高三数学圆锥曲线的综合

合集下载

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。

圆锥曲线综合问题

圆锥曲线综合问题

圆锥曲线综合问题1.题目要求计算双曲线上一点到两个圆心的距离之差的最大值。

已知两圆的圆心和双曲线的焦点,可以通过计算点到圆心的距离和圆的半径来求得点到圆心的距离之和。

然后再通过两个圆心的距离和1来计算点到双曲线焦点的距离,最后将两个距离之差求出来即可得到最大值为5.2.题目要求计算过原点的直线与双曲线的交点斜率的取值范围。

可以将直线的方程代入双曲线的方程,然后整理得到一个关于斜率的一元二次方程。

由于两个交点不同,因此判别式大于0,可以得到斜率的取值范围为负根号3到正根号3.3.题目要求证明椭圆的长轴大于短轴,并求出过三个点的三角形的最大面积。

可以将直线的方程代入椭圆的方程,然后得到一个关于y的二次方程。

根据判别式大于0可以得到椭圆的长轴大于短轴。

然后可以通过求出三角形的三条边的长度,代入海伦公式求出三角形的面积,再通过求导数的方法求出最大值。

最终可以得到△OAB的最大面积为3.已知在平面直角坐标系xOy中的一个椭圆,中心在坐标原点,左焦点为F(-3,10),右顶点为D(2,0),且点A的坐标是(1,2)。

1) 求该椭圆的标准方程。

根据题意,椭圆的长轴长度为4,短轴长度为2,且焦点在x轴上。

因此,椭圆的标准方程为x^2/4+y^2=1.2) 过坐标原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

当直线BC垂直于x轴时,|BC|=2,△ABC=1.当直线BC 不垂直于x轴时,设直线BC的方程为y=kx,代入椭圆的标准方程得到x^2=4k^2+1/(1+4k^2),再根据点到直线的距离公式求得△ABC的面积。

通过求导可得当k=-1/2时,△ABC的面积最大,此时△XXX的面积为2.变式:若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点B、C且线段BC的垂直平分线恒过点A(0,-1),求m的范围。

根据题意,直线l与椭圆C交于两点,因此可以得到方程(4k^2+1)x^2+8kmx+4(m^2-1)=y^2.同时,由于线段BC的垂直平分线恒过点A(0,-1),因此可以得到3m=4k^2+1.结合两个方程可以得到m^21,因此m的范围为3/2<m<3.知识归纳:1.求参数范围的方法:建立等式或不等式的函数关系,再求参数范围。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。

【新教材】高中数学新教材人教A版选择性必修培优练习:专题14 圆锥曲线的综合问题(学生版+解析版)

【新教材】高中数学新教材人教A版选择性必修培优练习:专题14 圆锥曲线的综合问题(学生版+解析版)

专题14 圆锥曲线的综合问题一、单选题1.(2020·全国高三月考(文))若抛物线()220y px p =>的焦点是双曲线2213-=x y p p的一个焦点,则p =( )A .2B .4C .8D .162.(2020·宁夏回族自治区银川一中高三二模(理))抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .3.(2019·甘肃省会宁县第四中学高二期末)椭圆与双曲线有公共点P ,则P 与双曲线两焦点连线构成三角形的面积为( ) A .48B .24C .2D .4.(2019·湖北省高二期中)若0mn ≠,则方程0mx y n -+=与22nx my mn +=所表示的曲线可能是图中的( )A .B .C .D .5.(2019·黑龙江省哈尔滨三中高二期中(文))以抛物线28x y =520x y m ++=相切,则m =( )A .1或9-B .1-或9C .3或7-D .-3或76.(2019·河南省包屯高中高二期末)已知方程22141x y t t +=--的曲线为C ,下面四个命题中正确的个数是①当14t <<时,曲线C 不一定是椭圆; ②当41t t ><或时,曲线C 一定是双曲线; ③若曲线C 是焦点在x 轴上的椭圆,则512t <<; ④若曲线C 是焦点在y 轴上的双曲线,则4t >. A .1B .2C .3D .47.(2020·北京人大附中高二期中)已知抛物线22(0)x py p =>的准线被双曲线22132x y -=截得的弦长为6,则该抛物线的焦点坐标是( ) A .10,32⎛⎫ ⎪⎝⎭B .(0,32)C .10,2⎛⎫ ⎪⎝⎭D .(0,2)8.(2020·湖北省高三其他(文))已知抛物线243y x =的准线与双曲线22221x y a b-=的两条渐近线分别交于,A B 两点若双曲线的离心率是23,那么AB =( ) A .2B .43C .2D .239.(2019·平遥县第二中学校高二月考)设椭圆22162x y +=和双曲线2213x y -=的公共焦点为12,,F F P 是两曲线的一个公共点,则12cos F PF ∠的值等于A .13 B .14 C .19D .3510.(2019·福建省高三一模(理))如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .二、多选题11.(2019·常州市第一中学高二期中)若方程22131x y t t +=--所表示的曲线为C ,则下面四个选项中错误..的是( )A .若C 为椭圆,则13t <<B .若C 是双曲线,则其离心率有12e <<C .若C 为双曲线,则3t >或1t <D .若C 为椭圆,且长轴在y 轴上,则12t <<12.(2019·福建省南安第一中学高二月考)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,下列结论正确的是( )A .椭圆的离心率31e =B .双曲线的离心率2e =C .椭圆上不存在点A 使得120AF AF ⋅< D .双曲线上存在点B 使得120BF BF ⋅< 13.(2020·海南省高三二模)已知抛物线C :()220y px p =>的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则下列结论正确的是( ) A .C 的准线方程为1y =- B .线段PQ 的长度最小为4 C .M 的坐标可能为()3,2 D .3OP OQ ⋅=-恒成立三、填空题14.(2019·湖北省高二期中)设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线216x y =的焦点相同,则此双曲线的方程是___________.15.(2019·涟水县第一中学高二月考)若直线2y kx =+ 与抛物线2y x = 只有一个交点,则实数k 的值为______16.(2020·四川省成都外国语学校高二开学考试(理))过椭圆22132x y +=内一点()1,1P 引一条恰好被P 点平分的弦,则这条弦所在直线的方程是_____________17.(2020·浙江省高三月考)已知直线()():10l y k x k =+≠,椭圆22:143x yC +=,点()1,0F ,若直线和椭圆有两个不同交点A B ,,则ABF 周长是___________,ABF 的重心纵坐标的最大值是___________ 四、解答题18.(2020·天水市第一中学高二月考)已知椭圆2222:1(0)x y C a b a b +=>>过点且离心率为2. (1)求椭圆C 的方程;(2)是否存在过点()0,3P 的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.若存在,求出直线l 的方程;若不存在,请说明理由.19.(2019·涟水县第一中学高二月考)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)过点3(1,)2P ,离心率为12.(1)求椭圆C 的方程;(2)若斜率为2l 与椭圆C 交于A ,B 两点,试探究22OA OB +是否为定值?若是定值,则求出此定值;若不是定值,请说明理由.20.(2019·重庆巴蜀中学高二期中(理))已知抛物线2:4C y x =.(1)若P 是抛物线C 上任一点,(2,3)Q ,求点P 到Q 和y 轴距离之和的最小值;(2)若ABC 的三个顶点都在抛物线C 上,其重心恰好为C 的焦点F ,求ABC 三边所在直线的斜率的倒数之和.21.(2019·苏州新草桥中学高三开学考试)已知椭圆()2222:10x y C a b a b +=>>经过点12⎫⎪⎭,⎛ ⎝⎭,点A 是椭圆的下项点. (1)求椭圆C 的标准方程;(2)过点A 且互相垂直的两直线1l ,2l 与直线y x =分别相交于E ,F 两点,已知OE OF =,求直线1l 的斜率.22.(2020·河南省高二月考(文))已知抛物线C :22(0)y px p =>的焦点为F ,过F 的直线l 与抛物线C交于A ,B 两点,弦AB 的中点的横坐标为32,5AB =. (Ⅰ)求抛物线C 的方程;(Ⅱ)若直线l 的倾斜角为锐角,求与直线l 平行且与抛物线C 相切的直线方程.23.(2019·安徽省蚌埠二中高三其他(文))已知点P 在抛物线2:2(0)C x py p =>上,且点P 的纵坐标为1,点P 到抛物线焦点F 的距离为2 (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H ,过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求||||AF BF -的值.专题14 圆锥曲线的综合问题一、单选题1.(2020·全国高三月考(文))若抛物线()220y px p =>的焦点是双曲线2213-=x y p p的一个焦点,则p =( )A .2B .4C .8D .16【答案】D 【解析】抛物线()220y px p =>的焦点是02p ⎛⎫⎪⎝⎭,, 双曲线2213-=x y p p的一个焦点是()20p ,, 由条件得22pp =,解得16p =. 故选:D .2.(2020·宁夏回族自治区银川一中高三二模(理))抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .【答案】A 【解析】 抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A .3.(2019·甘肃省会宁县第四中学高二期末)椭圆与双曲线有公共点P ,则P 与双曲线两焦点连线构成三角形的面积为( ) A .48 B .24C .2D .【答案】B 【解析】结合椭圆性质,可以得到建立方程,得到点P 的坐标为,故,故选B.4.(2019·湖北省高二期中)若0mn ≠,则方程0mx y n -+=与22nx my mn +=所表示的曲线可能是图中的( )A .B .C .D .【答案】C 【解析】0mx y n -+=即为直线y mx n =+,22nx my mn +=即为曲线221x y mn+=,0mn ≠.对于A 选项,由直线方程可知,0m >,0n >,则曲线221x y m n +=,0mn ≠表示圆或椭圆,A 选项错误;对于B 选项,由直线方程可知,0m <,0n <,则曲线221x y m n +=,0mn ≠不存在,B 选项错误;对于C 选项,由直线方程可知,0m >,0n <,则曲线221x y m n+=,0mn ≠表示焦点在x 轴上的双曲线,C 选项正确;对于D 选项,由直线方程可知,0m <,0n >,则曲线221x y m n+=,0mn ≠表示焦点在y 轴上的双曲线,D 选项错误. 故选:C.5.(2019·黑龙江省哈尔滨三中高二期中(文))以抛物线28x y =5为半径的圆,与直线20x y m ++=相切,则m =( )A .1或9-B .1-或9C .3或7-D .-3或7【答案】C 【解析】抛物线28x y =的焦点为()0,2,以抛物线28x y =的焦点为圆心,5:圆心为()0,2,半径5r =,由直线20x y m ++=与圆相切,可得:圆心到直线的距离d ==解得3m =或7-. 故选:C .6.(2019·河南省包屯高中高二期末)已知方程22141x y t t +=--的曲线为C ,下面四个命题中正确的个数是①当14t <<时,曲线C 不一定是椭圆; ②当41t t ><或时,曲线C 一定是双曲线; ③若曲线C 是焦点在x 轴上的椭圆,则512t <<; ④若曲线C 是焦点在y 轴上的双曲线,则4t >. A .1 B .2C .3D .4【答案】D 【解析】 对于①,当52t =时,曲线表示为圆,所以不一定是椭圆,所以①正确 对于②,当4t >时表示焦点在y 轴上的双曲线,当1t <曲线C 表示焦点在x 轴上的椭圆,所以一定是双曲线,所以②正确对于③若曲线C 是焦点在x 轴上的椭圆,则401041t t t t ->⎧⎪->⎨⎪->-⎩,解得512t <<,所以③正确 对于④若曲线C 是焦点在y 轴上的双曲线,则4010t t -<⎧⎨->⎩,解得4t >,所以④正确综上,四个选项都正确 所以选D7.(2020·北京人大附中高二期中)已知抛物线22(0)x py p =>的准线被双曲线22132x y -=截得的弦长为6,则该抛物线的焦点坐标是( )A.1 0,32⎛⎫ ⎪⎝⎭B.(0,32)C.10,2⎛⎫⎪⎝⎭D.(0,2)【答案】D【解析】因为抛物线22(0)x py p=>的准线被双曲线22132x y-=截得的弦长为6所以该准线与双曲线的一个交点坐标表示为3,2p⎛⎫-⎪⎝⎭,代入双曲线中2232132p⎛⎫- ⎪⎝⎭-=得4p=,所以焦点坐标为()0,2故选:D8.(2020·湖北省高三其他(文))已知抛物线23y x=的准线与双曲线22221x ya b-=的两条渐近线分别交于,A B23,那么AB=()A.2B.43C2D.233【答案】A【解析】抛物线243y x=的准线3x=-22223cc a ba==+,3ba∴=,因此双曲线的渐近线方程为:3y x=,双曲线的一条渐近线方程与抛物线准线方程联立得:3,33x y x ⎧=-⎪⎨=-⎪⎩,得1,y =根据双曲线的对称性可知:2AB =故选:A9.(2019·平遥县第二中学校高二月考)设椭圆22162x y +=和双曲线2213x y -=的公共焦点为12,,F F P 是两曲线的一个公共点,则12cos F PF ∠的值等于A .13 B .14 C .19D .35【答案】A 【解析】由题意知F 1(﹣2,0),F 2(2,0),解方程组222216213x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,得229212x y ⎧=⎪⎪⎨⎪=⎪⎩.取P 点坐标为32222⎛⎫ ⎪⎪⎝⎭,,1322P 222F ⎛⎫=--- ⎪ ⎪⎝⎭,,2322P 222F ,⎛⎫=-- ⎪ ⎪⎝⎭, cos ∠F 1PF 2=123232122222321321222222⎛⎫⎛⎫---+⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫--+-+⎪ ⎪⎝⎭⎝⎭=13. 故选A .10.(2019·福建省高三一模(理))如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .【答案】B 【解析】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3, ∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 二、多选题11.(2019·常州市第一中学高二期中)若方程22131x y t t +=--所表示的曲线为C ,则下面四个选项中错误..的是( )A .若C 为椭圆,则13t <<B .若C 是双曲线,则其离心率有12e <<C .若C 为双曲线,则3t >或1t <D .若C 为椭圆,且长轴在y 轴上,则12t <<【答案】AD 【解析】若2t =,方程22131x y t t +=--即为221x y +=,它表示圆,A 错;对于选项B ,若1t <,则方程可变形为22131x y t t -=--,它表示焦点在x 轴上的双曲线;e ==<,1e <<若3t >,则方程可变形为22113y x t t -=--,它表示焦点在y 轴上的双曲线;e ==<1e <<B 正确; 对于选项C ,若1t <,则方程可变形为22131x y t t -=--,它表示焦点在x 轴上的双曲线;若3t >,则方程可变形为22113y x t t -=--,它表示焦点在y 轴上的双曲线,故C 正确;对于选项D ,若23t <<,则031t t <-<-,故方程22131x y t t +=--表示焦点在y 轴上的椭圆;若12t <<,则013t t <-<-,故22131x y t t +=--表示焦点在x 轴上的椭圆,则D 错;故选:AD12.(2019·福建省南安第一中学高二月考)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,下列结论正确的是( )A .椭圆的离心率1e =B .双曲线的离心率2e =C .椭圆上不存在点A 使得120AF AF ⋅<D .双曲线上存在点B 使得120BF BF ⋅< 【答案】ABD 【解析】如图,设122F F c =,则由正六边形性质可得点3,2cc I ⎛⎫⎪ ⎪⎝⎭, 由点I 在椭圆上可得22223144c c a b+=,结合222a c b -=可得22233b a =-,∴椭圆离心率212142331b e a=-=-=-, ∴()()22222224310a c a ⎡⎤-=--<⎢⎥⎣⎦∴当点A 为椭圆上顶点时,12cos 0F AF ∠<,此时120AF AF ⋅<; 点3,22c c I ⎛⎫ ⎪ ⎪⎝⎭在双曲线22221x y N m n -=:的渐近线上可得322n c c m ⋅=即3=n m , ∴双曲线的离心率为2221132n e m=+=+=, 当点B 为双曲线的顶点时,易知120BF BF ⋅<. 故选:ABD.13.(2020·海南省高三二模)已知抛物线C :()220y px p =>的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则下列结论正确的是( ) A .C 的准线方程为1y =- B .线段PQ 的长度最小为4 C .M 的坐标可能为()3,2 D .3OP OQ ⋅=-恒成立【答案】BCD 【解析】焦点F 到准线的距离即为2p =,所以抛物线C 的焦点为()1,0F ,准线方程为1x =-,A 项错误. 当PQ 垂直于x 轴时长度最小, 此时()1,2P ,()1,2Q -,所以4PQ =,B 项正确.设()11,P x y ,()22,Q x y ,直线PQ 的方程为1x my =+.联立241y xx my ⎧=⎨=+⎩,消去y 可得()224210x m x -++=,消去x 可得2440y my --=,所以21242x x m +=+,124y y m +=,当1m =时,可得()3,2M ,所以C 正确,又121=x x ,124y y =-,所以12123OP OQ x x y y ⋅=+=-,所以D 正确. 故选:BCD 三、填空题14.(2019·湖北省高二期中)设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线216x y =的焦点相同,则此双曲线的方程是___________.【答案】221412y x -=【解析】抛物线216x y =的焦点为()0,4在y 轴上,故双曲线4c =,又22ca a=⇒=, 故22212b c a =-=.故双曲线的方程为221412y x -=.故答案为:221412y x -=15.(2019·涟水县第一中学高二月考)若直线2y kx =+ 与抛物线2y x = 只有一个交点,则实数k 的值为______ 【答案】0或 18【解析】联立直线方程与抛物线方程可得:22(41)40k x k x +-+=, ①若0k =,则4x =,满足题意;②若0k ≠,则22(41)160k k ∆=--=,解得18k =. 综上所述,k =0或 18. 故答案为:0或1816.(2020·四川省成都外国语学校高二开学考试(理))过椭圆22132x y +=内一点()1,1P 引一条恰好被P 点平分的弦,则这条弦所在直线的方程是_____________ 【答案】2350x y +-= 【解析】由题意知,该直线斜率存在,设直线与椭圆交于()()1122,,,A x y B x y 两点,斜率为k ,则22112222132132x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得1212121223y y y y x x x x --++⋅-=,即221321k ⨯-=⋅⨯,所以23k =-, 所以所求直线方程为()2113y x -=--,即2350x y +-=. 故答案为:2350x y +-=.17.(2020·浙江省高三月考)已知直线()():10l y k x k =+≠,椭圆22:143x yC +=,点()1,0F ,若直线和椭圆有两个不同交点A B ,,则ABF 周长是___________,ABF 的重心纵坐标的最大值是___________ 【答案】86【解析】由题意知,可知()():10l y k x k =+≠恒过定点()1,0-,此点为椭圆的左焦点,记为'F . 则'24,'24AF AF a BF BF a +==+==.所以ABF ∆的周长为''448AB AF BF AF AF BF BF ++=+++=+=.设()()1122,,,A x y B x y设ABF 的重心纵坐标为0y .则12120033y y y y y +++==.联立直线与椭圆方程得()221431x y y k x ⎧+=⎪⎨⎪=+⎩,整理得2236490y y k k ⎛⎫+--= ⎪⎝⎭. 则222363136414410k k k ⎛⎫⎛⎫∆=++=+> ⎪ ⎪⎝⎭⎝⎭,1222663434k ky y k k+==++ 所以12022233434y y k y k k k+===++.当0k >时,34k k+≥= 当且仅当34k k =,即k =时,等号成立,此时06y ≤=; 当k 0<时,3344k k k k ⎛⎫+=---≤-=- ⎪⎝⎭,当且仅当34k k -=-, 即2k =-时,等号成立,此时06y ≥=-.综上所述:0y ⎡⎫⎛∈⋃⎪ ⎢⎣⎭⎝⎦.所以ABF .故答案为: 8;6.四、解答题18.(2020·天水市第一中学高二月考)已知椭圆2222:1(0)x y C a b a b +=>>过点且离心率为2. (1)求椭圆C 的方程;(2)是否存在过点()0,3P 的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)22142x y +=;(2)存在这样的直线,直线方程为:1432y x =±+.【解析】(1)由已知点代入椭圆方程得22211a b +=由e =得c a =可转化为222a b = 由以上两式解得224,2a b ==所以椭圆C 的方程为:22142x y +=.(2)存在这样的直线.当l 的斜率不存在时,显然不满足2PB PA =,所以设所求直线方程:3l y kx =+代入椭圆方程化简得: ()221212140k xkx +++=1221212k x x k +=-+① 1221412x x k =+.② ()2227(12)414120,4k k k ∆=-⨯⨯+>>,设所求直线与椭圆相交两点()()1122,,,A x y B x y 由已知条件2PB PA =可得212x x =,③ 综合上述①②③式子可解得27724k =>符合题意,所以所求直线方程为:32y x =±+. 19.(2019·涟水县第一中学高二月考)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)过点3(1,)2P ,离心率为12.(1)求椭圆C 的方程;(2l 与椭圆C 交于A ,B 两点,试探究22OA OB +是否为定值?若是定值,则求出此定值;若不是定值,请说明理由.【答案】(1)22143x y +=(2)是定值,7【解析】(1)由离心率12c e a ==,得a ∶b ∶c =21, 则可设椭圆C 的方程为2222143x y c c+= ,由点3(1,)2P 在椭圆C 上,得2213144c c+=,即c 2=1, 所以椭圆C 的方程为22143x y +=(2)设直线l 的方程为y=2x +n ,A (x 1,y 1),B (x 2,y 2), 所以OA 2+OB 2=21x +3-3421x +22x +3-2234x =14(21x +22x )+6.由2223412y x n x y ⎧=+⎪⎨⎪+=⎩消去y 得3x 2++2n 2-6=0. 当Δ>0时,x 1+x 2,x 1x 2=2263n -,从而22221221212 24412()33n x x x n x x x -+=+--==4, 所以OA 2+OB 2=7,为定值.20.(2019·重庆巴蜀中学高二期中(理))已知抛物线2:4C y x =.(1)若P 是抛物线C 上任一点,(2,3)Q ,求点P 到Q 和y 轴距离之和的最小值;(2)若ABC 的三个顶点都在抛物线C 上,其重心恰好为C 的焦点F ,求ABC 三边所在直线的斜率的倒数之和.【答案】(11(2)0 【解析】(1)由抛物线定义可知:P 到Q 和y轴距离之和||||1||11PQ PF QF =+-≥-=, 当,,Q P F 三点共线时,取最小值.(2)设211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,233,4y C y ⎛⎫ ⎪⎝⎭,∵(1,0)F ∴1230y y y ++=.又22121212144AB y y y y k y y -+==-,同理:2314BC y y k +=,1314AC y y k += ∴1110AB BC ACk k k ++= 21.(2019·苏州新草桥中学高三开学考试)已知椭圆()2222:10x y C a b a b +=>>经过点12⎫⎪⎭,⎛ ⎝⎭,点A 是椭圆的下项点. (1)求椭圆C 的标准方程;(2)过点A 且互相垂直的两直线1l ,2l 与直线y x =分别相交于E ,F 两点,已知OE OF =,求直线1l 的斜率.【答案】(1)2214x y +=(2)1【解析】(1)由题意得222231141314a bab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩,所以椭圆C 的标准方程为2214x y +=;(2)由题意知()0,1A -,直线1l ,2l 的斜率存在且不为零,设直线11:1l y k x =-,与直线y x =联立方程有11y k x y x =-⎧⎨=⎩,得1111,11E k k ⎛⎫⎪--⎝⎭. 设直线211:1l x k y =--,同理1111,1111F k k ⎛⎫⎪⎪ ⎪---- ⎪⎝⎭, 因为OE OF =,所以1111111k k =---,①1111111,0111k k k k =+=---无实数解; ②2111111111,2,210111k k k k k k =--=--=---,解得11k = 综上可得,直线1l的斜率为1±22.(2020·河南省高二月考(文))已知抛物线C :22(0)y px p =>的焦点为F ,过F 的直线l 与抛物线C交于A ,B 两点,弦AB 的中点的横坐标为32,5AB =. (Ⅰ)求抛物线C 的方程;(Ⅱ)若直线l 的倾斜角为锐角,求与直线l 平行且与抛物线C 相切的直线方程.【答案】(Ⅰ)24y x =(Ⅱ)122y x =+【解析】(Ⅰ)设11(,)A x y ,22(,)B x y , 因为AB 的中点的横坐标为32,所以12322x x +=. 根据抛物线定义知125AB AF BF p x x =+=++=. 所以35p +=,解得2p =, 所以抛物线C 的方程为24y x =.(Ⅱ)设直线l 的方程为(1)y k x =-,0k >.则由24(1)y x y k x ⎧=⎨=-⎩得()2222240k x k x k -++=.所以212224k x x k ++=,即22243k k+=,解得2k =. 设与直线l 平行的直线的方程为2y x b =+,由242y x y x b⎧=⎨=+⎩得224(44)0x b x b +-+=. 依题知22(44)160b b ∆=--=,解得12b =.故所求的切线方程为122y x =+. 23.(2019·安徽省蚌埠二中高三其他(文))已知点P 在抛物线2:2(0)C x py p =>上,且点P 的纵坐标为1,点P 到抛物线焦点F 的距离为2(1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H ,过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求||||AF BF -的值.【答案】(1)24x y =(2)4【解析】(1)设0(,1)P x ,由抛物线定义,点P 到抛物线焦点F 的距离为2 故1222p p +=∴= 故抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为(0,1)F ,准线方程为1y =-,(0,1)H -; 设()11,A x y ()22,B x y ,直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=, ∴124x x k +=,124x x =-,…①由AB HB ⊥,可得1AB HB k k =-⋅, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=, 即2212121111044x x x x ⎛⎫⎛⎫-++=⎪⎪⎝⎭⎝⎭, ∴()22221212121110164x x x x x x +--+=,…②把①代入②得,221216x x -=, 则()22121211||||1116444AF BF y y x x -=+--=-=⨯=.。

