液压控制阀

合集下载

按照用途液压控制阀有哪些

按照用途液压控制阀有哪些

按照用途液压控制阀有哪些液压控制阀按照用途可以分为以下几类:1. 流量控制阀:流量控制阀用于控制液压系统中的流体流量。

其主要功能是根据系统需求,通过调节阀门开度来调整流量,实现对流量的精确控制。

流量控制阀通常可分为节流阀和调速阀两种。

- 节流阀:节流阀通过收缩或扩大流体流通的通道,实现对流量的控制。

常见的节流阀有节流口阀、节流槽阀、节流圆盘阀等。

节流阀可根据系统需求进行调整,达到需要的流量大小。

- 调速阀:调速阀常用于液压系统中的运动控制。

调速阀通过调节液压缸的流量,实现对运动速度的控制。

常见的调速阀有安全阀、限压阀、比例阀等。

调速阀可以根据系统要求进行调整,以实现所需的速度。

2. 压力控制阀:压力控制阀用于控制液压系统中的压力值。

其主要功能是根据系统需求,通过调节阀门开度来调整压力,实现对压力的精确控制。

压力控制阀通常可分为安全阀、溢流阀和逆止阀等。

- 安全阀:安全阀用于保护液压系统中的设备和管路免受过高压力的影响。

当系统中的压力超过预设值时,安全阀会自动打开,将过高压力导流至低压区域,保护系统的安全。

- 溢流阀:溢流阀用于控制液压系统中的最大工作压力。

当系统中的压力超过设定值时,溢流阀会自动打开并导流,从而限制系统的工作压力在安全范围内。

- 逆止阀:逆止阀用于控制液压系统中的流体方向。

它允许流体在一个方向上自由流动,而另一个方向上则会阻止流动。

逆止阀通常用于防止流体倒流或反向启动。

3. 方向控制阀:方向控制阀用于控制液压系统中的流体流向。

其主要功能是根据系统需求,通过调整阀门的位置来控制液压流体的流向。

常见的方向控制阀有旋转阀、插装阀、换向阀等。

- 旋转阀:旋转阀通常用于控制旋转液压马达或旋转液压缸的方向。

旋转阀通过旋转阀芯来切换液压系统的流向,实现对旋转部件的控制。

- 插装阀:插装阀常用于液压系统中的组合控制。

插装阀通过插入或拔出阀芯来实现对液压流体的流向控制。

插装阀通常具有结构简单、安装方便等特点。

液压控制阀的工作原理

液压控制阀的工作原理

液压控制阀的工作原理
液压控制阀是一种利用液压能力来控制流体流动方向、压力和流量的装置。

它主要由阀体、阀芯、阀座、弹簧和控制罩等组成。

液压控制阀的工作原理如下:
1. 阀芯的位置调节:阀芯通过操纵杆或调节装置移动,实现调节控制。

当阀芯向上移动时,通过阀门打开或关闭来控制流体流动。

2. 操纵杆和阀芯之间的作用力平衡:通常液压控制阀芯在工作过程中需要受到一定的阻力来保持平衡。

弹簧和控制罩会对阀芯施加一个向下的作用力,以保持阀芯的稳定位置。

3. 流体压力的调节:液压控制阀通常用于调节流体的压力。

当阀芯移动到特定位置时,流体通过阀体的通道进入或排出。

通过调整阀芯的位置,可以改变阀门的打开程度,从而调节流体的压力。

4. 流体流量的调节:液压控制阀还可以调节流体的流量。

当阀芯移动到特定位置时,打开或关闭的阀门能够通过控制液体流动的通道,调节流体的流量大小。

5. 流体流向的控制:液压控制阀还可以控制流体的流向。

阀芯的不同位置使得流体能够通过不同的通道流动,从而改变流体的流向。

总之,液压控制阀通过调节阀芯的位置、调节弹簧和控制罩的
作用力,以及控制阀门的打开程度,来实现对流体流动方向、压力和流量的控制。

液压控制阀工作原理

液压控制阀工作原理

液压控制阀工作原理
液压控制阀是一种通过调节流体进出口的开度,来控制液压系统压力、流量和方向的装置。

其工作原理如下:
1. 调节阀芯位置:液压控制阀通过调节阀芯在阀体内的位置,控制液压流体的流通。

阀芯的位置通过控制杆、电磁线圈或机械手段来实现。

2. 控制流通路径:液压控制阀内部设有不同的流通孔道和腔体,当阀芯移动至不同位置时,不同的流通通道会连接或切断,从而控制流体的流向和流量。

3. 液压力平衡:液压控制阀内部设有压力平衡装置,可以自动调节阀芯受到的力,使得阀芯在任何位置都能达到平衡,并保持稳定的调节效果。

4. 电磁控制:某些液压控制阀采用电磁控制方式。

通过电磁线圈对阀芯的位置进行控制,实现远程控制或自动控制。

总之,液压控制阀通过调节阀芯位置和控制流通路径,来控制液压系统的压力、流量和方向。

不同类型的液压控制阀有不同的原理和结构,但基本原理都是通过阀芯的运动来改变液压流体的通路和流量,达到控制液压系统工作的目的。

第五章 控制阀

第五章 控制阀
处于差动状态,系统不能卸荷。
Y
A 、 B 两个油口与 T 口相通, P 口封闭,执
行元件处于浮动状态,系统不能卸荷。
四个油口互相连通,执行元件处于浮动状 态,系统卸荷。
H
工程机械液压与液力传动
工程机械液压与液力传动
1.系统卸荷。 当阀处于中间位置时,P口能够通畅地与T口连通,使系统处 于卸荷状态,既节约能量,又防止油液发热,如M和H型; 2.执行机构浮动。 当阀处于中间位置时,如果A、B两油口互通,执行机构处于浮 动状态,可通过其他机构移动调整其位置,如Y和H型; 3.执行机构在任意位置停止。 当阀处于中间位置时,如果A、B两油口封闭,则可使执行机构 在任意位置停止,如O和M型; 4.系统保压。 当P口被封闭时,系统保压,液压泵能够用于多缸系统,如O和 Y型; 5.制动和锁紧要求。 执行元件采用了液压锁、制动器等时,要求中位时两腔与油 箱相通,保证锁紧和制动的可靠性,如O和M型。
换向阀
两位四通 换向阀 控制执 行元件 不能使执行元件在 任意位置停止运动 执行元件 正反向运
三位四通
换向阀
换向
能使执行元件在任
意位置停止运动
动时回油
方表示一个工作位置(若由虚线构成的方框则表示过 渡位置),有几个方框表示几位。 •一个方框中的箭头↑↓↗↙或堵塞符号⊥和┬与方框上边和下边 的交点数为油口通路数,有几个交点表示几通。箭头表示两油口连 通,但不表示流动方向,┬表示该油口堵死。 •将阀与系统供油路连通的油口用字母P表示,将阀与系统回油路连 通的油口用字母O或T表示,将阀与执行元件连通的油口用字母A和B 表示。 •换向阀都有两个以上的工作位置,其中一个是常位(即在不对换 向阀施加外力的情况下阀芯所处的位置),绘制液压系统图时,油 路一般应该连接在常位上。

