新《计算机算法设计与分析》课程设计

合集下载

计算机算法设计与分析(第5版)

计算机算法设计与分析(第5版)
该教材采用面向对象的C++语言作为算法描述手段,在保持C++优点的同时,尽量使算法描述简明、清晰。每 章的章首为学习要点提示,章末配有难易适度的习题,分为算法分析题和算法实现题两部分,以强化实践环节 。
作者简介
王晓东:男,1957年生,山东人,福建工程学院副院长,教授,博士生导师,福建省计算机学会理事长。主 讲课程:算法与数据结构、算法设计与分析、文献阅读与选题报告 。
目录
(注:目录排版顺序为从左列至右列 )
教学资源
《计算机算法设计与分析(第5版)》有配套教材——《计算机算法设计与分析习题解答(第5版)》 。
教材特色
《计算机算法设计与分析(第5版)》修正了第4版中发现的一些错误,并将各章的习题分为算法分析题和算 法实现题两部分,增加了算法实践性内容,增加了有关串和序列的算法内容。
《计算机算法设计与分析(第5版)》由王晓东担任主编;傅清祥教授、吴英杰教授、傅仰耿博士和朱达欣教 授参加了该教材有关章节的讨论,对该教材内容及各章节的编排提出了意见;田俊教授审阅了全书。该教材在编 写过程中,得到了全国高等学校计算机专业教学指导委员会的支持。福州大学“211工程”计算机与信息工程重 点学科实验室和福建工程学院为该教材的写作提供了设备和工作环境 。
该教材各章的论述中,首先介绍一种算法设计策略的基本思想,然后从解决计算机科学和应用中的实际问题 入手,描述几个算法。同时对每个算法所需的时间和空间进行分析,使读者既能学到一些常用的算法,也能通过 对算法设计策略的反复应用,牢固掌握这些算法设计的基本策略。该教材选择某些问题,通过对解同一问题的不 同算法的比较,使读者体会到每种算法的设计要点。
2018年8月,该教材由电子工业出版社出版 。

