线与圆的位置关系:探讨直线与圆的相切、相交、相离等情况,并介绍切线和法线的性质。
5.圆的方程:推导圆的标准方程和一般方程,并介绍圆心半径的意义。
6.圆与圆的位置关系:讨论两个圆的相切、相交、相含等情况,并介绍外切圆和内切圆的性质。
7.平面的方程:介绍平面的点法式和一般式方程,并探讨平面的平行、垂直等性质。
8.平面与直线的位置关系:讨论平面与直线的相交、平行、垂直等情况,并介绍截距式和法向量式等方程形式。
9.空间直线的方程:介绍空间直线的对称式、参数式、一般式等方程形式。
10.空间直线与平面的位置关系:讨论空间直线与平面的相交、平行、垂直等情况,并介绍距离的概念。
11.空间平面的方程:介绍空间平面的一般式和点法式方程,并探讨平面的平行、垂直等性质。
12.空间平面与平面的位置关系:讨论空间平面与平面的相交、平行、垂直等情况。
13.空间直线和空间平面的位置关系:讨论空间直线和平面的相交、平行、垂直等情况。
14.空间直线间的位置关系:讨论两条空间直线的相交、平行、共面等情况,并介绍异面直线的概念。
15.空间平面间的位置关系:讨论两个空间平面的相交、平行、共面等情况,并介绍异面平面的概念。
16.三角形的面积:介绍三角形的面积计算公式,推导海伦公式和矢量面积公式,并应用于解析几何的问题。
以上是最新高二数学解析几何的16个知识点,通过学习这些知识点,可以帮助学生对解析几何有更深入的理解,并能够应用于解决实际问题。
人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_基础
人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习平面【学习目标】1.利用生活中的实物对平面进行描述;理解平面的概念,掌握平面的画法及表示方法.2.重点掌握平面的基本性质.3.能利用平面的性质解决有关问题.【要点梳理】【空间点线面之间的位置关系知识讲解】要点一、平面的基本概念1.平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象.几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.要点诠释:(1)“平面”是平的(这是区别“平面”与“曲面”的依据);(2) “平面”无厚薄之分;(3)“平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2.平面的画法:通常画平行四边形表示平面.要点诠释:(1)表示平面的平行四边形,通常把它的锐角画成45,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画;3.平面的表示法:(1)用一个希腊字母表示一个平面,如平面α、平面β、平面γ等;(2)用表示平面的平行四边形的四个字母表示,如平面ABCD;(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面AC或者平面BD;4.点、直线、平面的位置关系:(1)点A 在直线a 上,记作A a ∈;点A 在直线a 外,记作A a ∉;(2)点A 在平面α上,记作A α∈;点A 在平面α外,记作A α∉;(3)直线l 在平面α内,记作l α⊂;直线l 不在平面α内,记作l α⊄.要点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1.公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;(2)符号语言表述:A l ∈,B l ∈,A α∈,B l αα∈⇒⊂;(3)图形语言表述:要点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”.2.公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面;(2)符号语言表述:A 、B 、C 三点不共线⇒有且只有一个平面α,使得A α∈,B α∈,C α∈;(3)图形语言表述:要点诠释:公理2的作用是确定平面,是把空间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面;②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3.公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;(2)符号语言表述:P l αβαβ∈⇒=且P l ∈;(3)图形语言表述:要点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.要点三、证明点线共面所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1.