中考试题考点跟踪突破8 分式方程及其应用

合集下载

2023学年八年级数学上册高分突破必练专题(人教版)分式方程应用(四大类型)(原卷版)

2023学年八年级数学上册高分突破必练专题(人教版)分式方程应用(四大类型)(原卷版)

分式方程应用(四大类型)类型一:行程问题类型二:工程问题类型三:销售问题类型四:方案问题【类型一:行程问题】【典例1】(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【变式1-1】(2012•山西模拟)列方程或方程组解应用题:为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.【变式1-2】(2020秋•白云区期末)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.【变式1-3】(2021•扬州模拟)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.【类型二:工程问题】【典例2】(2022春•瑶海区期末)某建工集团下有甲、乙两个工程队,现中标承建一段公路,若甲、乙两工程队合做20天可完成;若让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费10000元,乙工程队施工每天需付施工费26000元,此项工程若由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,则甲工程队至少要独做多少天,才能使施工费不超过680000元?【变式2-1】(2022•桂林模拟)为了进一步丰富市民的休闲生活,某区政府决定在漓江沿岸扩建5400米绿道并进行招标,根据招标结果,该工程由甲、乙两个工程队参与建设.已知:甲工程队每天完成的工程量是乙队的1.2倍,甲队单独完成工程比乙队单独完成少用10天.(1)求乙队每天能完成多少米?(2)若甲、乙两个工程队合作20天后,剩余工程由乙工程队单独完成,求乙工程队还需多少天?【变式2-2】(2022•玉州区一模)为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过12万元,则至少应安排甲工程队工作多少天?【类型三:销售问题】【典例3】(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?【变式3-1】(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?【变式3-2】(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B 种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.(1)求A、B两种学习用品每件多少元?(2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B 种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?【类型四:方案问题】【典例4】(2021春•花都区校级月考)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【变式4-1】(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?【变式4-2】(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A 奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?1.(2021•张家界模拟)为创建国家级生态市,遵义市政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包.已知甲工程队每天的施工量是乙工程队的3倍,若先让乙工程队单独施工14天后甲工程队加入,甲、乙两个工程队合作4天后,可完成总工程的.(1)求甲工程队单独完成这项工程需要多少天;(2)甲工程队每天需支付的工程款为10万元,乙工程队每天需支付的工程款为3万元,若工程费用不超过190万元,则甲工程队最多工作多少天?2.(2021•长沙模拟)《三湘都市报》华声在线2月21日讯,在长沙市岳麓区麓景路与梅溪湖路的交汇处,一条穿过桃花岭公园连接含浦片区与梅溪湖片区的麓景路隧道正在加紧施工当中.从隧道中运输挖出土方,其中每辆大货车运输的土方比每辆小货车多8立方米,大货车运120立方米与小货车运80立方米车辆数相同.(1)求大货车与小货车每辆各运输土方多少立方米?(2)总共有大小货车共20辆,每天需运出432立方米泥土,大小货车各需要多少辆?3.(2020秋•仓山区校级期末)某段铁路全长2400千米,经过铁路技术改造,列车实现第一次提速,已知提速后比提速前速度增加了20%,行驶全程所需时间减少了4小时.(1)求列车提速前的速度;(2)现将铁路全长延伸至3000千米,且要继续缩短行驶全程所需的时间,则列车需再次提速,设提速百分比为m,已知列车在现有条件下安全行驶的速度不应超过180千米/每小时,求m的取值范围.4.(2021•昆明模拟)受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?5.(2021春•埇桥区期末)开学初,学校要补充部分体育器材,从超市购买了一些排球和篮球.其中购买排球的总价为1000元,购买篮球的总价为1600元,且购买篮球的数量是购买排球数量的2倍.已知购买一个排球比一个篮球贵20元.种类标价优惠方案A品牌足球150元/个八折B品牌足球100元/个九折(1)求购买排球和篮球的单价各是多少元;(2)为响应“足球进校园”的号召,学校计划再购买50个足球.恰逢另一超市对A、B 两种品牌的足球进行降价促销,销售方案如表所示.如果学校此次购买A、B两种品牌足球的总费用不超过5000元.那么最多可购买多少个A品牌足球?6.(2020秋•天心区期末)明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?。

人教版初中数学八上重难突破八 分式方程的实际应用

人教版初中数学八上重难突破八 分式方程的实际应用

2.已知一艘客轮在静水中的速度为20 km/h,如果此船在某江中顺流航行72 km所用 时间与逆流航行48 km所用的时间相等,那么此江水的水流速度是多少?
解得x=4. 经检验,x=4是原分式方程的解,且符合题意. 答:此江水的水流速度是4 km/h.
3.为让学生们近距离接触大自然,积累写作素材,提高写作能力,某校策划了以 “拥抱自然”为主题的作文大赛,某班开展了此项活动,生活委员为班级购买奖 品后与学习委员的对话如下: 生活委员:我买相同数量的软面笔记本和硬面笔记本分别花去了12元和19.2元, 而每本硬面笔记本比软面笔记本的价格多3元. 学习委员:你肯定搞错了. 试用所学的知识帮助生活委员计算一下,为什么说生活委员搞错了.
第一轮 重难突破
重难突破八 分式方程的实际应用
1.某文化用品商店用2 400元购进一批学生书包,面市后发现供不应求,商店又购进 第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了5元,结果购 进第二批书包用了7 800元.求第一批购进书包的单价是多少元.
解得x=60. 经检验,x=60是原分式方程的解,且符合题意. 答:第一批购进书包的单价是60元.
9.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的 进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同. (1)求每个甲、乙两种商品的进价分别是多少元;
(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙 两种商品的总数量不超过95个,则商场最多购进乙商品多少个? 解:(2)设商场购进乙商品y个,则购进甲商品(3y-5)个. 由题意,得3y-5+y≤95, 解得y≤25. 答:商场最多购进乙商品25个.
(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个, 且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380 元,那么该商场购进甲、乙两种商品有哪几种方案?

中考数学知识点:分式方程及其应用

中考数学知识点:分式方程及其应用

中考数学知识点:分式方程及其应用
分式方程及其应用
中考考点要求:
1、理解分式方程的概念,会解可化为一元一次方程的分式方程(方程中的分式不超过两个)。

2、了解分式方程增根的定义。

3、能够根据具体问题中的数量关系列出分式方程,解决简单的实际问题。

考点一、分式方程及解法:
1、分式方程
分母里含有未知数的方程叫做分式方程。

2、解分式方程的基本思想
把分式方程转化为整式方程,即分式方程去分母→转化→整式方程
3、解分式方程的一般步骤
(1)方程两边同乘以最简公分母,转化成整式方程。

(2)解这个整式方程。

(3)验根。

中考数学考前热点冲刺指导第8讲分式方程及其应用新人教版_1

中考数学考前热点冲刺指导第8讲分式方程及其应用新人教版_1

2019年6月5日
海阔天空专属文档(第翔子8讲989┃) 分式方程及其应用 6
6.解分式方程:x2+x2-x-3 2=2.
解:方程两边都乘(x+2)(x-2),得 2x(x-2)-3(x+2)=2(x2-4), 解得x=27. 检验:当x=27时,(x+2)(x-2)≠0. ∴x=27是原方程的解.
第8讲 分式方程及其应用
2019年6月5日
海阔天空专属文档(翔子989)
1
┃考点自主梳理与热身反馈 ┃ 考点1 分式方程及相关概念
分式方程
分式方程的解 可化为一元 一次方程的 分式方程
分母_含__有__未__知_数____的方程叫做分式 方程
能够使分式方程成立的未知数的值
去分母后方程是一元一次方程
解:(1)设第一次每个书包的进价是 x 元,
30x00-20=214.20x0, 解得 x=50. 经检验,x=50 是原方程的根且符合题意, 故第一次每个书包的进价是 50 元. (2)设打 y 折销售. 2400÷(50×1.2)=40, 80×20+80×0.1y×20-2400≥480, y≥8.故最低可打 8 折.
A.3x00-6200=13.020x
B.3x00-13.020x=20
C.3x00-x+3010.2x=2600
D.3x00=13.020x-2600
[解析]
原计划植树用的时间应该表示为
300 x
,而实际用的时间
为13.020x,那么方程可表示为3x00-2600=13.020x.
2019年6月5日
2019年6月5日
海阔天空专属文档(第翔子8讲989┃) 分式方程及其应用 14
(2)如果工程由甲队单独完成,需要费用:650×18=11700(元); 如果工程由乙队单独完成,需要费用:400×36=14400(元); 如果工程由甲、乙两队合作,需要费用:(650+400)×12=12600(元). ∵11700<12600<14400,∴工程应由甲队单独完成.