高考数学专题十九圆锥曲线综合练习题

高考数学专题十九圆锥曲线综合练习题

培优点十九圆锥曲线综合1.直线过定点2xxF轴的离心率为且垂直于,过左焦点例1:已知中心在原点,焦点在轴上的椭圆C2P两点,且,的直线交椭圆于.Q2?2PQ C(1)求的方程;C??22MM作椭是直线处的切线,点(2)若直线是圆上任一点,过点上的点2,28??yx ll ABMAMBAB过定点,,切点分别为,设切线的斜率都存在.求证:直线圆的切线,,C并求出该定点的坐标.22yx??.2)证明见解析,;【答案】(1)(2,11??8422yx??, 1)由已知,设椭圆的方程为【解析】(0?b??1?a C ??,不妨设点,代入椭圆方程得因为,1??22PQ?2?c,P22ba22ab22cc212222,,,所以,又因为,所以8ba??b2?4?e?cb?1??2a22b22yx所以的方程为.1??C 84??,即,(2)依题设,得直线的方程为2x???y?204?x?y?l??????,,,设yxABx,y,Mx,y210120??MA,由切线的斜率存在,设其方程为xxk?y?y?11??xxy?k??y?11???2????22,联立得,0?28y?xkx?4ky?kx?x?2k1??22yx1111?1??48???22??????22?0?8k2y?1?Δ?16kkx?ykx4?,由相切得??1111??2??2222,即,化简得4?8?y?kxk04yk?y?x?8?kx?2111111xyxyx11111MA???k?的方程为因为方程只有一解,所以,所以切线??1xx?yy???,11y21xx?2yy?8xx?2yy?8MB,同理,切线即的222yyx2?8?111x方程为,2211.8y??2yxx???0011AB的方程为,所以直线,所以又因为两切线都经过点yx,M?008y??2yxx?02208y??2yxx,00??4y??xAB的方程可化为,所以直线,又82y4?x?xx?00000??2yx2?x????,,令即,得08y?x8x?2y????00?y?881?y????AB所以直线.恒过定点2,1.面积问题222yxb??FF直线,焦距为、4例2:已知椭圆,的左、右焦点分别为0a?b?1??x?:yl 21122baclFlEAB1?与线段两点,的直线关于直线与椭圆相交于、在椭圆上.斜率为的对称点221PABD相交于点两点.,与椭圆相交于、C1)求椭圆的标准方程;()求四边形面积的取值范围.(2ACBD223232yx??,;.2)【答案】(1)(1????3948?????????EFFEF【解析】(1)由椭圆焦距为4,设,连结,,,设2,0F?2,0F21121bcb222???c??ab,,又,得则,?tan?cos?sin aacFF2csin90?1ac21,??????e???bc??b?|?|EFsin?sin??ca90EF2a?21aa22yx222a?bc?c?b?c?2a?8,所以椭圆方程为解得.,1??84????m+?y?xlyx,D,Cxy方程:、2()设直线,,22211.4?m??xx22?yx?213???1?22,所以,由,得08?x3?4mx?2m??48?28m?2??m?y??x?xx??213?222238????x?y?A6,66,?6Bl,,得:,代入椭圆得由(,1)知直线?AB????133333????44???6m?6,lPAB,得由直线相交于点与线段,??233??????2,28m4?22416m2xx?2??m?+12x2CD?x???8xx2?211221393116321??1kk?l?l,,,知与而+12mAB??S?CD??12ACBD ll291232443232163??????22?m???,06,6?m,+12m??由,得,,所以??????333993??????3232??,?.面积的取值范围四边形ACBD??93??3.参数的值与范围??????20?2px?pC:yF的上,过焦点3例:已知抛物线的焦点在抛物线,点1,2F1,0A C M,两点.交抛物线于直线NCl(1)求抛物线的方程以及的值;AF C22??xFNMF?B(2)记抛物线的准线与的值.轴交于点,,若,求40BN?BM?C2?3??2(),;1【答案】(.)22AF?x?y4????20p??2:Cypx,的焦点【解析】(1)抛物线1,0F p2;,则,抛物线方程为42p?xy4?1??2p??1,2A.点在抛物线上,C2???AF?12??????,设)依题意,(2、,设,y,MxyF1,0Nx,1?xl:my?2211.2?x4?y2x,得联立方程,消去.0my?4?y?4?1my?x??1my?4mx?y?y???1112①,且,所以??1my??4x?yy???2212???????y?y?FNMF?,即,则又,y1?x,?y,??1x2121122??4???y1?????m4y?1???2??????,则,,22?y得,代入①得,消去2?4m???21,0B?yBN?,BM?xx?1,y?121122222????2222y?x?1y?1?BM?|BN?|x?BM?BN?则2121??2222yy??2?x??2?xx?x??????2228?y?y???m4?1myy2112????4222,222111??2222y??2??2my?my?(?my?1)2?(my?1)y21112216m?16m??16m40?84?4m?m?m??18124?2?2?3.当,解得,故40?m?16?40m16?m2.弦长类问题4222xyx??2的顶点,的左右顶点是双曲线4:已知椭圆且椭圆例1?ya?b?0?:?C:?1C 2122ab33CC.的上顶点到双曲线的渐近线的距离为212C(1)求椭圆的方程;1QMCMCQ5?OQ?OQ?,求,两点,与相交于两点,且与(2)若直线,相交于l22111221的取值范围.MM??2.;(2)【答案】(1)212x1??y100,?3??2C3a?b0,)由题意可知:1(【解析】,,又椭圆的上顶点为1.3C,双曲线的渐近线为:0y?x?x?y??323?3b23x2.由点到直线的距离公式有:,∴椭圆方程1??b?1??y2232x2y并整理,代入)易知直线,消去的斜率存在,设直线(2的方程为m??kxy1?y?3得:??222,033mx???6kmx?k1?32?1?3k?02?1?3k?0??C相交于两点,则应有:,要与? ??????22222220m?3??41?3k?336k?mm?1?3k????????,设,yQxx,yQ,2112122?m3?36km则有:,.?xx???xx212122k?31k?31????????22.又m?km?m??x1?k?x?OQOQ??xx?yy?xxxkx?mxkx211121*********????????2222225?OQ?OQ?,又:,所以有:?k?5?6km?m1?331?k?m?3??212k?3122k?1?9m?,②??2222y,将,代入并整理得:,2x消去my?kx?1??y0m??x3?6kmx?1?3k33????222222.③要有两交点,则m?1?04??1?3k3k3m??Δ?36k3m12.由①②③有?0?k92?33m?6km????.有,设,、yxMMx,y,??xx??xx????2222k3413m??36k3m?414332434322k31?k31???22k31???22k?3m9??432?MM?1k?21??22k1?312k2k14422222.?k?1?kMM???1?k1?MM?k??19m代入有将.2112??22k3?12k3?1.??11??2t?0,,,,令kt?12??MM??21??29??2k1?3??t1t?1?t1??????t?0,?'tf?tf?.,令??32????9??t1t?331?11????????t??0,0,t内单调递增,内恒成立,故函数在所以在t0tff'?????99????5??????10M?0,?0,?Mft.故???2172??5.存在性问题??222yx??????A1,点例5:已知椭圆,,的左、右焦点分别为1,0?1,0FF0C:??1?ab?????21222ab??在椭圆上.C(1)求椭圆的标准方程;C M,有两个不同交点时,能在,使得当直线)是否存在斜率为2的直线与椭圆(2NCll5PM?NQP?若存在,求出直线,在椭圆上找到一点直线,满足上找到一点的Q Cl?y3方程;若不存在,说明理由.2x2;(2))不存在,见解析.【答案】(11?y?2【解析】(1)设椭圆的焦距为,则,1?cCc2??A1,,在椭圆∵上,∴??1???221AF2a??AF C 2????2222????????21222????2x22222a?1c?b?a?.的方程为,故椭圆,∴1?y?C2(2)假设这样的直线存在,设直线的方程为,t2x??y l5??????????,Pxy,xyD,xQ,x,MxyNy,,,,的中点为设,MN??3004242113??y?2x?t?22x,得由,消去,0?8?tty?9y2??22x?2y?2?yy?tt2??22,且∴,,故且123t??3??y?y?y?0t?36?Δ?4t8?012929NQ?PM为平行四边形,由,知四边形PMQNDD的中点,因此的中点,而为线段为线段PQ MN5y?t15?2t43?y?,,得∴?y 049297不在椭圆上,,可得,∴点又Q3?t??31?y???43.故不存在满足题意的直线l对点增分集训一、解答题2????2PP过点相外切,动圆圆心并且与圆1.已知动圆.的轨迹为2,0F4??x?2F:y C21的轨迹方程;(1)求曲线C1????lBA,直线、,设点与轨迹交于(2)过点两点,设直线的直线1,0F2,0?D C?xl:122ADBMM于,求证:直线经过定点.交l2y??2;(1)(2)见解析.【答案】0?1x??x3,1)由已知,【解析】(2??|PF ?|PF ?2PF| |PF2211P,,轨迹为双曲线的右支,,42c??|FF 2C2a?2?a?1c212y??2?.标准方程曲线0x???1x C3xBM必过)由对称性可知,直线(2轴的定点,31????????,MlBM1,02,?2,33BPA经过点,的斜率不存在时,,,,知直线当直线??122????????ly,By,2ky:l?x?Axx的斜率存在时,不妨设直线当直线,,,122111. ??y3y31y1??111y?,M1?AD:y?x时,,,当,直线?x????????M1?x1x?212x?22??111??2?x?y?k22k?43?4k?????2222,得,,?xx??xx0k?33?kx?4kx??4???21k?kBM,经过点,即下面证明直线,即证?1,0P 2121223k?k3?223x?y?3???3yyPBPM x?1x?121?3yx?3y?xy?yy?kx?2ky?kx?2k,即,,由2121122211??234?k22k3k4?4??4???0?5?,即整理得,045xx???4xx?????BMBM.经过点过定点即证,直线1,0P1,0223yx????1,AB分别为椭圆的左顶2211222?3?3kk?3k点、下顶点,在椭圆,上,设2.已知点0bE:??1?a???222ba??221AB.原点到直线的距离为O7E1)求椭圆的方程;(yxEPDPBPA两点,求分别交轴于在第一象限内一点,直线轴、,,(2)设为椭圆C的面积.四边形ABCD22yx23.2);)【答案】(1(1?? 4392231yx??4??1,1??)因为椭圆,有经过点,【解析】(10E:a??1b????22222baba??221ab?AB,的距离为由等面积法,可得原点到直线O722a?b22yx b?3E的方程为联立两方程解得,.,所以椭圆1??E:2a?4322xy????2200?1?0?x?P0,x,yy.,则(,即2)设点12??4x3y00000043y2y??00?2y?yPA:?x.直线,令,得0x?D x?2x?20032?x2y?2232yx?y?3300000从而有.,同理,可得?BD???AC32x?x2?y3?000.x110000所以四边形的面积为??AC?BD?2?22x3?y0022x383y3xy?12x?xy?12x?83y12?12?4?4y?12?43110000000000????223y?2y?3x?2?xy?3x?2y23x00000000 y?433xy?6x12?20000.32??3y?2xy?3x?2000032所以四边形的面积为.ABCD2??2P上,且有点的圆心,在圆的半径3.已知点为圆是圆上的动点,点Q8??yx?1CPC??0?MQ?APAPM,满足.和,上的点1,0AAM2AP?P在圆上运动时,判断(1)当点点的轨迹是什么?并求出其方程;Q22F,1)若斜率为的直线与圆中所求点的轨迹交于不同的两点相切,与((2)Q1yx??kl43H的取值范围.(其中是坐标原点),且,求kO??OFOF?542x222A)2;,长轴长为(2【答案】(1)是以点,的椭圆,为焦点,焦距为1??y C2????2233,?,?.????3223????AP的垂直平分线,)由题意是线段【解析】(1MQ所以,2?22?CAQC?QP?QC?QA?CP?22A的椭圆,为焦点,焦距为2所以点的轨迹是以点,,长轴长为Q C222a?,∴,,1ab???c1c?2x2.故点的轨迹方程是Q1??y2????,,,)设直线(2:yHy,xF,xbkx??y l2112b22221??1b?k与圆直线,,即相切,得1?xy?l21?k ??222y得:联立,消去,0?4kbx?2b??1?2k2x2??b?kx?y???????2222222,得,2?x21?y??0k?02b1?1??8?2k8??Δ16kbbk?4?1?2k22?2bkb4,,?xx?x?x?????22??2k?2b1?kb4?????222b?kb?OF?OH?xx?yy?1?kb?xx?kb?x?x∴212122k21?k21?2121212122k1?21?2k????22221k41?kk2k?2k?12?1???k?,222k1k?2k?121?22431?k112,所以,得???k?25k241?23322233,∴,解得或?k????kk???322323????2332,??,故所求范围为.????2323????22yx1??222AA,的焦距为,离心率为已知椭圆,圆,.4c??O:xy0bC:??1?a?c22122ba2ABA△AB.是椭圆的左右顶点,面积的最大值为是圆的任意一条直径,2O1的方程;1)求椭圆及圆(OC PE,求,)若为圆的任意一条切线,与椭圆的取值范围.交于两点(2PQQ Oll??2264yx223,,).;1【答案】()(21?yx?1????334??1xABB,易知当线段轴距离为,(【解析】1)设则点到h h?a2??AO??h??S2S1AAAB△OB△211?a?c??S2ycBO??h,,轴时,在AB△Amax1c1b?3,,,,,1?a?c2c?2?a??e?a222yx22.,圆的方程为所以椭圆方程为1x?y?1??432b2LL的方程为,此时)当直线2;的斜率不存在时,直线(3PQ??1x??a m221d???L,,直线为圆的切线,设直线,方程为:1?k?m?mkx?y?2k?1y?kx?m????222直线与椭圆联立,,得,0?4m?4k??3x12?8kmx22?yx??1? 43??8km?x?x??21234k????2,由韦达定理得:,判别式0?k?Δ?4823?24m?12??x?x ?212?34k?22?23?kk?43?122,,令所以弦长3?3?t?4k??xxPQ?1?k2123k?42??1624??所以;3,???3PQ?3???????t3t??????64PQ?3,,综上,??3??22yx????FF经、.如图,己知的左、右焦点,直线是椭圆51xy?k?:l01a?b?G:??2122ab 43ABF△FBA.过左焦点交,且与椭圆,的周长为两点,G21(1)求椭圆的标准方程;G △ABFI为等腰直角三角形?若存在,求出直线)是否存在直线的方程;若不,使得(2l2存在,请说明理由.??xc,故与,因为直线.轴的交点为22yx;2(1))不存在,见解析.(【答案】1??23【解析】(1)设椭圆的半焦距为1,0?1?Gcl ABF△34a?3,所以,的周长为,即又,故3?AFAB??BF4a?4222222?3?1ab??c?2.22yx因此,椭圆的标准方程为.1??G32(2)不存在.理由如下:AB不可能为底边,即.先用反证法证明BFAF?22??????,假设,,设,则由题意知BFB?x,Fy1,0,yAAFx222121222????22?1x?1?y?yx?,????222112.又得:,,代入上式,消去,?1???10?6x?x?x?xyy21122222xyxy2121213322xx?xx?x?6.轴,所以,故因为直线斜率存在,所以直线不垂直于ll2211?3xx?x?2x3?3?6矛盾)与,,(2211??2222,所以矛联立方程,得:6?x??x?0?6?3k?26x?kx?3k23?22?yx?1?2k6???1?xy?k?盾.2123k?2?故.BF?AF22AB不可能为等腰直角三角形的直角腰.再证明△ABFA为直角顶点.为等腰直角三角形,不妨设假设2??22F△AF,此方设,在中,由勾股定理得:,则m?AF m?2?AF343m?2??m2112程无解.故不存在这样的等腰直角三角形.。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。

下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。

根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。

1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。

即|PF1| + |PF2| = 2a。

椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。

3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。

即|PF| = |PM|,其中M是直线L上的一点。

抛物线对应的方程为\(y^2 = 2px\)。

二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。

B. 椭圆的离心率e的范围为0<e<1。

C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。

3. 抛物线的性质:A. 抛物线的焦点为定点F。

B. 抛物线的离心率e=1。

C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。

三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。

2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。

3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。

高考数学 圆锥曲线的综合问题(学案)绝密资料

高考数学 圆锥曲线的综合问题(学案)绝密资料

圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。

(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。

3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28yx =的准线2x =-与x 轴的交点为Q (-2 , 0),于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C.【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OMK , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程; (Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BMk k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11(),(,2222C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=-将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得 221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D , 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-, 将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-,将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。

2023年高考数学二轮复习第二篇经典专题突破专题五解析几何第3讲圆锥曲线的综合问题

2023年高考数学二轮复习第二篇经典专题突破专题五解析几何第3讲圆锥曲线的综合问题
②若过点 P(1,-2)的直线斜率存在,
设 kx-y-(k+2)=0,M(x1,y1),N(x2,y2).
kx-y-(k+2)=0,
联立x32+y42=1,

(3k2+4)x2-6k(2+k)x+3k(k+4)=0,
返回导航
x1+x2=63kk(22++4k), 可得x1x2=33kk(42++4k),
专题五 解析几何
高考二轮总复习 • 数学
返回导航
【解析】 (1)因为点 A(2,1)在双曲线 C:ax22-a2y-2 1=1(a>1)上, 所以a42-a2-1 1=1,解得 a2=2, 即双曲线 C:x22-y2=1, 易知直线 l 的斜率存在,
专题五 解析几何
高考二轮总复习 • 数学
返回导航
专题五 解析几何
高考二轮总复习 • 数学
返回导航
若要使 α-β 最大,则 β∈0,π2, 设 kMN=2kAB=2k>0,则, tan (α-β)=1+tantaαn-tαatnanβ β=1+k2k2=1k+12k≤2
1 1
= 42,
k·2k
当且仅当1k=2k 即 k= 22时,等号成立,
所以当 α-β 最大时,kAB= 22,
专题五 解析几何
高考二轮总复习 • 数学
返回导航
直线 MD:x=x1y-1 2·y+2, 代入抛物线方程可得 y2-4(x1y-1 2)·y-8=0, Δ>0,y1y3=-8,所以 y3=2y2,同理可得 y4=2y1, 所以 kAB=y3+4 y4=2(y14+y2)=kM2N, 又因为直线 MN、AB 的倾斜角分别为 α,β, 所以 kAB=tan β=kM2N=tan2 α,
所以椭圆方程为x42+y2=1.

圆锥曲线高三知识点

圆锥曲线高三知识点

圆锥曲线高三知识点圆锥曲线是高中数学中一个重要的概念和知识点,它涉及到解析几何和微积分等多个学科领域。

本文将为您介绍圆锥曲线的相关知识点,帮助您更好地理解和应用这一概念。

一、圆锥曲线的定义与分类圆锥曲线是由一个固定点(焦点)到平面上的一个动点(动点不在平面上)的距离与一个定长的比例(离心率)所决定的点的轨迹。

根据焦点的位置和离心率的大小,圆锥曲线可分为椭圆、双曲线和抛物线三种类型。

1. 椭圆椭圆是焦点到动点距离与离心率的比例小于1的圆锥曲线。

它的特点是对称性强,曲线两端较平缓,并且有两个焦点。

2. 双曲线双曲线是焦点到动点距离与离心率的比例大于1的圆锥曲线。

它的特点是曲线两端较陡,且无限延伸,并且有两个焦点。

3. 抛物线抛物线是焦点到动点距离与离心率的比例等于1的圆锥曲线。

它的特点是对称性较强,曲线开口方向有两种可能:向上开口或向下开口。

二、圆锥曲线的方程每种圆锥曲线都有其各自的方程形式。

下面分别介绍各种圆锥曲线的方程形式:1. 椭圆的方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为椭圆的长轴长度的一半,b为椭圆的短轴长度的一半。