证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1);②经过不在同一条直线上的三点,有且只有一个平面(公理2及其推论).2.证明点线共面的常用方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面a、β重合;(3)反证法.3.具体操作方法:(1)证明几点共面的问题可先取三点(不共线的三点)确定一个平面,再证明其余各点都在这个平面内;(2)证明空间几条直线共面问题可先取两条(相交或平行)直线确定一个平面,再证明其余直线均在这个平面内.要点四、证明三点共线问题所谓点共线问题就是证明三个或三个以上的点在同—条直线上.1.证明三点共线的依据是公理3:如果两个不重合的平面有一个公共点,那么它们还有其他的公共点,且所有这些公共点的集合是一条过这个公共点的直线.也就说一个点若是两个平面的公共点,则这个点在这两个平面的交线上.对于这个公理应进一步理解下面三点:①如果两个相交平面有两个公共点,那么过这两点的直线就是它们的交线;②如果两个相交平面有三个公共点,那么这三点共线;③如果两个平面相交,那么一个平面内的直线和另一个平面的交点必在这两个平面的交线上.2.证明三点共线的常用方法方法1:首先找出两个平面,然后证明这三点都是这两个平面的公共点.根据公理3知,这些点都在交线上.方法2:选择其中两点确定一条直线,然后证明另一点也在其上.要点五、证明三线共点问题所谓线共点问题就是证明三条或三条以上的直线交于一点.1.证明三线共点的依据是公理3.2.证明三线共点的思路:先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上的问题.【经典例题】类型一、平面的概念及其表示例1.下面的说法中正确的是().A .平行四边形是一个平面B .任何一个平面图形都是一个平面C .平静的太平洋面就是一个平面D .圆和平行四边形都可以表示平面【答案】D【解析】 利用平面的基本特征以及平面与平面图形的区别进行判断.A 不正确.我们用平行四边形来表示平面,但不能说平行四边形是一个平面.平行四边形仅是平面上四条线段构成的图形,它是不能无限延展的.B 不正确,平面图形和平面是完全不同的两个概念,平面图形是有大小的,它是不可以无限延展的.C 不正确,太平洋再大也会有边际,也不可能是绝对平面.D 正确.在需要时,除用平行四边形表示平面外,还能用三角形、梯形、圆等来表示平面.【总结升华】 平面与平面图形既有区别又有联系.平面没有角度、绝对平展、无边界,是一种理想的图形.平面可以用三角形、正方形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形等是平面.举一反三:【变式1】下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50 m ,宽是20 m ;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为( ).A .1B .2C .3D .4【答案】A例2.平面α内的直线a 、b 相交于点P ,用符号语言概述为“a b P =,且P ∈α ”,是否正确?【答案】不正确【解析】不正确.应表示为:a α⊂,b α⊂,且a ∩b=P .相交于点P 的直线a 、b 都在平面α内,也可以说,平面α经过相交于点P 的直线a 、b .题中的符号语言只描述了直线a 、b 交于点P ,点P 在平面α内,而没有描述直线a 、b 也都在平面内,下图也是题中的符号语言所表示的情形.【总结升华】用符号语言来叙述时,必须交代清楚所有元素的位置关系,不能有半点遗漏.立体几何中的三种语言(文字语言、符号语言、图形语言组成立体几何语言,我们强须准确地把握它们.其中文字语言比较自然、生动,能将问题研究的对象的含义更明确地叙述出来.图形语言给人以清晰的视觉形象,有助于空间想象力的培养;而符号语言更精练、简洁.三种语言的互译有助于我们在更广阔的思维领域里寻找解决问题的途径,有利于对思维广阔性的培养.举一反三:【变式1】指出图中的图形画法是否正确,如不正确,请改正.(1)如图1,直线a 在平面α内.(2)如图2,直线a 和平面α相交.(3)如图3,直线a和平面α平行.【答案】详见解析【解析】(1)(2)(3)的图形画法都不正确.正确画法如下图:(1)直线a在平面α内:(2)直线a与平面α相交:(3)直线a与平面α平行:类型二、平面的确定例3.判断下列说法是否正确,并说明理由:(1)一点和一条直线确定一个平面;(2)经过一点的两条直线确定一个平面:(3)两两相交的三条直线确定一个平面;(4)首尾依次相接的4条线段在同一平面内.【答案】不正确正确不正确不正确【解析】(1)不正确.如果点在直线上,可以确定无数个平面;如果点不在直线上,在已知直线上任取两个不同的点,由公理2知,有且只有一个平面,或直接由公理2的推论1知,有且只有一个平面.(2)正确.经过同一点的两条直线是相交直线,由公理2的推论2知,有且只有一个平面.(3)不正确.3条直线可能交于同一点,也可能有三个不同交点,如下图(1)、(2)所示.