初三数学总复习--分式方程及应用

初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。

中考数学必考考点专题8分式方程及其应用含解析

中考数学必考考点专题8分式方程及其应用含解析

专题08 分式方程及其应用1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。

(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);(2)按解整式方程的步骤求出未知数的值;(3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方程的根。

【例题1】(2019•湖北孝感)方程=的解为 . 【答案】x =1.【解析】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.观察可得方程最简公分母为2x (x +3).去分母,转化为整式方程求解.结果要检验.两边同时乘2x (x +3),得 x +3=4x ,解得x =1.经检验x =1是原分式方程的根.【例题2】(2019黑龙东地区)已知关于x 的分式方程213x m x -=- 的解是非正数,则m 的取值范围是( ) A .m ≤3B .m <3C .m >-3D .m ≥-3【答案】A【解析】知识点是分式方程的增根。

由213x m x -=-得x=m-3, ∵方程的解是非正数,专题知识回顾 专题典型题考法及解析∴m-3≤0,∴m≤3.当x-3=0即x=3时,3=m-3,m=6,∵m=6不在m≤3内,∴m≤3.故选A.【例题3】(2019•广东省广州市)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【答案】【解析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.设甲每小时做x个零件,可得:【例题4】(2019•四川自贡)解方程:﹣=1.【答案】x=2.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【例题5】(2019•江苏扬州)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。

聚焦中考数学(甘肃省)考点跟踪突破8分式方程及其应用

聚焦中考数学(甘肃省)考点跟踪突破8分式方程及其应用

考点跟踪突破8 分式方程及其应用一、选择题(每小题6分,共24分)1.(2015·常德)分式方程2x -2+3x 2-x=1的解为( A ) A .1 B .2 C .13D .0 2.(2015·乌鲁木齐)九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km /h ,则所列方程正确的是( C )A .10x =102x -13B .10x =102x-20 C .10x =102x +13 D .10x =102x+20 3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( A )A .8B .7C .6D .54.(2015·齐齐哈尔)关于x 的分式方程5x =a x -2有解,则字母a 的取值范围是( D ) A .a =5或a =0 B .a ≠0C .a ≠5D .a ≠5且a≠0解析:5x =a x -2,去分母得:5(x -2)=ax ,去括号得:5x -10=ax ,移项,合并同类项得:(5-a)x =10,∵关于x 的分式方程5x =a x -2有解,∴5-a≠0,x ≠0且x≠2,即a≠5,系数化为1得:x =105-a,∴105-a ≠0且105-a ≠2,即a≠5,a ≠0,综上所述:关于x 的分式方程5x =a x -2有解,则字母a 的取值范围是a≠5且a≠0,故选:D二、填空题(每小题6分,共24分)5.(2015·凉山州)分式方程2x -3=3x的解是__x =9__. 6.(2015·黑龙江)关于x 的分式方程m x 2-4-1x +2=0无解,则m =__0或-4__. 7.(2015·通辽)某市为处理污水,需要铺设一条长为5000 m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20 m ,结果提前15天完成任务.设原计划每天铺设管道x m ,则可得方程__5000x -5000x +20=15__. 8.新定义:[a ,b]为一次函数y =ax +b(a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x 的方程1x -1+1m=1的解为__x =3__. 三、解答题(共52分)9.(10分)解分式方程:(1)(2015·陕西)x -2x +3-3x -3=1; 解:去分母得:x 2-5x +6-3x -9=x 2-9,解得:x =34,经检验x =34是分式方程的解(2)(2014·聊城)2+x 2-x +16x 2-4=-1. 解:去分母得:-(x 2+4x +4)+16=4-x 2,去括号得:-x 2-4x -4+16=4-x 2,解得:x =2,经检验x =2是增根,故分式方程无解10.(10分)(2015·嘉兴)小明解方程1x -x -2x=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x 得1-(x -2)=1 ……①去括号得1-x -2=1 ……②合并同类项得-x -1=1 ……③移项得-x =2 ……④解得x =-2 ……⑤∴原方程的解为:x =-2 ……⑥解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验.正确解法为:方程两边乘以x ,得:1-(x -2)=x ,去括号得:1-x +2=x ,移项得:-x -x =-1-2,合并同类项得:-2x =-3,解得:x =32,经检验x =32是分式方程的解,则方程的解为x =3211.(10分)(2015·宜宾)近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?解:设乙每年缴纳养老保险金为x 万元,则甲每年缴纳养老保险金为(x +0.2)万元,根据题意得:15x +0.2=10x,去分母得:15x =10x +2,解得:x =0.4,经检验x =0.4是分式方程的解,且符合题意,∴x +0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元12.(10分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路________米; (2)求原计划每小时抢修道路多少米?解:(1)1200 (2)设原计划每小时抢修道路x 米,根据题意得:1200x +3600-1200(1+50%)x=10,解得:x=280,经检验:x =280是原方程的解.答:原计划每小时抢修道路280米13.(12分)某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出45时,出现滞销,便以定价的5折售完剩余的手链.试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次批发价为x 元/条,则第二次的批发价为(x +0.5)元/条.依题意得(x +0.5)(10+100x)=150,解得x 1=2,x 2=2.5.经检验x 1=2,x 2=2.5都是原方程的根.由于当x =2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x =2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为 2.5元/条.第二次共批发手链=1502.5=60(条).第二次的利润=(45×60×2.8+15×60×2.8×0.5)-150=1.2(元).所以老板第二次售手链赚了1.2元2016年甘肃名师预测1.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( A )A .600x +50=450xB .600x -50=450xC .600x =450x +50D .600x =450x -502.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m≠3D .m >2且m≠3。

中考数学考点总动员 第08讲 分式方程及其应用(含解析)-人教版初中九年级全册数学试题

中考数学考点总动员 第08讲 分式方程及其应用(含解析)-人教版初中九年级全册数学试题

第8讲 分式方程及其应用1.分式方程定义分母中含有未知数的方程叫做分式方程.2.分式方程解法分式方程转化为整式方程,解方程,求出解,代入最简公分母进行检验,得出分式方程的解.3.分式方程的增根使最简公分母为0的根.注意:分式方程的增根和无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解;分式方程的增根是去分母后整式方程的根,也是使分式方程的分母为0的根.4.分式方程的实际应用(1)分式方程的实际应用常见类型及关系:①工程问题:工作效率=工作量工作时间;工作时间=工作量工作效率; ②销售问题:售价=标价×折扣;③行程问题:时间=路程速度. (2)解分式方程的实际应用问题的一般步骤:①审:审清题意;②设:设出适当的未知数(直接设未知数或者间接设未知数);③找:找出各量之间的等量关系;④列:根据等量关系,列出分式方程;⑤解:解这个分式方程;⑥验:检验所求的解是否是原分式方程的解,是否满足题意;⑦答:写出答案.审清题意是前提,找等量关系是关键,列出方程是重点.考点1:分式方程的解法【例题1】解方程:23x -1-1=36x -2. 【解答】解:方法一:去分母,得4-2(3x -1)=3.解得x =12. 检验:当x =12时,2(3x -1)≠0, ∴x =12是原分式方程的解. 方法二:设3x -1=y 则原方程可化为2y -1=32y, 去分母,得4-2y =3.解得y =12. ∴3x -1=12.解得x =12. 检验:当x =12时,6x -2≠0, ∴x =12是原分式方程的解. 方法三:移项,得23x -1-36x -2=1. 通分,得16x -2=1. 由分式的性质,得6x -2=1.解得x =12. 检验:当x =12时,6x -2≠0, ∴x =12是原分式方程的解. 归纳:把分式方程转化为整式方程,再按照解整式方程的步骤解题,不同的是解分式方程需要验根. 考点2:分式方程的应用【例题2(2018·某某)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.解分式方程:甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度.冰冰:400x =600x +20庆庆:600y -400y=20 根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示甲队每天修路的长度;庆庆同学所列方程中的y 表示甲队修路400米所用时间;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【解析】:(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米(选择一个即可).(3)选冰冰的方程:400x =600x +20,解得x =40. 经检验,x =40是原方程的根.答:甲队每天修路的长度为40米.选庆庆的方程:600y -400y=20,解得y =10. 经检验,y =10是原方程的根.∴400y=40. 答:甲队每天修路的长度为40米.归纳:列方程解实际问题时,必须验根,既要检查所求解是否为分式方程的增根,又要检查看是否满足应用题的实际意义.考点3:分式方程与其它问题的综合应用【例题3】(2019•某某潍坊•10分)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)【分析】(1)由去年这种水果批发销售总额为10万元,可得今年的批发销售总额为10(1﹣20%)=12万元,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元,可列出方程:120000100000-=10001x x+,求得x即可(2)根据总利润=(售价﹣成本)×数量列出方程,根据二次函数的单调性即可求最大值.【解答】解:(1)由题意,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元,今年的批发销售总额为10(1﹣20%)=12万元∴120000100000-=10001x x+整理得x2﹣19x﹣120=0解得x=24或x=﹣5(不合题意,舍去)故这种水果今年每千克的平均批发价是24元.(2)设每千克的平均售价为m元,依题意由(1)知平均批发价为24元,则有w=(m﹣24)(413m-×180+300)=﹣60m2+4200m﹣66240整理得w=﹣60(m﹣35)2+7260∵a=﹣60<0∴抛物线开口向下∴当m=35元时,w取最大值即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元归纳:最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.一、选择题:1. (2019,某某某某,4分)解分式方程11=22xx x---﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)【答案】D【解答】解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.2. (2019•某某省聊城市•3分)如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【答案】B【解答】解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.故选:B.3. (2018某某)(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【答案】B【解答】两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.4.(2019•某某株洲•3分)关于x 的分式方程﹣=0的解为( )A .﹣3B .﹣2C .2D .3【答案】B 【解答】解:去分母得:2x ﹣6﹣5x =0,解得:x =﹣2,经检验x =﹣2是分式方程的解,故选:B . 5. 若数使关于x 的不等式组112352x x x x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a a y y ++=--的解为非负数,则符合条件的所有整数的和为( )A . -3B . -2C .1D .2【答案】C解析:解不等式115232524x x x a x x x a -+<⎧⎧<⎪⎪⎨⎨+≥⎪⎪-≥+⎩⎩得,由于不等式有四个整数解,根据题意A 点为42+a ,则1420≤+<a ,解得22≤<-a 。