液压控制阀

液压控制阀

图5-2 内泄式液控单向阀 1-阀体,2-阀芯,3-弹簧,4上盖,5-阀座,6-控制活塞, 7-下盖
(1)内泄式液控单向阀的工作原理
如图所示为内泄式液控单向阀的结构,与 普通单向阀相比,液控单向阀增加了一个 控制油口K,控制活塞6。当控制油口K处无 压力油通入时,液控单向阀与普通单向阀 一样,正向流动,反向截止。如果需要液 体反方向流动(P2>P1),须在控制油口K 处通入压力油,该控制油的压力作用于控 制活塞,而回油腔压力(P1)较低,控制活 塞移动并通过推杆将阀芯2顶开,油液完成 从P2腔到P1腔的反方向流动。
图示阀属于板式连接阀,阀体用螺钉固定在机体上,阀 体的平面和机体的平面紧密贴合,阀体上各油孔分别和 机体上相对应的孔对接,用“O”形密封圈使它们密封。
普通单向阀的应用
它可用于液压泵的出口,防止系统油液倒 流;
用于隔开油路之间的联系,防止油路相互 干扰;
用作背压阀,保持回油路内有一定的液压 力,作背压阀的单向阀应更换刚度较大的
2、用箭头符号“↑”表示指向的两油口相 通,但不一定表示液流的实际方向;用截 止符号“⊥”表示相应油口在阀内被封闭。
3、换向阀的“通”是指在某一工作位 置相通或被封闭的油口个数,即换向 阀本体与系统连接的主油口个数。在 图形符号上,一个方框与外部油路连 接的个数(箭头或截止符号与方框交 叉点的个数)有几个,就表示有几 “通”。
4)操纵机构有手动、电动、液动、机动、 气动或由它们的组合,但目的均为控制阀 芯的动作。
液压控制阀共同要求:
1)动作灵敏、工作可靠,振动、冲击和噪 声要尽量小;2)油液经过液压控制阀后的 压力损失要小,效率要高;3)密封性能要 好,内泄漏要尽量小,额定工作压力下应 无外泄漏;4)结构简单紧凑、体积小,节 能性好,通用性高,安装、调整、使用和 维护方便。

液压阀液压阀概述压力控制阀

液压阀液压阀概述压力控制阀

液压阀的分类
滑阀 锥阀 球阀
液压阀的分类
根据用途不同分类(机能)
压力控制阀 用来控制和调节液压系统液流压力的阀 类,如溢流阀、减压阀、顺序阀等。 流量控制阀 用来控制和调节液压系统液流流量的阀 类,如节流阀、调速阀、分流集流阀、比例流量阀等。 方向控制阀 用来控制和改变液压系统液流方向的阀 类,如单向阀、液控单向阀、换向阀等。
直动式溢流阀
• 调定压力 • P*A=Kx
• 两个溢流阀串联, 系统调定压力p
p1
2
先导式溢流阀
• 结构组成 • 它由先导阀和主阀组成。 • 先导阀实际上是一个小流 量直动型溢流阀,其阀芯 为锥阀。 • 主阀芯上有一阻尼孔,且 上腔作用面积略大于下腔 作用面积, • 其弹簧只在阀口关闭时起 复位作用。
公称通径
代表阀的通流能力的大小,对应于阀的额定流量。 与阀的进出油口连接的油管应与阀的通径相一致。阀 工作时的实际流量应小于或等于它的额定流量,最大 不得大于额定流量的1.1倍。 额定压力 阀长期工作所允许的最高压力。对压力控制阀, 实际最高压力有时还与阀的调压范围有关;对换向阀, 实际最高压力还可能受它的功率极限的限制。
液压阀的分类
根据控制方式不同分类(控制原理)
定值或开关控制阀 被控制量为定值的阀类,包括普 通控制阀、插装阀、叠加阀。 比例控制阀 被控制量与输入信号成比例连续变化的 阀类,包括普通比例阀和带内反馈的电液比例阀。 伺服控制阀 被控制量与(输出与输入之间的)偏差
信号成比例连续变化的阀类,包括机液伺服阀和电液 伺服阀。 数字控制阀 用数字信息直接控制阀口的启闭,来控 制液流的压力、流量、方向的阀类,可直接与计算机 接口,不需要D/A转换器。
AZ A 主要由先导调压弹簧来决定。 p p k Z x 1 Z ,一旦调压弹簧 AZ

第五章 液压控制阀

第五章  液压控制阀

第五章 液压控制阀
(3)启闭特性:
开闭启合比比pp--KB
:开始溢流的开启压力pK与ps的百分比。 :停止溢流的闭合压力pB与ps的百分比。
由于摩擦的作用,开启压力大于闭合压力。
pK
=
pK ps
×- 100 %
-
pB
= pB ×100 % ps
显然上述两个百分比越大,则两者越接近,溢流阀的启闭特性 就越好。一般开启比大于90%,闭合比大于85%。
Δp越小,刚度越低,所以节流阀只能在大于某一最低压
差的条件下才能工作,但提高Δp将引起压力损失。
第五章 液压控制阀
(2)温度对流量稳定性的影响
T变,μ变,q变。 薄壁孔(紊流状态)不受温度变化影响。
(3) 节流口的阻塞
阻塞现象: 当Δ p一定,A 较小时流量时大时小甚至断流
措施:加大水利半径、选择稳定性好的油液、精心过滤。 薄壁孔不易附着、阻塞。
m — 压差指数 K — 节流系数
动画演示
q∝ A ,Δp=c,A ↑ ,q↑。
第五章 液压控制阀
4. 刚度
刚度 外负载波动引起阀前后压力差Δ p 变化,即使阀 的开口面积A 不变,也会导致流经阀的流量q 不稳定。
定义:阀的开口面积A 一定
q
T = dΔ p/dq
T = Δ p1-m/ (KAm )
第五章 液压控制阀
第五章 液压控制阀
第五章 液压控制阀
§5.1 阀的作用和分类
一、作用 控制液流的方向、压力和流量。
二、分类 按用途:压力阀、流量阀、方向阀
按操纵方式:手动、机动、电动、液动和电液动 按连接方式:管式、 板式、法兰式、叠加式等
第五章 液压控制阀