前者,由公理2的推论2知.可以确定1个或3个平面;后者,由公理2的推论2及公理1知,能确定一个平面.(4)不正确.四边形中三点可确定一个平面,而第4点不一定在此平面内,如上图(3),因此这4条线段不一定在同一平面内.【总结升华】公理2及其3个推论都是确定平面的依据,对涉及这方面的应用问题,务必分清它们的条件.立体几何研究的对象是空间点、线、面的位置关系问题,要有一定的空间想象能力.对于问题中的点、线,要注意它们各种不同的位置关系,以及由此产生的不同结果.举一反三:【变式1】正方体的八个顶点一共可以确定个平面.【答案】20例4.三个互不重合的平面,能把空间分成n部分,则n的所有可能值为______________.【思路点拨】将互不重合的三个平面的位置关系分为:三个平面互相平行;三个平面有两个平行,第三个平面与其它两个平面相交;三个平面交于一线;三个平面两两相交且三条交线平行;三个平面两两相交且三条交线交于一点;五种情况并分别讨论,即可得到答案.【答案】4,6,7,8【解析】若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;若三个平面交于一线,则可将空间分为6部分;若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分; 若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分; 故n 等于4,6,7或8类型三、平面的基本性质的应用例5.如右图,在正方体ABCD-A 1B 1C 1D 1中,判断下列命题是否正确,并说明理由.(1)直线AC 1在平面CC 1B 1B 内;(2)设正方形ABCD 与正方形A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C与平面BB 1D 1D 的交线为OO 1;(3)由点A 、D 、C 可以确定一个平面;(4)由点A 、C 1、B 1确定的平面为ADC 1B 1;(5)由点A 、C 1、B 1确定的平面与由点A 、C 1、D 确定的平面是同一个平面.【解析】(1)错误.因为点A ∉平面CC 1B 1B ,所以AC 1不在平面CC 1B 1B 内.(2)正确.因为点O ∈直线AC ,直线AC ⊂平面AA 1C 1C ,所以点O ∈平面AA 1C 1C .同理,点O 1∈平面AA 1C 1C ,所以直线OO 1⊂平面AA 1C 1C .同理,直线OO 1⊂平面BB 1D 1D .故OO 1为平面AA 1C 1C 与平面BB 1D 1D 的交线.(3)错误.因为点A 、O 、C 在同一直线上,故不能确定—个平面(4)正确.因为点A 、C 1、B 1不共线,故可确定一个平面,又AD ∥B 1C 1,所以点D ∈平面AB 1C 1,故由点A 、C 1、B 1确定的平面为ADC 1B 1.(5)正确.因为点A 、C 1、B 1确定的平面为平面ADC 1B 1,而由点A 、C 1、D 确定的平面也是平面ADC 1B 1,故它们确定的是同一个平面.【总结升华】正确地运用三个公理和有关概念的推理是解决此类题目的依据.例6.已知直线a ∥b ,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面.证明 证法一:如下图所示.由已知a ∥b ,所以过a ,b 有且只有一个平面α.设l A α=,b l B =,∴A ∈α,B ∈α,且A ∈l ,B ∈l ,∴l α⊂.即过a ,b ,l 有且只有一个平面.证法二:由已知可设la A =,lb B =. ∵l a A =,过l 与a 有且只有一个平面β.∵a ∥b ,∴过a ,b 有且只有一个平面α,∴B ∈α,B ∈β,a α⊂,a β⊂.又B∉a,∴平面α与β重合.=⇒过a,b,l有且只有一个平面.即a∥b,.a l A=,b l B【总结升华】在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.确定一个平面的方法:①直线和直线外一点确定一个平面;②两条平行线确定一个平面;③两条相交直线确定一个平面.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.举一反三:【空间点线面之间的位置关系例2】【变式】(1)空间两两相交的四条直线能确定几个平面?(2)证明空间不共点且两两相交的四条直线在同一平面内.【答案】(1)1或6;(2)略【解析】(1)略(2)分两种情形,有三条交于一个点,没有三条交于一个点.已知:直线AB、BC、CD、DA两两相交,且不过同一点.求证:直线AB、BC、CD、DA共面.证明:如图(左),AB、BC、CD、DA两两相交,且无三条直线相交于一点.设AD、BC交于点M,AB、CD交于点N.∴AB、CD确定一个平面α.又∵C∈CD,B∈AB,D∈CD,A∈AB.∴A、B、C、D∈α.由公理1,知AD、BC∈α.故AB、BC、CD、DA四条直线共面.如图(右),AB、BC、CD、DA两两相交,且有三直线交于一点D.