八年级数学培优——分式方程及其应用

八年级数学培优——分式方程及其应用

第16讲分式方程及其应用考点·方法·破译1.分式方程(组)的解法解分式方程的一般步骤:⑴去分母,将分式方程转化为整式方程;⑵解整式方程;⑶验根.有的分式方程也要依据具体的情况灵活处理.如分式中分子(整式)的次数高于等于分母(整式)的次数时,可利用分拆思想,把分式化为“整式+分式”的形式,化简原方程再解;或将分式方程两边化为分子(或分母)相等的分式,再利用分母(或分子)相等构成整式方程求解;或利用换元法将分式方程化为整式方程,或利用倒数法使方程更简便.2.分式方程增根在解分式方程时,通常将分式方程两边同时乘以最简公分母(化为整式方程),这就扩大了未知数的取值范围,可能产生增根.因此,解分式方程时一定要验根.又如求分式方程的解的取值范围(解是正数,或解是负数)时,要注意剔除正数解或负数解中的增根(因为增根不是分式方程的根).3.列分式方程解应用题列分式方程解应用题同运用整式方程解应用题的方法和步骤是类似的,但要注意分式方程求出的未知数的解要双重检验,①检验是否是增根,②检验解是否符合实际意义.经典·考题·赏析【例1】解下列方程:⑴22xx-+-2164x-=1⑵12x+-2244xx--22x-=4⑶45xx--+89xx--=78xx--+56xx--【变式题组】⑴12xx--=12x--2⑵2xx-+2=3(2)xx-⑵14x--23x-=32x--41x-⑷12x++242xx-+22x-=1【例2】当m 为何值时,分式方程1m x +-21x -=231x -会产生增根?【变式题组】 01.分式方程22x x -+-22x x +-=2164x -的增根是__________. 02.若分式方程()()611x x +--1mx -=1有增根,则它的增根为( ) A .0 B .1 C .-1 D .1,-1 03.若关于x 的方程23x -=1-3m x -无解.则m 的值为___________.04.分式方程1m x +-21x -=232x -无解,则m 的值为___________.【例3】已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是_________.【变式题组】01.关于x 的方程21x ax +-=1的解是正数,则a 的取值范围是( ) A .a >-1 B . a >-1,且a ≠0 C .a <-1 D . a <-1,且a ≠-202.当m 为何值时,关于x 的方程22m x x --=1x x +-12x x --的解是正数?【例4】某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.⑴该商场两次共购进这种运动服多少套?⑵如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?【变式题组】01.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( )A .160x +()400120%x +=18 B .160x +()400160120%x -+=18 C .160x +40016020%x -=18 D .400x +()400160120%x-+=1802.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销的2倍.⑴试销时该品种苹果的进货价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?03.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.⑴求两队单独完成此项工程各需多少天?⑵此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?演练巩固·反馈提高01.关于x 的分式方程5mx -=1,下列说法正确的是( ) A .方程的解是x =m +5 B .m >-5时,方程的解是正数 C .m <-5时,方程的解是负数D .无法确定02.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8B .7C .6D .5 03.用换元法解分式方程1x x --31x x -+1=0时,如果设1x x-=y ,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .y 2+y -3=0 B .y 2-3y +1=0 C . 3y 2-y +1=0 D . 3y 2-y -1=004.有两块面积相同的试验田,分别收获蔬菜900㎏和1500㎏.已知第一块试验田每亩收获蔬菜比第二块少300㎏,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜x ㎏,根据题意,可得方程( )A .900300x +=1500x B .900x =1500300x -C .900x =1500300x + D .900300x -=1500x05.若关于x 的分式方程1x a x ---3x=1无解,则a =___________. 06.方程1x x ++3=21x +的解为___________. 07.若x =1是方程21x a ++22x a-=0的解,则a =___________. 08.若A =1x x -,B =231x -+1,当x =___________时,A =B . 09.若x =3是方程102x ++2k =0的解,则3k k +-269k -÷23k -的值为___________.10.如果关于x 的方程1+2x x -=224m x -的解,也是不等式组1222(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解,求m 的取值范围.11.关于x的分式方程61x-=()31xx x+--kx有解,求k的取值范围.12.要使关于x、y的二元一次方程组21620x ayx y+=⎧⎨-=⎩有正整数解,求整数a的值.13.某工程准备招标,指挥部接到甲、乙两个工程队的标书,从标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍,该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.⑴求甲、乙两队单独完成这项工程各需要多少天?⑵已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.14.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.⑴乙队单独完成这项工程需要多少天?⑵甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?培优升级·奥赛检测01.若实数x 、y 、z 满足方程组:122232xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则有( )A .x +2y +3z =0B . 7x +5y +3z =0C . 9x +6y +3z =0D .10x +7y +z =002.某段公路由上坡、平路、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为V 1、V 2、V 3,则此辆汽车在这段公路上行驶的平均速度为( )A .1233V V V ++B .1231113V V V ++C .1231111V V V ++D .1233111V V V ++03.解分式方程31x ++51x -=21mx -会产生增根,则m =___________. 04.方程()11x x ++()()112x x +++…+()()120102011x x ++=1+1x 的解是___________.05.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.06.解下列方程:⑴12x x ++-17x +=23x x ++-16x +⑵432x x +-+324x x -+=207.已知方程组22xy x y +=23,32yz y z -=-9,53xyzxy yz zx-+=157恰好有一组解为x =a ,y =b ,z =C .求a 2+b 2+c 2的值.08.设x、y都是整数,1x-1y=12010.求y的最大正整数的解.09.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买入选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?⑴设购买电视机x台,依题意填充下列表格:项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总额(元)每台补贴返还金额(元)冰箱40000 13%电视机x 15000 13%⑵列出方程(组)并解答.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.⑴今年三月份甲种电脑每台售价多少元?⑵为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?⑶如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使⑵中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。