第5章 液压控制阀

第5章  液压控制阀

1、直动式溢流阀:(用于低压, p≤2.5MPa,反向不通) 如下页图所示,直动式溢流阀是利用系 统中的油液作用力,直接作用在阀芯上与弹 簧力相平衡的原理来控制阀芯的启闭动作, 以保证(油缸)进油口处的油液压力恒定。 进油口P处的压力油经阀芯的橫孔及阻尼 孔作用在阀芯底部的锥孔表面上。当进口 压力较小时,阀芯在弹簧的作用下处于下 端位置,P与T不能相通;当进口压力升高, 阀芯下端压力油产生的作换 向阀的优点,既可以很方便的控制换向,又 可以实现对较大流量回路的控制。 几点说明: ①液动阀两端控制油路上的节流阀可以调节 主阀的换向速度,从而使主油路的换向平 稳性得到控制; ②为保证液动阀回复中位,电磁阀的中位必 须是A、B、T油口互通。
③控制油可以取自主油路(内控),也可以 取独立油源(外控)。 • 思考:执能符号中六个油口分别接何处? 5、手动换向阀 通过控制手柄直接操纵阀芯的移动,换向 精度和平稳性不高,适用于间歇动作且无 需自动化的场合。
如图(a):向左推动手柄→左位工作; 向右推动手柄→右位工作。 弹簧复位。 如图(b):为钢球定位的手动换向阀, 与图(a)的区别:手柄可在三个位置上定 位,不推动手柄,阀芯不会自动复位。
§5-2 压力控制阀 压力控制阀是用来控制液压系统中油液 压力或利用压力信号实现控制(以液体压力 的变化来控制油路的通断)的阀类。按其功 能可分为溢流阀、减压阀、顺序阀、压力继 电器等。 本节主要介绍压力阀的工作原理、调节 性能、典型结构及主要用途。 一、溢流阀 溢流阀的作用是将系统的压力稳定在某 一调定值上,从而进行安全保护。按其调压 性能和结构特征划分,溢流阀可分为直动式 和先导式两大类。 (一)、溢流阀的工作原理及典型结构
二、换向阀 换向阀作用是利用阀芯和阀体间相对 位置的变化来接通、断开或改变系统中油液 的流动方向。

液压控制阀常见故障及处理

液压控制阀常见故障及处理
(4)电气线路故障
(1)检查电气线路接通电源
(2)检修、更换
(3)更换
(4)检修
4.装错
进出油口安装错误
纠正
5.液压泵故障
(1)滑动副之间间隙过大(如齿轮泵、柱塞泵)
(2)叶片泵的多数叶片在转子槽内卡死
(3)叶片和转子方向装反
(1)修配间隙到适宜值
(2)清洗,修配间隙达到适宜值
(3)纠正方向
(二)压力调不高
高(3)油温过高,油液中产生胶
质,粘住阀芯而卡死
(4)油液粘度太咼,使阀芯移动困难而卡住
(1)过滤或更换
(2)检查油温过高原因并消除
(3)清洗、消除油温过高
(4)更换适宜的油液
6.安装不良
阀体变形
1)安装螺钉拧紧力矩不均匀
2)阀体上连接的管子,别劲”
1)重新紧固螺钉,并使之受力均匀
2)重新安装
7.复位弹簧不符合要求
(1)更换弹簧
(2)修配或更换零件
(3)调压后应把锁紧螺母锁紧
(六)振动与噪声
1.主阀故障
主阀芯在工作时径向力不平衡,导致性能不稳定
1)阀体与主阀芯几何精度差,棱边有毛刺
2)阀体内粘附有污物,使配合间隙增大或不均匀
1)检查零件精度,对不符合要求的零件应更换,并把棱边毛刺去掉
2)检修更换零件
2.先导阀故障
(1)锥阀与阀座接触不良,圆周面的圆度不好,粗糙度数值大,造成调压弹簧受力不平衡,使锥阀振荡加剧,产生尖叫声
(2)调压弹簧轴心线与端面不够垂直,这样针阀会倾斜,造成接触不均匀
(3)调压弹簧在定位杆上偏向一侧
(4)装配时阀座装偏
(5)调压弹簧侧向弯曲
(1)把封油面圆度误差控制

液压控制阀

液压控制阀
p2 = p1 -Δp , p1一定,Δp ↑, p2↓。 • p1< ps ,处于非工作状态, 不起减压作用;
• p1 > ps ,减压、稳压。
60
三、减压阀
4、工作原理
稳压原理

p2 ↑→阀芯上移→阀口减小→ Δp ↑, p2= p1 -Δp , p1一定,Δp ↑ , p2↓;
• p2 ↓ →阀芯下移→阀口开大→ Δp ↓, Δp↓, p2↑= ps 。
53
(三)、应用
用作安全阀(常闭)
防止系统过载
55
(三)、应用
用作溢流阀(常开)
保持系统压力恒定
三、减压阀
左上为先导式,其它为直动式
57
三、减压阀
1、作用 减低系统压力,并 有稳压作用。 2、特点 出口压力控制阀芯 动作,有单独泄油口。
58
三、减压阀
3、结构
59
三、减压阀
4、工作原理 节流口产生压降Δp
P
溢流阀
30
方向控制回路
A
A B P
B T
T 液压泵
P
溢流阀
31
方向控制回路
A A B P
B T
T 液压泵
P
溢流阀
32
滑阀式换向阀
A B A B
T P T P
33
滑阀式换向阀
A B A B
T P T P
34
(四)、中位机能
三位滑阀在中间位置工 作时,油路的连通方式。 名称:O 型 功能:双向锁紧,
77
职能符号
• 简化符号
78
四、液压辅助元件
• • • • • 蓄能器 过滤器 油箱 热交换器 管件