∵AB∩CD=C.∴AB、CD确定一个平面β.又∵A∈AB,D∈CD,∴A、D∈β,B∈AB,D∈CD,∴B、D∈β.∴AD⊂β,BD⊂β(公理1).∴AB、BC、CD、DA四直线共面.例7.如下图,已知△ABC的三个顶点都不在平面α内,它的三边AB、BC、AC延长后分别交平面α于点P、Q、R.求证:P、Q、R在同一条直线上.证明由已知AB的延长线交平面α于点P,根据公理3,平面ABC与平面α必相交于一条直线,设为L.∵P∈直线AB,∴P∈平面ABC.又AB∩α=P,∴P∈平面α,∴P是平面ABC与平面α的公共点.∵平面ABC∩α=l,∴P∈l,同理,Q∈l,R∈l.∴点P、Q、R在同一条直线l上.【总结升华】多点共线中的这条线一定是两个平面的交线,因此这类问题实际为两平面的相交问题.举一反三:【空间点线面之间的位置关系 例3】【变式1】已知E,F,G,H 分别是空间四边形各边AB ,AD ,BC ,CD 上的点,且直线EF 与GH 交于点P .求证:B ,D ,P 在同一直线上.【解析】P EF P ABD P EF GH P GH P BCD ∈⇒∈⎧⎫∈⇒⎨⎬∈⇒∈⎩⎭平面平面P ABD BCD BD P BD ⇒∈=⇒∈平面平面例8.(2016 甘肃天水月考)在正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1AA 的中点,求证:CE ,1D F ,DA 三线共点.【思路点拨】延长1D F 、DA 交于P ,连结EP ,由已知条件得△P AE ≌△P AF ,从而得到∠PEA +∠AEC =180°,由此能证明CE 、1D F 、DA 三线共点于P .【答案】略【解析】延长1D F 、DA 交于P ,连结EP∵AE =AF ,P A =P A ,∠P AE =∠P AF =90°,∴△P AE ≌△P AF ,∴∠PF A =∠PEA ,∵∠PEA =1PD D ∠,1PD D ∠=∠DCE (11A D F ∠=∠BCE ),∴∠PEA =∠DCE ,又∵∠DCE +∠AEC =180°,∴∠PEA +∠AEC =180°,即点P 、E 、C 共线,∴CE ,1D F ,DA 三线共点于P .【总结升华】本题考查三线共点的证明,题时要认真审题,注意空间思维能力的培养.举一反三:【变式1】 如下图,已知空间四边形ABCD (即四个点不在同一平面内的四边形)中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且23CF CG CB CD ==.求证:直线EF、GH、AC相交于一点.证明:∵E、H分别是边AB、AD的中点,∴EH∥BD且12EH BD=.∵F、G分别是边BC、CD上的点,且23 CF CGCB CD==,∴FG∥BD且23FG BD=.故知EH∥FGE且EH≠FG,即四边形EFGH为梯形,从而EF与GH必相交,设交点为P.∵P∈EF,EF⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∵平面ADC∩平面ABC=AC,∴P∈AC.即EF、GH、AC交于一点P。
高中数学解析几何知识点总结
高中数学解析几何知识点总结一、引言解析几何是高中数学的重要分支,它通过坐标系统将几何问题转化为代数问题,使得复杂的几何图形和关系可以通过代数方法进行分析和解决。
本篇文章旨在总结高中数学解析几何的核心知识点,为学习和复习提供参考。
二、坐标系统1. 笛卡尔坐标系:由两条垂直的数轴构成,分别为x轴和y轴,交点为原点。
2. 坐标点:在坐标系中,任意一点的位置由一对数值(x, y)确定。
3. 距离公式:点A(x1, y1)和点B(x2, y2)之间的距离为√[(x2-x1)²+(y2-y1)²]。
三、直线方程1. 斜率:直线的倾斜程度,用k表示,计算公式为k=(y2-y1)/(x2-x1)。
2. 点斜式:直线方程y-y1=k(x-x1),其中(x1, y1)为直线上的一点。
3. 斜截式:直线方程y=kx+b,其中b为直线与y轴的交点。
4. 两点式:直线方程(y-y1)/(y2-y1)=(x-x1)/(x2-x1),用于两点确定的直线。
5. 一般式:直线方程Ax+By+C=0,其中A、B、C为常数。
四、圆的方程1. 标准圆:圆心在原点,半径为r的圆的方程为x²+y²=r²。
2. 一般圆:圆心为(a, b),半径为r的圆的方程为(x-a)²+(y-b)²=r²。
五、圆锥曲线1. 椭圆:中心在原点,焦点在x轴上的椭圆方程为(x/a)²+(y/b)²=1,其中a>b。
2. 双曲线:中心在原点,焦点在x轴上的双曲线方程为(x/a)²-(y/b)²=1,其中a, b>0。
3. 抛物线:顶点在原点,对称轴为y轴的抛物线方程为y=ax²。
六、空间解析几何1. 三维坐标系:在平面坐标系的基础上增加z轴,形成三维空间坐标系。
2. 空间直线:通过对称性、方程组或参数方程来描述空间中的直线。
高中数学必修二平面解析几何知识点梳理
x x0 .
