超高强度钢

合集下载

超高强度钢

超高强度钢

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域。

随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。

这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。

超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1,400MPa、屈服强度大于1,200MPa 的钢称为超高强度钢。

超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。

因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。

超高强度钢的发展超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。

典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。

1.低合金超高强度钢低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。

AISI 4340 是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。

通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1,500MPa,而且缺口冲击韧性较高。

为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。

高强钢和超高强度钢定义

高强钢和超高强度钢定义

高强钢和超高强度钢的定义及特点1. 引言高强钢和超高强度钢是现代材料科学和工程领域中的两个重要概念。

随着工业技术的不断发展,对材料强度和性能的要求也越来越高。

高强钢和超高强度钢以其卓越的力学性能和广泛的应用领域而备受关注。

本文将对高强钢和超高强度钢的定义、特点和应用进行详细介绍。

2. 高强钢的定义和特点高强钢是指抗拉强度大于等于540MPa的钢材。

相对于普通碳素钢,高强钢具有以下特点:2.1 强度高高强钢的抗拉强度大于等于540MPa,远高于普通碳素钢的抗拉强度。

这使得高强钢在承受大的外力时能够更好地抵抗变形和破坏,提高了结构的安全性和可靠性。

2.2 韧性好高强钢不仅具有高强度,而且具有较好的韧性。

在承受外力时,高强钢能够发生一定程度的塑性变形,从而吸收外力的冲击能量,减少结构的破坏。

这使得高强钢在工程结构中能够更好地应对地震、风载等复杂环境的作用。

2.3 可焊接性好高强钢通常具有良好的可焊接性,可以通过常规的焊接工艺进行连接。

这使得高强钢在工程施工中更加方便快捷,降低了施工难度和成本。

2.4 重量轻相对于普通碳素钢,高强钢的强度更高,但密度相对较低,因此具有较轻的重量。

这使得高强钢在汽车、航空航天等领域得到广泛应用,可以减轻结构自重,提高载荷能力和燃油效率。

3. 超高强度钢的定义和特点超高强度钢是指抗拉强度大于等于980MPa的钢材。

相对于高强钢,超高强度钢具有以下特点:3.1 极高的强度超高强度钢的抗拉强度远远超过普通钢材,达到甚至超过980MPa。

这使得超高强度钢在工程中可以承受更大的荷载,应用于更为苛刻的环境中。

3.2 卓越的韧性超高强度钢在具有极高强度的同时,韧性也相对较好。

这是通过合理的化学成分设计和热处理工艺实现的。

超高强度钢能够在承受外力时发生较大的塑性变形,从而吸收更多的冲击能量,提高结构的抗震性能。

3.3 优异的耐蚀性超高强度钢通常具有良好的耐蚀性,能够在恶劣的环境中长期使用而不受腐蚀的影响。

超高强度钢

超高强度钢

南昌航空大学
01 化学成分
碳 C :0.27~0.34 硫 S :≤0.020 镍 Ni:1.40~1.80
硅 Si:0.90~1.20 锰 Mn:1.00~1.30
磷 P :≤0.020
铬 Cr:0.90~1.20
02
力学性能
抗拉强度 σb (Mpa):1)1767; 2)1627 伸长率 δ5 (%):1)12;2)13 断面收缩率 ψ (%):50 冲击韧性值 αku (J/cm2):1)79;2)90 试样尺寸:棒材
THANK YOU!
南昌航空大学
• 合金元素含量较低,一般在2.5%以下。 • 这类钢合金元素含量低,成本低,生产工艺简单,广泛用于制造飞机大梁、起落架
构件、发动机轴、固体火箭发动机壳体和化工高压容器等。
01 定义与分类
南昌航空大学
中合金超高强度钢(Medium-alloy ultra-high strength steel)
• 热作模具钢的改型钢,典型钢种有4Cr5MoSiV钢。这类钢的含碳量约0.4%, 合金元素总含量约8%,具有较高的淬透性。
01 定义与分类 二、马氏体时效钢( maraging steel)
南昌航空大学
• 含碳小于0.03%,钢中主要合金元素为镍,钴,钼,钛
• 火箭发动机壳体、飞机起落架和关键连接件等航空航天及深海技术中重要 结构件。
02
30CrMnSiNi2A 飞机起落架
南昌航空大学
02 飞机起落架
30CrMnSiNi2A 飞机起落架
南昌航空大学
• 起落架是飞机上重要而特别的部件,它不参与机体的结构和性能, 却极大地影响飞机的使用和安全。
• 30CrMnSiNi2A是我国广泛使用的一种综合性能良好的低合金超高 强度钢,主要用于制造飞机起落架、机翼、发动机壳等受力结构件, 及高压连接件和高扭短轴零件。