计算机算法设计与分析第五版教学设计

计算机算法设计与分析第五版教学设计

计算机算法设计与分析第五版教学设计一、课程概述本课程是一门计算机科学基础课,旨在介绍计算机算法的基本概念、设计思想、分析方法及其应用。

本课程是计算机理论和实践相结合的重要课程,具有广泛的应用前景和深远的理论意义。

二、教学目标本课程的教学目标是使学生掌握计算机算法的基本概念和设计方法,具备设计和实现高效算法的能力,并了解常用算法的复杂度及其在实际问题中的应用。

具体目标如下:1.理解算法设计的基本思想和方法,能够运用递归、分治策略、动态规划等常见算法设计方法。

2.掌握算法分析的基本思想和方法,能够评估算法的时间和空间复杂度,并了解算法的最优性和稳定性。

3.能够独立设计和实现基本算法,如排序、查找、图论等算法,并对算法的正确性和效率进行评估和分析。

4.了解并掌握一些复杂算法,如字符串匹配、动态规划等,并能运用于实际问题中。

三、课程内容本课程的主要内容包括算法基础、排序和选择、数据结构、图算法、字符串算法、动态规划等内容。

具体内容如下:1.算法基础:算法概念、算法设计、算法分析、算法实现等。

2.排序和选择:插入排序、希尔排序、堆排序、归并排序、快速排序等。

3.数据结构:栈、队列、链表、树、堆、散列表等。

4.图算法:最短路径、最小生成树、拓扑排序等。

5.字符串算法:暴力匹配、KMP算法、BM算法等。

6.动态规划:最长公共子序列、背包问题、最大子段和问题等。

四、教学方法本课程采用理论与实践相结合的教学模式,以讲授和练习相结合的方式进行教学。

具体方法如下:1.讲授:采用课件和教材进行讲解,在重点难点部分补充讲解。

2.实践:通过编写程序、进行实际应用等方式进行实践,并对成果进行评估。

3.作业:通过作业的形式,提高学生对算法的理解和掌握程度。

4.讨论:针对问题进行深入讨论,提高学生对算法问题的认识。

五、评估方法本课程评估包括学生平时表现、作业、考试和项目评估等。

具体方法如下:1.平时表现:包括参与度、作业完成情况、课堂表现等。

《算法设计与分析》课程中“回溯法”教学探讨

《算法设计与分析》课程中“回溯法”教学探讨
时 , 让学 生在 充分理 解 的基础 上掌 握子 集树及 排列 树 的算法框 架 。子集树 问题算法 框架 如下 , 要 遍历 子 集树 需 0(“计 算时 间 。 2)
vi akrc it ) odb c t k(n a t
{ i t )otu( ) f( >n up tx ;
2 1 采 用传 统教 学方 法 , . 强化 习题 讨 论 实 验 的 目的是 让学 生 自己动 手完 成任 务 , 同于课 堂教 学学生 是 实验课 的主人 , 对学生 算法 中有 不 针
问题的部分 , 教师应及时加以纠正 , 并以此展开讨论 , 传统教学方法的优点在于条理清楚 , 思路清晰, 教 师在板书时学生可以思考 , 而并非教师用课件直接将算法或程序演示 给学生。例如在做教材 4 9 . 磁带
子树 , 续按 深度 优 先策 略搜 索 。 继
由于回溯法在许多知识领域有广泛 的应用背景 , 故从各级 中小学生信息学竞赛到 A M IP C /C C国际 大学生程序设计竞赛 中均能发现其踪迹 _ 。它可 以解决许多看上去无法处理的问题 , 5 J 另外一些可用类 似于动态规划解决的问题也可用其处理 , 因此掌握回溯法 的原理与编程技巧 , 是程序设计的基本功 。与 动态规划法的状态转移方程因问题而异相比, 回溯法显得相对简单 , 大多数学生经过一段时间的训练均
成 该题 。
对 一些 依 靠搜 索 而不是 直接 套用 子集 树及 排列 树 的 问题 , 加 以启 发诱 导 , 要 及 O I 1 木棍拼接问题。这两题不能完全按照前期所讲授 的子集树及排列树问题 的套路求 解, 启发 学 生这 两题 共 同点是 采用 深度 优先 搜 寻原则 , 回溯 中加 人适 当 的剪枝 函数 , 在 如买 鱼 问题 中鱼 互不冲突 , 木棍拼接问题 中拼接后剩余长度为当前长度 , 即可完成。当学生明白并非所有 的搜索均是照 以前的套路做时, 再让他们做书中 5 1 .5整数变换问题 , 52 世界名画陈列馆问题。为了让学生拓展 及 .5

《算法设计与分析》(全)

《算法设计与分析》(全)
巢湖学院计算机科学与技术系
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。

三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。

设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

计算机算法设计与分析实验指导书

计算机算法设计与分析实验指导书

计算机算法设计与分析实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。

上机实验一般应包括以下几个步骤:(1)准备好上机所需的程序。

手编程序应书写整齐,并经人工检查无误后才能上机。

(2)上机输入和调试自己所编的程序。

一人一组,独立上机调试,上机时出现的问题,最好独立解决。

(3)上机结束后,整理出实验报告。

实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。

本书共分阶段6个实验,其具体要求和步骤如下:实验一分治算法(2学时)一、实验目的与要求1、熟悉二分搜索算法;2、初步掌握分治算法;二、实验题设a[0:n-1]是一个已排好序的数组。

请改写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

三、实验提示用i,j做参数,且采用传递引用或指针的形式带回值。

bool BinarySearch(int a[],int n,int x,int& i,int& j){int left=0;int right=n-1;while(left<right){int mid=(left+right)/2;if(x==a[mid]){i=j=mid;return true;}if(x>a[mid])left=mid+1;elseright=mid-1;}i=right;j=left;return false;}实验二动态规划算法(2学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