18.对称问题:
( 1)中心对称:
① 点关于点对称:点 A( x1 , y 1 ) 关于 M ( x 0 , y 0 ) 的对称点 A ( 2 x0 x1 , 2 y 0 y1 ) . ② 直线关于点对称: 法 1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程. 法 2:求出一个对称点,在利用 l 1 // l 2 由点斜式得出直线方程. ( 2)轴对称: ① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.
平面解析几何
1.直线的倾斜角与斜率:
( 1 )直线的倾斜角:在平面直角坐标系中,对于一条与
x 轴相交的直线,如果把 x 轴绕着交点按逆时针
方向旋转到和直线重合时所转的最小正角记为
叫做直线的倾斜角 .
倾斜角
[ 0,180 ) ,
90 斜率不存在 .
( 2 )直线的斜率: k
2.直线方程的五种形式: ( 1)点斜式: y y1
0 , λ 是待定的系数.
特别地,当
1 时,
2
x
2
y
D1x
E1 y
F1
2
(x
2
y
D 2x
E2 y
F2 )
0 就是
( D 1 D 2 ) x ( E 1 E 2 ) y ( F1 F 2 ) 0 表示两圆的公共弦所在的直线方程,即过两圆交点的直线.
16.圆的切线方程:
( 1)过圆
2
x
2
y
r 2 上的点 P ( x 0 , y 0 ) 的切线方程为 : x0 x y 0 y
即 d r ,求出 k ;或利用
[高中数学必修2]第二章 平面解析几何初步 知识梳理
第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。
记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。
可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。
(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。
从点A 到点B的向量,记作AB 。
线段AB 的长叫做向量AB 的长度,记作|AB|。
我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。
例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。
注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。
③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。
(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。
对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。
已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。
高中数学解析几何总结非常全
高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。
本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。
一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。
坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。
该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。
2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。
3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。
二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。
我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。
(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。
(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。
斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。
2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。
3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。
三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。
在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。
高二数学解析几何知识点总结图解
高二数学解析几何知识点总结图解解析几何是数学中的一个重要分支,主要研究平面和空间的几何性质以及其与代数关系的表示和计算方法。
在高中数学中,解析几何是一个重要的学科内容,掌握好解析几何的知识点对于理解几何问题和解决相关计算题目非常重要。
本文将对高二数学解析几何的知识点进行总结,并结合图解进行详细讲解。