常用的液压控制阀

常用的液压控制阀


②起平衡阀的作用。在大型压床上由于压柱及上模很重.为防
止因自重而产生的自走现象.因此必须加装平衡阀(顺序阀).
如图4-22所示。
上一页 下一页 返回
4.1 常用的液压控制阀

4.增压器及其应用

回路内有3个以上的液压缸.其中有一个需要较高的工作压力. 而其他的仍用较低的工作压力.此时即可用增压器提供高压给 那个特定的液压缸;或是在液压缸进到底时用增压器.如此可 使用低压泵产生高压.以降低成本图4-23所示为增压器动作 原理及符号.
上一页 下一页 返回
4.1 常用的液压控制阀

当负载增加.出口压力p2上升到超过先导阀弹簧所调定的压力 时.提动头打开.压力油经排泄口流回油箱.由于有油液流过阻 尼管.油腔1的压力p2大于油腔2的压力p1.当此压力差所产生 的作用力大于主阀滑轴弹簧的预压力时.滑轴上升.减小了减 压阀阀口的开度.使p2下降.直到p2与p1之差和滑轴作用面积 的乘积同滑轴上的弹簧力相等时.主阀滑轴进入平衡状态.此 时减压阀保持一定的开度.出口压力p2保持在定值。 如果外界干扰使进口压力p1上升.则出口压力p2也跟着上升. 从而使滑轴上升.此时出口压力p2又降低.而在新的位置取得 平衡.但出口压力始终保持为定值。
第4章 控制元件

4.1 常用的液压控制阀 4.2 其他液压控制元件
4.3 常用气动控制阀
4.4 其他气动控制阀
4.1 常用的液压控制阀


4.1.1 概述
1.阀的功用 阀是用来控制系统中的流体的流动方向或调节其压力和流量 的.因此它可以分为方向阀、压力阀和流量阀3大类。一个形 状相同的阀.可以因为作用的不同而具有不同的功能。压力阀 和流量阀利用通流截面的节流作用控制系统的压力和流量.而 方向阀则利用通流通道的更换控制流体的流动方向。这就是 说.尽管阀存在着各种各样的不同类型.它们之间还是保持着 一些基本共同之处。

第五章 液压控制阀

第五章  液压控制阀

2.滑阀式换向阀(换向阀)
滑阀式换向阀在液压系统中比转阀式用得广泛,
以滑阀式换向阀为主介绍换向阀的各项工作性能。 五槽四通滑阀(左位),五槽四通滑阀(右位)。
换向阀图形符号含义

⑴用方框表示换向阀的工作位置,几个方框几个位;


⑵一个方框的上边和下边与外部连接的接口数即为通路数;
⑶方框内的箭头表示此位置上油路的通断状态,但箭头的方向 并不一定代表油液实际流动的方向;

实现远程调压或系统卸荷。
二、减压阀

Hale Waihona Puke 减压阀是利用液体流过缝隙产生压降的原理,使出口压力低 于进口压力的压力控制阀,按调节要求的不同,可分为定值
减压阀、定比减压阀和定差减压阀三种。

其中定值减压阀应用较广,简称减压阀。 直动和先导。先导应用多。 典型结构如下图
先导减压阀
减压阀和溢流阀的区别
表5-1 换向阀类型表
分类方式 按阀的结构 类型 转阀式、滑阀式
按阀的操纵方式
按阀的位置和通路数
手动、机动(行程)、电磁、液动、电液动
二位二通、二位三通……三位四通、三位五 通……
1.转阀式换向阀(转阀)
a)工作原理图 1-阀芯 2-阀体 b)应用自卸汽车车 厢举升机构 c)特点: 密封性差;阀芯径 向力不平衡;结构 简单、紧凑。
H型
Y型 K型 M型 X型 P型
P 、 T相通,A 、B 口封闭,泵卸荷,液压缸闭锁,从静止到启动 较平稳;制动性与O 型相同;可用于泵卸荷液压缸锁紧的系统中
四口处于半开启状态,泵基本卸荷,但仍保持一定的压力。换向 性能介于O 型和H型之间 P 、A 、B 相通, T封闭,泵与液压缸两腔相通,可组成差动连接。 从静止到启动平稳;制动平稳;换向位置变动比 H型的小,应用 广泛

5.《液压传动》液压控制阀

5.《液压传动》液压控制阀

结构简图
1—液动阀阀芯 2、8—单向阀 3、7—节流阀 4、6—电磁铁 5—电磁阀阀芯
图形符号
液动换向阀的换向速度可由两端节流阀 调整,因而可使换向平稳,无冲击。
图5-8 电液换向阀
5.2.2 换向阀
(5) 手动换向阀
利用手动杠杆改变阀芯和阀体的相对位置,实现换向。阀芯靠 钢球、弹簧定位。 自动复位式换向阀,可用手操作使换向阀 左位或右位工作,当操纵力取消后,阀芯 便在弹簧力作用下自动恢复至中位,停 止工作。适用于换向动作频繁,工作持续 时间短的场合。 钢球定位式换向阀,其阀芯端部的钢球定 位装置可使阀芯分别停止在左、中、右 三个位置上,当松开手柄后,阀仍保持 在所需的工作位置上, 可用于工作持续 时间较长的场合。
5.2.2 换向阀
3.滑阀机能
滑阀式换向阀处于中位或原始位置时,各油口的连通方式称为滑阀机 能(也称中位机能)。不同的滑阀机能可满足系统的不同要求。
表5-2 三位换向阀的滑阀机能 滑阀 中位符号
机能
中位时的滑阀状态 三位四通 三位五通
中位时的性能特点
O H
各油口全部关闭,系统 保持压力,执行元件各 油口封闭 各油口P、T、A、B全部 连通,泵卸荷,执行元 件两腔与回油连通 A、B、T口连通,P口保 持压力,执行元件两腔 与回油连通
5.2.1 单向阀
2. 液控单向阀
1-控制活塞 2-顶杆 3-阀体
结构图
图形符号
原理:当控制油口Κ不通压力油时,油液只可以从P1进、P2出,此 时阀的作用与单向阀相同;当控制口Κ通压力油时,阀芯3 右移,阀保持开启状态,液流双向流动。一般控制油的压力 不应低于油路压力的30%~50%。
液控单向阀具有良好的单向密封性,常用于执行元件需要长时间保压、锁紧 的情况下。这种阀也称为液压锁。