算法设计与分析课程实验教学改革的研究

算法设计与分析课程实验教学改革的研究

本科 专业 的一 门选修课 , 可对该课 程的 实 验教 学 内容 、 实验教 学方 法、 实验教 学手
让学生 了解各个领域都有其 独特的算法 , 拓宽 他们 的专业 知识 面 ,让学 生体 会算
法 的重要性 ,从而激发学习动力 。 最 后 ,融 入研究 新 内容 ,提 出新 问
段和考核方法等四方面进行改革。
算 法设计 与分析 课程 既是计 算 机科 学与 技术本 科专业 的专 业课 ,又是 其他 专业 如信息 管理 、应用 与计算 数学 的专
业课 ,其前 导课程 主要 有 “ 序设计 ” 程 、
首先 ,根 据学 生情 况选择 合适 的内 容 。 由于本 课程 的实践 性较 强 ,实 验课
尤 为重要 ;设计 实验课 内容成 为本 课程
时空 复杂度 分析 ,建立计 算机 与应 用问 题 之间 的桥 梁 ,要求学 生在设计 具 体算

与算法 基本思 想相关 的共 同点 ,将 算法
鼓励 师生之 间开展辩 论 ,鼓 励学 生大胆 提 出 自己的想 法 。所选 实验 内容 应有代
问题 的解答 。 同时 ,网站 还经 常更新 一 些生 活和 工作 中遇 到的真 实问题 ,鼓励 学生 踊跃参 与更新 。对那些 提 出有 一定
件 。通过该课 程 的学 习 ,学生 应该 掌握
【 关键 词 】 算法设 计 实验教 学
学方 法 教 学 改 革

递 归与分治 、动态 规划 、贪心 算法 、回 溯法 、分 支限界法 和概 率等经 典算 法 的
设计 和分 析技巧 ,并能 灵活地 用 于解决
题 。为 了激 发学 生的学 习兴趣 ,应 密切
算法设计与分析课程 实验教学改革的研究

数学类专业中《算法分析与设计》课程实验的改革

数学类专业中《算法分析与设计》课程实验的改革

数学类专业中《算法分析与设计》课程实验的改革摘要:《算法分析与设计》课程是计算机科学和应用数学类专业的核心课程之一,在数学类专业同样起着非常重要的作用。

本文通过对实验课程教学过程中存在的问题进行分析,提出了提高学生上机实现算法的兴趣和能力,改善教学质量的方案,并且通过了课程实践的验证,改革后的措施获得了良好的效果。

关键词:算法分析与设计实验教学改革 python算法1 概述《算法设计与分析》课程是计算机科学和应用数学类专业等的核心课程,其前导课程主要有《面向对象程序设计》、《数据结构》等。

该课程由于涉及大量的抽象数据类型和算法,理论和实践性很强,各种经典算法思想都是从经典问题的解决方案中总结提炼出来的,因此学生学习起来有相当大的难度。

在该课程的教学过程中发现,多数学生对该课程只注重理论学习,忽视了运用实践,没有利用算法思想来思考和解决实际问题,导致实验课的教学效果不理想。

但是,实验课是算法设计与分析课程的一个重要的环节,课堂上所学的内容只有通过实验才能较好的掌握,它是检验教学效果和巩固所学算法的关键。

因此就要求教师思考如何设计与改进实验教学的内容、方法和手段,从而改变算法实验课的现状。

2存在的问题分析当前的算法实验教学效果不理想,学生在实验过程中往往表现为对算法流程无从下手进行实现,并且缺乏信心,主要原因有以下方面:2.1 课程本身内容难度大《算法分析与设计》课程内容丰富,理论性强,学习量大。

课程内容主要是讨论和介绍计算机算法的复杂性理论,结合对一些熟悉的算法进行分析和总结,强化基础理论知识,对一些大型工程软件的分析,会有一定的辅助作用。

它主要介绍计算机科学及应用领域常见的有代表性的非数值算法及算法设计的若干重要方法,同时,介绍算法分析的基本知识。

阐述计算模型和时间复杂性的定义;讨论递归技术和算法分析的基本手段;介绍算法设计的几类方法,如分治法、回溯法、贪心法、动态规划法、分枝限界法等,并结合某些有实用意义的经典算法来加深设计方法的探讨,由浅入深地进行算法效率分析,使学生在掌握各种算法设计方法和分析基本技术的同时,也使逻辑思维得到锻炼。