一、平面直角坐标系平面直角坐标系是解析几何的基础,通过将平面上的点与数对或者向量对应起来,可以将几何问题转化为代数问题进行计算。
平面直角坐标系由两个相互垂直的坐标轴x轴和y轴组成,它们的交点称为坐标原点O。
利用平面直角坐标系,我们可以确定平面上点的位置,并进行相关计算。
二、点的坐标和距离在平面直角坐标系中,点的坐标表示为一个有序数对(x, y)。
其中x表示点在x轴上的投影长度,y表示点在y轴上的投影长度。
两点之间的距离可以通过两点的坐标计算得出,利用勾股定理可以得到距离公式:d = √((x2 - x1)^2 + (y2 - y1)^2)。
三、直线的方程1. 斜截式方程斜截式方程是描述直线方程的一种常见形式,表示为y = kx + b,其中k为斜率,b为截距。
斜率代表了直线的倾斜程度,截距代表了直线与y轴的交点。
在平面直角坐标系中,根据给定的斜截式方程,可以确定直线的位置。
2. 两点式方程两点式方程是描述直线方程的另一种常见形式,表示为(x -x1)/(x2 - x1) = (y - y1)/(y2 - y1),其中(x1, y1)和(x2, y2)为直线上的两个已知点。
利用两点式方程,可以直接得到直线的方程,无需求解斜率和截距。
四、直线的性质直线的性质是解析几何中的重要内容之一,掌握直线的性质有助于解决与直线相关的问题。
1. 平行线性质平行线的性质是解析几何中的基本性质之一,两个直线平行的充分必要条件是它们的斜率相等。
利用平行线性质,可以判断两个直线是否平行,并求解相关的计算题目。
2. 垂直线性质垂直线的性质也是解析几何中的基本性质之一,两个直线垂直的充分必要条件是它们的斜率的乘积为-1。
必修二数学知识点归纳
必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。
以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。
旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。
2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。
平行投影:在一束平行光线照射下形成的投影,叫做平行投影。
5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。
画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。
已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。
已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。
6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。
高中数学解析几何知识点归纳总结
高中数学解析几何知识点归纳总结直线- 两点确定一条直线:已知两点 $A(x_1, y_1), B(x_2, y_2)$,直线的斜率为 $k = \dfrac{y_2 - y_1}{x_2 - x_1}$,直线方程为 $y -y_1 = k(x - x_1)$。
- 两直线平行和垂直的判定条件:已知直线 $l_1: y = k_1x +b_1$,直线 $l_2: y = k_2x + b_2$,如果 $k_1 = k_2$,则两直线平行;如果 $k_1 \cdot k_2 = -1$,则两直线垂直。
平面- 三点确定一个平面:已知三点 $A(x_1, y_1, z_1), B(x_2, y_2, z_2), C(x_3, y_3, z_3)$,平面方程为 $Ax + By + Cz + D = 0$,其中$A = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}$,$B = -\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}$,$C =\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$,$D = -x_1 \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3 \end{vmatrix} + y_1\begin{vmatrix} x_2 & z_2 \\ x_3 & z_3 \end{vmatrix} - z_1\begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}$。
- 平面与坐标轴的交点:已知平面方程为 $Ax + By + Cz + D =0$,如果 $z = 0$,则交点为 $(x_0, y_0, 0)$,其中 $x_0 = -\dfrac{D}{A}$,$y_0 = -\dfrac{D}{B}$;同理,如果 $x = 0$,交点为 $(0, y_0, z_0)$,其中 $y_0 = -\dfrac{D}{B}$,$z_0 = -\dfrac{D}{C}$;如果 $y = 0$,交点为 $(x_0, 0, z_0)$,其中 $x_0 = -\dfrac{D}{A}$,$z_0 = -\dfrac{D}{C}$。
(解析几何)基础知识点总结