2. 双曲线的方程双曲线的标准方程有两种形式:(x-h)²/a² - (y-k)²/b² = 1和(y-k)²/b² - (x-h)²/a² = 1。

其中(h,k)为双曲线的中心坐标,a为双曲线的横轴长度的一半,b为双曲线的纵轴长度的一半。

3. 抛物线的方程抛物线的标准方程为y² = 4px或x² = 4py,其中p为焦点到准线的垂直距离。

三、圆锥曲线的性质与应用圆锥曲线具有许多有趣的性质和应用。

下面给出一些常见的性质和应用:1. 椭圆的性质和应用椭圆具有对称性强、焦点内所有点之和等于定值等性质。

【2023届新高考必刷题目】 高中数学圆锥曲线大题综合

【2023届新高考必刷题目】 高中数学圆锥曲线大题综合

【2023届新高考必刷】圆锥曲线大题综合1.(2023春·江苏扬州·高三统考开学考试)已知AB 为抛物线G :y 2=2px (p >0)的弦,点C 在抛物线的准线l 上.当AB 过抛物线焦点F 且长度为8时,AB 中点M 到y 轴的距离为3.(1)求抛物线G 的方程;(2)若∠ACB 为直角,求证:直线AB 过定点.【答案】(1)y 2=4x(2)证明见解析【分析】(1)利用抛物线弦长公式,以及中点到y 轴的距离公式,计算出p 即可;(2)先设C -1,c ,A y 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,联立方程组,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,又因为∠ACB 为直角可得CA ⋅CB=0,化简求解可得n =1,所以得出直线过定点1,0 .【详解】(1)设A x A ,y A ,B x B ,y B ,则由题意得|AB |=x A +x B +p =8x A +x B 2=3,解得p =2,所以抛物线的方程为y 2=4x (2)直线AB 过定点1,0 ,证明如下:设C -1,c ,A y 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,将x =ty +n 代入y 2=4x 得y 2-4ty -4n =0,则Δ>0,得t 2+n >0,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,所以CA =y 214+1,y 1-c ,CB =y 224+1,y 2-c,因为∠ACB =90∘,所以CA ⋅CB =0,即y 21y 2216+y 21+y 224+1+y 1y 2-c y 1+y 2 +c 2=0,即n 2+4t 2+2n +1-4n -4tc +c 2=0,即(n -1)2+(2t -c )2=0,所以n =1,所以直线AB 过定点1,0 .2.(2023·江苏泰州·统考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过左焦点F 的直线与C 交于P ,Q 两点.当PQ ⊥x 轴时,PA =10,△PAQ 的面积为3.(1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据题意,可得PF=b2a,b2a2+c-a2=10212⋅2b2a⋅c-a=3c2=a2+b2,进而求解;(2)设PQ方程为x=my-2,P x1,y1,Q x2,y2,联立直线和双曲线方程组,可得3m2-1y2-12my+9 =0,以PQ为直径的圆的方程为x-x1x-x2+y-y1y-y2=0,由对称性知以PQ为直径的圆必过x轴上的定点,进而得到x2-x1+x2x+x1x2+y1y2=0,进而求解.【详解】(1)当PQ⊥x轴时,P,Q两点的横坐标均为-c,代入双曲线方程,可得y P=b2a,y Q=-b2a,即PF=b2a,由题意,可得b2a2+c-a2=10212⋅2b2a⋅c-a=3c2=a2+b2,解得a=1,b=3,c=2,∴双曲线C的方程为:x2-y23=1;(2)方法一:设PQ方程为x=my-2,P x1,y1,Q x2,y2,x=my-2 3x2-y2=3⇒3m2y2-4my+4-y2=3⇒3m2-1y2-12my+9=0,以PQ为直径的圆的方程为x-x1x-x2+y-y1y-y2=0,x2-x1+x2x+x1x2+y2-y1+y2y+y1y2=0,由对称性知以PQ为直径的圆必过x轴上的定点,令y=0,可得x2-x1+x2x+x1x2+y1y2=0,而x1+x2=m y1+y2-4=12m23m2-1-4=43m2-1,x1x2=my1-2my2-2=m2y1y2-2m y1+y2+4=-3m2-4 3m2-1,∴x2-43m2-1x+-3m2-43m2-1+93m2-1=0⇒3m2-1x2-4x+5-3m2=0⇒3m2-1x+3m2-5x-1=0对∀m∈R恒成立,∴x=1,∴以PQ为直径的圆经过定点1,0;方法二:设PQ方程为x=my-2,P x1,y1,Q x2,y2,x=my-2 3x2-y2=3⇒3m2-1y2-12my+9=0,由对称性知以PQ为直径的圆必过x轴上的定点.设以PQ 为直径的圆过E t ,0 ,∴EP ⋅EQ=0⇒x 1-t x 2-t +y 1y 2=0⇒x 1x 2-t x 1+x 2 +t 2+y 1y 2=0,而x 1x 2=my 1-2 my 2-2 =m 2y 1y 2-2m y 1+y 2 +4=m 2⋅93m 2-1-2m ⋅12m 3m 2-1+4=-3m 2-43m 2-1,x 1+x 2=m y 1+y 2 -4=12m 23m 2-1-4=43m 2-1∴-3m 2-43m 2-1-4t 3m 2-1+t 2+93m 2-1=0,3m2-1 t 2-4t +5-3m 2=0,即3m 2-1 t +3m 2-5 t -1 =0对∀m ∈R 恒成立,∴t =1,即以PQ 为直径的圆经过定点1,0 .3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.【答案】(1)x 24+y 2=1(x ≠±2)(2)证明见解析【分析】(1)设P 点坐标为(x ,y ),由y x +2⋅y x -2=-14可得结果;(2)设M x 1,y 1 ,N x 2,y 2 ,联立y =kx +m x 24+y 2=1,得x 1+x 2和x 1x 2,再求出E ,F 的坐标,根据EO =3OF得k =m ,从而可得结果.【详解】(1)设P 点坐标为(x ,y ),则y x +2⋅y x -2=-14,即x 24+y 2=1(x ≠±2),所以曲线C 的方程为x 24+y 2=1(x ≠±2).(2)设M x 1,y 1 ,N x 2,y 2 ,由y =kx +mx 24+y 2=1,消去y 并整理得4k 2+1 x 2+8km x +4m 2-4=0,由Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,得4k 2+1>m 2,所以x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.MA :y =y 1x 1+2(x +2)⇒E 0,2y 1x 1+2 ,NB :y =y 2x 2-2x -2 ⇒F 0,-2y 2x 2-2 ,因为EO =3OF ,所以-2y 1x 1+2=3⋅-2y 2x 2-2,即y 1(x 2-2)=3y 2(x 1+2),∴kx 1+m x 2-2 =3kx 2+m x 1+2 ,∴2kx 1x 2+(2k +3m )x 1+x 2 +4(k -m )x 2+8m =0,所以2k ⋅4m 2-44k 2+1+(2k +3m )⋅-8km4k 2+1+4(k -m )x 2+8m =0,所以(k -m )4km -2+4k 2+1 x 2 =0对任意x 2都成立,∴k =m ,故直线l 过定点(-1,0).4.(2023秋·浙江·高三期末)已知点A 463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与A 关于原点对称,F 是右焦点,∠AFB =π2.(1)求双曲线的方程;(2)已知圆心在y 轴上的圆C 经过点P (-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.【答案】(1)x 28-y 24=1(2)x 2+(y ±26)2=40【分析】(1)由已知条件列方程求出a ,b ,c ,即可求出双曲线的方程;(2)讨论直线MN 的斜率不存在时不满足题意;当斜率存在时设直线MN 的方程为y =kx +m ,联立双曲线的方程,由韦达定理求出MN 的中点Q 的坐标以及C 的坐标,根据勾股定理有CN 2=CP 2=CQ 2+12MN2,代入解方程即可得出答案.【详解】(1)由已知条件得:463+c ,233 ⋅463-c ,233 =0323a 2-43b 2=1a 2+b 2=c 2⇒a 2=8b 2=4c =23双曲线方程为:x 28-y 24=1.(2)若直线MN 的斜率不存在,则圆C 的圆心不在y 轴上,因此不成立.设直线MN 的方程为y =kx +m ,由y =k (x -23)x 28-y 24=1消元得:2k 2-1 x 2-83k 2x +24k 2+8 =0⇒2k 2-1≠0Δ=32k 2+1 >0x 1+x 2=83k 22k 2-1,y 1+y 2=k x 1+x 2 -43k =83k 32k 2-1-43k =43k2k 2-1∴MN 的中点Q 的坐标为43k 22k 2-1,23k2k 2-1.设C (0,m ),直线CQ :y =-1k x +m ,得C 0,63k2k 2-1,又|MN |=k 2+1⋅82⋅-8k 2+4+12k 28k 2-4 =42k 2+1 2k 2-1,根据勾股定理有CN 2=CP 2=CQ 2+12MN2∴63k 2k 2-1 2+42=43k 22k 2-1 2+23k 2k 2-1-63k 2k 2-1 2 +22k 2+1 2k 2-12.化简得2k 4-5k 2+2=0解得k 2=2或k 2=12(舍)∴C (0,±26),∴圆C 的方程为x 2+(y ±26)2=40.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E :y 2=2px p >0 的焦点为F ,点F 关于直线y =12x +34的对称点恰好在y 轴上.(1)求抛物线E 的标准方程;(2)直线l :y =k x -2 k ≥6 与抛物线E 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点C ,若D 6,0 ,求AB CD的最大值.【答案】(1)y 2=4x(2)2915【分析】(1) 由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F 0,m ,根据题意列出方程组,解之即可求解;(2)将直线方程与抛物线方程联立,利用韦达定理和弦长公式,并求得线段AB 的垂直平分线方程为y -2k =-1k x -2k 2+2k 2 ,进而得到AB CD=22+49t +36t-12,利用函数的单调性即可求解.【详解】(1)由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F0,m ,则m -p 2=-2m 2=18p +34 ,解得m =p =2,∴抛物线E 的标准方程为y 2=4x .(2)由y =k x -2 y 2=4x 可得k 2x 2-4k 2+4 x +4k 2=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k 2+4k 2,x 1x 2=4,∴AB =1+k 2⋅x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅4k 2+4k 22-16=42k 4+3k 2+1k 2,y 1+y 2=k x 1+x 2 -4k =4k ,∴线段AB 的中点坐标为2k 2+2k 2,2k ,则线段AB 的垂直平分线方程为y-2k =-1k x -2k 2+2k 2 ,令y =0,得x =4+2k2,故C 4+2k 2,0 ,又D 6,0 ,得CD =4+2k 2-6=2-2k 2.∴ABCD =22k 4+3k 2+1k 2-1=22+7k 2-1k 4-2k 2+1,令t =7k 2-1k ≥6 ,则k 2=17t +1 ,t ≥41,∴AB CD=22+t 149t +1 2-27t +1+1=22+49t +36t-12,易知函数f t =t +36t在41,+∞ 上单调递增,∴当t =41时,f t 取得最小值,此时k =6,故AB CD的最大值为22+4136-12+1=2915.6.(2023·湖南邵阳·统考二模)已知双曲线C :x 2a 2-y 2b2=10<a 10,b 0 的右顶点为A ,左焦点F -c ,0 到其渐近线bx +ay =0的距离为2,斜率为13的直线l 1交双曲线C 于A ,B 两点,且AB=8103.(1)求双曲线C 的方程;(2)过点T 6,0 的直线l 2与双曲线C 交于P ,Q 两点,直线AP ,AQ 分别与直线x =6相交于M ,N 两点,试问:以线段MN 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【答案】(1)x 29-y 24=1(2)以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【分析】(1)根据点到直线的距离公式即可求解b =2,进而联立直线与双曲线方程,根据弦长公式即可求解a =3,(2)联立直线与曲线的方程得韦达定理,根据圆的对称性可判断若有定点则在x 轴上,进而根据垂直关系得向量的坐标运算,即可求解.【详解】(1)∵双曲线C 的左焦点F -c ,0 到双曲线C 的一条渐近线bx +ay =0的距离为d =bca 2+b2=b ,而d =2,∴b =2.∴双曲线C 的方程为x 2a2-y 24=10<a <10 .依题意直线l 1的方程为y =13x -a .由x 2a 2-y 24=1,y =13x -a ,消去y 整理得:36-a 2 x 2+2a 3x -a 2a 2+36 =0,依题意:36-a 2≠0,Δ>0,点A ,B 的横坐标分别为x A ,x B ,则x A x B =a 2a 2+36a 2-36.∵x A =a ,∴x B =a a 2+36a 2-36.∴AB =1+132x A -x B =103x A -x B =8103,∴x A -x B =8.即a -a a 2+36a 2-36=8,解得a =3或a =12(舍去),且a =3时,Δ>0,∴双曲线C 的方程为x 29-y 24=1.(2)依题意直线l 2的斜率不等于0,设直线l 2的方程为x =my +6.由x =my +6,x 29-y 24=1,消去x 整理得:4m 2-9 y 2+48my +108=0,∴4m 2-9≠0,Δ1>0.设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-48m 4m 2-9,y 1y 2=1084m 2-9.直线AP 的方程为y =y 1x 1-3x -3 ,令x =6得:y =3y 1x 1-3,∴M 6,3y 1x 1-3 .同理可得N 6,3y 2x 2-3.由对称性可知,若以线段MN 为直径的圆过定点,则该定点一定在x 轴上,设该定点为R t ,0 ,则RM =6-t ,3y 1x 1-3 ,RN =6-t ,3y 2x 2-3 ,故RM ⋅RN =6-t 2+9y 1y 2x 1-3 x 2-3 =6-t 2+9y 1y 2my 1+3 my 2+3 =6-t 2+9y 1y 2m 2y 1y 2+3m y 1+y 2 +9=6-t 2+9×1084m 2-9m 2×1084m 2-9-3m ×48m 4m 2-9+9=6-t 2-12=0.解得t =6-23或t =6+23.故以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【点睛】关键点睛:本题解题的关键是根据圆的对称性可判断定点在坐标轴上,结合向量垂直的坐标运算化简求解就可,对计算能力要求较高.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x 2a 2+y 2b 2=λ(a >b >0)表示的椭圆C λ称为椭圆x 2a 2+y 2b2=1(a >b >0)的相似椭圆.(1)如图,已知F 1-3,0 ,F 23,0 ,M 为⊙O :x 2+y 2=4上的动点,延长F 1M 至点N ,使得MN =MF 1 ,F 1N 的垂直平分线与F 2N 交于点P ,记点P 的轨迹为曲线C ,求C 的方程;(2)在条件(1)下,已知椭圆C λ是椭圆C 的相似椭圆,M 1,N 1是椭圆C λ的左、右顶点.点Q 是C λ上异于四个顶点的任意一点,当λ=e 2(e 为曲线C 的离心率)时,设直线QM 1与椭圆C 交于点A ,B ,直线QN 1与椭圆C 交于点D ,E ,求AB +DE 的值.【答案】(1)x 24+y 2=1(2)5【分析】(1)由图可知OM 是△F 1NF 2的中位线,由此可得F 2N 长为定值,因为点P 在F 1N 的垂直平分线上,所以PF 1 +PF 2 =PF 2 +PN ,根据椭圆定义求解析式即可;(2)假设出点Q 坐标,表示直线QM 1与直线QN 1的斜率,并找出两斜率关系,最后表示出两直线方程,分别与椭圆C 联立方程,利用弦长公式和韦达定理求出AB +DE 的值.【详解】(1)连接OM ,易知OM ∥12F 2N 且OM =12F 2N ,∴F 2N =4,又点P 在F 1N 的垂直平分线上,∴PF 1 =PN ,∴PF 1 +PF 2 =PF 2 +PN =NF 2 =4>23,满足椭圆定义,∴a =2,c =3,b =1,∴曲线C 的方程为x 24+y 2=1.