《算法设计与分析》课程思政优秀教学案例(一等奖)

《算法设计与分析》课程思政优秀教学案例(一等奖)

《算法设计与分析》课程思政优秀教学案例(一等奖)一、课程简介本课程介绍计算机算法的设计和分析,内容包括计算模型、排序和查找、矩阵算法、图算法、动态规划、模式匹配、近似算法、并行算法等。

学完本课程后学生将基本掌握数据结构和算法的设计与分析技术,提高程序设计的质量,能够根据所求解问题的性质选择合理的数据结构和算法,并对时间、空间复杂性进行必要的分析与控制。

本课程的培养目标包括:理解算法分析基本方法,掌握时间和空间权衡的原则;理解穷举、贪心、分治、动态规划和回溯算法;理解算法分析对程序设计的重要性;具备算法设计与分析技能;具备精益求精的工匠精神、科技报国的使命担当,以及坚定“四个自信”的爱国主义精神。

二、课程内容三、教学组织过程第1学时1.程序运行效率对比(5分钟,问题引导式教学)现场先后运行两个计算程序,计算同一个矩阵乘法,运行时间(效率)差异巨大,从而引起学生的兴趣:为何差异巨大?2.分治法回顾(5分钟)回顾分治法的主要思想,以及用于分析分治法算法的主定理,为后续相关算法分析做准备。