常见车身钢材的种类

常见车身钢材的种类

常见车身钢材的种类车身钢材是指用于汽车车身的金属材料。

由于不同部位对材料的要求不同,因此车身钢材也有多种不同的种类。

下面将介绍几种常见的车身钢材。

1. 高强度钢高强度钢是一种具有较高屈服强度和抗拉强度的钢材。

在汽车制造中,高强度钢被广泛应用于车身结构的关键部位,如车顶、车门、底盘等。

高强度钢可以提高汽车的结构强度和刚度,同时减轻车身重量,提高燃油经济性和碰撞安全性能。

2. 超高强度钢超高强度钢是一种具有更高屈服强度和抗拉强度的钢材。

它通常用于汽车车身的保护部位,如车身柱、侧门梁等。

超高强度钢的使用可以提高汽车的抗碰撞能力,保护车内乘员的安全。

3. 不锈钢不锈钢是一种具有耐腐蚀性能的钢材。

在汽车制造中,不锈钢常用于外部装饰件、排气系统和零部件等。

不锈钢不容易生锈,能够保持车身的美观和耐用性。

4. 钢铝复合材料钢铝复合材料是由钢与铝两种金属材料通过冷轧、热轧等工艺复合而成的一种材料。

在汽车制造中,钢铝复合材料常用于车身结构的关键部位,如车顶、车门等。

钢铝复合材料既具有钢材的高强度和刚度,又具有铝材的轻量化特点,能够在保证车身强度的同时减轻车身重量。

5. 镀锌钢板镀锌钢板是一种将钢板表面镀上一层锌的材料。

在汽车制造中,镀锌钢板常用于车身的防腐处理。

镀锌钢板具有良好的防腐性能,能够延长车身的使用寿命。

6. 硅钢硅钢是一种具有高硬度和低磁导率的钢材。

在汽车制造中,硅钢常用于汽车发动机的磁性材料。

硅钢能够降低发动机的磁滞损耗,提高发动机的能效和动力性能。

7. 高铝钢高铝钢是一种含铝量较高的钢材。

在汽车制造中,高铝钢常用于车身结构的关键部位,如车顶、车门等。

高铝钢具有良好的抗腐蚀性能和可焊性,能够提高车身的耐久性和安全性能。

总结:车身钢材的种类有很多,每种材料都有其特定的应用领域和优势。

通过合理选择和使用车身钢材,可以提高汽车的结构强度、降低车身重量、提高燃油经济性和碰撞安全性能。

未来随着科技的进步,车身钢材将不断创新和发展,为汽车行业带来更多的可能性。

超高强度钢

超高强度钢

超高强度钢超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。

20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。

50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。

60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。

法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。

80年代初,美国研制成功AFl410二次硬化型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410钢是目前航空和航天工业部门正在推广应用的一种新材料。

中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。

70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。

1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。

目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。

现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。

发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。

一超高强度钢的合金成分、组织和特性(1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。

超高强度钢

超高强度钢

超高强度钢超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。

20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。

50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。

60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。

法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。

80年代初,美国研制成功AFl410二次硬化型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410钢是目前航空和航天工业部门正在推广应用的一种新材料。

中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。

70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。

1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。

目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。

现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。

发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。

一超高强度钢的合金成分、组织和特性(1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。

航空航天等工业用超高强度钢的相关知识

航空航天等工业用超高强度钢的相关知识

[知识园地]航空航天等工业用超高强度钢的相关知识超高强度钢(ultrahighstrengthsteel),其定义随时代的技术要求而变。

一般指,屈服强度>1370MPa(140kgf/mm2),抗拉强度>1620MPa(165kgf/mm2),并兼有适当韧性的合金结构钢。

航空等工业上主要用于制造受力构件。

按其合金化程度和显微组织分为低合金中碳马氏体强化超高强度钢、中合金中碳二次沉淀硬化型超高强度钢、高合金中碳Ni-Co型超高强度钢、超低碳马氏体时效硬化型超高强度钢和半奥氏体沉淀硬化型不锈钢等。

1 低合金中碳马氏体强化型超高强度钢该类钢是在低合金结构调质钢的基础上发展起来的,含碳量一般在0.3%~0.5%,合金元素总量一般不超过6%(其作用是保证钢的淬透性,提高马氏体的抗回火稳定性,抑制奥氏体晶粒长大,细化钢的显微组织,常用元素有镍、铬、硅、锰、钼、钒等)。

通常在淬火和低温回火状态下使用,主要牌号有传统的镍铬钼调均可超过1500MPa,而且质钢4340(40CrNiMo)(淬火+低温回火的AISI4130、4140、4330或4340钢的Rm缺口冲击韧度较高)、碳含量0.45%的镍铬钼钒钢D6AC(45CrNiMoV)、碳含量0.30%的铬锰硅镍钢(30CrMnSiNi2A)。

另外有在4340钢基础上通过加入硅(1.6%)和钒(0.1%)而研制成的300M钢(43CrNiSiMoV)(提高回火温度达260~315℃,并抑制马氏体回火脆性)以及不含镍的硅锰钼钒或硅锰铬钼钒等钢。

它们主要通过真空熔炼降低钢中杂质元素含量,改善钢的横向塑、韧性。

由于钢中合金元素含量较低,成本低,生产工艺简单,广泛用于飞机大梁、起落架、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。