(2)由(1)知椭圆C 方程为x 24+y 2=1,则离心率e =32⇒λ=34,∴楄圆C λ的标准方程为x 23+4y 23=1,设Q x 0,y 0 为椭圆C λ异于四个顶点的任意一点,直线QM 1,QN 1斜率k QM 1,k QN 1,则k QM1⋅k QN 1=y 0x 0+3⋅y 0x 0-3=y 2x 20-3,又x 203+4y 203=1⇒y 20=143-x 20 ,∴k QM 1⋅k QN 1=-14k QM 1≠±12.设直线QM 1的斜率为k ,则直线QN 1的斜率为-14k.∴直线QM 1为y =k x +3 ,由y =k x +3 ,x 24+y 2=1,得1+4k 2 x 2+83k 2x +12k 2-4=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,∴AB =1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=41+k 21+4k 2,同理可得DE =1+16k 21+4k 2,∴AB +DE =41+k 2 1+4k 2+1+16k 21+4k 2=5.8.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆C :(x +2)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.【答案】(1)y 2=2x(2)(i )0;(ii )48【分析】(1)设直线PQ 与x 轴交于P 0-p 2,0 ,由几何性质易得:CP 2=CP 0 ⋅CO ,即可解决;(2)设T x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,(i )中,由于TA 中点M 在抛物线E 上,得y 0+y 12 2=2⋅x 0+x 12,将A x 1,y 1,B x 2,y 2 ,代入联立得D 点纵坐标为y 1+y 22=y 0,即可解决;(ⅱ)由(i )得点D 3y 20-4x 02,y 0,S =12TD ⋅y 1-y 2 =322⋅y 20-2x 03,又点T 在圆C 上,得y 20=-x 20-4x 0-1,可得:S =322⋅-x 0+32+8 3即可解决.【详解】(1)设直线PQ 与x 轴交于P 0-p2,0 .由几何性质易得:△CPP 0与△OCP 相似,所以CP CP 0=CO CP,CP2=CP 0 ⋅CO ,即:3=-p2+2 ⋅2,解得:p =1. 所以抛物线E 的标准方程为:y 2=2x .(2)设T x0,y0,A x1,y1,B x2,y2(i)由题意,TA中点M在抛物线E上,即y0+y122=2⋅x0+x12,又y21=2x1,将x1=y212代入,得:y21-2y0y1+4x0-y20=0,同理:y22-2y0y2+4x0-y20=0,有y1+y2=2y0y1y2=4x0-y20,此时D点纵坐标为y1+y22=y0,所以直线TD的斜率为0.(ⅱ)因为x1+x22=y21+y224=y1+y22-2y1y24=3y20-4x02,所以点D3y20-4x02,y0 ,此时S=12TD⋅y1-y2,TD =3y20-4x02-x0=32y20-2x0,y1-y2=y1+y22-4y1y2=8y20-2x0,所以S=322⋅y20-2x03,又因为点T在圆C上,有x0+22+y20=3,即y20=-x20-4x0-1,代入上式可得:S=322⋅-x20-6x0-13=322⋅-x0+32+83,由-2-3≤x0≤-2+3,所以x0=-3时,S取到最大价322⋅83=48.所以S的最大值为48.9.(2023·山东·潍坊一中校联考模拟预测)已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.【答案】(1)y2=4x(2)存在,-1,0或-1,-4【分析】(1)设点M的坐标为-p 2,a,根据直线MF的斜率为-1,得到a=p,再根据△OFM的面积为1求出p,即可得解;(2)假设存在点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方.设直线l 的方程为x=my+1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立直线与抛物线方程,消元列出韦达定理,又k NF =-t2,k NA+k NB =y 1-t x 1+1+y 2-tx 2+1,化简k NA +k NB ,即可得到方程,求出t 的值,即可得解.【详解】(1)解:由题意知F p 2,0 ,设点M 的坐标为-p2,a ,则直线MF 的斜率为a -0-p 2-p 2=-ap .因为直线MF 的斜率为-1,所以-ap =-1,即a =p ,所以△OFM 的面积S =12OF a =p 24=1,解得p =2或p =-2(舍去),故抛物线C 的方程为y 2=4x .(2)解:假设存在点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方.由(1)得F 1,0 ,抛物线C 的准线l 的方程为x =-1.设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立x =my +1y 2=4x得y 2-4my -4=0,所以Δ=16m 2+16>0,y 1+y 2=4m ,y 1y 2=-4.因为k NF =0-t 1+1=-t 2,k NA +k NB =y 1-t x 1+1+y 2-tx 2+1=2my 1y 2+2-tm y 1+y 2 -4t m 2y 1y 2+2m y 1+y 2 +4=2m ⋅-4 +4m 2-tm -4t -4m 2+2m ⋅4m +4=-4t m 2+14m 2+1 =-t ,所以-t =-t22,解得t =0或t =-4.故存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方,其坐标为-1,0 或-1,-4 .10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;(2)若B 、D 分别为椭圆C 的上、下顶点,不垂直坐标轴的直线l 交椭圆C 于P 、Q (P 在上方,Q 在下方,且均不与B ,D 点重合)两点,直线PB ,QD 的斜率分别为k 1,k 2,且k 2=-3k 1,求△PBQ 面积的最大值.【答案】(1)x 24+y 2=1(2)12【分析】(1)根据条件,得到关于a ,b ,c 的方程,即可得到结果;(2)根据题意设直线PQ 的方程为y =kx +m ,联立直线与椭圆方程,结合韦达定理,再由k 2=-3k 1列出方程,代入计算,即可得到结果.【详解】(1)S ΔF 1AF 2=12⋅23⋅b =3,∴b =1,a =b 2+3=2,故椭圆的方程为x 24+y 2=1;(2)依题意设直线PQ 的方程为y =kx +m ,P x 1,y 1 ,Q x 2,y 2 ,联立方程组y =kx +mx 24+y 2=1,消元得:1+4k 2 x 2+8km x +4m 2-4=0,∴x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2,Δ=64k 2m 2-41+4k 2 4m 2-4 =161+4k 2-m 2 >0,由k 2=-3k 1得:y 2+1x 2=-3⋅y 1-1x 1,两边同除x 1,y 2+1x 1x 2=-3⋅y 1-1x 21=-3⋅y 1-141-y 21 =341+y 1 ,即3x 1x 2-41+y 1 1+y 2 =0;将y 1=kx 1+m ,y 2=kx 2+m 代入上式得:3x 1x 2-41+y 1 1+y 2 =3x 1x 2-4kx 1+m +1 kx 2+m +1 =3-4k 2 x 1x 2-4k m +1 x 1+x 2 -4m +1 2=3-4k 2 4m 2-41+4k 2-4k m +1 -8km 1+4k 2 -4m +1 2=0,整理得:m 2-m -2=0所以m =2或m =-1(舍),S △PQB =12⋅1⋅x 1-x 2 =12x 1+x 2 2-4x 1x 2=12-8km 1+4k 2 2-44m 2-41+4k 2=24k 2-31+4k 2=24k 2-3+44k 2-3≤12,当k =±72时等号成立,满足条件,所以△PQB 面积的最大值为12.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.【答案】(1)k =±12;(2)证明过程见解析.【分析】(1)根据圆弦长公式,结合点到直线距离公式、椭圆切线的性质进行求解即可;(2)根据直线斜率公式,结合一元二次方程根与系数关系进行求解即可.【详解】(1)当直线l 不存在斜率时,方程为x =±2,显然与圆也相切,不符合题意,设直线l 的斜率为k ,方程为y =kx +m ,与椭圆方程联立,得x 24+y 23=1y =kx +m⇒(3+4k 2)x 2+8km x +4m 2-12=0,因为直线l 与C 相切,所以有Δ=64k 2m 2-43+4k 2 4m 2-12 =0⇒m 2=4k 2+3,圆O :x 2+y 2=4的圆心坐标为0,0 ,半径为2,圆心0,0 到直线y =kx +m 的距离为mk 2+-12,因为|MN |=455,所以有455=2×4-mk 2+-1 22⇒45=4-4k 2+3k 2+1⇒k =±12;(2)A -2,0 ,B 2,0 ,由x 2+y 2=4y =kx +m ⇒1+k 2 x 2+2km x +m 2-4=0,设M x 1,y 1 ,N x 2,y 2 ,x 1<x 2,则有x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2,k 1k 2=y 1x 1+2⋅y 2x 2-2=kx 1+m kx 2+m x 1x 2-2x 1+2x 2-4=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2-2x 1+2x 2-4,把x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2代入上式,得k 1k 2=k 24k 2-1k 2+1+km -2km k 2+1+m 24k 2-1k 2+1-2⋅-km -1k 2+1+2⋅-km +1k 2+1-4=m 2-4k 2m 2-4-4k2,而m 2=4k 2+3,所以k 1k 2=4k 2+3-4k 24k 2+3-4-4k 2=-3.【点睛】关键点睛:利用一元二次方程根与系数关系,结合椭圆切线的性质进行求解是解题的关键.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.【答案】(1)12(2)证明见解析【分析】(1)设P x ,y ,根据向量关系用x 1,x 2,y 1,y 2表示x 3,y 3,代入椭圆方程即可求解;(2)用x 1,x 2,y 1,y 2表示x 3,y 3,代入斜率公式即可求解.【详解】(1)设P x ,y ,因为OP =2AO ,所以x ,y =2-x 1,-y 1 解得x =-2x 1y =-2y 1 ,又因为BP =2CP ,所以-2x 1-x 2,-2y 1-y 2 =2-2x 1-x 3,-2y 1-y 3 解得x 3=-x 1+12x 2y 3=-y 1+12y 2,因为点C 在椭圆上,所以-x 1+12x 2 22+-y 1+12y 2 2=1⇒x 212+y 21+14x 222+y 22-12x 1x 2-y 1y 2=1,即x 1x 2+2y 1y 2=12.(2)设直线AC 与OB 斜率分别为k AC ,k OB ,k AC k OB =y 3-y 1x 3-x 1×y 2x 2=-y 1+12y 2-y 1-x 1+12x 2-x 1×y 2x 2=-2y 1y 2+12y 22-2x 1x 2+12x 22=x 1x 2-12+121-12x 22 -2x 1x 2+12x 22=x 1x 2-14x 22-2x 1x 2+12x 22=-12是定值.13.(2023·浙江嘉兴·统考模拟预测)已知抛物线C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.【答案】(1)y 2=4x (2)证明见解析【分析】(1)设AB :x =my +p2m ∈R ,联立抛物线方程,由根与系数的关系及抛物线的定义,根据AB =AF ⋅BF 建立方程求出p 得解;(2)由直线方程求出M ,N 的坐标,计算y M ⋅y N =-4,设Q x ,y 是以线段MN 为直径的圆上任意一点,根据MQ ⋅NQ=0化简0=x +1 2+y -y M y -y N ,根据对称性令y =0可得解.【详解】(1)设AB :x =my +p2m ∈R ,A x 1,y 1 ,B x 2,y 2 ,则联立y 2=2pxx =my +p 2得y 2-2pmy -p 2=0,所以Δ=4p 2m 2+4p 2>0y 1+y 2=2pm y 1y 2=-p 2,所以x 1+x 2=2m 2+1 px 1x 2=p 24,又AF =x 1+p 2,BF =x 2+p2,所以AB =AF +BF =x 1+x 2+p 由AB =AF ⋅BF 得x 1+x 2+p =x 1+p 2 x 2+p2 ,即x 1+x 2+p =x 1x 2+p 2x 1+x 2 +p 24所以2m 2+1 p +p =p 22m 2+1 p +p 22,化简得m 2+1 p p -2 =0,又p >0,所以p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)知AB :x =my +1m ∈R ,A x 1,y 1 ,B x 2,y 2 ,所以y 1+y 2=4m ,y 1y 2=-4,易得x 1+x 2=4m 2+2,x 1x 2=1,由题意知AP :y -4=y 1-4x 1-4x -4 ,BP :y -4=y 2-4x 2-4x -4 ,所以令x =-1得y M =-5y 1-4 my 1-3+4,y N =-5y 2-4my 2-3+4,即M -1,-5y 1-4 x 1-4+4,N -1,-5y 2-4 x 2-4+4,所以y M ⋅y N =-5y 1-4my 1-3+4-5y 2-4 my 2-3+4=4m -5 y 1+8 4m -5 y 2+8my 1-3 my 2-3=4m -52y 1y 2+84m -5 y 1+y 2 +64m 2y 1y 2-3m y 1+y 2 +9=-44m -5 2+32m 4m -5 +64-4m 2-12m 2+9=64m 2-36-16m 2+9=-4设Q x ,y 是以线段MN 为直径的圆上得任意一点,则有MQ ⋅NQ=0,即0=x +1 2+y -y M y -y N ,由对称性令y =0得0=x +1 2+y M y N =x +1 2-4,所以x =1或x =-3所以以线段MN 为直径的圆经过定点,定点坐标为-3,0 与1,0 .【点睛】关键点点睛:求出M ,N 的点的坐标,计算出y M ⋅y N 为定值-4,是解题的关键之一,其次写出以MN 为直径的圆的方程,根据圆的方程0=x +1 2+y -y M y -y N ,由对称性,令y =0求定点是解题的关键.14.(2023·江苏连云港·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的焦距为23,且经过点P -3,12 .(1)求椭圆E 的标准方程:(2)过椭圆E 的左焦点F 1作直线l 与椭圆E 相交于A ,B 两点(点A 在x 轴上方),过点A ,B 分别作椭圆的切线,两切线交于点M ,求AB MF 1的最大值.【答案】(1)x 24+y 2=1(2)2【分析】(1)由待定系数法求解析式;(2)设出直线方程,由韦达定理法及导数法求得两切线方程,即可联立两切线方程解得交点M ,再由弦长公式及两点距离公式表示出AB MF 1,进而讨论最值.【详解】(1)由题意得2c =233a 2+14b 2=1a 2=b 2+c2 ,所以a =2b =1 ,即椭圆方程为x24+y 2=1;(2)当直线l 斜率为0时,A ,B 分别为椭圆的左右顶点,此时切线平行无交点.故设直线l :x =ty -3,由x 24+y 2=1x =ty -3,得t 2+4 y 2-23ty -1=0.Δ=16t 2+16>0,y 1+y 2=23t t 2+4,y 1y 2=-1t 2+4.AB =1+t 2y 1-y 2 =1+t 2y 1+y 22-4y 1y 2=1+t212t 2t 2+42+4t 2+4=4t 2+1t 2+4不妨设A x 1,y 1 在x 轴上方,则B x 2,y 2 在x 轴下方.椭圆在x 轴上方对应方程为y =1-x 24,y =-x41-x 24,则A 处切线斜率为-x 141-x 214=-x 14y 1,得切线方程为y -y 1=-x 14y 1x -x 1 ,整理得x 1x4+y 1y =1.同理可得B 处的切线方程为x 2x4+y 2y =1.由x 1x 4+y 1y =1①x 2x 4+y 2y =1②得x M =4y 2-y 1 x 1y 2-x 2y 1=4y 2-y 1 ty 1-3 y 2-ty 2-3 y 1=4y 2-y 1 3y 1-y 2 =-433,代入①得y M =1+33x 1y 1=1+33ty 1-3 y 1=3t 3,所以M -433,3t 3.因为MF 1 =-433+3 2+t 23=1+t 23,所以AB MF 1 =4t 2+1t 2+41+t 23=43t 2+1t 2+4设m =t 2+1≥1,则t 2=m 2-1,则AB MF 1=43m m 2+3=43m +3m≤4323=2,当且仅当m 2=3,即t =±2时,ABMF 1的最大值是2.