3.朴素的矩阵乘法算法(10分钟,需求引导式教学)介绍并分析基于直观分治法思想的朴素矩阵乘法算法,时间复杂度并不理想,有进一步改进的需求。

4.改进的矩阵乘法思想(15分钟,对比式教学)在朴素算法的某些关键参数上进行改进,并通过分析得知算法效率有较大提升。

5.讨论进一步改进的思路(10分钟,研讨式教学)在对照中感受关键参数对整体算法的影响。

现场组织研讨,在研讨中明确改进的方向和思路。

第2学时6.矩阵乘法思想的发展历程(10分钟)了解矩阵乘法算法近50年里不断改进的历程,让学生感受并领会精益求精的工匠精神。

7.矩阵乘法算法的最新进展(10分钟)通过相关知识点的最新科研前沿情况,增强学生的科学素养和国际视野。

8.课程思政重点案例——“Matlab被禁”事件(20分钟,激发学生科技报国的历史担当)(1)过渡:从算法理论过渡到现实环境中的常用工具——Matlab。

《算法设计与分析》教案

《算法设计与分析》教案

《算法设计与分析》教案算法设计与分析是计算机科学与技术专业的一门核心课程,旨在培养学生具备算法设计、分析和优化的能力。

本课程通常包括算法基础、算法设计方法、高级数据结构以及算法分析等内容。

本教案主要介绍了《算法设计与分析》课程的教学目标、教学内容、教学方法和评价方法等方面。

一、教学目标本课程的教学目标主要包括以下几个方面:1.掌握算法设计的基本思想和方法。

2.熟悉常见的算法设计模式和技巧。

3.理解高级数据结构的原理和应用。

4.能够进行算法的时间复杂度和空间复杂度分析。

5.能够使用常见的工具和软件进行算法设计和分析。

二、教学内容本课程的主要教学内容包括以下几个方面:1.算法基础:算法的定义、性质和分类,时间复杂度和空间复杂度的概念和分析方法。

2.算法设计方法:贪心算法、分治算法、动态规划算法、回溯算法等算法设计思想和方法。

3.高级数据结构:堆、树、图等高级数据结构的原理、实现和应用。

4.算法分析:渐进分析法、均摊分析法、递归方程求解等算法分析方法。

5. 算法设计与分析工具:常见的算法设计和分析工具,如C++、Java、Python和MATLAB等。

三、教学方法本课程采用多种教学方法结合的方式,包括讲授、实践和讨论等。

1.讲授:通过教师讲解理论知识,引导学生掌握算法的基本思想和方法。

2.实践:通过课堂上的编程实验和课后作业,培养学生动手实践的能力。

3.讨论:通过小组讨论和学生报告,促进学生之间的交流和合作,提高学习效果。

四、评价方法为了全面评价学生的学习情况,本课程采用多种评价方法,包括考试、作业和实验报告等。

1.考试:通过期中考试和期末考试,检验学生对算法设计和分析的理解和掌握程度。

2.作业:通过课后作业,检验学生对算法设计和分析的实践能力。

3.实验报告:通过编程实验和实验报告,检验学生对算法设计和分析工具的应用能力。

五、教学资源为了支持教学工作,我们为学生准备了如下教学资源:1.课件:编写了详细的教学课件,包括理论知识的讲解和案例分析。

《算法分析与设计》说课

《算法分析与设计》说课

素质 目标
①具备问题抽象和建模的初步能力 ②培养学生逻辑思维能力和想象力 ③培养独立科研的能力和理论联系实践的能力
说课程教学大纲
3、教学总体规划
课内教学总学时:40;课外学习学时:48。 教学内容以算法设计和算法分析作为主线,通过
讲授基本算法技能,总结、归纳算法设计策略, 并系统介绍算法分析技能。 通过学习使学生学会如何评价算法的好坏,帮助 学生完成从“会编程序”到“编好程序”的角色 转变,提高学生实际求解问题的能力。
学生讨论 (8分钟)
教师分析 (7分钟)
说课导航
说课程教学大纲 说教学资源 说教学方法与手段 说学情与学法指导 说教学过程设计
说考核评价
考核评价
总评考核
(100%)
=
平时成绩 (40%)
+
期末考核
(60%)
平时成绩 (100%)
=(考10勤%)
+(作50业%)
43;
学习态度 (10%)
分治策略的应用 分解最优解结构 构造递归关系 判断是否满足贪心性质 回溯法--剪枝函数
解空间树
说课导航
说课程教学大纲 说教学资源 说教学方法与手段 说学情与学法指导 说教学过程设计
说考核评价
说教学资源
1、教材选用原则
国家级规划教材
原则
具有先进性、适用性、时效性
经典教材
说教学资源
王晓东教授编著的 《计算机算法设计与分析》
《算法分析与设计》 课程说课
电子与通信教研室
说课导航
说课程教学大纲 说教学资源 说教学方法与手段 说学情与学法指导 说教学过程设计
说考核评价
说课导航
说课程教学大纲 说教学资源 说教学方法与手段 说学情与学法指导 说教学过程设计

算法设计与分析做课程设计选题

算法设计与分析做课程设计选题

算法设计与分析做课程设计选题一、课程目标知识目标:1. 理解算法设计的基本概念,掌握常见的算法设计方法;2. 了解算法分析的基本原则,掌握时间复杂度和空间复杂度的分析方法;3. 掌握至少两种算法设计选题,并能够运用所学知识对其进行分析和优化。

技能目标:1. 能够运用所学算法设计方法,独立完成中等难度的算法设计题目;2. 能够分析给定算法的时间复杂度和空间复杂度,并提出优化方案;3. 能够运用所学的算法知识,解决实际生活中的问题,提高问题解决能力。

情感态度价值观目标:1. 培养学生对算法设计和分析的热爱,激发学习兴趣;2. 培养学生的逻辑思维能力,提高分析问题和解决问题的能力;3. 培养学生的团队协作精神,学会在团队中共同探讨和解决问题;4. 培养学生具备良好的编程习惯,遵循学术道德,尊重他人成果。

课程性质:本课程为信息技术学科选修课程,旨在提高学生的算法设计和分析能力。

学生特点:学生具备一定的编程基础,对算法有一定了解,但对算法设计和分析的系统学习尚有不足。

教学要求:结合学生特点,注重理论与实践相结合,通过案例分析、讨论和实践操作,使学生掌握算法设计与分析的方法,提高实际应用能力。

将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 算法设计基本概念:介绍算法的定义、特性及分类,结合教材相关章节,让学生了解算法设计的基本框架。