液压控制阀概述

液压控制阀概述
序阀功用 顺序阀用来控制多个执行元件的顺序动作。 通过改变控制方式、泄油方式和二次油路的接法,顺 序阀还可构成其他功能,作背压阀、平衡阀或卸荷阀用。 顺序阀有直动式和先导式之分。 根据控制压力来源的不同,有内控式和外控式之分。
第二节 压力控制阀
(二)顺序阀工作原理
直动式减压阀
第二节 压力控制阀
减压阀和溢流阀不同之处: (1)减压阀保持出口处压力基本不变,溢流阀保持进口 处压力基本不变。 (2)在不工作时,减压阀进出口互通,溢流阀进出口不 通。 (3)为保证减压阀出口压力调定值恒定,弹簧腔需通过 泄油口单独外接油箱;溢流阀的出油口是通油箱的,所以 它的弹簧腔和泄漏油可通过阀体上的通道和出油口接通, 不必单独外接油箱。
(1)作溢流阀。溢流阀有溢流时,可维持阀进口亦即系 统压力恒定。 (2)作安全阀。系统超载时,溢流阀打开,对系统起过 载保护作用,而平时溢流阀是关闭的。 (3)作背压阀。溢流阀(一般为直动式)装在系统的回油 路上,产生一定的回油阻力,以改善执行元件的运动平稳 性。 (4)用先导式溢流阀对系统实现远程调压或使系统卸荷。
(二)节流阀应用 节流阀在液压系统中,主要与定量泵、溢流阀组成节 流调速系统。调节节流阀的开口,便可调节执行元件运动 速度的大小。
第三节 流量控制阀
二、调速阀
减压阀上端的油腔b通过孔道a和节流阀后的油腔相通, 压力为p2,而其肩部腔c和下端油腔d,通过孔道f和e与节 流阀前的油腔相通,压力为pm。活塞上负载F增大时,p2 增大,作用在减压阀阀芯上端的液压力增大,阀芯下移, 减压阀的开口加大,压降减小,使pm增大,结果使节流阀 前后的压差pm - p2保持不变;反之亦然。这样就使通过调 速阀的流量恒定不变,活塞运动的速度稳定,不受负载变 化的影响。

第5章 液压控制阀

第5章 液压控制阀

泄油口L(在侧面,图中看不见)
进油口P1
进油口P1
出油口P2
出油口P2
泄油口L
◆减压阀的主要特点:
1)常态下阀口打开
2)从出口引压力油控制阀口开度 3)进口压力小于调定值时,不起减压作用
4)当进口压力高于调定值时,保持出口稳定低压
5)泄油口单独接油箱
◆减压阀和溢流的区别: 1、减压阀是出口压力控制,保证出口压力为定值; 溢流阀是进口压力控制,保证进口压力为定值 2、减压阀阀口常开;溢流阀阀口常闭
◆静态特性
(4)溢流阀的压力调节范围: 溢流阀的能够保证性能的压力使用范围。调节压力
时进口压力能保持平稳变化,无突变、迟滞等现象
更换不同刚度的弹簧可改变压力调节范围 (5)溢流阀许用流量范围: 许用流量范围是额定流量的15%—100%
动态特性
溢流阀的动态特性是指流量阶跃时的压力响应特性, 如图。其衡量指标主要有压力超调量、响应时间等。
此力指向阀口开启方向 作用在锥阀上的稳态液动力 (a)外流式; (b)内流式
(3)液压卡紧现象 卡紧现象 在中高压系统中,当阀芯停止运动一段时间后, 移动阀芯十分费力,这就是卡紧现象。 引起的原因 主要是滑阀付几何形状误差和同心度变化引起的 径向不平衡力。有的是赃物进入缝隙或油温升高阀芯
膨胀卡紧
(3)液压卡紧现象 卡紧力 •径向不平衡力分析: 1、无几何误差,但轴心线平行不重合:不出现径向不 平衡力。
◆静态特性 (2)溢流阀的启闭特性: 开启比:Pc与 Pn 之比越大、调压偏差越小阀的压力稳定 性越好; 闭合比:Pc· 与 Pn率越大阀的性能越好 一般开启压力比率> 90% ;闭合压力比率> 85% (3)溢流阀的卸荷压力: 溢流阀的遥控口与油箱连通后泵处于卸荷状态时,溢流阀 进出油口压力之差称之为卸荷压力。一般卸荷压力不大于 0.2MPa,最大不应超过0.4MPa。