4340和300M低合金超高强度钢虽具有高强度,断裂韧度和抗应力腐蚀能力较差,因而其应用受到了一定的限制。

美国于60年代初研制D6AC(4340改进钢),70年代中,D6AC逐渐取代了其他合金结构钢而大量应用。

超高强度钢

超高强度钢

超高强度钢
超高强度钢是一种在现代工程材料中具有重要地位的材料。

它以其卓越的力学性能和优异的耐腐蚀性能而受到广泛关注。

本文将探讨超高强度钢的制备方法、特性和应用领域。

制备方法
超高强度钢的制备方法主要包括热处理、合金设计和工艺优化。

通过合理的热处理过程,可以调控钢材的结构和性能。

合金设计则是通过添加特定元素,调整钢材的组织结构,提高其强度和耐久性。

工艺优化包括热压成型、热轧等工艺,在制备过程中对钢材进行加工和调整,以获得更好的性能。

特性
超高强度钢具有高强度、高硬度、优异的韧性和良好的耐磨性。

这些特性使得超高强度钢在航空航天、汽车制造、建筑工程等领域有着广泛的应用前景。

与普通钢相比,超高强度钢具有更高的强度和更轻的重量,可以减少结构的重量,提高材料的使用效率。

应用领域
超高强度钢在汽车轻量化领域有着重要的应用。

通过使用超高强度钢,可以减轻汽车的质量,提高燃油效率,降低尾气排放。

此外,超高强度钢还被广泛应用于航空航天领域,用于制造飞机机身、发动机等部件,提高飞机的安全性和性能。

总的来说,超高强度钢作为一种重要的工程材料,在现代工程中发挥着重要的作用。

随着科学技术的不断进步,超高强度钢的应用范围将会不断扩大,为人类创造出更多的可能性。

以上是关于超高强度钢的简要介绍,希望能对读者有所启发。

如果您对超高强度钢感兴趣,可以深入了解其相关知识,探索更多应用领域。

谢谢阅读!。

高强度钢和超高强度钢的切削加工

高强度钢和超高强度钢的切削加工

高强度钢和超高强度钢的切削加工什么是高强度钢和超高强度钢?所谓高强度钢,是指那些在强度和韧性方面结合很好的钢种。

低合金结构钢,经调质处理后,具有很好的综合力学性能。

其抗拉强度σb>1200MPa时,叫高强度钢;其抗拉强度σb>1500MPa时,称为超高强度钢。

超高强度钢,视其合金含量的多少,可分为低合金超高强度钢(合金含量不大于6%)、中合金超高强度钢和高合金超高强度钢。

含一种合金元素的高强度合金钢有铬钢、镍钢、锰钢等;含两种合金元素的合金钢有铬镍钢、铬锰钢、铬钼钢等;含三种以上合金元素的高强度合金钢有铬锰硅钢、铬镍钨钢、铬镍钼钢、铬锰钛钢、铬锰钼钒钢等。

高强度钢和超高强度钢的原始强度和硬度并不高,但是经过调质处理后可获得较高的强度,硬度在HRC30~50之间。

钢的抗拉强度与硬度之间存在一定的关系。

一般来说,硬度提高强度也随之增高,但不能说高强度钢就是高硬度钢。

所谓高强度钢和超高强度钢,是指综合性能而言的。

淬火钢的硬度很高,但不能称为高强度钢和超高强度钢,其原因是它的综合性能不好,几乎没有塑性,韧性也很差,只能作耐磨零件和工具。

2 高强度钢和超高强度钢有哪些切削特点?高强度钢和超高强度钢,由于加入不同量的合金元素,经热处理后,Si、Mo、Ni等元素使固溶体强化,金相组织多为马氏体,具有很高的强度(最高可达1960MPa)和较高的硬度(HRC >35),冲击韧性高于45号钢,切削时具有以下特点:1) 刀具易磨损、耐用度低:高强度钢和超高强度钢,调质后的硬度一般在HRC50以下,但抗拉强度高,韧性也好。

在切削过程中,刀具与切屑的接触长度小,切削区的应力和热量集中,易造成前刀面月牙洼磨损,增加后刀面的磨损,导致刃口崩缺或烧伤,刀具的耐用度低。

2) 切削力大:高强度钢和超高强度钢的剪切强度高,变形困难,切削力在同等的切削条件下,比切45号钢的单位切削力大1.17~1.49倍。

3) 切削温度高:这两种钢的导热性差,切削时切屑集中于刃口附近很小的接触面内,使切削温度增高。

《超高强度钢》课件

《超高强度钢》课件

详细描述
通过特殊的表面处理技术,如喷涂防腐涂层 或进行渗碳处理,超高强度钢能够有效地抵 抗各种腐蚀介质,如空气、水、酸碱等。这 种优良的耐腐蚀性使得超高强度钢在海洋工 程、化工设备等领域具有广泛的应用前景。
03 超高强度钢的生产技术
热处理技术
退火
通过加热至一定温度并保温,使钢软化,以便进一步加工。
详细描述:铝合金具有较好的强度与重量比,比超高强 度钢更轻,适合用于需要减轻重量的场合,但在承受高 应力方面不如超高强度钢。
详细描述:铝合金在某些环境下也容易受到腐蚀,但其 耐腐蚀性能优于普通钢材,与超高强度钢相当。
详细描述:铝合金的加工性能较好,易于切割、焊接和 加工,与超高强度钢相比,其加工性能更优。
汽车工业应用
汽车工业是超高强度钢的重要应用领域,主要用于制造汽车底盘、悬挂系统、安全装置等关键部件。随着节能减 排和轻量化需求的增加,超高强度钢在汽车工业的应用将更加广泛。
环境友好性的考虑
绿色生产技术
在超高强度钢的生产过程中,采用绿色生产技术,降低能耗和减少废弃物排放。例如,采用节能环保 的冶炼和连铸技术,减少废气、废水和固废的产生。
制造工艺
总结词
超高强度钢的制造工艺主要包括冶炼、轧制、热处理等环节,其制造工艺复杂 ,技术要求高。
详细描述
超高强度钢的制造需要经过严格的冶炼、轧制、热处理等环节,确保钢材的纯 净度和组织结构均匀性。同时,制造过程中还需采用先进的合金元素添加技术 和精密的加工工艺,以满足钢材的高性能要求。
02 超高强度钢的性能特点
可回收利用
超高强度钢应具有良好的可回收利用性,以便在产品生命周期结束后进行再生利用。通过合理的材料 设计和技术创新,实现超高强度钢的环保和可持续发展。

超高强度钢定义.