另解:当直线l 的斜率存在时,设l :y =k x +3 ,由x 24+y 2=1y =k x +3得1+4k 2 x 2+83k 2x +12k 2-4=0,所以Δ=k 2+1>0,x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅64×3k 21+4k 22-412k 2-41+4k 2=41+k 21+4k 2椭圆在x轴上方的部分方程为y=1-x24,y'=-x41-x24,则过A x1,y1y1>0的切线方程为y-y1=-x14y1x-x1,即x1x4+y1y=x214+y21=1,同理可得过B x2,y2y2<0的切线方程为x2x4+y2y=1.由x1x4+y1y=1x2x4+y2y=1得x M=4y2-y1x1y2-x2y1=4y2-y1y1k-3y2-y2k-3y1=4y2-y13y1-y2=-433设M-43 3,t,则-3x13+ty1=1-3x23+ty2=1 ,所以直线l的方程为-33x+ty=1,所以t=33k.MF1=-433+32+t2=1+k23k2,AB MF1=41+k21+4k2⋅3k21+k2=43k21+k21+4k22令n=1+4k2≥1,则k2=n-14,所以ABMF1=3-3⋅1n2+2⋅1n+1,当1n=-22×-3⇒n=3时,即k=±22时,ABMF1取得最大值,为2.【点睛】直线与圆锥曲线问题,一般设出直线,联立直线与圆锥曲线方程,结合韦达定理表示出所求的内容,进而进行进一步讨论.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.【答案】(1)证明见解析(2)10【分析】(1)根据题意求出椭圆方程为:x28+y22=1,将椭圆,及相关直线、点进行平移,将y1x1,y2x2看作方程8n-4X2+8t-4nX-4t+1=0的两不等实根,进而可得n=-2t,代入直线方程化简即可;(2)联立直线与椭圆方程,结合韦达定理得y3+y4=m,y3y4=m2-22,化简QA|2+QB|2=5y3+y42-2y3y4,代入韦达定理即可求解.【详解】(1)由题意知2a=424a2+1b2=1⇒a=22b=2,∴椭圆方程为:x28+y22=1.将椭圆平移至(x +2)28+(y -1)22=1即x 2+4y 2+4x -8y =0,此时P 点平移至P 0,0 ,A ,B 分别平移至A x 1,y 1 ,B x 2,y 2 ,设直线A B 方程为tx +ny =1代入椭圆⇒x 2+4y 2+4x -8y tx +ny =0,整理得8n -4 y 2+8t -4n xy -4t +1 x 2=0,两边同除以x 2⇒8n -4 ⋅y x2+8t -4n ⋅y x-4t +1 =0,∴k PA ⋅k PB=k PA ⋅k PB =14⇒y 1x 1⋅y 2x 2=14令y x =X ,则y 1x 1,y 2x 2可看作关于X 的一元二次方程,8n -4 X 2+8t -4n X -4t +1 =0的两不等实根,∴y 1x 1⋅y 2x 2=X 1X 2=-4t +1 8n -4=14,∴4t =-2n ,即n =-2t ,∴直线A B 方程为tx -2ty =1t ≠0 ,∴y =12x -12t,∴A B 的斜率为定值12,即k 的定值12.(2)设A x 3,y 3 ,B x 4,y 4 ,y =12x +m x 2+4y 2=8⇒8y 2-8my +4m 2-8=0,即2y 2-2my +m 2-2=0,Δ>0,故y 3+y 4=m ,y 3y 4=m 2-22,∴QA |2+ QB 2=1+4⋅y 3 2+1+4⋅y 4 2=5y 23+y 24 =5y 3+y 4 2-2y 3y 4=5m 2-2×m 2-22=10,∴QA |2+ QB |2=1016.(2023春·江苏苏州·高三统考开学考试)已知抛物线y 2=a 2x 的焦点也是离心率为32的椭圆x 2a2+y 2b 2=1a >b >0 的一个焦点F .(1)求抛物线与椭圆的标准方程;(2)设过F 的直线l 交抛物线于A 、B ,交椭圆于C 、D ,且A 在B 左侧,C 在D 左侧,A 在C 左侧.设a =AC ,b =μCD ,c =DB .①当μ=2时,是否存在直线l ,使得a ,b ,c 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由;②若存在直线l ,使得a ,b ,c 成等差数列,求μ的范围.【答案】(1)抛物线的标准方程是y 2=12x ,椭圆的标准方程为x 212+y 23=1(2)①不存在,理由见解析;②μ∈43-12,+∞【分析】(1)根据相同焦点得到a 24=32a ,解得a =23,得到答案.(2)设l :x =my +3和各点坐标,联立方程利用韦达定理得到根与系数的关系,计算AB =12m 2+1 ,CD =43m 2+1m 2+4,根据等差数列的性质得到方程,方程无解得到答案;整理得到m 2=3+23μ-123>0,解不等式即可.【详解】(1)抛物线的焦点F a 24,0 ,椭圆的焦点F c ,0 ,由于e =c a =32,即F 32a ,0 ,则有a 24=32a ,因此a =23,c =3,b =a 2-c 2=3,故椭圆的标准方程为x 212+y 23=1,抛物线的标准方程是y 2=12x .(2)①设l :x =my +3,m ≠0 ,A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4 ,将直线与抛物线联立,则有y 2=12xx =my +3 ,y 2-12my -36=0,Δ=144m 2+36×4>0,则y 1+y 2=12m y 1y 2=-36,于是x 1x 2=my 1+3 my 2+3 =m 2y 1y 2+3m y 1+y 2 +9=9,将直线与椭圆联立,则有x 2+4y 2-12=0x =my +3,得到二次方程m 2+4 y 2+6my -3=0,Δ>0,则有y 3+y 4=-6m m 2+4y 3y 4=-3m 2+4,则AB =x 1-x 22+y 1-y 2 2=1+m 2⋅y 1+y 22-4y 1y 2=12m 2+1 ,CD =x 3-x 42+y 3-y 4 2=1+m 2⋅y 3+y 4 2-4y 3y 4=1+m236m 2m 2+4 2+12m 2+48m 2+42=43m 2+1 m 2+4,AC +DB =AB -CD =12m 2+1 -43m 2+1m 2+4,假设存在直线l ,使得a ,b ,c 成等差数列,即AC +DB =4CD 即有12m 2+1 -43m 2+1 m 2+4=2×2×43m 2+1m 2+4,整理得到12m 2=203-48,方程无解,因此不存在l 满足题设.②只需使得方程12m 2+1 -43m 2+1 m 2+4=2μ×43m 2+1m 2+4有解即可.整理得到m 2=3+23μ-123,故m 2=3+23μ-123>0,解得μ∈43-12,+∞【点睛】关键点睛:本题考查了抛物线和椭圆的标准方程,等差数列性质,直线和抛物线,椭圆的位置关系,意在考查学生的计算能力,转化能力和综合应用能力,其中,利用韦达定理得到根与系数的关系,根据设而不求的思想,可以简化运算,是解题的关键,需要熟练掌握.17.(2023秋·江苏无锡·高三统考期末)已知椭圆C 1:x 2a 2+y 2b 2=1a >b >0 的右焦点F 和抛物线C 2:y 2=2px p >0 的焦点重合,且C 1和C 2的一个公共点是23,263.(1)求C 1和C 2的方程;(2)过点F 作直线l 分别交椭圆于A ,B ,交抛物线C 2于P ,Q ,是否存在常数λ,使1AB -λPQ为定值?若存在,求出λ的值;若不存在,说明理由.【答案】(1)x 24+y 23=1, y 2=4x (2)存在,λ=13【分析】(1)先求出抛物线的方程,进而求出焦点,再根据椭圆的右焦点与其重合,列出方程组求解即可;(2)利用弦长公式分别表示出AB ,PQ ,然后代入1AB -λPQ ,可求出使1AB -λPQ为定值的常数λ.【详解】(1)解:由题意知2632=2p ⋅23⇒p =2,∴y 2=4x ,抛物线焦点1,0 ,∴c =149a 2+83b 2=1a 2=b 2+c2 ⇒a =2b =3 ⇒C 1方程:x 24+y 23=1,C 2方程:y 2=4x .(2)解:方法一:假设存在这样的l ,设直线l 的方程为:x =my +1,A x 1,y 1 ,B x 2,y 2 ,x =my +13x 2+4y 2=12⇒3m 2y 2+2my +1 +4y 2=12,3m 2+4 y 2+6my -9=0.Δ=36m 2+363m 2+4 =144m 2+1 ,∴AB =1+m 2⋅y 1-y 2 =1+m 2⋅144m 2+1 3m 2+4=12m 2+13m 2+4.设P x 3,y 3 ,Q x 4,y 4 ,x =my +1y 2=4x⇒y 2=4my +4,y 2-4my -4=0,Δ=16m 2+16,∴PQ =1+m 2⋅y 3-y 4=1+m 2⋅16m 2+16=4m 2+1 ,∴1AB -λPQ =3m 2+412m 2+1 -λ4m 2+1 =3m 2+4-3λ12m 2+1 为定值.∴312=4-3λ12⇒λ=13,∴存在常数λ=13使1AB -λPQ为定值14.方法二:1AB -λPQ =1-14cos 2θ3-λ1-cos 2θ4对比cos 2θ前系数λ=13.方法三:设l 倾斜角为θ,∴AB =2ab 2a 2-c 2cos 2θ=2×2×34-cos 2θ=124-cos 2θ,PQ =2p sin 2θ=4sin 2θ,∴1AB -λPQ =4-cos 2θ12-λsin 2θ4=4-3λsin 2θ-cos 2θ12为定值,∴3λ=1,λ=13,此时定值为14.18.(2023秋·江苏·高三统考期末)如图,已知椭圆x 24+y 2=1的左、右顶点分别为A ,B ,点C 是椭圆上异于A ,B 的动点,过原点O 平行于AC 的直线与椭圆交于点M ,N ,AC 的中点为点D ,直线OD 与椭圆交于点P ,Q ,点P ,C ,M 在x 轴的上方.(1)当AC =5时,求cos ∠POM ;(2)求PQ ⋅MN 的最大值.【答案】(1)-35(2)10【分析】(1)根据题意求出k AC ⋅k OD =-14,根据AC =5分析出点C 满足的方程,求出点C 坐标,进而求出cos ∠POM ;(2)利用弦长公式求出PQ 和MN ,再利用基本不等式求出最值.【详解】(1)由题知A -2,0 ,设C x 0,y 0 ,则D x 0-22,y 02,则k AC ⋅k OD =y 0x 0+2⋅y 0x 0-2=1-14x 2x 20-4=-14.因为AC =5,所以C 在圆(x +2)2+y 2=5上,又C 在椭圆x 24+y 2=1上,所以C x 0,y 0 满足(x +2)2+y 2=5x 24+y 2=1,所以(x +2)2+1-x 24=5,34x 2+4x =0,所以x 0=0或x 0=-163<-2(舍去),又C 在x 轴上方,所以C 0,1 ,所以直线AC 的斜率为12,故直线OD 的斜率为-12,所以直线AC 与直线OD 关于y 轴对称.设直线AC 的倾斜角θ,cos ∠POM =cos2π2-θ=-cos2θ=sin 2θ-cos 2θ=sin 2θ-cos 2θsin 2θ+cos 2θ=tan 2θ-1tan 2θ+1=-35(2)当直线MN 斜率为k ,k >0,则直线MN :y =kx ,直线PQ :y =-14k x ,M x 1,y 1 ,N x 2,y 2 满足y =kxx 24+y 2=1,所以4k 2+1 x 2=4,x 2=44k 2+1,所以MN 2=1+k 2 164k 2+1,同理PQ 2=1+116k 2 114k 2+1=416k 2+1 4k 2+1,所以MN 2⋅PQ 2=164k 2+4 16k 2+1 4k 2+1 2≤164k 2+4+16k 2+12 24k 2+1 2=420k 2+5 24k 2+12=100所以MN ⋅PQ ≤10,当且仅当4k 2+4=16k 2+1,即k ≤12时取“=”,所以PQ ⋅MN 的最大值为10.【点睛】方法点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.(2023·浙江·校联考模拟预测)设双曲线C :x 2a 2-y 2b 2=1的右焦点为F 3,0 ,F 到其中一条渐近线的距离为2.(1)求双曲线C 的方程;(2)过F 的直线交曲线C 于A ,B 两点(其中A 在第一象限),交直线x =53于点M ,(i )求|AF |⋅|BM ||AM |⋅|BF |的值;(ii )过M 平行于OA 的直线分别交直线OB 、x 轴于P ,Q ,证明:MP =PQ .【答案】(1)x 25-y 24=1(2)(i )1;(ii )证明见解析【分析】(1)结合点F 到其中一条渐近线的距离为2和a 2+b 2=c 2,即可求得本题答案;(2)(i )设AB 直线方程为x =my +3,A x 1,y 1 ,B x 2,y 2 ,得y M =-43m,直线方程与双曲线方程联立消x ,然后由韦达定理得y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5,把|AF |⋅|BM ||AM |⋅|BF |逐步化简,即可求得本题答案;(ii )把QM 和OB 的直线方程分别求出,联立可得到点P 的坐标,由此即可得到本题答案.【详解】(1)因为双曲线其中一条渐近线方程为bx +ay =0,又点F 3,0 到它的距离为2,所以3b b 2+a2=3bc =2,又c =3,得b =2,又因为a 2+b 2=c 2,所以a 2=5,所以双曲线C 的方程为x 25-y 24=1.(2)(2)设AB 直线方程为x =my +3,则y M =-43m,代入双曲线方程整理得:4m 2-5 y 2+24my +16=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5,(i )|AF |⋅|BM ||AM |⋅|BF |=y 1 ⋅y 2-y M y M -y 1 ⋅y 2 =y 1y 2-y 1y My 2y M -y 2y 1 而y 1y 2-y 1y M -y 2y M -y 2y 1 =2y 1y 2-y M y 1+y 2 =324m 2-5--24m 4m 2-5⋅-43m =0,所以y 1y 2-y 1y M =y 2y M -y 2y 1,,则y 1y 2-y 1y M =y 2y M -y 2y 1 ,所以|AF |⋅|BM ||AM |⋅|BF |=1 ;(ii )过M 平行于OA 的直线方程为y +43m =y 1my 1+3x -53,直线OB 方程为y =y 2my 2+3x 与y +43m =y 1my 1+3x -53联立,得y +43m =y 1my 1+3my 2+3y 2y -53,即y 2my 1+3 y +43m my 1+3 y 2=y 1my 2+3 y -53y 1y 2,则3y 2-y 1 y =-3y 1y 2-4my 2,所以y P =-3y 1y 2-4my 23y 2-y 1 ,由y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5两式相除得,y 1y 2y 1+y 2=2-3m ,则y 1y 2=-23m y 1+y 2 ,所以y P =-3y 1y 2-4m y 23y 2-y 1 =2m y 1+y 2 -4m y 23y 2-y 1 =2m y 1-y 2 3y 2-y 1 =-23m ,因为y Q =0,所以y P =y M +y Q2,故P 为线段MQ 的中点,所以|MP |=|PQ |.【点睛】关键点点睛:本题第二小题第一问考了|AF |⋅|BM ||AM |⋅|BF |如何用y 1,y 2,y M 表示出来,进而利用韦达定理进行化简求值,考查了学生的转化能力以及对复杂运算的求解能力20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.【答案】(1)23,6(2)y =54x -355或y =-54x +355【分析】(1)设点P (x 0,y 0),将PO ⋅PB转化为坐标表示,求取值范围;(2)设直线方程,与椭圆方程联立,设MN 中点为D ,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN ,BD ⊥MN ,解出直线方程.【详解】(1)设点P (x 0,y 0),则x 204+y 20=1,PO ⋅PB =(-x 0,-y 0)⋅(1-x 0,-y 0)=x 0(x 0-1)+y 20=34x 0-23 2+23,因为-2≤x 0≤2,所以当x 0=-2时,PO ⋅PB max =34×-2-23 2+23=6,当x 0=23时,PO ⋅PB min =34×23-23 2+23=23,所以PO ⋅PB ∈23,6 .(2)设直线l :y =kx +m (k ≠0),M (x 1,y 1),N (x 2,y 2),y =kx +mx 24+y 2=1,消去y 得,(4k 2+1)x 2+8km x +4m 2-4=0,由题,Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1+y 2=kx 1+m +kx 2+m =2m 4k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=m 2-4k 24k 2+1,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN , BM ⋅BN=(x 1-1,y 1)⋅(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+y 1y 2=8km +5m 2-34k 2+1=0,所以8km +5m 2-3=0,①设MN 中点为D ,则D -4km 4k 2+1,m4k 2+1,因为BD ⊥MN ,。