《高中数学解析几何基础知识总结》一、圆1、 定义:平面内与定点距离等于定长的点的集合叫圆2、 圆的方程1)特殊式:222x y r += 圆心(0,0)半径r 2)标准式:222()()x a y b r -+-=3)一般式:220x y Dx Ey F ++++=(2240D E F +->)圆心(,22D E --)4)参数式:cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数)圆心(a ,b )半径为r3、点与圆的位置关系:设点到圆心距离为d ,圆的半径为r点在圆外⇔d>r 点在圆上⇔d=r 点在圆内⇔d<r4、直线与圆的位置关系:直线:0l Ax By C ++= 圆C 222()()x a y b r -+-= 线心距d =相交⇔0>或d<r 相切⇔0=或d=r 相离⇔0<或d>r 5、圆的切线求法1)切点00(,)x y 已知222x y r += 切线2x x y y r +=222()()x a y b r -+-= 切线200()()()()x a x a y b y b r --+--=220x y Dx Ey F ++++= 切线0000022x x y yx x y y DE F ++++++= 满足规律:20x x x →、20y y y →、02x x x +→、02y y y +→2)切线斜率k 已知时,222x y r += 切线y kx =±222()()x a y b r -+-= 切线()y b k x a -=-± 6、圆的切线长:自圆外一点P 00(,)x y 引圆外切线,切点为P ,则20PP x =7、切点弦方程:过圆外一点p 00(,)x y 引圆222x y r +=的两条切线,过切点的直线即切点弦200x x y y r +=(其推到过程逆向思维的运用)8、圆与圆的位置关系:设两圆圆心距离为d ,半径分别为12,r r 1)外离::12d r r >+ 2)外切:12d r r =+ 3)相交:1212r r d r r -<<+ 4)内切:12d r r =- 5)内含:12d r r <-圆与圆位置关系的判定中,不能简单的应用联立方程求根当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切9、公共弦方程(相交弦):相交两圆1C :221110x y D x E y F ++++=、222222:0C x y D x E y F ++++=公共弦方程121212()()()0D D x E E y F F -++++=10、圆系:具有某些共同性质的圆的集合1)同心圆系:222()()x a y b r -+-=(a ,b 为定值,r 为变量且r>0) 2)等圆系:222()()x a y b r -+-=(a ,b 为变量,r 为定值)3)过直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=的交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=()λθ∈简记为0C l λ+=4)过两圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=交点的圆系方程:2222111222()0(1)x y D x E y F x y D x E y F λλ+++++++++=≠-简记为120C C λ+=二、椭圆椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合1、定义:12122(2)PF PF a a F F +=> 第二定义:(01)PF ce e d a==<< 2、标准方程:22221(0)x y a b a b +=>> 或 22221(0)y x a b a b+=>>;3、参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)θ几何意义:离心角4、几何性质:(只给出焦点在x 轴上的的椭圆的几何性质) ①、顶点(,0),(0,)a b ±± ②、焦点(,0)c ± ③、离心率(01)ce e a=<< ④准线:2a x c=±(课改后对准线不再要求,但题目中偶尔给出)5、焦点三角形面积:122tan 2PF F Sb θ=⋅(设12F PF θ∠=)(推导过程必须会)6、椭圆面积:S a b π=⋅⋅椭(了解即可)7、直线与椭圆位置关系:相离(0∆<);相交(0∆>);相切(0∆=) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 8、椭圆切线的求法1)切点(00x y )已知时,22221(0)x y a b a b +=>> 切线00221x x y y a b +=22221(0)y x a b a b +=>> 切线00221y y x x a b +=2)切线斜率k 已知时, 22221(0)x y a b a b +=>> 切线y kx =±22221(0)y x a b a b+=>> 切线y kx =±9、焦半径:椭圆上点到焦点的距离22221(0)x y a b a b +=>> 0r a ex =±(左加右减)22221(0)y a a b a b+=>> 0r a ey =±(下加上减)三、双曲线1、定义:122PF PF a -=± 第二定义:(1)PF ce e d a ==>2、标准方程:22221(0,0)x y a b a b-=>>(焦点在x 轴)22221(0,0)y x a b a b -=>>(焦点在y 轴) 参数方程:sec tan x a y b θθ=⋅⎧⎨=⋅⎩(θ为参数) 用法:可设曲线上任一点P (sec ,tan )a b θθ3、几何性质 ① 顶点(,0)a ±② 焦点(,0)c ± 222c a b =+ ③ 离心率ce a=1e > ④ 准线2a x c±⑤ 渐近线 22221(0,0)x y a b a b -=>> by x a=±或22220x