液压水位控制阀型号大全

液压水位控制阀型号大全

液压水位控制阀型号大全液压水位控制阀是一种通过液压控制水位的设备,广泛应用于各种液压系统中。

本文将介绍液压水位控制阀的型号大全,以便读者了解不同类型的液压水位控制阀。

1.电动液位控制阀(ELC-1)电动液位控制阀(ELC-1)是一种采用电动执行器控制液压水位的阀门。

它具有响应速度快、控制精度高等特点,适用于对水位要求较高的场合。

2.电液液位控制阀(EPCV-2)电液液位控制阀(EPCV-2)是一种以电液转换器为驱动的液压水位控制阀。

它能够通过电流信号控制液压系统的水位,适用于液压系统中对水位要求较为严格的场合。

3.液压电液位控制阀(HREL-3)液压电液位控制阀(HREL-3)是一种通过液压控制电液转换器的阀门。

它具有液压系统稳定性好、响应速度快等优点,适用于液压系统中对水位控制要求较高的场合。

4.气动液位控制阀(PVC-4)气动液位控制阀(PVC-4)是一种通过气动执行器控制液压水位的阀门。

它具有结构简单、操作方便等特点,适用于气动系统中对水位控制要求一般的场合。

5.机械液位控制阀(MCV-5)机械液位控制阀(MCV-5)是一种通过机械原理控制液压水位的阀门。

它具有结构简单、维护成本低等特点,适用于液压系统中对水位控制要求不高的场合。

6.液力液位控制阀(LCV-6)液力液位控制阀(LCV-6)是一种通过液力传动控制液压水位的阀门。

它具有结构紧凑、控制灵活等特点,适用于液压系统中对水位要求较高的场合。

7.液体电液位控制阀(LEC-7)液体电液位控制阀(LEC-7)是一种采用液体传导电信号控制液压水位的阀门。

它具有控制精度高、可靠性好等特点,适用于对水位要求较高的液压系统中。

8.电液机械液位控制阀(EMCV-8)电液机械液位控制阀(EMCV-8)是一种通过电液机械转换器控制液压水位的阀门。

它具有操作简单、可靠性高等特点,适用于对水位要求较为严格的场合。

9.电磁液位控制阀(EMLV-9)电磁液位控制阀(EMLV-9)是一种通过电磁力控制液压水位的阀门。

第五章 液压控制阀

第五章 液压控制阀
我国的液动阀控制压力不小于0.35MPa,(使用条件)即(3.5kgf/㎝2), 由于此阀换向时间可调,换向冲击小,一般用于较大流量(>63L/min)的
场合。
(5)电液动换向阀 电液动换向阀又称电液换向阀,它由电磁换向阀与换向 时间可调的液动阀组成。其中电磁换向阀称先导阀,改变 液动阀的控制油路的方向(虚线位控制油路),而液动阀实 现主油路的换向,称为主阀。换向的速度由控制油路中的 单向节流阀调节。
/min左右),而且当阀芯被卡住或由于电压低等原因吸合不上时,电磁
铁线圈易烧坏(起动电流大)、工作可靠性差;
直流电磁铁在工作或过载情况下,其电流基本不变,因此不会因阀 芯被卡住而烧坏电磁铁线圈,工作可靠,换向冲击、噪声小,换向时间
长(约0.1~0.15s),换向频率允许较高(120次/min,最高可达240次/ min),但需要直流电源或整流装置,并且起动力小,反应速度较慢。
液动换向阀有换向时间可调和换向时间不可调两种。
换向时间不可调液动阀
液动换向阀 换向时间可调液动阀
A、换向时间不可调的液动换向阀
如图所示三位四通液动换向阀结构原理图,当控制油口K1和
K2均不通控制压力油时,阀芯在复位弹簧的作用下处于中位,当
K1通压力油,K2通油箱时,阀芯右移,使P与A通,B与T通;反
一、单向阀
单向阀包括普通的单向阀和液控单向阀两种。
单向阀 普通的单向阀 液控单向阀 1、普通单向阀(单向阀) 它只允许油液沿一个方向通过,而反向液流被截止, 亦称逆止阀、止回阀,要求其正向液流通过时压力 损失较小,反向截止时密封性能好。
图形符号
按进出油液流向的不同分直通式和直角式两种结构, 都由阀芯、阀体和弹簧等组成。(小规格直通式阀有用钢球作 阀芯的),当液流从进油口A 流入时,油液压力克服弹簧阻力 和阀体1与阀芯2间的摩擦力,顶开带有锥端的阀芯(或钢球), 从出油口B 流出。当油液反向从B流入时,油液压力使阀芯 紧密地压在阀座上,故不能逆流。由于弹簧仅起复位作用, 因而弹簧力很小。所以正向开启压力只需0.03~0.05MPa ; 反向截止时,因阀芯与阀座孔为线密封,且密封力随压力增 高而增大,故密封性能良好。

液压控制阀讲解

液压控制阀讲解

第二节 方向控制阀
2)单向阀的要求: 正向液流压力损失小,反向截止密封性能
好,动作灵敏;
第二节 方向控制阀
3)普通单向阀结构
阀体、阀芯 (锥形、钢球式)、弹簧等
4)连接方式 螺纹管式连接
第二节 方向控制阀
5)普通单向阀性能参数 开启压力:Pk=0、03—0、05MPa 做背压阀:Pk=0.3—0.5 MPa
及开口大小,来实现压力、流量和方向的控制; 2、液压阀工作时始终满足压力流量方程,即流经阀
口的流量q与阀口前后压差和阀口开口面积有关。
第二节 方向控制阀
方向控制阀功用 用以控制油液流动方向或液流通断。
分类:单向阀、换向阀
一、单向阀 1、普通单向阀(逆止阀或止回阀) 1)普通单向阀功用
只允许油液正向流动,不许反流。
第四章 液压控制阀
第一节 概述
液压控制阀是液压系统中控制油液压力、 流量及流动方向的元件
一、液压阀的基本结构与原理 结构:
1、结构上由阀体、阀芯和阀芯驱动件组成;
第一节 概述
2、阀心:滑阀、锥阀和球阀; 3、阀体有阀体孔或阀座孔和外接油管的进出油口; 4、驱动装置:手动、弹簧、电磁或液压力; 原理: 1、利用阀心在阀体内的相对运动来控制阀口的通断
第三节 压力控制阀
目的任务
了解压力阀功用、分类、 组成、特点 掌握压力阀的工作原理、 性能、区别
(以二位二通为例)
第二节 方向控制阀
3)电磁换向阀
第二节 方向控制阀
第二节 方向控制阀
电磁换向阀特征:借助于电磁铁吸力推动阀心动作来改 变液流流向。
按所用电源不同,分为交流型、直流型和交流本整型。 符号:
原理:图示位置:P → A 、B ┴ 电磁铁通电:P → B 、 A ┴

液压控制阀工作原理

液压控制阀工作原理

液压控制阀工作原理
液压控制阀是液压系统中的重要组成部分,用于控制液压流体的流量、压力和方向。

其工作原理如下:
1. 流量控制:液压控制阀通过调节阀芯的开口面积,改变液压流体通过阀的流通截面积,从而控制液压系统中的流量。

当阀芯打开时,流量增大;当阀芯关闭时,流量减小。

2. 压力控制:液压控制阀通过调节阀芯的开口面积,控制液压系统中的工作压力。

当液压系统中的压力超过预设值时,控制阀会自动调节阀芯的开口面积,使压力保持在设定值范围内。

3. 方向控制:液压控制阀通过调节阀芯的位置,改变液压系统中液压流体的流向。

根据液压系统的工作需求,控制阀可将液压流体的流向导向到不同的油路或油腔中,实现液压执行元件的动作。

液压控制阀的工作原理是通过阀芯的位置、开口面积和运动状态来调节流量、压力和方向。

不同的液压控制阀具有不同的结构和特点,但其基本工作原理是相似的。

通过合理选择和调整液压控制阀的参数,可以实现对液压系统的精确控制,提高系统的工作效率和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 液压控制阀液压控制阀种类很多,根据其作用的不同可分为以下三大类:方向控制阀:如单向阀、换向阀等。