高三数学一轮复习圆锥曲线综合问题

高三数学一轮复习圆锥曲线综合问题

直线与圆锥曲线的位置关系 [典题导入]
(2014· 长春三校调研)在直角坐标系 xOy 中, 点
1 M2,-2 ,
点 F 为抛物线 C:y=mx2(m>0)的焦点,线段 MF 恰被抛物线 C 平分. (1)求 m 的值; (2)过点 M 作直线 l 交抛物线 C 于 A、B 两点,设直线 FA、FM、 FB 的斜率分别为 k1、k2、k3,问 k1、k2、k3 能否成公差不为零的 等差数列?若能,求直线 l 的方程;若不能,请说明理由.
解析
(1)设 A(x1,y1),B(x2,y2),P(x0,y0),
[跟踪训练] 2. (2013· 新课标全国卷Ⅱ高考)平面直角坐标系 xOy 中, 过椭圆 M: x2 y2 + =1(a>b>0)右焦点的直线 x+y- 3=0 交 M 于 A,B a2 b2 1 两点,P 为 AB 的中点,且 OP 的斜率为 . 2 (1)求 M 的方程; (2)C,D 为 M 上两点,若四边形 ACBD 的对角线 CD⊥AB,求 四边形 ACBD 面积的最大值.






2 .在利用代数法解决最值与范围问题时常从 以下五个方面考虑: (1) 利用判别式来构造不等关系,从而确定参 数的取值范围; (2) 利用已知参数的范围,求新参数的范围, 解这类问题的核心是在两个参数之间建立等量 关系; (3) 利用隐含或已知的不等关系建立不等式, 从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5) 利用函数的值域的求法,确定参数的取值 范围.
所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.