超高强度钢定义.

超高强度钢超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。

20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。

50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。

60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。

法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。

80年代初,美国研制成功AFl410二次硬化型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410钢是目前航空和航天工业部门正在推广应用的一种新材料。

中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。

70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。

1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、34Si2MnCrMoVA (406A)、35CrNi4MoA、40CrNi2Si2MoVA(300M)和18Ni马氏体时效钢,成功地用于制做飞机起落架、固体燃料火箭发动机壳体和浓缩铀离心机简体等。

目前超高强度钢已形成不同强度级别系列,在国防工业和经济建设中发挥着重要的作用。

现在,以改变合金成分提高超高强度钢的强度和韧性已很困难。

发展超高强度钢的主要方向是开发新工艺、新技术,提高冶金质量,如采用真空冶炼技术,最大限度降低钢中气体和杂质元素含量,研制超纯净超高强度钢;通过多向锻造和形变热处理,改变钢的组织结构和细化晶粒尺寸,从而提高钢的强度和韧性,例如正在发展的相变诱发塑性钢(TRIP钢)等。

一超高强度钢的合金成分、组织和特性(1)中碳低合金超高强度钢此类钢是通过淬火和回火处理获得较高的强度和韧性,钢的强度主要取决于钢中马氏体的固溶碳浓度。

高强钢和超高强度钢定义

高强钢和超高强度钢定义

高强钢和超高强度钢定义高强钢是指相对于普通钢而言,其强度较高的一类钢材。

在特定的条件下,高强钢具有更高的抗拉强度、屈服强度和延伸率。

而超高强度钢则是高强钢的进一步发展,其抗拉强度和屈服强度更高。

高强钢和超高强度钢在工程领域得到广泛应用,这主要归功于它们的优异机械性能。

高强钢可以减少钢结构所需用钢的数量,从而降低制造成本,提高工程效益。

超高强度钢则更多地应用于特殊领域,如航空航天、汽车制造和军事装备等。

具体来说,高强钢和超高强度钢主要有以下特点和定义:1. 抗拉强度:高强钢的抗拉强度一般在400 MPa以上,超高强度钢一般在700 MPa以上。

这意味着高强钢和超高强度钢能够承受更大的拉力,提高结构的承载能力。

2. 屈服强度:高强钢和超高强度钢的屈服强度也较高。

屈服强度是指材料开始发生塑性变形的抗力。

高强钢和超高强度钢的高屈服强度使其在受力时具有更好的抗塑性变形能力。

3. 延伸率:高强钢和超高强度钢的延伸率一般较低,即在受力后的塑性变形能力较差。

延伸率是指材料在拉伸过程中的变形量与原始长度之比。

虽然延伸率较低,但高强钢和超高强度钢的强度较大,能够抵抗外部力量对其造成的变形或破坏。

4. 成分控制:高强钢和超高强度钢的制造过程中对成分的控制非常关键。

通过合理调整材料中的碳含量、铬含量、锰含量和其他合金元素含量,可以有效提高钢材的强度和硬度。

5. 热处理:高强钢和超高强度钢的生产过程中通常采用热处理方法,如正火和回火。

这些热处理过程可改变钢材的晶粒结构和组织状态,从而提高其强度和硬度。

6. 表面处理:为了提高高强钢和超高强度钢的耐腐蚀性能和美观度,常采用热镀锌、喷涂或涂层处理等方法。

这些表面处理措施可以有效延长钢材的使用寿命。

总之,高强钢和超高强度钢是具有较高抗拉强度和屈服强度的钢材,具有优异的力学性能和工程应用价值。

通过优化成分和控制材料的热处理过程,可以制备出适用于不同领域的高性能钢材,推动工程材料的发展和应用。

超高强度钢

超高强度钢
(1)冶炼。采用真空冶炼工艺提高钢的纯净度是改善超高强度钢性能的重大技术措施。真空冶炼主要是降低 钢中的气体和非金属夹杂物含量。40CrNi2MoA钢采用真空冶炼,使钢中氢、氧和氮含量比电弧炉冶炼分别降低 50%、85%和70%。由于冶金质量改善,从而使钢的断裂韧性明显地提高。
(2)夹杂物形态控制。控制夹杂物形态能有效地改善超高强度钢的断裂韧性。为了提高断裂韧性首先要对硫 和磷要有严格的限制,采用冶炼工艺要最大限度地降低钢中硫和磷含量。
发展历史
早在20世纪40年代中期,由于航空和航天技术发展的需要,为了减轻飞行器自重,提高飞行速度,要求结构 材料必须具有更高的比强度。为此,美国人在AISI4130和4340钢的基础上,改变热处理工艺,采用淬火加低温回 火,获得回火马氏体组织,使钢的抗拉强度提高到1600MPa以上。用于制造飞机结构件,对减轻飞行器自重取得 了明显成效。20世纪50年代以后,在提高钢的强度和改善钢的韧性方面不断取得新进展,相继研制成功300M, D6AC和H-11等超高强度钢。1960年美国国际镍公司研制出马氏体时效钢,并逐步形成18Ni马氏体时效钢系列,屈 服强度分别为1400MPa、1700MPa、2100MPa和2400MPa,其断裂韧性达到较高的水平。20世纪70年代以后,超高 强度钢的发展主要是提高韧性。在9NiCo系列之后,美国在Hy180钢的基础上,又研制成功AF1410二次硬化超高强 度钢,该钢采用低碳马氏体和析出合金碳化物弥散强化效应,不仅强度高,韧性高,而且具有很高的抗应力腐蚀 能力。已用于制造飞机起落架和平尾轴等重要结构部件,受到航空和航天部门的重视和青睐。进入20世纪90年代 以来,为了适应航空工业的需要,在AF1410钢的基础上,美国研制成功AerMet100,钢的抗拉强度为1965MPa, 断裂韧性达到120MN·m抗应力腐蚀性能好。用于制造飞机起落架,将大大提高飞行安全可靠性,延长飞机使用寿 命。