压力控制阀:如溢流阀、减压阀、顺序阀等。

流量控制阀:如节流阀、调速阀等。

它们的作用是通过对液压系统中压力油的流动方向、压力大小、流量大小的控制,从而达到对执行元件的运动方向、输出力(或力矩)大小、输出速度大小进行控制。

第一节 方向控制阀一、单向阀单向阀只允许油液向一个方向流动,不得反向流动,其结构如图4.1所示,主要由阀体1、阀芯2和阀弹簧3组成。

其结构原理如图 4.1所示,当油液沿着p 1→p 2正向流动时,阀芯开启油流畅通。

当油液从p 2→p 1反向流动时阀芯关闭油流不通。

单向阀应具备如下特性:当油液从正向流过阀时,阀芯阻力要小,压力损失要少;当油液反方向进入单向阀时,阀芯与和阀座之间密闭性要好,无泄漏或泄漏量很小。

在液压系统中,有时还需要单向阀反向流动时油液也畅通,这就需采用液控单向阀。

二、液控单向阀液控单向阀主要由阀体1、阀芯2、弹簧4、顶杆5、阀盖3及阀盖6组成,其结构见图4.2所示。

当p 0无压力油时,若油液沿着p 1→p 2正向流动,则阀芯开启油流畅通。

若油液从p 2→p 1反向流动,则阀芯关闭油流不通。

当从p 0给以压力油时,在控制油的作用下,顶杆5向上运动将阀芯2顶起,油液从p 2→p 1反向畅通。

液控单向阀的最小控制压力约为主油路的30% ~ 40%。

(a ) (b ) 图4.1 单向阀 1—阀体;2—阀芯;3—阀弹簧图4.2 液控单向阀1—阀体;2—阀芯;3—上阀盖;4—阀弹簧;5—顶杆;6—下阀盖 三、换向阀换向阀是控制液压系统中的油流方向,改变执行元件的运动方向和动作顺序的阀件。

1.换向阀的分类换向阀按阀芯运动方式的不同可分为:滑阀式与转阀式;按操纵控制方式的不同可分为:手动换向阀(S )、机动换向阀(C )、电磁换向阀(交流电D ,直流电E )、液动换向阀(Y )、电液动换向阀(DY ,EY );按阀的可变位置及控制油路数量的不同可分为:二位二通、二位三通、二位四通、三位四通、三位六通等换向阀;按阀的安装连接方式的不同可分为:管式(G 或L )、板式(B )、法兰式(F )等换向阀;根据压力级别的不同可分为:中低压阀(0 ~ 8 MPa )、中高压阀(8 ~ 16 MPa )、高压阀(16 ~ 32 MPa )等。

以下将介绍几种典型换向阀的结构原理。

2.三位四通手动换向阀三位四通手动换向阀的结构如图4.3所示,主要由阀体1、阀芯2、弹簧3、端盖4、5、操纵杆6组成。

在阀体上有四个凹槽分别与阀体底部的四个油口O 、B 、A 、P相通,O 为回油口,B 、A 分别接通执行元件的进回油路,P 为压力油入口,油槽a 经阀芯上的中心孔与回油口O 相通。

这四个油口要特别注意不可接错。

当手柄处于中位时,阀芯上的凸台将B 油口和A 油口堵死,此时P 、A 、B 、O 各油口互不相通;当手柄向左扳时,阀芯向右移动,此时P 油口与A油口相通,图4.3 三位四通手动换向阀 1—阀体;2—阀芯;3—弹簧;4、5—端盖;6—操纵杆B 油口与O 油口相通,执行元件向某个方向运动;当手柄向右扳时,阀芯向左移动,此时P 油口与B 油口相通,A 油口与O 油口相通,执行元件反向运动,实现换向。

当放松手柄时,两边的弹簧能够自动将阀芯恢复到中间位置,使油路断开,执行元件停止运动。

换向阀的型号可以表明其结构和工作特性,例如型号34SO —L10H —T —ZZ ,其中的“3”表示阀有三个工作位置;“4”表示阀有四个通路(四个油口);“S ”表示手动换向;“O ”表示该阀的滑阀机能为“O 型”;“L ”表示螺纹连接;“10”表示阀的通径为10mm ;“H ”表示阀的压力级别为高压;“T ”表示弹簧复位;“ZZ ”表示双阻尼换向。

位:表示滑阀可滑动的位置,几位就用几个方框表示。

通:表示滑阀有几个油口,一般P 油口与油泵相连,O 油口与油箱相连。

滑阀机能:表示三位滑阀在中位时的通路情况,图4.3中滑阀处于中间位置时,P 、A 、B 、O 各通路互不相通,具有这种滑阀机能的阀又称为O 型机能阀。

根据滑阀机能的不同,常用的三位四通阀有:“O ”型、“H ”型、“K ”型、“Y ”型、“P ”型、“X ”型、“J ”型、“M ”型。

不同的滑阀机能具有不同的工作特性,如表4.1所示。

3.机动滑阀机动滑阀又叫行程滑阀,它是靠挡铁或凸轮使阀芯移动来控制油流换向的。

机动滑阀通常是二位的,有二通、三通、四通、五通等。

图4.4所示为二位二通常闭式机动滑阀,挡块往复一次,滑阀换一次向。

在图示位置时阀芯2被弹簧3压向上端,油口A 和P 不通,在职能符号的右位工作。

当用挡铁或凸轮压住阀芯上端,就使阀芯2下移到下端,油路P和A 接通,在职能符号的左位工作。

4.电磁滑阀 电磁换向阀是利用电磁铁推动阀芯移动,从而控制油流方向的。

电磁滑阀有二位二通、二位三通、二位四通、三位四通和三位五通等多种形式。

图4.5中所示为二位三通电磁滑阀的结构原理和职能符号。

当电磁铁断电时,阀芯2被弹簧3推向左边,使油口P 和油口A 接通,即常态时在阀的右位工作。

当电磁铁通电时,可动磁铁4被固定磁铁5所吸引,推动推杆1,将阀芯2推向右端,使油口P 和油口A 的通道被关闭,而油口P 和油口B 的通道被接通,即通电时,阀在靠近电磁铁的左位工作。