中考数学(甘肃地区)(跟踪训练)考点跟踪突破8 分式方程

中考数学(甘肃地区)(跟踪训练)考点跟踪突破8 分式方程

考点跟踪突破8 分式方程及其应用一、选择题1.(2016·成都)分式方程2xx -3=1的解为( B ) A .x =-2 B .x =-3 C .x =2 D .x =32.(2016·潍坊)若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( B )A .m <92B .m <92且m ≠32C .m>-94D .m>-94且m ≠343.(2016·河北)在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( B )A .13x =18x -5B .13x =18x +5 C .13x =8x -5 D .13x=8x +5 4.(2015·齐齐哈尔)关于x 的分式方程5x =a x -2有解,则字母a 的取值范围是( D )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠05.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( A )A .8B .7C .6D .5 二、填空题6.(2016·南京)分式方程1x -2=3x的解是__x =3__. 7.(2016·攀枝花)已知关于x 的分式方程kx +1+x +k x -1=1的解为负数,则k 的取值范围是__k >-12且k ≠0__.8.(2015·黑龙江)关于x 的分式方程m x 2-4-1x +2=0无解,则m =__0或-4__.9.(2016·咸宁)端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x 元,列方程为__54x +3=540.9x__.10.(2016·杭州)已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n ,x +2y =5n (0<n <3), 若y >1,则m 的取值范围是__25<m <23__.点拨:解方程组⎩⎪⎨⎪⎧x -y =3-n ,x +2y =5n ,得⎩⎪⎨⎪⎧x =n +2,y =2n -1,∵y >1,∴2n -1>1,即n >1,又∵0<n <3,∴1<n <3,∵n =x -2,∴1<x -2<3,即3<x <5∴15<1x <13,∴25<2x <23,又∵2x =m ,∴25<m <23三、解答题11.解分式方程:(1)(2016·台州)x x -7-17-x=2;解:去分母得:x +1=2x -14,解得:x =15,经检验x =15是分式方程的解(2)2+x 2-x +16x 2-4=-1. 解:去分母得:-(x +2)2+16=4-x 2,去括号得:-x 2-4x -4+16=4-x 2,解得:x =2,经检验x =2是增根,分式方程无解12.(2015·嘉兴)小明解方程1x -x -2x =1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x 得1-(x -2)=1 ……① 去括号得1-x -2=1 ……② 合并同类项得-x -1=1 ……③ 移项得-x =2 ……④ 解得x =-2 ……⑤∴原方程的解为:x =-2 ……⑥解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边同乘以x ,得:1-(x -2)=x ,去括号得:1-x +2=x ,移项得:-x -x =-1-2,合并同类项得:-2x =-3,解得:x =32,经检验x =32是分式方程的解,则方程的解为x =3213.(2016·菏泽)为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A 4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A 4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A 4薄型纸每页的质量.(墨的质量忽略不计)解:设A 4薄型纸每页的质量为x 克,则A 4厚型纸每页的质量为(x +0.8)克,根据题意,得:400x +0.8=2×160x ,解得:x =3.2,经检验:x =3.2是原分式方程的解,且符合题意,答:A 4薄型纸每页的质量为3.2克14.(2016·聊城)为加快城市群的建设与发展,在A ,B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120 km 缩短至114 km ,城际铁路的设计平均时速要比现行的平均时速快110 km ,运行时间仅是现行时间的25,求建成后的城际铁路在A ,B 两地的运行时间.解:设城际铁路现行速度是x km /h .由题意得:120x ×25=114x +110,解这个方程得:x =80.经检验:x =80是原方程的根,且符合题意.则120x ×25=12080×25=0.6(h ).答:建成后的城际铁路在A ,B 两地的运行时间是0.6 h15.某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出45时,出现滞销,便以定价的5折售完剩余的手链.试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次的批发价为x 元/条,则第二次的批发价为(x +0.5)元/条.依题意得(x +0.5)(10+100x )=150,解得x 1=2,x 2=2.5.经检验x 1=2,x 2=2.5都是原方程的根.由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x =2.5不合题意,舍去.故第一次的批发价为2元/条,第二次的批发价为2.5元/条,第二次共批发手链=1502.5=60(条),第二次的利润=(45×60×2.8+15×60×2.8×0.5)-150=1.2(元).所以该老板第二次售手链赚了1.2元。

分式方程及应用压轴(解析版)

分式方程及应用压轴(解析版)