海洋牧场用钢类型 -回复

海洋牧场用钢类型 -回复

海洋牧场用钢类型-回复部分海洋牧场所用的钢是由高强度的合金钢制成的。

这种钢具有耐腐蚀、耐磨、耐压和耐高温等特性,非常适合在海洋环境中使用。

在这篇文章中,我们将深入探讨海洋牧场所用的钢的类型,以及它们的相关特性和应用。

1. 不锈钢:不锈钢是目前海洋牧场中使用最广泛的一种钢材。

它由铬、镍和钼等元素合金化制成,能够在潮湿和盐腐蚀的环境中表现出极佳的耐腐蚀性能。

不锈钢具有良好的强度、硬度和耐磨性,适用于海水饲养箱、浮标和管道等应用。

2. 高强度钢:高强度钢通常被用于海洋牧场的结构和设备。

这种钢材具有很高的强度、韧性和耐冲击性,能够在海洋环境中承受巨大的载荷。

高强度钢的轻量化特性使得在大型设备和结构中的使用更加经济高效,例如海上养殖笼、鱼繁殖池和消纳场等。

3. 耐海水腐蚀钢:耐海水腐蚀钢是一种专门用于海洋环境的特殊合金钢。

它采用特殊的工艺和合金配方以增强其耐腐蚀性能,能够在盐湖、盐池和海水养殖塘等高腐蚀性环境中长期使用。

这种钢的主要应用领域包括海洋养殖笼、水下管道和潮汐能发电设备等。

4. 超高强度钢:超高强度钢是一种在海洋牧场中近年来出现的新型材料。

它具有极高的强度、轻量化和耐腐蚀性能,可以在大型装备和深海设施中发挥重要作用。

超高强度钢适用于海上风力发电机组、海洋平台和海底油气管道等应用,可以有效提升结构的安全性和可靠性。

总的来说,海洋牧场用钢主要包括不锈钢、高强度钢、耐海水腐蚀钢和超高强度钢等几种类型。

它们在不同的应用领域中都能发挥独特的性能优势,为海洋牧场的建设和发展提供重要支持。

不仅如此,在不断进步的钢材技术下,未来还将有更多新型钢材出现并应用于海洋牧场,为海洋牧场的可持续发展做出更大贡献。

型钢强度等级

型钢强度等级

型钢强度等级型钢是一种常见的建筑材料,在建筑结构中起着重要的作用。

不同的型钢强度等级代表着其承载能力的不同,因此在实际应用中,我们需要根据具体的需求选择合适的型钢强度等级。

一、Q235型钢Q235型钢是一种普通碳素结构钢,强度等级为A级。

它具有优良的可塑性和焊接性能,广泛应用于一般结构件的制造。

Q235型钢的屈服强度为235MPa,抗拉强度为375-500MPa。

由于其价格相对较低,因此在建筑领域中得到了广泛的应用。

二、Q345型钢Q345型钢是一种低合金高强度结构钢,强度等级为B级。

与Q235型钢相比,Q345型钢具有更高的强度和韧性,适用于承受更大荷载的结构件。

Q345型钢的屈服强度为345MPa,抗拉强度为470-630MPa。

在大型建筑和桥梁中常常使用Q345型钢来增加结构的稳定性和安全性。

三、Q420型钢Q420型钢是一种高强度结构钢,强度等级为C级。

Q420型钢具有更高的屈服强度和抗拉强度,适用于承受更大荷载和更复杂力学环境的结构件。

Q420型钢的屈服强度为420MPa,抗拉强度为520-680MPa。

在大型工业设施和高层建筑中常常使用Q420型钢来确保结构的强度和稳定性。

四、Q690型钢Q690型钢是一种超高强度结构钢,强度等级为D级。

Q690型钢具有极高的屈服强度和抗拉强度,适用于承受极大荷载和极端力学环境的结构件。

Q690型钢的屈服强度为690MPa,抗拉强度为770-940MPa。

在特殊建筑和工程中,如大型跨海桥梁和高速铁路桥梁,常常使用Q690型钢来确保结构的安全性和可靠性。

总结起来,不同型钢强度等级代表着其承载能力的不同。

在选择型钢时,我们需要根据具体的建筑结构要求和荷载条件来选择合适的型钢强度等级。

合理选择型钢强度等级不仅能够确保结构的安全性和稳定性,还能够有效控制成本和提高工程效益。

因此,在实际应用中,我们应当充分了解各种型钢的强度等级,并根据具体需求做出合理的选择。

高强度钢分类

高强度钢分类

高强度钢分类
高强度钢是一种以高拉伸强度、高屈服强度和良好的抗疲劳性能为特点的钢种。

根据不同的分类方式,高强度钢可以分为以下几类:
1. 超高强度钢
超高强度钢的主要特点是其拉伸强度达到了2000MPa以上。

由于其强度非常高,使得其广泛应用于汽车、航空航天、船舶等领域。

目前,国际上主要采用的超高强度钢有双相钢、TRIP钢、TWIP钢等。

2. 高强度低合金钢
高强度低合金钢的主要特点是拉伸强度大于等于485MPa,屈服强度大于等于345MPa,并且具有良好的冷成型能力。

该种钢材广泛用于轻型车、重型车、机械制造等领域。

3. 高强度无缝钢管
高强度无缝钢管的主要特点是拉伸强度和屈服强度较高,具有优异的耐磨损、高温、抗压等性能。

该品种的钢管广泛用于化工、石油、天然气等领域。

4. 高强度耐磨钢板
高强度耐磨钢板的主要特点是耐抗磨损、抗冲击、抗压、抗焊接等性能良好。

目前,该种钢材被广泛应用于采矿、建筑、港口、机械等领域。

5. 高强度耐腐蚀钢板
高强度耐腐蚀钢板具有非常高的耐腐蚀性和抗氧化性,目前广泛应用于船舶、化工、机械制造等领域。

总之,高强度钢作为一种新型的材料,不断推动着我国制造业的发展。

在不同的应用领域中,高强度钢都有着重要的作用。

未来,随着科技
的不断进步,高强度钢的发展将会更加快速和全面。

超高强度钢

超高强度钢

超高强度钢创建时间:2008-08-02超高强度钢(ultra high-strength steel)在合金结构钢的基础上发展起来的一种高强度、高韧性合金钢。

通常把抗拉强度在1500MPa以上,或者屉服强度在1380MPa以上,并具有足够的韧性和良好的工艺性能的合金钢称为超高强度钢。

主要用于航空和航天工业制作承受高应力的重要结构部件。

类别按照合金化程度及显微组织,超高强度钢可分为低合金、中合金和高合金超高强度钢三类。

在高合金超高强度钢中又有马氏体时效钢和沉淀硬化不锈钢等(见金属的强化)。

低合金超高强度钢是由调质结构钢发展起来的,含碳量一般在0.3~0.5%,合金元素总含量小于5%,其作用是保证钢的淬透性,提高马氏体的抗回火稳定性和抑制奥氏体晶粒长大,细化钢的显微组织。

常用元素有镍、铬、硅、锰、钼、钒等。

通常在淬火和低温回火状态下使用,显微组织为回火板条马氏体,具有较高的强度和韧性。

如采用等温淬火工艺,可获得下贝氏体组织或下贝氏体与马氏体的混合组织,也可改善韧性。

这类钢合金元素含量低,成本低,生产工艺简单,广泛用于制造飞机大梁、起落架构件、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。

中合金超高强度钢热作模具钢的改型钢,典型钢种有4Cr5MoSiV钢。

这类钢的含碳量约0.4%,合金元素总含量约8%,具有较高的淬透性,一般零件经高温奥氏体化后,空冷即可获得马氏体组织,500~550℃回火时,由于碳化物沉淀产生二次硬化效应,而达到较高的强度。

这类钢的特点是回火稳定性高,在500℃左右条件下使用,仍有较高的强度,一般用于制造飞机发动机零件。

马氏体时效钢典型钢种有18Ni马氏体时效钢,含碳小于0.03%,镍约18%,钴8%。

根据钼和钛含量不同,钢的屈服强度分别可达到140、175和210kgf/mm2。

从820~840℃固溶处理冷却到室温时,转变成微碳Fe-Ni马氏体组织,其韧性较Fe-C马氏体为高,通过450~480℃时效,析出部分共格金属间化合物相(Ni3Ti、Ni3Mo),达到较高的强度。