- 教材章节:第一章 算法概述2. 算法设计方法:讲解常见的算法设计方法,如递归、分治、动态规划、贪心等,并通过实例分析,使学生掌握这些方法在实际问题中的应用。

- 教材章节:第二章 算法设计方法3. 算法分析:阐述时间复杂度和空间复杂度的概念,介绍分析方法,如迭代法、主定理等,结合实际案例,让学生学会评估算法性能。

- 教材章节:第三章 算法分析4. 算法设计选题:选取中等难度的算法设计题目,涵盖排序、查找、图论等领域,指导学生进行实际操作,提高问题解决能力。

算法设计与分析课程设计(完整版)

算法设计与分析课程设计(完整版)

HUNAN CITY UNIVERSITY 算法设计与分析课程设计题目:求最大值与最小值问题专业:学号:姓名:指导教师:成绩:二0年月日一、问题描述输入一列整数,求出该列整数中的最大值与最小值。

二、课程设计目的通过课程设计,提高用计算机解决实际问题的能力,提高独立实践的能力,将课本上的理论知识和实际有机的结合起来,锻炼分析解决实际问题的能力。

提高适应实际,实践编程的能力。

在实际的编程和调试综合试题的基础上,把高级语言程序设计的思想、编程巧和解题思路进行总结与概括,通过比较系统地练习达到真正比较熟练地掌握计算机编程的基本功,为后续的学习打下基础。

了解一般程序设计的基本思路与方法。

三、问题分析看到这个题目我们最容易想到的算法是直接比较算法:将数组的第 1 个元素分别赋给两个临时变量:fmax:=A[1]; fmin:=A[1]; 然后从数组的第 2 个元素 A[2]开始直到第 n个元素逐个与 fmax 和 fmin 比较,在每次比较中,如果A[i] > fmax,则用 A[i]的值替换 fmax 的值;如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值;否则保持 fmax(fmin)的值不变。

这样在程序结束时的fmax、fmin 的值就分别是数组的最大值和最小值。

这个算法在最好、最坏情况下,元素的比较次数都是 2(n-1),而平均比较次数也为 2(n-1)。

如果将上面的比较过程修改为:从数组的第 2 个元素 A[2]开始直到第 n 个元素,每个 A[i]都是首先与 fmax 比较,如果 A[i]>fmax,则用 A[i]的值替换 fmax 的值;否则才将 A[i]与 fmin 比较,如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值。

这样的算法在最好、最坏情况下使用的比较次数分别是 n-1 和 2(n-1),而平均比较次数是 3(n-1)/2,因为在比较过程中,将有一半的几率出现 A[i]>fmax 情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用分治法解决快速排序问题及用回溯法解决0-1背包问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、回溯法:(2)图的着色。

三、概要设计:●分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;●回溯法—0-1背包问题回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。

换句话说,这个节点,这个结点不再是一个活结点。

此时,应往回(回溯)移动至最近一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归的在解空间中搜索,直到找到所要求的解或解空间中以无活结点为止。

四、详细设计与实现:分治法—快速排序快速排序是基于分治策略的另一个排序算法。

其基本思想是,对于输入的子数组[]r p a :,按以下三个步骤进行排序:(1)、分解(divide) 以元素[]p a 为基准元素将[]r p a :划分为三段[]1:-q p a ,[]q a 和,[]r q a :1+使得[]1:-q p a 中任何一个元素都小于[]q a ,而[]r q a :1+中任何一个元素大于等于[]q a ,下标q 在划分过程中确定。