专题21 圆锥曲线综合-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题21 圆锥曲线综合-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题21 圆锥曲线综合【母题来源】2021年高考乙卷【母题题文】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)【试题解析】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+, 所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.【命题意图】(1)了解圆或抛物线的实际背景,了解圆或抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握圆或抛物线的定义、几何图形、标准方程及简单性质. (3)了解圆锥曲线的简单应用. (4)理解数形结合的思想. 【命题方向】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识相结合,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养. 【得分要点】(一)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (二)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (三)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(四)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.(2021·四川遂宁市·高三三模(理))已知椭圆2222:1x y C a b+=(0a >,0b >)的左、右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为,点P 为椭圆C 的下顶点,2PF =.(1)求椭圆C 的标准方程;(2)经过抛物线24y x =的焦点F 的直线l 交椭圆C 于M ,N 两点,求||FM FN ⋅的取值范围.【答案】(1)22184x y +=;(2)7,72⎡⎤⎢⎥⎣⎦. 【分析】(1)利用2OPF 为直角三角形,得到b c =,再利用AOB 的面积,得到a ,b ,c 的关系,结合222a b c =+,求出a ,b ,即可得到椭圆的标准方程;(2)利用平面向量数量积的定义表示出||FM FN ⋅,分两种情况:①若直线l 与x 轴重合,求出||7FM FN ⋅=;①若直线l 与x 轴不重合,设直线l 的方程,与椭圆方程联立,得到韦达定理,由两点间距离公式求出||FN ,||FM ,表示出||FM FN ⋅,求解取值范围即可.【详解】(1)因为2OPF 为直角三角形,所以)22222b c PF +==,则b c =,又22122AOBb b cSc a a=⨯⨯==2b c =,又222a b c =+,所以34b b ==, 则24b =,222448a b c =+=+=,故椭圆C 的标准方程为22184x y +=(2)因为抛物线24y x =的焦点坐标为()1,0,所以点F 的坐标为()1,0F ,设()11,M x y ,()22,N x y又因为cos FM FN FM FN FM FN π⋅=⋅⋅=⋅①若直线l 与x 轴重合,()()117FM FN FM FN a a ⋅=⋅=-+=①若直线l 不与x 轴重合,设直线l 的方程为1x my =+,则221184x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()222270m y my ++-=, 所以12222m y y m -+=+,12272y y m -=+, 则由两点间的距离公式有1FM y ===,同理()221FN m y =+,所以()2121FM FN FM FN m y y ⋅=⋅=+()()222227277717222m m m m m +-=+⋅==-+++,因为222m +≥, 所以277022m <≤+,所以2777722m ≤-<+, 综上①①可知7,72FM FN FM FN ⎡⎤⋅=⋅∈⎢⎥⎣⎦,即FM FN ⋅的取值范围是7,72⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题的关键是利用向量共线将向量的数量积的绝对值转化为焦半径来解答,本题中焦半径是利用两点间距离公式求解,转化为二次函数,利用二次函数在区间上的最值求解. 2.(2021·上海复旦附中高三其他模拟)已知过点,02p M ⎛⎫⎪⎝⎭的直线l 与抛物线()220y px p =>交于A 、B 两点,且3OA OB ⋅=-,其中O 为坐标原点. (1)求p 的值;(2)当4AM BM +最小时,求直线l 的方程. 【答案】(1)2p =;(2)440x ±-=. 【分析】(1)设直线l 的方程为2px my =+和抛物线方程联立利用韦达定理代入3OA OB ⋅=-即可求得p ;(2)利用抛物线定义结合基本不等式求得取最小值时1x 的值,代入点B 坐标,将点B 代入1x my =+,求得直线方程. 【详解】(1)设直线l 的方程为2p x my =+222p x my y px⎧=+⎪⎨⎪=⎩,得2220y pmy p --= 设()11,A x y ,()22,B x y ,所以122y y pm +=,212y y p =-因为3OA OB ⋅=-,所以12123x x y y +=-又2221212224y y p x x p p =⋅=,所以2234p p -=-,又因为0p >,所以2p =. (2)根据抛物线定义,得1112p AM x x =+=+,2212pBM x x =+=+所以1244559AM BM x x +=++=≥,当且仅当124x x =时等号成立.将124x x =代入21214p x x ==,得212x =(负值舍去).将212x =代入24y x =,得2y =1,2B ⎛ ⎝ 将点B 代入1x my =+,得4m =±所以直线l的方程为14x y =±+,即440x -=. 3.(2021·重庆高三其他模拟)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥.(1)求抛物线C 的标准方程;(2)若过点A 的另一条直线l 1与抛物线C 交于另一点M ,与y 轴交于点N ,且满足|AN |=|AM |,求BM 的最小值. 【答案】(1)214y x =;(2) 【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可; (2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =, ∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩, 由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n ,则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-==)20t ==≥,故20t =时,BM 最小为=. 【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y =-,解决相关问题.4.(2021·河北高三其他模拟)已知抛物线()2:290C y px =>的焦点为F ,C 上一点G 到F 的距离为5,到直线1x =-的距离为5. (1)求C 的方程;(2)过点F 作与x 轴不垂直的直线l 与C 交于A ,B 两点,再过点A ,B 分别作直线l 的垂线,与x 轴分别交于点P ,Q ,求四边形APBQ 面积的最小值.【答案】(1)24y x =(2 【分析】(1)求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p ,可得抛物线的方程; (2)设直线AB 的方程为(1)y k x =-,0k >,与抛物线的方程24y x =联立,运用韦达定理和弦长公式,求得直线AP 和BQ 的方程,求得P ,Q 的坐标,以及||PQ ,由四边形APBQ 面积121||||2S PQ y y =⋅-,计算可得k 的函数,求得导数和单调性,可得所求最小值. 【详解】(1)抛物线2:2(0)C y px p =>的焦点(2pF ,0),准线方程为2p x =-, 由C 上一点G 到F 的距离为5,可得52G px +=, 由G 到直线1x =-的距离为5,可得15G x +=,解得2p =,所以抛物线的方程为24y x =;(2)由(1)可得(1,0)F ,设直线AB 的方程为(1)y k x =-,0k >, 与抛物线的方程24y x =联立,可得2222(24)0k x k x k -++=, 设1(A x ,1)y ,2(B x ,2)y ,12242x x k +=+,121=x x ,12||x x -== 12124(2)y y k x x k+=+-=, 2221212121224(1)(1)(1)(22)4y y k x x k x x x x k k=--=+--=--=-,12||y y -===, 直线AP 的方程为111()y y x x k-=--,令0y =,可得11x ky x =+,即11(P ky x +,0),同理可得22(Q ky x +,0),1212|||()()|||PQ k y y x x =-+-=,所以四边形APBQ 面积21211||||)22S PQ y y k =⋅-=+ 22338(1)218()k k k k k+==++, 设321()f k k k k =++,0k >,422442323()1k k f k k k k --'=--=,可得当k >()f k 递增,0k <<()f k 递减,则()f k 的最小值为f ,所以四边形APBQ .5.(2021·浙江省杭州第二中学高三其他模拟)已知抛物线()2:20C y px p =>经过点(2,,P 是圆()22:11M x y ++=上一点,PA 、PB 都是C 的切线.(1)求抛物线C 的方程及其准线方程; (2)求PAB △的面积的最大值.【答案】(1)抛物线C 的方程为24y x =,准线方程为1x =-;(2) 【分析】(1)将点(2,的坐标代入抛物线的方程,求出p 的值,可得出抛物线C 的方程,可写出该抛物线的准线的方程;(2)设点()11,A x y 、()22,B x y 、()33,P x y ,求出直线AB 的方程,联立直线AB 与抛物线C 的方程,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △的面积的最大值. 【详解】(1)将点(2,的坐标代入抛物线C 的方程为228p ⨯=,解得2p =, 所以,抛物线C 的方程为24y x =,该抛物线的准线方程为1x =-;(2)先证明抛物线C 在其上一点()00,Q x y 处的切线方程为00220x y y x -+=.证明如下:由于点()00,Q x y 在抛物线C 上,则2004y x =,联立2004220y x x y y x ⎧=⎨-+=⎩,可得200202y y y x -+=,即220020y y y y -+=,则2200440y y ∆=-=,所以,抛物线C 在其上一点()00,Q x y 处的切线方程为00220x y y x -+=. 设点()11,A x y 、()22,B x y 、()33,P x y ,则直线PA 的方程为11220x y y x -+=,直线PB 的方程为22220x y y x -+=, 因为点P 在直线PA 、PB 上,所以,31313232220220x y y x x y y x -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程33220x y y x -+=,由于两点确定一条直线,故直线AB 的方程为33220x y y x -+=,联立2334220y x x y y x ⎧=⎨-+=⎩,消去x 可得233240y y y x -+=,由韦达定理可得1232y y y +=,1234y y x =,所以,12AB y y =-==点P 到直线AB的距离为d =,所以,()3223311422PABS AB d y x =⋅==-△, 另一方面,()22233333342439y x x x x x -=---=-++,其中320x -≤≤, 所以,当32x =-时,2334y x -取得最大值8,因此,()3322233114822PAB S y x =-≤⨯=△. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.6.(2021·湖南岳阳市·高三其他模拟)已知动圆过定点(1,0)P ,且与定直线:1l x =-相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;(2)设过点P 且斜率为M 相交于A ,B 两点.①问:ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由;①当ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围. 【答案】(1)24y x =;(2)①不能,理由见解析;①y <或y y >≠. 【分析】(1)可得曲线M 是以点P 为焦点的抛物线,即可得出方程;(2)①得出直线AB 方程,与抛物线联立可求得,A B 坐标,根据BC AB =,AC AB =建立方程求解可判断;①设(1,)C y -,根据边长关系分别讨论各个角为钝角时y 的范围即可. 【详解】(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线, 所以曲线M 的方程为24y x =. (2)①由题意得,直线AB 的方程为3(1)yx ,由21)4y x y x⎧=-⎪⎨=⎪⎩消y 得231030x x -+=,解得121,33x x ==.所以A点坐标为1,33⎛ ⎝⎭,B点坐标为(3,-,121623AB x x =++=. 假设存在点(1,)C y -,使ABC 为正三角形,则BC AB =,AC AB =,即22222216(31)(,3116133y y ⎧⎛⎫+++=⎪ ⎪⎝⎭⎪⎨⎛⎛⎫⎛⎫⎪++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎩①②, 由①-①得222244(33y y ⎛⎛⎫++=+- ⎪⎝⎭⎝⎭,解得y =但y =①,所以由①,①组成的方程组无解. 因此,直线l 上不存在点C ,使得ABC 是正三角形. ①设(1,)C y -使ABC 成钝角三角形,由1)1y x x ⎧=-⎪⎨=-⎪⎩得y =即当点C 的坐标为(1,-时,A ,B ,C 三点共线,故y ≠又2222128139AC y y ⎛⎛⎫=--+-=-+ ⎪⎝⎭⎝⎭, 2222(31)(28BC y y =+++=++,221625639AB ⎛⎫==⎪⎝⎭.当222BC AC AB >+,即222825628939y y y ++>-++,即y >CAB ∠为钝角.当222AC BC AB +>,即22282562899y y y -+>+++,即y <CBA ∠为钝角.又222AB AC BC >+,即222562828993y y >-++++,即2240,03y y ⎛+<< ⎝.该不等式无解,所以ACB ∠不可能为钝角.因此,当ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <或y y >≠. 【点睛】关键点睛:解题的关键是利用两边的平方和大于第三边平方建立关系得出钝角.7.(2021·浙江金华市·高三三模)如图,已知抛物线24y x =,过x 轴正半轴上一点P 的两条直线分别交抛物线于A 、C 和B 、D 两点,且A ,D 在第一象限,直线AB 与x 轴的交点E 在原点O 和P 点之间.(1)若P 为抛物线的焦点,且||3AP =,求点A 的坐标;(2)若P 为动点,且CDP 的面积是ABP △面积的3倍,求||||OP OE 的值.【答案】(1)(2,;(2【分析】(1)根据抛物线的定义,得到||13AP x =+=,进而求得点A 的坐标;(2)由于ΔΔ3CPD APB S S =,得到34123y y y y =,设直线:l x ty n =+,联立方程组得到4M N y y t +=,4M N y y n =-,得到34123y y y y =,求得m =,即可求解.【详解】(1)设(,)A x y ,根据抛物线的定义,可得||13AP x =+=,所以2x =,可得28y =, 因为点A在第一象限,所以y =A的坐标为(2,. (2)设()()()()11223344,,,,,,,A x y B x y C x y D x y ,(,0),(,0)E e P m ,由于ΔΔΔΔ||||,||||APD APD APB CPD S S PD AP S PB S PC ==,且ΔΔ3CPD APB S S =, 所以||3||||||PD AP PB PC =,所以4123y y y y -=-,所以34123y y y y =. 假设有过点(,0)n 的直线:l x ty n =+交抛物线24y x =于M ,N 两点,联立消去x 的2440y ty n --=,则有4M N y y t +=,4M N y y n =-,(*)由(*)式可知134y y m =-,244y y m =-,124y y e =-.所以22341212441641234m m m m y y e y y y y e e ⎛⎫⎛⎫=-⋅-=-=-=-= ⎪ ⎪⎝⎭⎝⎭,所以m =,所以||||OP mOE e==【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.8.(2021·浙江嘉兴市·高三其他模拟)抛物线2:2C y px =的焦点为F ,准线为,l P 是抛物线上一点,过F的直线交抛物线于A ,B 两点,直线AP 、BP 分别交准线l 于M 、N .当//AB l ,点P 恰好与原点O 重合时,MNF 的面积为4.(1)求抛物线C 的方程; (2)记12,,PMNPABSS SS P ==点的横坐标与AB 中点的横坐标相等,若12||S PF S λ⋅=,求λ的最小值.【答案】(1)24y x =;(2)8.【分析】(1)由题设,结合抛物线的性质知:当//AB l 且P 恰好与原点O 重合时有2MN AB p ==,进而根据三角形面积求p ,写出抛物线方程.(2)设AB 为1x ky =+,11(,)A x y ,22(,)B x y ,联立抛物线方程,应用韦达定理求12y y +,12y y ,可求12x x +,即可得p x 、||PF 、P 到AB 的距离,进而可得2S 关于k 的表达式,再写出直线PA 、PB 方程,即可求||M N y y -,可得1S 关于k 的表达式,结合已知条件应用基本不等式求λ的最小值. 【详解】(1)由题设,当//AB l 且P 恰好与原点O 重合,MNF 的面积为4, ①2MN AB p ==,即142MNFSMN p =⋅=,可得2p =, ①抛物线C 的方程为24y x =.(2)由题意,可设AB 为1x ky =+,11(,)A x y ,22(,)B x y , ①联立抛物线方程,整理得:2440y ky --=,显然0∆>,①124y y k +=,124y y =-,则21212()242x x k y y k +=++=+,①P 的横坐标与AB 中点的横坐标相等, ①212212p x x x k +==+,则2||122p PF x k =+=+,若P 在第一象限,则2(21P k +,可得P 到AB的距离2d =,①22121|||||2S d AB y y k =⋅=-⋅-,由上知:2121:(21)](21)y PA y x k x k -=-++-+,22:(21)]PB y x k =-++ 令1x =-,有2122)M y k =--+2222)N y k =--+,①212|||2(M N y y k -=-+212|2(1)|k =-+2122112(2)(2)1|2|(2)(2)y y k y y k k k y k y k -----+=-⋅⋅--21212122121212(24(241|2|2()4y y ky y y ky k k y y k y y k--+---++=-⋅⋅-++221212(2)()1|2|||4(1)k y y k y y k k k k---+=-⋅⋅=-+,①11||||2M N S y y PF =-⋅=①12||S PF S λ⋅=212|||y y k λ-⋅-,①222222(1)1=2()448k k k k λ+=++≥=,当且仅当1k =±时等号成立, ①λ的最小值为8. 【点睛】关键点点睛:第二问,设交点及直线方程,联立抛物线应用韦达定理求12y y +,12y y ,进而得到P 坐标,综合应用点线距离公式、三角形面积公式,结合已知条件列方程求参数的范围.9.(2021·全国高三其他模拟(理))已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程.【答案】(1)24y x =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程;(2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n=,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =. (2)设()11,A x y ,()22,B x y ,且128x x +=, 设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n -=-,即()42nx y n =-+, 与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y y ++-=-=≤=, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x ±-=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.10.(2021·四川高三二模(理))已知点(1,0)F ,直线:2l x =-,P 为y 轴右侧或y 轴上动点,且点P 到l 的距离比线段PF 的长度大1,记点P 的轨迹为E . (1)求曲线E 的方程;(2)已知直线1:1l x =交曲线E 于A ,B 两点(点A 在点B 的上方),C ,D 为曲线E 上两个动点,且CAB DAB ∠=∠,求证:直线CD 的斜率为定值.【答案】(1)24y x =;(2)证明见解析. 【分析】(1)由题设条件分析讨论,再用抛物线定义即可得解;(2)求出点A 坐标,利用抛物线方程设出点C ,D 坐标,由条件探求出这两点纵坐标关系即可得解. 【详解】(1)依题意,线段PF 的长度等于P 到0:1l x =-的距离,由抛物线定义知, 点P 的轨迹是以(1,0)F 为焦点,0:1l x =-为准线的抛物线, 所以E 的方程为24y x =;(2)将1x =代入24y x =得2y =±,则(1,2)A ,(1,2)B -,如图:设抛物线E 上动点221212(,),(,)44y y C y D y ,显然直线AC ,AD 斜率存在,121124214AC y k y y -==+-,同理242ADk y =+,因为CAB DAB ∠=∠,则0AC AD k k +=, 121212440220422y y y y y y +=⇒+++=⇒+=-++, 直线CD 的斜率122212124144y y k y y y y -===-+-, 即直线CD 的斜率为定值-1.11.(2021·全国高三其他模拟(文))已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点). (1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8. (i )设线段AB 的中垂线为l ,证明:l 恒过定点.(ii )设(i )中定点为D ,当AB 取最大值时,且P ,D 位于直线AB 两侧时,求四边形PADB 的面积.【答案】(1)24y x =;(2)(i )证明见解析;(ii).【分析】(1)根据抛物线焦半径公式可得2pPF t =+,结合题意,将点P 坐标代入,联立即可求的p 值,即可得答案.(2)(i )设()11,A x y ,()22,B x y ,当12x x ≠时,可求得AB k ,进而求得直线l 的方程,即可得定点坐标,当12x x =时,:0l y =,经过定点,即可得证, (ii )由(i )知直线()2:4AB y n x n-=-,与抛物线联立,结合韦达定理,可得12y y +,12y y 表达式,代入弦长公式即可求得AB ,结合基本不等式,可得AB 的最大值及直线AB的方程,经检验可得:220AB x +-=,根据点到直线距离公式,可得P 、D 到直线AB 的距离1d ,2d ,代入面积公式,即可得答案. 【详解】(1)由题意得22242p p t pt⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩, 所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=.(i )设AB 中点为(),E m n ,则1242x x m +==,122y y n +=, 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n --====--+, 则2l n k =-,():42n l y n x -=--,即1(3)2y n x =-, 令1302x -=,解得6x =,此时0y =,所以l 恒过定点()6,0. 当12x x =时,:0l y =,过()6,0,综上:l 恒过定点()6,0.(ii )由(i )知直线()2:4AB y n x n -=-,即()42n x y n =-+, 与24y x =联立方程消去x ,整理得2222160y ny n -+-=,由0∆>,得216n <,122y y n +=,212216y y n =-,2212416102n n AB y ++-=-==, 当且仅当26n =时取等号,所以AB 的最大值为10,此时直线AB 的方程为220x ±-=.对于直线220x-=,()()260221220⎡⎤⨯-⨯-->⎣⎦,点P,D 在同侧,不合题意,所以取直线:220AB x +-=, 点P 到直线AB的距离1d ==,点D 到直线AB的距离2d ==, 所以()1212PADB S AB d d =⋅+=四边形. 【点睛】解题的关键是熟练掌握弦长公式、基本不等式、点到直线距离公式等知识,并灵活应用,易错点为,求得n =需分别代入,检验P ,D 是否位于直线AB 两侧,再求解,考查分析理解,计算求值的能力,属中档题.12.(2021·浙江湖州市·高三二模)已知1F ,2F 是椭圆()2222:10x y E a b a b+=>>的左、右焦点,动点P 在椭圆上,且1PF 的最小值和最大值分别为1和3.(1)求椭圆的标准方程;(2)动点M 在抛物线2:4C y x =上,且在直线x a =的右侧.过点M 作椭圆E 的两条切线分别交直线x a =-于A ,B 两点.当10AB =时,求点M 的坐标.【答案】(1)22143x y +=;(2)()4,4±. 【分析】(1)由椭圆上的点到一焦点距离最大、最小值求出a 及半焦距c 即可得解;(2)设出点M 坐标,过点M 的椭圆切线方程,联立切线与椭圆组成的方程组,消元后利用判别式等于0建立关系即可得解.【详解】(1)设椭圆半焦距为c ,依题意有13a c a c -=⎧⎨+=⎩,解得2a =,1c =,b =所以椭圆方程为22143x y +=; (2)设()12,A y -,()22,B y -,()22,2(2)M t t t >,过点M 的椭圆切线斜率为k ,此切线方程为()22y k x t t =-+,由()22223412y kx t t k x y ⎧=+-⎪⎨+=⎪⎩,得()()()22222348242120++-+--=k x k t t k x t t k , 由0∆=得到()423244430t k t k t --+-=,切线MA ,MB 的斜率分别为k 1,k 2, 所以312444t k k t +=-,2124434-⋅=-t k k t ,显然y 1=(-2-t 2)k 1,y 2=(-2-t 2)k 2, 则()212122=-=+-AB y y t k k,而1244k k t -==-, 所以(2210t +=,即421158560t t -+=,解得24t =或21411t =(舍去), 所以点M 的坐标为()4,4±.【点睛】方法点睛:联立直线l 与椭圆C 的方程组,消元后的一元二次方程判别式为∆:(1)0∆>⇔直线l 与椭圆C 相交;(2)0∆=⇔直线l 与椭圆C 相切;(3)0∆<⇔直线l 与椭圆C 相离.。