分式方程及应用压轴考点一:解分式方程考点二:已知分式方程的解,求字母参数的值考点三:分式方程的特殊解问题考点四:分式方程的无解(增根)问题考点五:分式方程的应用问题【考点一:解分式方程】【典例1】(2023春•万源市校级期末)解方程:(1)1﹣=(2)﹣=.【答案】见试题解答内容【解答】解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+2=1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【变式1-1】(2023•青秀区校级模拟)解方程:+=.【答案】见试题解答内容【解答】解:去分母得:2(x+1)+2x=5x,去括号得:2x+2+2x=5x,解得:x=2,经检验x=2是分式方程的解.【变式1-2】(2023秋•高邮市期末)解方程:(1)(2)﹣=1.【答案】见试题解答内容【解答】解:(1)去分母得:x﹣5=2x﹣5,移项合并得:x=0,经检验x=0是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【变式1-3】(2023秋•石河子校级期末)解方程:(1);(2).【答案】(1)x=2;(2)无解.【解答】解:(1)去分母得:2=5x﹣5,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:16+x2﹣4=x2+4x+4,解得:x=2,经检验x=2是增根,分式方程无解.【变式1-4】(2023秋•铁岭县期末)解方程:(1)(2).【答案】见试题解答内容【解答】解:(1)去分母得:15x﹣12+x﹣3=6x+5,移项合并得:10x=20,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.【考点二:已知分式方程的解,求字母参数的值】(2023秋•绥中县期末)已知关于x的方程的解是x=1,则a的值为()【典例2】A.2B.1C.﹣1D.﹣2【答案】C【解答】解:∵关于x的方程的解是x=1,∴=,解得a=﹣1,经检验a=﹣1是方程的解.故选:C.【变式2-1】(2023秋•常德期末)已知关于x的分式方程的解为x=4,则a的值为()A.4B.3C.0D.﹣6【答案】D【解答】解:将x=4代入方程,得:,解得a=﹣6,故选:D.(2023•武侯区校级模拟)已知x=1是分式方程的解,则a的值为()【变式2-2】A.﹣1B.1C.3D.﹣3【答案】D【解答】解:把x=1代入分式方程得:=,去分母得:8a+12=3a﹣3,解得:a=﹣3,∵a﹣1=﹣4≠0,∴a的值为﹣3.故选:D.【变式2-3】(2023秋•平舆县期末)若分式方程的解为x=2,则a的值是()A.1B.2C.﹣1D.﹣2【答案】C【解答】解:∵分式方程的解为x=2,∴=,即=1,解得a=﹣1,经检验a=﹣1是方程的解,所以原方程的解为a=﹣1,故选:C.【变式2-4】(2023秋•绵阳期末)已知x=2是关于x的分式方程的解,则a =.【答案】.【解答】解:把x=2代入关于x的分式方程得:,,4a=1,,检验:当时,2a≠0,∴是分式方程的解,故答案为:【考点三:分式方程的特殊解问题】【典例3】(2023秋•南陵县期末)若关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3B.m<4C.m≠3D.m>4且m≠3【答案】A【解答】解:方程两边同时乘以x﹣1得,1﹣m﹣(x﹣1)+2=0,解得x=4﹣m.∵x为正数,∴4﹣m>0,解得m<4.∵x≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选:A.【变式3-1】(2023秋•陵城区期末)若关于x的分式方程的解为非负数,则a的取值范围是()A.a>1且a≠2B.a<1C.a≥1且a≠2D.a≤1且a≠﹣2【答案】C【解答】解:,方程两边同时乘2(x﹣2)得:2(x﹣a)=x﹣2,2x﹣2a=x﹣2,2x﹣x=2a﹣2,x=2a﹣2,∵关于x的分式方程的解为非负数,∴2a﹣2≥0,2a≥2,a≥1,∵分式的分母x﹣2≠0,∴x≠2,即2a﹣2≠2,解得:a≠2,∴a≥1且a≠2,故选:C.【变式3-2】(2023秋•重庆期末)若关于x的不等式组的解集为x≥3,且关于y的分式方程有非负数解,则满足条件的所有整数a的和为.【答案】5.【解答】解:,解不等式①,得x≥3,解不等式②,得x>a﹣2,∵原不等式组的解集为x≥3,∴a﹣2<3,∴a<5;解分式方程,得y=,∵y=1是原分式方程的增根,∴a≠4,∵≥0,∴a≥2;综上,2≤a<5,且a≠4,∴满足条件的整数a为2或3,2+3=5,故答案为:5.【考点四:分式方程的无解(增根)问题】(2023秋•滨州期末)若关于x的分式方程=1无解,则a的值为()【典例4】A.0B.1C.1或5D.5【答案】B【解答】解:+=1,方程两边同时乘以x﹣5得:2﹣(a+1)=x﹣5,去括号得,2﹣a﹣1=x﹣5,解得x=6﹣a,∵原分式方程无解,∴x=5,∴m=1,故选:B.【变式4-1】(2023秋•安顺期末)若关于x的分式方程无解,则k的取值是()A.﹣3B.﹣3或﹣5C.1D.1或﹣5【答案】B【解答】解:,去分母,得6x=x+3﹣k(x﹣1),∴(5+k)x=3+k,∵关于x的分式方程无解,∴分两种情况:当5+k=0时,k=﹣5,当x(x﹣1)=0时,x=0或1,当x=0时,0=3+k,∴k=﹣3,当x=1时,5+k=3+k,∴k不存在,故不符合题意,综上所述:k的值为:﹣3或﹣5.故选:B.【变式4-2】(2023秋•凉州区期末)若分式方程无解,则k的值为()A.±1B.2C.1或2D.﹣1或2【答案】C【解答】解:,去分母得:2(x﹣2)+1﹣kx=﹣1,2x﹣4+1﹣kx=﹣1,2x﹣kx=2,(2﹣k)x=2,∵分式方程无解,∴x﹣2=0,x=2,2﹣k=0,k=2,当k=1时,原方程为:,2(x﹣2)+1﹣x=﹣1,2x﹣4+1﹣x+1=0,x=2,检验:当x=2时,x﹣2=0,∴k=1时,原方程无解;综上可知:分式方程无解时,k的值为1或2,故选:C.【变式4-3】(2023秋•江汉区期末)若关于x的分式方程﹣=1无解,则m的值为.【答案】见试题解答内容【解答】解:去分母得:x2﹣mx﹣3x+3=x2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或x==1,即m=1,综上,m的值为﹣2或1.故答案为:﹣2或1【考点五:分式方程的应用问题】【典例5】(2023秋•信州区期末)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【答案】见试题解答内容【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【变式5-1】(2023秋•藁城区期末)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家里出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)300米/分钟;(2)600米.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【变式5-2】(2023秋•商丘期末)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【答案】见试题解答内容【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.【变式5-3】(2023秋•恩施市期末)某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【答案】见试题解答内容【解答】解:(1)设乙工程队每天能完成绿化的面积是x平方米,则甲工程队每天能完成绿化的面积是1.5x平方米,依题意,得:﹣=3,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m天,则需安排乙队工作天,依题意,得:700m+500×≤14500,解得:m≥10.所以m最小值是10.答:至少应安排甲队工作10天.1.(2023秋•交口县期末)解方程,去分母后正确的是()A.3(x+1)=1﹣x(x﹣1)B.3(x+1)=(x+1)(x﹣1)﹣x(x﹣1)C.3(x+1)=(x+1)(x﹣1)﹣x(x+1)D.3(x﹣1)=1﹣x(x+1)【答案】B【解答】解:去分母得:3(x+1)=(x+1)(x﹣1)﹣x(x﹣1).故选:B.2.(2023秋•阳新县期末)已知一艘轮船顺水航行46千米和逆水航行34千米共用的时间,正好等于船在静水中航行80千米所用的时间,并且水流的速度是2千米/小时,求设轮船在静水中的速度为x千米/小时,是下列方程正确的是()A.B.C.D.【答案】B【解答】解:设船在静水中航行的速度为x千米/时(1分)则+=故选:B.3.(2023秋•广平县期末)甲、乙两人分别从相距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,设甲的速度为3x km/h.依题意,下面所列方程正确的是()A.B.C.D.【答案】D【解答】解:设甲的速度为3x/时,则乙的速度为4x千米/时.根据题意,得﹣=.故选:D.4.(2023秋•秦皇岛期末)已知关于x的分式方程的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由分式方程的解是非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3,故选:C.5.(2023秋•冠县期末)若解分式方程=﹣3产生增根,则k的值为()A.2B.1C.0D.任何数【答案】B【解答】解:=﹣3,去分母,得k=x﹣k﹣3(x﹣2).去括号,得k=x﹣k﹣3x+6.移项,得﹣x+3x=﹣k+6﹣k.合并同类项,得2x=6﹣2k.x的系数化为1,得x=3﹣k.∵分式方程=﹣3产生增根,∴3﹣k=2.∴k=1.故选:B.6.(2023秋•宜春期末)现定义一种新的运算:,例如:,若关于x的方程x⊕(2x﹣m)=3的解为非负数,则m的取值范围为()A.m≤8B.m≤8且m≠7C.m≥﹣2且m≠7D.m≥﹣2【答案】B【解答】解:∵x⊕(2x﹣m)=3,∴,解方程得:x=8﹣m;由于方程有解,则8﹣m≠1,即m≠7;由题意得:8﹣m≥0,解得:m≤8;综合起来,m的取值范围为m≤8且m≠7;故选:B.7.(2023秋•兰陵县期末)对于两个不相等的实数a,b,我们规定符号min{a,b}表示a,b 中较小的值,如min{2,4}=2,按照这个规定,方程min{,﹣}=的解为()A.﹣1或2B.2C.﹣1D.无解【答案】D【解答】解:①当x>0时,有>﹣,∴min{,﹣}=﹣,即﹣=,解得x=﹣1(不合题意舍去);②当x<0时,有<﹣,∴min{,﹣}=,即=,解得x=2(不合题意舍去);综上所述,方程min{,﹣}=无解,故选:D.8.(2023秋•崆峒区期末)分式与互为相反数,则x的值为()A.1B.﹣1C.﹣2D.﹣3【答案】C【解答】解:由题意得,去分母3x+2(1﹣x)=0,解得x=﹣2.经检验得x=﹣2是原方程的解.故选:C.9.(2023秋•罗山县期末)定义运算“※”:a※b=,若5※x=2,则x的值为()A.B.C.10D.或10【答案】D【解答】解:当5>x时,∵5※x=2,∴=2,解得x=.经检验,x=符合题意,是分式方程的解.当5<x时,∵5※x=2,∴=2.解得x=10.经检验,x=10符合题意,是分式方程的解.故选:D.10.(2023秋•开州区期末)若关于x的不等式组无解,且关于y的分式方程3﹣的解为正数,则所有满足条件的整数a的值的和为.【答案】13.【解答】解:,由①得,x≥﹣1,由②得,x<﹣a,∵不等式组无解,∴﹣a≤﹣1,即a≥1,3﹣,3(y﹣2)+a=y,3y﹣6+a=y,解得y=3﹣a,∵分式方程的解为正数,∴3﹣a>0且3﹣a≠2,解得a<6且a≠2,∴a的取值为1≤a<6且a≠2,∴所有满足条件的整数a的值的和为1+3+4+5=13,故答案为:13.11.(2023秋•虹口区校级期末)若关于x的方程的解为负数,则a 的取值范围是.【答案】a<﹣13或﹣13<a<﹣10.【解答】解:+=,去分母,得(x﹣1)(x+1)+(3﹣x)(x﹣3)=3x+a,去括号、合并同类项,得3x=a+10,等号两边同除以3,得x=(x≠3,且x≠﹣1),∵x=3或x=﹣1是原分式方程的增根,∴a≠﹣1,且a≠﹣13,∵<0,∴a<﹣10,∴a<﹣13或﹣13<a<﹣10,故答案为:a<﹣13或﹣13<a<﹣10.12.(2022秋•宁远县期末)若关于x的方程=+1无解,则a的值是3或1.【答案】见试题解答内容【解答】解:去分母,得:ax=3+x﹣1,整理,得:(a﹣1)x=2,当x=1时,分式方程无解,则a﹣1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.13.(2023秋•应城市期末)解下列分式方程.(1);(2).【答案】见试题解答内容【解答】解:(1)原方程变形得:,方程两边同乘以最简公分母(x﹣3)得:1=2(x﹣3)﹣x,整理的:1=2x﹣6﹣x,移项得:x=7,检验:当x=7时,x﹣3=7﹣3=4≠0,所以,x=7,是原方程的根,(2)方程两边同乘以最简公分母(x﹣1)(x+2)得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:x2+2x﹣x2﹣x+2=3,合并同类项得:x=1,检验:当x=1时,(x﹣1)(x+2)=(1﹣1)(1+2)=0,所以,x=1是原方程的增根,所以,原分式方程无解.14.(2023秋•南宁期末)为提高快递包裹分拣效率,物流公司引进了快递自动分拣流水线.一条某型号的自动分拣流水线的工作效率是一名工人工作效率的4倍,用这条自动分拣流水线分拣3000件包裹比一名工人分拣这些包裹要少用3小时.(1)这条自动分拣流水线每小时能分拣多少件包裹?(215000件,则至少应购买多少条该型号的自动分拣流水线,才能完成分拣任务?【答案】(1)条自动分拣流水线每小时能分拣3000件包裹;(2)至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.【解答】解:(1)设一名工人每小时能分拣x件包裹,则这条自动分拣流水线每小时能分拣4x件包裹,由题意得:﹣=3,解得:x=750,经检验,x=750是原方程的解,且符合题意,∴4x=4×750=3000,答:这条自动分拣流水线每小时能分拣3000件包裹;(2)应购买m条该型号的自动分拣流水线,才能完成分拣任务,由题意得:3000m≥15000,解得:m≥5,答:至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.15.(2022秋•洪山区校级期末)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?【答案】见试题解答内容【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200经检验,x=200是原方程的解,且符合题意,∴第一批箱装饮料每箱的进价是200元.(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.。

2024年中考数学一轮复习考点突破课件---分式方程及应用

2024年中考数学一轮复习考点突破课件---分式方程及应用
-12
2. 当a=________时,关于x的分式方程
=-1无解.