高强钢筋在工程中的应用

高强钢筋在工程中的应用

高强钢筋在工程中的应用摘要:高强钢筋因其强度高、延展性好等特点,已成为现代建设领域中不可缺少的重要材料。

在高层建筑和大型桥梁等工程结构中,采用高强钢筋可以有效提高结构承载能力和抗震性能。

此外,相比传统钢筋,高强钢筋还具有节能、减排、环保等优点,有利于推动建筑业向绿色、可持续发展方向转型。

本文将介绍高强钢筋的分类、性能、特点及其在工程中的应用。

关键词:高强钢筋;抗拉性能;工程应用引言:随着现代社会对建筑结构安全性要求的提高,高强钢筋逐渐成了工程建设领域中不可缺少的材料。

在现代建设工程中,高强钢筋得到了广泛应用,对于提高工程结构的安全性及经济性有着显著的效果。

一、高强钢筋的分类1. HRB400(20MnSi)、HRB500(20MnSiV):普通高强螺纹钢筋,适用于普通混凝土结构。

对于普通民用建筑、一般工矿企业厂房建筑、道路、桥梁等建筑规模不大的工程,使用这两种普通高强螺纹钢筋就足够了。

2. HRB400E、HRB500E:高强度螺纹钢筋,表面形态与HRB400和HRB500相同,但在加工工艺上有所改进,更适合于大型混凝土工程。

主要用于高层建筑、大型工业厂房、高速公路、大型桥梁等重载结构。

这些工程现场钢筋连接、钢筋切断等施工作业相对复杂,需要使用质量上乘的高强度螺纹钢筋。

3. HRB400R、HRB500R:冷加工钢筋,经过低温轧制和控制冷却后制成,具有很好的强度和韧性,适用于特殊要求的混凝土结构。

如高速公路路基、大型桥梁、核电、水利工程等。

这些工程对钢筋的力学性能、耐久性等方面有较高要求,而冷加工钢筋因其制造工艺特殊,质量较高,能够满足这些特殊需求。

4. HRBF400、HRBF500:高延性钢筋,具有较好的延展性和可锻性,在地震等灾害中表现更为出色。

适用于公共建筑、地铁工程、高层住宅等抗震性要求较高的工程中。

这些工程中的钢筋需要具备较好的延展性,以在地震等灾害发生时承受较大变形。

5. HRB600:超高强度钢筋,适用于重载、耐久性要求极高的混凝土结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超高强度钢
讲演人:黄群飞 专业:材料加工
主要内容
第合金超高 强度钢
低碳马氏体 超高强度钢基本知识源自绍实例介绍二次硬化钢
马氏体时效钢
基本知识介绍
超高强度钢:屈服强度σb>1500Mpa。 用途
飞机起落架、机身骨架
σb越高其缺口强度越低说明了超 1、合适的塑性 高强度钢对缺口和表面缺陷的敏感性。 火箭发动机壳体 2、一定的冲击抗力和断裂韧性 KIC由材料本质决定,并随钢基体所 3、较高的高周和低周疲劳抗力 要求 固溶C含量增高而降低 4、较高的缺口强度和缺口塑性
含C量确定
σb=1500~2100Mpa
Wc=0.30~0.40%
强度因素
塑性和回火稳定性
合金含量的确定
Cr被限制,但为求淬透性可用~1.0%Cr 具有300℃以上的回火稳定
加Si增加回火稳定性
30CrMnSiNi2A钢(0.26~0.33C,0.90~1.20Si,1.0~1.30Mn, 强碳化合物使用Mo 0.9~1.2Cr,1.40~1.80Ni)此钢经马氏体淬火后250℃低温回火得到 σb=1700~1800Mpa,ak=80~90J/cm2 不引起Ms点过分降低, 35Si2Mn2MoVA钢(0.32~0.38C,1.40~1.70Si,1.60~1.90Mn, 否则增加淬火开裂性 0.35~0.45Mo,0.10~0.20V)此钢经920℃淬火和250℃回火后, 为降低缺口敏感性,加Ni 2 σb>1700Mpa, ak =50J/cm 获得恰当的M淬透性 尽量约束S、P、O、H和N等的含量
第四例:马氏体时效钢 马氏体时效钢以无碳(或超低碳)铁镍马 氏体为基体,400~ 550℃时效时能产生金 属间化合物沉淀硬化的超高强度钢,广泛 应用于航空、航天以及军事等尖端领域。 其是运用强韧化理论解决实际钢强韧性一 个比较成功了例子。
设计的构思方向
以高塑性的超低碳位错马氏体和具有高时效硬化作用的共格金属间 化合物的组织,以期能得到优异的强韧配合
高压容器
5、适当的可焊性
常规武器某些零件
基本设计原则