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。

高三数学圆锥曲线的综合(PPT)5-1

高三数学圆锥曲线的综合(PPT)5-1

二、例题:
例1. A,B是抛物线 y 2 2 px( p 0) 上的两 点,且ห้องสมุดไป่ตู้A OB(O为坐标原点)求证:
(1)A,B两点的横坐标之积,纵坐标之积分 别是定值;
(2)直线AB经过一个定点。
一、基本知识概要:
知识精讲: 圆锥曲线的综合问题包括:解析法的应用, 数形结合的思想,与圆锥曲线有关的定值、 最值等问题,主要沿着两条主线,即圆锥 曲线科内综合与代数间的科间综合,灵活 运用解析几何的常用方法,解决圆锥曲线 的综合问题;通过问题的解决,进一步掌 握函数与方程、等价转化、分类讨论等数 学思想.
动一种事物伴随着另一种事物一起存在(多指次要的伴随着主要的):~树|钛、铬、钴等常与铁矿~。 【伴声】名伴音。 【伴宿】动①〈方〉出殡的前一 天的夜里,亲属守灵不睡。②陪伴过夜。 【伴随】动随同;跟随:~左右,不离寸步|~着生产的大发展,必将出现一个文化高潮。 【伴同】动陪同;伴随: 去年他曾~我到过这里|蒸发;西安电子科技大学自考:https:///zkdy/dy62.html ;和溶解的过程常有温度下降的现象~发生。 【伴舞】 动①陪伴人跳舞:邀她去舞会上~。②从旁跳舞,配合演唱。 【伴星】ī名双星中较暗的一颗,围绕着主星旋转。 【伴音】ī名在电影和电视中配合图像的声 音。也叫伴声。 【伴游】①动陪同游览或游玩。②名指陪同游览或游玩的人。 【伴奏】动歌唱、跳舞或独奏时用器乐配合。 【坢】〈方〉名粪肥:猪 栏~|牛栏~。 【拌】动搅拌;搅和:给牲口~草|把种子用剂~了再种。 【拌和】?动搅拌:~饲料|饺子馅儿要~匀了。 【拌蒜】∥〈方〉动指走路时 两脚常常相碰,身体摇晃不稳:酒喝多了,走起路来两脚直~。 【拌嘴】∥动吵嘴:两口子时常~|拌了几句嘴。 【绊】(絆)动挡住或缠住,使跌倒或使 行走不方便:~手~脚|让石头~了一跤。 【绊脚石】名比喻阻碍前进的人或事物:骄傲是进步的~。 【绊马索】名设在暗处用来绊倒对方人马的绳索。 【绊儿】名绊子?:他一个~就把我摔倒了。 【绊手绊脚】妨碍别人做事;碍手碍脚。 【绊子】?名①摔跤的一种招数,用一只腿别着对方的腿使跌倒:使~。 ②系在牲畜腿上使不能快跑的短绳。 【柈】[柈子](?)〈方〉名大块的劈()柴。 【湴】〈方〉名烂泥。 【靽】〈书〉驾车时套在牲口后部的皮带。 【瓣】①(~儿)名花瓣:梅花有五个~儿。②(~儿)名植物的种子、果实或球茎可以分开的小块儿:豆~儿|橘子~儿|蒜~儿。③(~儿)量物体自 然地分成或破碎后分成的部分:四角八~儿|碗摔成几~儿。④名瓣膜的简称。⑤(~儿)量用于花瓣、叶片或种子、果实、球茎分开的小块儿:两~儿 蒜|把西瓜切成四~儿。 【瓣膜】名人和某些动物的器官里面可以开闭的膜状结构。简称瓣。 【瓣胃】名反刍动物的胃的第三部分,容积比网胃略大,内壁 有书页状的褶。反刍后的食物进入瓣胃继续磨细。也叫重瓣胃。 【邦】①国:~交|友~|邻~。②()名姓。 【邦交】名国与国之间的正式外交关系:建 立~|断绝~|恢复~。 【邦联】名两个或两个以上的国家为了达到某些共同的目的而组成的联合体。邦联的成员国仍保留完全的独立主权,只是在军事、 外交等方面采取某些
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pt平台网
[单选,A2型题,A1/A2型题]可以诱发鱼、禽、大鼠和猴子等多种动物肝癌的真菌毒素是()。A.烟曲霉毒素B.橘青霉毒素C.黄曲霉毒素D.展青霉毒素E.赭曲霉毒素 [填空题]齐国的第一代国君是姜尚,鲁国的第一代国君是()。 [单选]拦水缘石设置的位置是()。A.路肩上B.边沟里C.涵洞前D.检查井中 [单选,A2型题,A1/A2型题]手术患者在输血过程中出现溶血反应时,最具特征的临床表现是()。A.黄疸B.血红蛋白尿C.手术野渗血,血压下降D.喉头水肿、呼吸困难E.大量血性泡沫痰 [单选,A1型题]根据《药品说明书和标签管理规定》,下列叙述错误的是()A.药品说明书由省级人民政府药品监督管理部门核准B.药品标签由国务院药品监督管理部门核准C.药品包装必须按照规定印有标签D.药品包装必须按照规定贴有标签E.药品生产企业生产供上市销售的最小包装必须附有说 [单选]软件能力成熟度模型CMM,共分几级:()A.4B.5C.6D.7 [单选]产后子宫恢复至非孕期大小约需().A.3周B.4周C.5周D.6周E.7周 [填空题]冷凝液泵为()泵;共有()台。 [单选,A2型题,A1/A2型题]特发性甲状旁腺功能减退症可能的病因是()。A.甲状旁腺肿瘤B.与血中钙减少有关C.甲状旁腺炎症D.以上都对E.与自身免疫有关 [单选,A2型题,A1/A2型题]慢性粒细胞白血病化疗首选()A.羟基脲B.白消安C.靛玉红D.MTXE.CTX [多选]自我反省成功的加速器,其作用下面说法正确的是?()A、可以去除心中的杂念B、可以理性地认识自己,对事物有清晰的判断C、可以不断完善自己D、也可以提醒自己改正过失 [单选]对系统性红斑狼疮患者的狼疮肾炎描述不正确的是()。A.是系统性红斑狼疮最常累及的脏器B.不论是哪种病理类型,患者预后均差C.血清补体降低与肾炎的活动性及严重性密切相关D.慢性肾功能不全是主要的死亡原因E.肾穿刺病理类型对于判定预后最为重要 [单选]出版社需要采集的信息内容不包括()。A.社会发展信息B.出版业市场信息C.消费者信息D.消费者信息 [名词解释]原生异常 [单选]火灾调查询问时必须由火灾调查人员进行且不得少于()人。A、1B、2C、3D、4 [问答题,简答题]什么是加工精度? [单选,A1型题]患者女,50岁。下蹲或腹部用力时,出现不由自主的排尿,其正确的护理诊断是()A.功能性尿失禁:与膀胱过度充盈有关B.功能性尿失禁:与腹压升高有关C.反射性尿失禁:与膀胱收缩有关D.完全性尿失禁:与神经传导功能减退有关E.压迫性尿失禁:与膀胱括约肌功能减退有关 [填空题]()的利用和人工取火是原始时代的又一个伟大的技术创造. [单选,A2型题,A1/A2型题]pT0的含义是()A.术前影像证实早期癌B.术前已判定为原位癌C.术后病理检查发现原位癌D.术后组织病理学检查未发现原发肿瘤E.术后病理检查诊断明确分型 [单选]《节约能源法》规定,节能技术进步的主要措施不包括()。A.国务院管理节能工作的部门会同国务院科技主管部门发布节能技术政策大纲,指导节能技术研究、开发和推广应用B.县级以上各级人民政府应当把节能技术研究开发作为政府科技投入的重点领域C.国务院管理节能工作的部门会 [单选]以下哪种药物抑制胃酸分泌最弱A.奥美拉唑B.法莫替丁C.兰索拉唑D.雷尼替丁E.硫糖铝 [单选]下列有关公务员录用的说法哪一项是正确的?()A.曾被开除公职的人原则上不得录用为公务员,但表现特别突出者不受此限制B.录用公务员须遵循统一程序,不得因录用特别职位的公务员而简化程序C.招录机关提出的拟录用人员名单应予以公示D.市级以下公务员主管部门可以对拟任职位 [单选]画者与写生物象之间的距离应该不少于物象高度的几倍()。A、一倍B、两倍C、三倍D、四倍 [单选]李某自某商场购得某电饭锅,后因质量问题电饭锅爆炸,炸伤李某。根据《合同法》,李某可请求商场承担何种民事责任?()A.仅得请求违约责任B.仅得请求侵权责任C.有权请求侵权责任和违约责任D.得请求侵权责任或违约责任 [单选,A1型题]关于血栓闭塞性脉管炎,不恰当的是()A.病变一般自动脉开始B.早期主要是细菌感染引起C.主要侵袭四肢D.受累血管发硬而缩窄E.间歇性跛行是早期症状之一 [单选,A1型题]早产儿,胎龄30周,生后不久出现呼吸困难、青紫、呻吟,三凹征阳性,给头罩吸氧1小时,呼吸困难无好转。查血气分析:pH7.15,PaO245mmHg,PaCO260mmHg,BE-7mmol/L。最恰当的处理是()A.加大头罩吸氧氧流量B.机械通气C.给予鼻塞式CPAPD.补充碳酸氢钠纠正酸中毒E.给 [单选,A2型题,A1/A2型题]溃疡性结肠炎患者最常见的护理诊断是()A.体液不足B.皮肤完整性受损C.焦虑D.腹泻E.有感染的危险 [单选,A2型题,A1/A2型题]对于一氧化碳中毒患者,皮肤黏膜呈().A.黑色B.青紫色C.暗红色D.樱桃红色E.苍白色 [问答题,简答题]请写出在离港系统中查看9月18日CA1307航班座位图的操作指令?(两种方式都可以) [多选]关节镜手术的禁忌证有()。A.早中期类风湿关节炎B.有出血性疾患,出血倾向得到控制后C.关节局部皮肤感染D.类风湿关节炎或骨关节炎患者关节间隙严重狭窄者E.色素绒毛结节性滑膜炎病变侵犯软骨下骨者 [单选,A型题]肠扭转属哪种类型肠梗阻()A.单纯性肠梗阻B.麻痹性肠梗阻C.粘连性肠梗阻D.绞窄性肠梗阻E.血运性肠梗阻 [单选]通常情况下,测深辨位的准确性与下列哪些因素有关()。A.测深和潮高的改正的准确性B.计划航线上水深变化规律C.海图上所标水深点位置和水深的准确性D.以上都是 [单选]统计工作的基础是指()。A.统计设计B.统计调查C.统计整理D.统计分析 [单选,A1型题]《执业医师法》规定,在医疗、预防、保健机构中试用期满一年,具有以下学历者,可以参加执业医师资格考试()A.高等学校医学专业本科以上学历B.高等学校医学专业专科学历C.取得助理执业医师执业证书后,具有高等学校医学专科学历D.中等专业学校医学专业学历E.取得助 [单选]衰变后的核素()A.质量数减少2,原子序数减少4B.质量数不减少,原子序数减少2C.原子序数不变,质量数减少4D.原子序数减少2,质量数减少4E.原子序数和质量数均不减少,仅能量状态改变 [单选]下列各项业务中,可以确认收入的是。A.企业销售的商品在质量、品种、规格等方面不符合合同或协议的要求,又未根据正常的保证条款予以弥补B.企业尚未完成售出商品的安装或检验工作,且安装或检验工作是销售合同和协议的重要组成部分C.销售合同和协议中规定了买方由于特殊原因 [单选]为明确上消化道大出血原因,首选的检查方法是()A.上消化道造影B型超声检查C.纤维内镜检查D.选择性动脉造影检查E.胸片 [单选]经过格式化但未写入数据的软盘上()。A、一无所有B、仅有扇区标志C、仅有扇区标志和引导记录D、有扇区标志、引导记录、文件分配表和文件目录表 [单选]有关对分项工程项目编码数字表示的叙述中,说法不正确的是()。A.第一、二位数字表示工程类别B.第三、四位数字表示各专业工程C.第五、六位数字表示清单项目D.第七、八位数字表示各分部工程的各分项工程 [单选,A1型题]NK细胞通过ADCC作用杀伤靶细胞需要()A.补体B.抗体C.
相关文档
最新文档