考点3. 实际问题与分式方程
【例3】甲、乙两人用计算机打字,甲打一篇3 000字的文章与乙打一
篇2 400字的文章所用的时间相同.已知每分钟甲比乙多打12个字,问甲、
乙两人每分钟各打字多少个?
分析与解答 设乙每分钟打字x个,则甲每分钟打字 (x+12)个,
x2-4x+4-12=x2-4
-4x=4
x=-1
经检验,x=-1是原分式方程的解.
∴原分式方程的解为x=-1.
10. 学校为了贯彻落实“双减”政策,积极开展学生课后体育活动,因
此对体育用品的需求有所增加.某体育用品商店用10 000元购进了一批足
球,很快销售一空;商店又用10 000元购进了第二批该种足球,每个足
分式方程及应用
知识梳理
1. 分式方程
分母
________中含有未知数的方程,叫做分式方程.
2. 解分式方程的一般方法
整式
(1)解分式方程的基本思路是将分式方程化为______方程,具体做法
去分母
最简公分母
是 “__________”,即方程两边乘_____________.
(2)一般地,解分式方程时,应做如下检验:将去分母后所得整式方
11. 某工程队修建一条长1 200 m的道路,开工后采用了新的施工方
式,工作效率比原计划提高了50%,结果提前4天完成任务.
(1)求这个工程队原计划每天修建道路多少米.
设原计划每天修建道路x m,则实际每天修建道路(1+50%)x m.依题意





(+%)
=4,解得x=100.经检验,x=100是原分式方程的解,

第08课 分式方程及其应用 (解析版)-2021年中考数学学霸必刷测评卷(专题+综合)

第08课 分式方程及其应用 (解析版)-2021年中考数学学霸必刷测评卷(专题+综合)

2021年中考数学学霸必刷测评卷(专题+综合)第二章 方程(组)与不等式(组)第8课:分式方程及其应用一.选择题(共7小题) 1.观察下列方程:(1)43 1.60.30.5x x ;(2)288111x x x;(3)1113x x ;(4)122x x其中是关于x 的分式方程的有( ) A .(1)B .(2)C .(2)(3)D .(2)(4)【解析】(1)(4)中的方程分母中不含未知数,故不是分式方程; 而(2)(3)的方程分母中含未知数x ,所以是分式方程. 故选:C . 2.已知方程3144aaa a,且关于x 的不等式组x ax b只有 4 个整数解, 那么b 的取值范围是( )A .13bB .23bC .89bD .34b【解析】 分式方程去分母得:2341a a a,即(4)(1)0a a ,解得:4a 或1a,经检验4a是增根, 故分式方程的解为1a ,已知不等式组解得:1x b ,不等式组只有 4 个整数解, 34b.故选:D .3.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x 人,则所列方程为( ) A .18018032x x B .18018032x xC .18018032xxD .18018032x x【解析】设实际参加游览的同学共x 人,根据题意得:18018032x x.故选:D.4.以下给出三个结论()(1)若11(1)2x x,则212x x;(2)若12222x xx x,则1222x x;(3)若1111xx x,则11x.其中正确的结论共有()A.0个B.1个C.2个D.3个【解析】(1)方程两边都乘2得212x x,错误;(2)由于不确定1x是否为0,所以不能两边都除以,错误;(3)方程两边都乘1x得(1)11x x,错误.故选:A.5.若关于y 的不等式组12246yky k k有解,且关于x 的分式方程32222kx xx x有非负整数解,则符合条件的所有整数k的和为()A.5B.9C.10D .16【解析】不等式组整理得:4156y ky k,由不等式组有解,得到5641k k,即5k,分式方程去分母得:2432kx x x ,整理,得6kx x即(1)6k x,解得:61xk,由方程有非负整数解,16k或3或2或1所以7k或4或3或2又因为5k,且621k,所以3k,2325故选:A .6.从2,0,1,32,52,3这六个数中,随机抽取一个数记为a ,则使关于x 的二次函数2(3)1y x a x 在1x的范围内y 随x 的增大而减小,且使关于x 的分式方程233x a a x x的解为正数的a 共有( )A .2个B .3个C .4个D .1个【解析】关于x 的二次函数2(3)1yx a x 在1x的范围内y 随x 的增大而减小,抛物线对称轴方程32a x ,即312a ,解得1a ,关于x 的分式方程233x a a x x的解为正数,0x,解分式方程,得62x a ,620a,解得3a,13a,从2,0,1,32,52,3这六个数中,随机抽取一个数记为a , 解分式方程,得62x a ,当32a时,3x ,原分式方程的分母为0,32a, 符合条件的正数a 共有2个,为1,52. 故选:A .7.已知关于x 的方程2222x x a xx x x x恰有一个实根,则满足条件的实数a 的值的个数为( )A .1B .2C .3D .4【解析】去分母,将原方程两边同乘(2)x x ,整理得223(4)0x xa .①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△942(4)0a .解得238a . 当238a时,解方程22323(4)08x x,得1234x x . (2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2. ()i 当0x时,代入①式得40a ,即4a . 当4a 时,解方程2230x x ,(23)0x x ,10x 或21.5x .而10x 是增根,即这时方程①的另一个根是 1.5x .它不使分母为零,确是原方程的唯一根. ()ii 当2x 时,代入①式,得2423(4)0a ,即6a.当6a 时,解方程22320x x ,12x ,212x . 1x 是增根,故12x为方程的唯一实根; 因此,若原分式方程只有一个实数根时,所求的a 的值分别是238,4,6共3个. 故选:C .二.填空题(共5小题) 8.若关于x 的方程111x kk x x 的解为负数,则k 的取值范围是 12k且1k .【解析】去分母得:()(1)(1)(1)(1)x k x x x k x ,整理得:221x kx x kx kx k ,解得:21xk,由分式方程的解为负数,得到210k 且211k ,解得:12k且1k ,故答案为:12k 且1k9.若32248168224816321111111a x x x x xx x ,则a 的值是 8 . 【解析】2481622481632111111xx x x x x 224816448163211111x x x x x 32641x , 323286411a x x ,两边同乘321x ,得864a ,解得8a.故答案为8. 10.方程组111211131114x y zy z x zxy 的解是 2310236232x y z. 【解析】原方程组化为2()3()4()xyxz x y z yzyx x y z zxzyx yz 令x y zk ,代入得2(1)3(2)4(3)xy xz k yzyx k zxzyk 由(1)(2)(3)得9(4)2xyyzzxk 由(4)分别减去(1)(2)(3)得1(5)25(6)23(7)2xyk yzk zxk 由(5)(6)(7)得30k kxyz(8) 由(8)分别除以(5)(6)(7)得30(9)1030(10)30(11)kxkykz将(9)(10)(11)代入x y zk ,得52930k, 从而原方程组的解为:2310236232xyz. 故答案为:2310236232xyz. 11.①已知3x 是方程111x a 的一个根,则a3 ;②已知1x 是方程111x k x x x x 的一个增根,则k .【解析】①把3x代入原方程,得3111a ,解得3a,经检验,3a 是分式方程的解.②方程两边都乘(1)(1)x x ,得 (1)(1)(1)x x k x x x ,把1x 代入得,1k.12.已知:商品利润率100\%商品出售价商品成本价商品成本价.某商人经营甲乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%,那么当售出的甲,乙两种商品的件数相等时,这个商人的总利润率是 48% . 【解析】设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元;若售出甲x 件,则售出乙1.5x 件.0.40.6 1.50.51.5ax b xax bx,解得 1.5a b ,售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为0.40.60.40.6 1.248%2.5ay by a b b aybyabb,故答案为48%. 三.解答题(共3小题) 13.(1)解下列方程:①23xx根为 11x ,22x ;②65xx根为 ;③127xx根为 ;(2)根据这类方程特征,写出第n 个方程为 ,其根为 . (3)请利用(2)的结论,求关于x 的方程224(3n nx n n x 为正整数)的根.【解析】(1)①去分母,得:223x x ,即2320x x ,(1)(2)0x x ,则10x ,20x , 解得:11x ,22x ,经检验:11x ,22x 都是方程的解;②去分母,得:265x x ,即2560x x ,(2)(3)0x x ,则20x ,30x , 解得:12x ,23x ,经检验:12x ,23x 是方程的解;③去分母,得:2127x x ,即27120x x ,(3)(4)0x x ,则13x ,24x ,经检验13x ,24x 是方程的解;(2)出第n 个方程为(1)21n n x n x,解是1x n ,21x n ;(3)2243n n x n x ,即(1)3213n n x n x ,则3x n 或31x n , 解得:13x n,24x n. 14.已知关于x 的分式方程211(1)(2)2mx x x xx(1)若方程的增根为1x ,求m 的值 (2)若方程有增根,求m 的值 (3)若方程无解,求m 的值.【解析】方程两边同时乘以(2)(1)x x , 去分母并整理得:2(2)1x mx x ,移项合并得:(1)5m x ,(1)1x是分式方程的增根, 15m, 解得:6m ;(2)原分式方程有增根, (2)(1)0xx ,解得:2x 或1x ,当2x时, 1.5m ;当1x时,6m;(3)当10m 时,该方程无解,此时1m;当10m 时,要使原方程无解,由(2)得:6m或32m,综上,m 的值为1或6或1.5. 15.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程3111a x x的解为正数,求a 的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见: 小明说:解这个关于x 的分式方程,得到方程的解为2x a .由题意可得20a ,所以2a ,问题解决.小强说:你考虑的不全面.还必须保证3a 才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明: 小明没有考虑分式的分母不为0(或分式必须有意义)这个条件 . 完成下列问题: (1)已知关于x 的方程2112mx x 的解为负数,求m 的取值范围; (2)若关于x 的分式方程322133x nx x x无解.直接写出n 的取值范围.【解析】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件; (1)解关于x 的分式方程得,321x m , 方程有解,且解为负数, 2103221m m , 解得:12m且14m ; (2)分式方程去分母得:3223x nx x ,即(1)2n x ,由分式方程无解,得到30x ,即3x ,代入整式方程得:53n; 当10n 时,整式方程无解,此时1n , 综上,1n 或53n.。