组织的设计
较高强度的要求:σb>1500MPa 基体组织: 低碳位错马氏体 在超高强度的情况下 需要一定的塑韧性
基体必须为马氏体组织
C含量不能太高
基本设计原则
为得到优异的强韧性配合,M的C含量<0.30%
由于不同的成 因为钢中α-Fe的过饱和 超低C马氏体所具有的 间隙固溶的强度是最有 分的合金,其塑韧 因为Si在这方面有很好的 效的。但如果所固溶的C 可动螺位错难以分解, 性不一样,所要改 表现,固溶2.0%Si,便 量低于0.25%时,几乎 0.252.0 Si 易发生交叉滑移,所以 善的方向也不一样, 可有效的推迟ε到θ的转 其是个高塑性相,因此 不存在点阵畸变,每固 变,使ε-碳化物保持弥散 溶0.10%C所引起的σs增 需要添加二次强化相来 因此其所需要改善 高300Mpa,但固溶较多 均匀分布状态,并将第 强化它,沉淀硬化相显 的方向也不一样, 的C将会得不到合适的塑 一类回火脆的发生推移 然不是碳化物,因此是 对于超高强度钢来 到更高的温度。 性、韧性;且回火马氏 加入合金元素形成金属 间化合物。 体硬度下降更猛;也不 说总结起来可归纳 利于焊接。 为:
为改善回火后的塑韧性,加入Si提高回火抗力 C含量较低时,主要组织为位M,需加入 合金形成金属间化合物,起弥散强化作用。
加强碳化合物形成元素,高温回火弥散析出强化 细化马氏体条,束 严格控制P、S含量;以及变形热处理
实例介绍
第一例:低合金超高强度钢 由于其合金元素含量低,热加工工艺简 单,成本相对低廉,因而被广泛用于航天、 航空和常规武器等领域(如飞机起落架、炮 筒和防弹钢板等)。但其韧性不高是制约 此类钢推广应用到民用产品及大规模应用 的最关键因素。
基本设计思路
为取得更高水平的强度,增高M固溶的C含量为0.25%。由于M条间 稳定的残余奥氏体薄膜可使裂纹钝化或分叉,因此希望得到M条间 综上得出: 的稳定A存在来改善韧性 低碳马氏体钢的理论设计成分: 0.25C,2.0Mn,1.80Si,1.0Cr,1.5Ni,0.8Mo,0.12V 选择化学成分为: 0.23C,1.76Si,2.0Mn,1.5Cr,1.54Ni,0.79Mo,0.13V,S<0.01,P<0.01 组织:300~350℃回火,为位错M+条件存在的Ar 性能:σ0.2>1420MPa ,σb>1765MPa,KIC>3920N/mm3/2 加入Ni 考虑回火脆性 加入Si增加 ~1.50% 保留Mn,提高 加入0.30%Mo 回火抗力,加 加V细化晶粒 抑制回火脆性 Cr提高淬透性 Ar的稳定性
Mo Ni
马氏体时效钢的热处理
马氏体时效钢热处理工艺简单,这也是其另一优点。传 统工艺为850~870 ℃下固溶,随后空冷或水淬,冷却速度 对组织和性能影响不大。然后再加热到480℃时效,强度级 别高的钢种可采用510℃,时效时间为3—6 h,时效后空冷。 其所含元素除Co外,皆降低Ms点,由于钢中C量非常低, Mf点仍然处于室温以上,奥氏体可全部的转化为马氏体, 即使存在参与奥氏体其量也很少的
经济考虑,立足国内资源
第二例:低碳马氏体超高强度钢
本例是在低碳马氏体钢20SiMnMoV(0.20C, 1.25Si,2.48Mn,0.34Mo,0.11V)基础上改进而来的。 20SiMnMoV钢经淬火并205℃低温回火后,其KIC值很高, 约为1960N/mm3/2,ak=160J/cm2,但σb不算高,刚达到超 高强度的要求,因此有必要通过合理的设计增高其强度, 使其跨入超高强度的范畴,以其获得强韧性组合更趋完善。
第三例:二次硬化钢
二次硬化钢主要用以制作超音速飞机中再中温 下承受高应力的构件和轴、螺栓等零件的钢材, 其要求是具有高的强度,同时亦要求在较高的温 度下仍然保持高的强度,因此其强度要求主要从 二次硬化效应方面着手。