电磁滑阀由于受电磁铁吸力较小的限制,其流量一般在63 l/min 以下。

流量大的换向阀一般采用液动控制或电液控制。

图 4.4 机动滑阀原理及符号A P表4.1 滑阀机能5.液动滑阀液动滑阀是靠压力油来改变阀芯位置的换向阀。

图4.6是三位四通O 型液动滑阀的结构原理和职能符号。

它的阀芯和阀体与其它方式驱动的三位四通O 型滑阀相同,也是弹簧复位,所不同的是阀体上有两个控制油口K 1、K 2,分别通向阀芯的左右端面。

当控制油路的压力油从阀左边的油口K 1进入滑阀左腔时,阀芯被推向右端,P 与A 相通,B 与O 相通,三位阀的左位工作。

当控制油路的压力油从阀右边的油口K 2进入滑阀右腔时,阀芯被推向左端,P与B 相通,A 与O 相通,三位阀的右位工作。

当两个控制油口K 1、K 2都不通压力油时,阀芯在两边弹簧的作用下恢复到中间位置,此时,P 、A 、B 、O 油口互不相通,阀在中位工作,即常态。

6.电液动滑阀电液动滑阀是大功率阀,一般单独用电动、手动或液动都难以推动阀芯换向时,就采用电液联动。

它是电磁滑阀和液动滑阀的组合。

电磁滑阀起先导作用,它可以改变液控油的流动方向,从而改变液动滑阀的阀芯位置。

图4.7所示为三位四通O 型电液动滑阀的结构原理及职能符号,当右边电磁铁通电时,电磁阀的阀芯左移,A 、O 油口相通,P 、B 油口相通,控制油路的压力油由通道b经单向节 图4.6 液动滑阀1—阀盖;2—弹簧;3—阀体;4—阀芯;5—弹簧座图 4.7 电液动换向阀(a )结构原理;(b )电液换向原理;(c )职能符号流阀e和孔道f进入主滑阀的右腔端面,将主滑阀的阀芯推向左边,使A1油口与O1油口相通,P1油口与B1油口相通。

在主滑阀左移的过程中,主滑阀左端的油经孔道h、单向节流阀g的节流口,又经通道a进入上部电磁阀的A油口,再从其O油口回油箱。

当左边电磁铁通电时,电磁阀的阀芯右移,A与P油口相通,O与B油口相通,这时,控制油路的压力油由通道a经单向节流阀g和孔道h进入主滑阀的左腔端面,将主滑阀的阀芯推向右边,使B1油口与O1油口相通,P1油口与A1油口相通,执行元件换向。

同样,在主滑阀右移的过程中,主滑阀右端的压力油经孔道f、单向节流阀e的节流口,又经通道b进入上部电磁阀的B油口,再从其O油口回油箱。

当两个电磁铁都断电时,两边的弹簧使滑阀的主阀芯处于中间位置,P、A、B、O各油口互不相通。

主滑阀阀芯向左或向右移动的速度,可以分别用左右两端的节流螺钉来调节,因为节流螺钉的轴向位置决定了节流阀过流面积的大小,从而可以保证液动滑阀换向平稳无冲击。

7.转阀转阀是靠阀芯与阀体之间的相对转动来改变油流方向的换向阀。

如图4.8 所示为三位四通转阀,阀体上有四个油口P、A、B、O,阀芯上有两个环形槽a、c,分别与P油口及O油口相通,此外,阀芯上还有四个均布的油沟,每相对的两个油沟通向一侧环形槽,即e、f与a相通,b、d与c相通。

当阀芯处于图示位置时,压力油从进油口P入阀经环形槽c、油沟b 与油口A相通,使压力油进入执行元件的一个腔,执行元件另一腔的回油从油口B进阀,经过油沟e及环形槽a从回油口O流回油箱。

当用手柄3将阀芯2转过45°时,油沟b、e与A、B油口断开,这时P、A、B、O油路互不相通,执行元件被锁紧在某一位置。

当阀芯从图示位置转过90°时,油口A通过油沟e或f与回油口O相通,而油口B通过油沟d或b 与压力油口P相通,使压力油进入执行元件的另一个腔,实现换向。

6为叉形拨杆,可利用挡铁通过拨杆使转阀自动换向。

弹簧钢球起定位作用。

第二节方向逻辑阀逻辑阀是以锥阀为基本元件,以芯子插入式为基本连接形式,配以不同的先导阀来满足各种动作要求的阀。

由逻辑阀组成的液压系统,称为液压逻辑系统。

按用途分为方向逻辑阀、压力逻辑阀、调速逻辑阀三种。

本节介绍方向逻辑阀。

一、方向逻辑阀的基本元件如图4.9所示,锥阀是组成逻辑阀的基本元件,实际上是一个可控单向阀。

对外有两个管口A 、B 和一个控制口C 。

锥阀由阀体、阀芯、弹簧和密封圈等组成。

当油路A 的油压超过油压C 和弹簧的压力时,阀芯打开,油路A 、B 相通,其流向由A 、B 两油口压力的大小而定。

当A 的油压没有超过油压C 和弹簧的压力时,油路A 、B 不通。

二、方向逻辑阀 方向逻辑阀由锥阀和先导阀组成,如图4.10是以二位四通阀作为先导阀,图4.11是以三位四通换向阀作先导阀。

在图4.10中,若先导阀不通电,当左端锥阀进控制油,右端锥阀卸控制油时,通口P 关闭,AO 相通,相当于二位三通电磁阀的左位;若先导阀通电时,当左端锥阀卸控制油,右端锥阀进控制油时,PA 通,O 闭。

相当于二位三通电磁阀的右位。

因此,这只方向逻辑阀完全可以用这只二位三通电磁阀代替。

同理,在图4.11中,左边的逻辑阀完全可以用右边的三位三通电磁换向阀代替。

当三位四通先导阀位于中位时,控制油同时进入两只锥阀,锥阀闭合,P 、O 、A 不通,相当于电磁阀的中位。

当2DT 通电,右位阀芯进入系统,左端锥阀控制油卸出,锥阀开启。

右端锥阀控制油进入,锥阀闭合,P A 通,O 不通,相当于电磁阀的右位。

当1DT 通电,左端锥阀进入控制油,锥阀闭合,右端锥阀控制油卸油,锥阀开启,P 不通,AO 通,相当于电磁阀的左位。

相关文档
最新文档