2023中考数学复习:分式方程及其应用

2023中考数学复习:分式方程及其应用
每小时走x km,则可列方程为( B )

A.



=


B.



=
+

C.
+


=

D

.




=


3.高铁的开通为扬州市民的出行带来了方便.从扬州到某地,路程为600 km,
某趟高铁的平均速度比普通列车快50%,所需时间比普通列车少1小时,求

A.


C.

=

-5

=8x-5

B.

=


+5

D. =8x+5

1
2
第8讲
分式方程及其应用— 真题试做
返回命题点导航
返回栏目导航
2.(2013·河北7题3分)甲队修路120 m与乙队修路100 m所用天数相同,已
知甲队比乙队每天多修10 m,设甲队每天修x m,依题意,下面所列方程正
(2)解分式方程的步骤:
①去分母:方程两边都乘各个分式的①
最简公分母 ,约去分母,化成整式方程.
②求解:解这个整式方程.
③检验:把求得的未知数的值代入最简公分母中,看是否等于0,使最简公分母为② 0 的
根为原方程的增根,必须舍去.
第8讲
分式方程及其应用— 考点梳理
返回思维导图
返回栏目导航
3.分式方程的增根
二是整式方程的解是分式方程的增根.
第8讲
分式方程及其应用— 考点梳理
返回思维导图
考点 2 分式方程的实际应用

中考数学一轮复习专题解析—分式方程及其应用

中考数学一轮复习专题解析—分式方程及其应用

中考数学一轮复习专题解析—分式方程及其应用复习目标1、了解分式方程的概念。

2、会解分式方程,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题。

考点梳理一、分式方程的定义分母中含有未知数的有理方程,叫做分式方程.注意:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.二、分式方程的解法去分母法,换元法.例1、解分式方程:=﹣.【答案】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【解析】解:方程两边同乘以(2x+1)(2x﹣1),得x+1=3(2x-1)-2(2x+1)x+1=2x-5,解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6. 三、解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根. 口诀:“一化二解三检验”. 例2、解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得22(3)1x x -+-=,2261x x -+-=. 5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.注意:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根. 四、解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.例3、甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?【要点诠释】方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意. 综合训练1.(2022·陕西西安市·交大附中分校九年级模拟预测)某修路队计划x 天内铺设铁路120km ,由于采用新技术,每天多铺设铁路3km ,因此提前2天完成计划,根据题意,可列方程为( ) A .12012032x x =+- B .12012032x x=+- C .12012032x x=++ D .12012032x x =++ 【答案】B 【分析】表示出原计划和实际的工作效率,根据采用新技术,每天多铺设铁路3km ,列出方程即可. 【详解】解:原计划每天修建道路120xm ,则实际用了(x ﹣2)天,每天修建道路为1202x -m ,根据采用新技术,每天多铺设铁路3km 得,12012032x x=+-. 故选:B .2.(2022·连云港市新海实验中学九年级二模)甲队3小时完成了工程进度的一半,为了加快进度,乙队也加入进来,两队合作1.2小时完成工程的另一半.设乙队单独完成此项工程需要x 小时,据题意可列出方程为( ) A .1.2 1.216x+= B .1.2 1.213x+= C .1.2 1.2162x += D .1.2 1.2132x += 【答案】C 【分析】根据题意可以得到甲乙两队的工作效率,从而可以得到相应的方程,本题得以解决. 【详解】解:∵甲队3小时完成了工程进度的一半, ∴甲队的工作效率为16设乙队单独完成此项工程需要x 小时, ∴甲队的工作效率为1x由题意可得,1.2 1.2162x +=, 故选:C .3.(2022·哈尔滨市第十七中学校九年级开学考试)分式方程1x x +12x +-=1的解是( ) A .x =1 B .x =﹣1C .x =3D .x =﹣3【答案】A 【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可. 【详解】 解:112x x x ++-=1, 去分母,方程两边同时乘以x (x ﹣2)得: (x +1)(x ﹣2)+x =x (x ﹣2), x 2﹣x ﹣2+x =x 2﹣2x , x =1,经检验,x =1是原分式方程的解. 故选:A .4.(2022·福建省厦门第六中学)某次列车平均提速v km/h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50km ,则方程50ss v xx++= 所表达的等量关系是( )A .提速前列车行驶s km 与提速后行驶(s +50)km 的时间相等B .提速后列车每小时比提速前列车每小时多开v kmC .提速后列车行驶(s +50)km 的时间比提速前列车行驶s km 多v hD .提速后列车用相同的时间可以比提速前多开50km 【答案】B 【分析】根据题意可以知道s +50表示列车提速后同样的时间内行驶的路程,根据路程=速度×时间公式即可得到答案, 【详解】解:∵用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50km ∴s +50表示列车提速后同样的时间内行驶的路程, ∵某次列车平均提速v km/h ,路程=速度×时间 ∴方程50s s v xx++=表达的含义提速后列车每小时比提速前列车每小时多开v km , 故选B.5.(2022·四川巴中·中考真题)关于x 的分式方程2m xx+--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2 B .m ≠﹣2 C .m =2 D .m ≠2【答案】B 【分析】解分式方程得:63m x x +=-即46x m =-,由题意可知2x ≠,即可得到68m -≠. 【详解】 解:302m xx+-=- 方程两边同时乘以2x -得:630m x x +-+=,∴46x m=-,∵分式方程有解,∴20x-≠,∴2x≠,∴68m-≠,∴2m≠-,故选B.6.(2022·全国九年级单元测试)一个不透明的布袋里装有3个红球、2个黑球、若千个白球.从布袋中随机摸出一个球,摸出的球是红球的是概率是310,袋中白球共有()A.3个B.4个C.5个D.6个【答案】C【分析】设白球有x个,根据摸出的球是红球的概率是310,利用概率公式列出方程,解之可得.【详解】设白球有x个,由题意得:33 3210x=++,解得x=5.经检验,x=5是方程的解,故答案为:C.7.(2022·哈尔滨市第六十九中学校九年级一模)分式方程2152x x =+-的解是______. 【答案】9x = 【分析】方程两边都乘(5)(2)x x +-得出2(2)5x x -=+,求出方程的解,再进行检验即可. 【详解】 解:2152x x =+-, 方程两边同乘(5)(2)x x +-,得2(2)5x x -=+, 去括号,得245x x -=+ 移项得:9x =,经检验,9x =是原方程的解, 故答案为:9x =.8.(2022·西安市铁一中学九年级开学考试)若关于x 的分式方程2x x -﹣2=3mx -有增根,则m =___. 【答案】0 【分析】先把分式方程化为整式方程,再根据有增根求出x ,代入求值即可; 【详解】2x x -﹣2=3mx -, ()()()()32232x x x x m x ----=-, 223210122x x x x mx m --+-=-,∴()271220x m x m -+--+=, ∵方程有增根, ∴()()230x x --=, ∴2x =或3x =,当2x =时,41421220m m -+--+=,不存在; 当3x =时,92131220m m -+--+=,解得0m =; 故答案是0.9.(2022·山东济宁学院附属中学九年级期末)某商场准备在济宁义乌批发城采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元. (1)求一件A 、B 型商品的进价分别为多少元?(2)若该商场购进A 、B 型商品共160件进行试销,其中A 型商品的件数不小于B 型的件数,且总成本不能超过24840元,则共有几种进货方案?(3)已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,在第(2)问条件下,哪种方案利润最大?并求出最大利润.【答案】(1)一件A 型商品的进价为160元,一件B 型商品的进价为150元;(2)有5种进货方案;(3)购进84件A 型商品,76件B 型商品时获得的销售利润最大,最大利润为12040元 【分析】(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元,根据数量=总价÷单价结合用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进A型商品m件,则购进B型商品(160-m)件,根据“A型商品的件数不小于B型的件数,且总成本不能超过24840元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各进货方案;(3)利用总利润=每件的利润×销售数量,可分别求出五个进货方案可获得的销售利润,比较后即可得出结论.【详解】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:160007500210x x=⨯+,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160-m)件,依题意得:160160150(160)24840m mm m≥-⎧⎨+-≤⎩,解得:80≤m≤84,又∵m为整数,∴m可以为80,81,82,83,84,∴共有5种进货方案,方案1:购进80件A型商品,80件B型商品;方案2:购进81件A型商品,79件B型商品;方案3:购进82件A型商品,78件B型商品;方案4:购进83件A 型商品,77件B 型商品;方案5:购进84件A 型商品,76件B 型商品.(3)方案1可获得的销售利润为(240-160)×80+(220-150)×80=12000(元);方案2可获得的销售利润为(240-160)×81+(220-150)×79=12010(元);方案3可获得的销售利润为(240-160)×82+(220-150)×78=12020(元);方案4可获得的销售利润为(240-160)×83+(220-150)×77=12030(元);方案5可获得的销售利润为(240-160)×84+(220-150)×76=12040(元).∵12000<12010<12020<12030<12040,∴购进84件A 型商品,76件B 型商品时获得的销售利润最大,最大利润为12040元.10.(2022·重庆实验外国语学校九年级开学考试)解方程: (1)225x x +=;(2)14733x x x-+=--.【答案】(1)11x =-21x =-(2)无解.【分析】(1)利用配方法解一元二次方程即可;(2)去分母将分式方程化为整式方程,解方程,检验即可.【详解】解:(1)225x x +=,2(1)6x ∴+=,1∴+=x∴11x =-21x =-(2)去分母得,17(3)(4)x x +-=--, 解得3x =,检验:当3x =时,30x -=, ∴3x =是方程的增根,所以,原分式方程无解.。