y a b -=22221(0,0)y x a b a b -=>> by x a=±或22220y x a b -= 4、特殊双曲线①、等轴双曲线22221x y a a -= e =渐近线y x =±②、双曲线22221x y a b-=的共轭双曲线22221x y a b -=-性质1:双曲线与其共轭双曲线有共同渐近线性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系 ① 相离(0∆<);② 相切(0∆=); ③ 相交(0∆>) 判定直线与双曲线位置关系需要与渐近线联系一起 0∆=时可以是相交也可以是相切 6、焦半径公式22221(0,0)x y a b a b-=>> 点P 在右支上 0r ex a =±(左加右减) 点P 在左支上 0()r ex a =-±(左加右减)22221(0,0)y x a b a b-=>> 点P 在上支上 0r ey a =±(下加上减) 点P 在上支上 0()r ey a =-±(下加上减) 7、双曲线切线的求法① 切点P 00(,)x y 已知 22221(0,0)x y a b a b -=>> 切线00221x x y y a b -=22221(0,0)y x a b a b -=>> 切线00221y y x x a b -=② 切线斜率K 已知 22221x y a b -= 222()by kx a k b k a =->22221y x a b -= 222()by kx a b k k a=-<8、焦点三角形面积:122cot2PF F Sb θ=⋅(θ为12F PF ∠)四、抛物线1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹)2、几何性质:P 几何意义:焦准距 焦点到准线的距离设为P 标准方程:22(0)y px p => 22(0)y px p =->图 像:范 围: 0x ≥ 0x ≤ 对 称 轴: x 轴 x 轴 顶 点: (0,0) (0,0)焦 点: (,02p ) (,02p-) 离 心 率: 1e = 1e =准 线: 2px =- 2p x =标准方程:22(0)x py p => 22(0)x py p =->图 像:范 围: 0y ≥ 0y ≤ 对 称 轴: y 轴 y 轴 定 点: (0,0) (0,0)焦 点: (0,2p ) (0,)2p - 离 心 率: 1e = 1e =准 线: 2py =- 2p y =3、参数方程222x pt y pt⎧=⎨=⎩(t 为参数方程)⇔22(0)y px p =>4、通径:过焦点且垂直于对称轴的弦椭圆:双曲线通径长22b a抛物线通径长2P5、直线与抛物线的位置关系1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法1)切点P 00(,)x y 已知:22(0)y px p =>的切线;00()y y p x x =+2)切线斜率K 已知:22(0):2p y px p y kx k =>=+22(0):2py px p y kx k=->=-222(0):2pk x py p y kx =>=-222(0):2pk x py p y kx =->=+此类公式填空选择或解答题中(部分)可作公式直接应用五、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB 2121k y y +-。
数学高一必修二平面知识点
数学高一必修二平面知识点平面几何知识是高中数学中的重要部分,对于学习者来说,掌握平面几何的基本概念和定理是必不可少的。
在高一必修二的课程中,平面几何的学习内容主要包括直线的性质、角的概念与性质、三角形的性质和相似以及在平面直角坐标系中的几何应用等。
下面将结合这些知识点,进行一些详细的探讨和论述。
一、直线的性质直线是平面几何中最基本的图形,它具有许多重要的性质。
首先,我们来探讨直线的斜率。
直线的斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
斜率的计算可以帮助我们判断两条直线是否平行、垂直或相交。
在实际问题中,我们可以通过斜率来判断物体的运动状态,比如汽车和飞机的行驶方向。
另外,直线的方程也是直线性质中的重要内容。
直线的方程有两种形式,一种是一般式Ax+By+C=0,另一种是斜截式y=kx+b。
这些方程能够帮助我们描述直线的位置和方向,进而解决一些几何问题。
二、角的概念与性质角是平面几何中的另一个基本概念,我们常见的角有直角、锐角和钝角等。
通过对角的研究,我们可以了解到它的度量单位——角度,并且掌握角度的换算方法。
通过角的大小可以判断两条直线的关系,比如两条直线的夹角为90度时,它们是垂直的关系。
在角的性质方面,我们要注意到相互补角和相邻角的概念。
相互补角是指两个角的和等于90度,而相邻角是指两个角共享一条边且不重叠。
通过对这些角的性质的理解,我们可以解决一些直线和角的相交问题,比如平行线之间的夹角等。
三、三角形的性质和相似三角形是平面几何中的一个重要图形,它具有丰富的性质和定理。
首先,我们要掌握三角形的分类,根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形、直角三角形等。
这些分类可以帮助我们在解决问题时快速定位所需的性质。
此外,三角形的相似性也是我们需要了解的重要概念。
当两个三角形的对应角相等时,我们可以判断它们为相似三角形,从而可以利用相似三角形的性质来求解问题。
相似三角形的知识点在许多几何问题的解决中非常常见,比如利用相似三角形来求解高空建筑物的高度、测量无法直接测量的物体的距离等。