设计思路
MO是另一个值得考虑的合 提出二次硬化有效性的评定方式 V也是一个值得考虑的元素, 根据上述三个合金元素各自的二次硬化作用的表现可得: 金元素,加入Mo产生二次硬化 采用0.5%V即可产生二次硬化 作用可明显的提高回火抗力。 (1)、碳化物形成的倾向性:Cr<Mo<V; (如左图)如果V含量过高时因为 并且只要其含量在1.0%~3.0 要固溶V4C3 将要在奥氏体温度下 (2)、碳化物长大和过时效的抗力:Cr7C3<Mo2C<V4C3 %左右就可达到极值的效果 首先考虑元素Cr,钢中添加Cr可有以下作用:(1)提高马氏体的 保持较长的时间,容易引起奥氏 (如左图),比较合理的是 淬透性;(2)使钢在较高温度下具有较好的耐蚀性和抗氧化性; (3)、产生二次硬化的温度:Cr7C3的二次硬化温度约为 二次硬化作用 出现最大二次硬 二次硬化作用 体的粗化。在2%Mo钢中加入0.5 2~2.5%,Mo的二次硬化“强 (3)加入6%Cr可赋予钢以较高的回火抗力,不过并未构成二次硬 500℃,Mo2C为575℃,V4C3为600~625℃ C 然V可固溶 的硬化”强度“ 化作用的温度 %V尚不足以构成V4 3 的过时效速度 度”和其最大的硬化“强度” 化效应,但可以很快的产生过时效 于Mo2C,提高其稳定性和形成温 (4)、在回火时,合金元素阻止马氏体位错亚结构消除的 温度所对应的温度皆高于Cr, 度,降低过时效速度。所以加入 作用取决于合金元素对铁原子自扩散速率的影响: 但过时效速度较低。 量~0.5%时,并不直接产生二次 Cr<Mo<V 硬化作用,而是间接的为二次硬 化服务的。 Mo含量与二次硬化作用图 V的含量和回火性能 综合考虑合金元素Cr、Mo、V的二次硬化 作用
三个典型的马氏体时效钢
1、18%Ni钢
2、20%Ni钢
18~20Ni,1.3~1.6Ti,0.05~0.35Al,0.3~0.5Nb
3、25%Ni钢
25Ni,1.5Ti,0.25Al,0.5Nb或不含Nb
谢谢
超低碳马氏体的获得;要求在空冷,甚至退火条件下也可形成马氏体
能有效的产生时效硬化作用
促使马氏体更加韧性
具体成分设计
合金元素的设计 个元素的具体作用
Co与Mo之间的协调作用主要表现在: 首先C含量的应限定在 这类钢的沉淀硬化只能依靠金属间化合物的析出,有序相 0.03%以下,否则难以达 AB3 Co降低Mo在马氏体中的固溶度,从而促进Mo的沉淀相形 (a)是很有效的硬化相,因此应向钢中加入Ni,Mo,Ti和Al等 Mo 除参与构成称定硬化相外,还具有一下效应, 由于消除了马氏体的C、N间隙固溶,虽然使使其保持了高塑 元素,其中Ni的量要加入相当的高。 到塑性要求。这种钢的一 成。 (1)在凝固时造成偏析,从而诱生各向异性; 1 个不平凡的特点就是,强 性的性质,但同样也是马氏体的承受和传递外加应力的能力下降, 化完全抛开了C的作用。 (b)另一个要提到的元素就是Co,Co可以和Mo间产生协作效 Co可改变马氏体的位错结构,为随后的沉淀相形成提供出 则需要加入某些置换固溶的合金元素如Ni,此外Ni能使螺位错不 (2)通过降低合金元素的扩散能力,减少时效时沉 应,从而体现在于Co对Ni3Mo这个主要沉淀硬化相的形成动力 更多的形核位置,因而可使沉淀相粒子更为细小而又分布均匀, 易于发生分解,保证交滑移的发生,提高塑性。因此相钢中加入 淀相的择优析出,因而增高钢在时效后的塑性。 学与其分布状态的改变上。 减小沉淀相粒子间距。 Ni是改善马氏体的强、塑性所需要的。 此外,Ni、Mo和Ti都降低Ms,而Co还能提高Ms点,这也是 加入Co的又一个理由
相关文档
最新文档