(2)、递归求解(conquer) 通过递归调用快速排序算法分别对[]1:-q p a 和[]r q a :1+进行排序。

(3)、合并(merge) 由于[]1:-q p a 和[]r q a :1+的排序都是在原位置进行的,所以不必进行任何合并操作就已经排好序了。

算法实现题: 现将数列{12 21 31 45 36 76 66 46 30 7 89 20 2 5 99 47 23 54 51 73}进行快速排序。

源程序如下:#include <iostream>using namespace std;#define size 20int partition(int data[],int p,int r){int n=data[p],i=p+1,j=r,temp;//将<n的元素交换到左边区域//将>n的元素交换到右边区域while(true){while(data[i]<n) ++i;while(data[j]>n) --j;if(i>=j)break;temp=data[i]; data[i]=data[j]; data[j]=temp;}data[p]=data[j];data[j]=n;return j;}void quick_sort(int data[],int p,int r){ if(p>=r)return;int q=partition(data,p,r);quick_sort(data,p,q-1); //对左半段排序quick_sort(data,q+1,r); //对右半段排序}int main(){int i,n,data[size];printf("请输入要排列的数目(<=20):");scanf("%d",&n);printf("请输入要排列的数列:\n");for(i=0;i<n;++i)scanf("%d",&data[i]);quick_sort(data,0,n-1);printf("排列后的数列为:\n");for(i=0;i<n;++i)printf( "%d ",data[i]);printf("\n");return 0;}运行结果如下:图1图5●回溯法—0-1背包问题●回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。

这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

二、算法框架:1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。

问题的解空间应到少包含问题的一个(最优)解。

2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

换句话说,这个结点不再是一个活结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

运用回溯法解题通常包含以下三个步骤:(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来实现回溯法。

1 问题描述对于0-1背包问题回溯法的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1].这4个物品的单位重量价值分别为[3,2,3,5,4].以物品为单位价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装入0.2的物品2.由此可得到一个解为x=[1,0,2,1,1],其相应的价值为22.尽管这不是一个可行解,但可以证明其价值是最有大的上界。

因此,对于这个实例,最优值不超过22. 回溯法的基本思想是按深度优先策略,从根节点出发搜索解空间树,算法搜索至解空间的任一点时,先判断该结点是否包含问题的解,如果肯定不包含,则跳过以该结点为根的子树的搜索,逐层向其祖先结点回溯,否则,进入该子树,继续按深度优先进行搜索。

2 问题分析利用回溯法的设计思想来解决背包问题。

首先是将可供选择的物品的个数输入程序,将物品排成一列,计算总物品的体积s,然后输入背包的实际体积V,如果背包的体积小于0或者大于物品的总体积s,则判断输入的背包体积错误,否则开始顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。

但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解。

因为回溯求解的规则是"后进先出",所以要用到栈来存储符合条件的解,在存储过程中,利用数组来存储各个物品的体积,然后用深度优先的搜索方式求解,将符合条件的数组元素的下标存入栈里,最后得到符合条件的解并且实现输出。

3 建立数学模型0-l 背包问题是子集选取问题。

一般情况下,0-1背包问题是NP 难题。

0-1背包问题的解空间可用子集树表示。

解0-1背包问题的回溯法与装载问题的回溯法十分类似。

在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。

当右子树有可能包含最优解时才进入右子树搜索。

否则将右子树剪去。

设r 是当前剩余物品价值总和;cp 是当前价值;bestp 是当前最优价值。

当cp+r≤bestp 时,可剪去右子树。

计算右子树中解的上界的更好方法是将剩余物品依其单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。

由此得到的价值是右子树中解的上界。

算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。

这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。

如果分别用N 、I 和A 表示算法要解问题的规模、算法的输入和算法本身,而且用C 表示复杂性,那么,应该有C=F(N,I,A)。

一般把时间复杂性和空间复杂性分开,并分别用T 和S 来表示,则有: T=T(N,I)和S=S(N,I) 。

最坏情况下的时间复杂性:最好情况下的时间复杂性:平均情况下的时间复杂性:其中DN 是规模为N 的合法输入的集合;I*是DN 中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, )达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I 的概率。

),(max max I N T (N)T N D I ∈=),(max 1I N e t k i i i D I N ∑=∈=),(*1I N e t k i i i ∑==),(*I N T =),(min min I N T (N)T N D I ∈=),(min 1I N e t k i i i D I N ∑=∈=)~,(1I N e t k i i i ∑==)~,(I N T =∑∈=N D I I N T I P (N)T ),()(avg ∑∑∈==N D I k i i i I N e t I P ),()(14 算法设计使用栈作为该程序的数据结构,利用栈进行语法检查,以深度优先的搜索方式解空间,实现递归过程和函数的调用,在设计时还使用C语言的数组及其循环语言来实现程序。

相关文档
最新文档