2015届九年级数学中考复习课件:考点跟踪突破8 列方程(组)解应用题

2015届九年级数学中考复习课件:考点跟踪突破8 列方程(组)解应用题
饮料共100瓶,问A,B两种饮料各生产了多少瓶? 解:设A饮料生产了x瓶,则B饮料生产了(100-x)瓶,由题意 得,2x+3(100-x)=270,解得:x=30,100-x=70,答:A 饮料生产了30瓶,B饮料生产了70瓶
12.(8分)(2014·遂宁)我市某超市举行店庆活动,对甲、乙两 种商品实行打折销售.打折前,购买3件甲商品和1件乙商品 需用190元;购买2件甲商品和3件乙商品需用220元.而店庆 期间,购买10件甲商品和10件乙商品仅需735元,这比不打折 前少花多少钱?
2.(2014·白银)用10米长的铝材制成一个矩形窗 框,使它的面积为6平方米,若设它的一条边长为 x米,则根据题意可列出关于x的方程为( B ) A.x(5+x)=6 B.x(5-x)=6 C.x(10-x)=6 D.x(10-2x)=6
3.(2014· 温州)20 位同学在植树节这天共种了 52 棵树苗 , 其中男生每人种 3 棵,女生每人种 2 棵,设男生有 x 人, 女生有 y 人,根据题意 , 列方程组正确的是 ( D )
14.(8分)(2012·山西)山西特产专卖店销售核桃,其进价为 每千克40元,按每千克60元出售,平均每天可售出100千克, 后来经过市场调查发现,单价每降低2元,则平均每天的销售 量可增加20千克,若该专卖店销售这种核桃要想平均每天获
利2240元,请回答:
(1)每千克核桃应降价多少元?
x 设每千克核桃应降价 x 元.根据题意得(60-x-40)(100+ ×20) 2 =2240.化简得 x2-10x+24=0,解得 x1=4,x2=6.答:每千克核 桃应降价 4 元或 6 元
三、解答题(共40分)
11.(6分)(2014·菏泽)食品安全是关乎民生的问题,在食品中 添加过量的添加剂对人体有害,但适量的添加剂对人体无害且 有利于食品的储存和运输,某饮料加工厂生产的A,B两种饮料 均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪突破8 分式方程及其应用
一、选择题(每小题6分,共30分)
1.(2015·济宁)解分式方程2x -1+x +21-x
=3时,去分母后变形为( D ) A .2+(x +2)=3(x -1)
B .2-x +2=3(x -1)
C .2-(x +2)=3(1-x)
D .2-(x +2)=3(x -1)
2.(2015·常德)分式方程2x -2+3x 2-x
=1的解为( A ) A .1 B .2 C .13
D .0 3.(2015·乌鲁木齐)九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km /h ,则所列方程正确的是( C )
A .10x =102x -13
B .10x =102x
-20 C .10x =102x +13 D .10x =102x
+20 4.(2014·黑龙江)已知关于x 的分式方程m x -1+31-x
=1的解是非负数,则m 的取值范围是( C )
A .m >2
B .m ≥2
C .m ≥2且m ≠3
D .m >2且m ≠3
5.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( A )
A .8
B .7
C .6
D .5
二、填空题(每小题6分,共30分)
6.(2015·酒泉)分式方程2x =5x +3
的解是__x =2__. 7.(2014·天水)若关于x 的方程ax +1x -1
-1=0有增根,则a 的值为__-1__. 8.(2015·黑龙江)关于x 的分式方程m x 2-4-1x +2
=0无解,则m =__0或-4__. 9.(2015·通辽)某市为处理污水,需要铺设一条长为5000 m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20 m ,结果提前15天完成任务.设
原计划每天铺设管道x m ,则可得方程__5000x -5000x +20
=15__. 10.新定义:[a ,b]为一次函数y =ax +b(a ≠0,a ,b 为实数)的“关联数”.若“关联
数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m
=1的解为__x =3__. 三、解答题(共40分)
11.(8分)解分式方程:
(1)(2015·陕西)x -2x +3-3x -3
=1; 解:去分母得:x 2-5x +6-3x -9=x 2-9,解得:x =34,经检验x =34
是分式方程的解
(2)(2014·聊城)2+x 2-x +16x 2-4
=-1. 解:去分母得:-(x +2)2+16=4-x 2,去括号得:-x 2-4x -4+16=4-x 2,解得:x =2,经检验x =2是增根,分式方程无解
12.(7分)(2015·嘉兴)小明解方程1x -x -2x
=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.
解:方程两边同乘x 得1-(x -2)=1 ……①
去括号得1-x -2=1 ……②
合并同类项得-x -1=1 ……③
移项得-x =2 ……④
解得x =-2 ……⑤
∴原方程的解为:x =-2 ……⑥
解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x ,得:1-(x -2)=x ,去括号得:1-x +2=x ,移项得:-x
-x =-1-2,合并同类项得:-2x =-3,解得:x =32,经检验x =32
是分式方程的解,则方程的解为x =32
13.(7分)(2015·宜宾)近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?
解:设乙每年缴纳养老保险金为x 万元,则甲每年缴纳养老保险金为(x +0.2)万元,根
据题意得:15x +0.2=10x
,去分母得:15x =10x +2,解得:x =0.4,经检验x =0.4是分式方程的解,且符合题意,∴x +0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元
14.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部
队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13
后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.
(1)按原计划完成总任务的13
时,已抢修道路__1200__米; (2)求原计划每小时抢修道路多少米?
解:设原计划每小时抢修道路x 米,根据题意得:1200x +3600-1200(1+50%)x
=10,解得:x =280,经检验:x =280是原方程的解.答:原计划每小时抢修道路280米
15.(10分)某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当
这批手链售出45
时,出现滞销,便以定价的5折售完剩余的手链.试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?
解:设第一次批发价为x 元/条,则第二次的批发价为(x +0.5)元/条.依题意得(x +0.5)(10+100x
)=150,解得x 1=2,x 2=2.5.经检验x 1=2,x 2=2.5都是原方程的根.由于当x =2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x =2.5不合题意,舍去.故第
一次的批发价为2元/条.第二次的批发价为2.5元/条.第二次共批发手链=1502.5
=60(条).第二次的利润=(45×60×2.8+15
×60×2.8×0.5)-150=1.2(元).所以老板第二次售手链赚了1.2元
初中数学试卷
灿若寒星制作。

相关文档
最新文档